Partial Duplicate Detection for Large Book Collections

Ismet Zeki Yalniz
Dept. of Computer Science
University of Massachusetts

Ambherst, MA, 01003

zeki@cs.umass.edu

ABSTRACT

A framework is presented for discovering partial duplicates
in large collections of scanned books with optical character
recognition (OCR) errors. Each book in the collection is
represented by the sequence of words (in the order they ap-
pear in the text) which appear only once in the book. These
words are referred to as “unique words” and they constitute
a small percentage of all the words in a typical book. Along
with the order information the set of unique words provides
a compact representation which is highly descriptive of the
content and the flow of ideas in the book. By aligning the
sequence of unique words from two books using the longest
common subsequence (LCS) one can discover whether two
books are duplicates. Experiments on several datasets show
that DUPNIQ is more accurate than traditional methods for
duplicate detection such as shingling and is fast. On a collec-
tion of 100K scanned English books DUPNIQ detects partial
duplicates in 30 min using 350 cores and has precision 0.996
and recall 0.833 compared to shingling with precision 0.992
and recall 0.720. The technique works on other languages
as well and is demonstrated for a French dataset.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.7 [Digital Libraries]: Collection,
Systems Issues

General Terms

Algorithms, Experimentation

Keywords

partial duplicate detection, sequence matching, unique words

1. INTRODUCTION

This paper describes an approach to finding partial du-
plicates of documents. The focus here is on long noisy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM ’11 Glasgow, UK

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Ethem F. Can
Dept. of Computer Science
University of Massachusetts

Amherst, MA, 01003
efcan@cs.umass.edu

R. Manmatha
Dept. of Computer Science
University of Massachusetts
Amherst, MA, 01003
manmatha@cs.umass.edu

documents. By long it is meant book length rather than
short messages, records, or short documents of the type seen
on the web. The particular application here is to scanned
and recognized books from collections such as the Internet
Archive or Google Books but it also applies to government,
company and legal documents. Partial duplicates help us to
explore the relationships between books - for example which
ones are multiple editions or versions of a given book.

Books are different from traditional web documents or the
kinds of documents used in TREC. Different editions or ver-
sions of books are often not straight copies or near duplicates
but may show a lot of variation. Such variations include new
prefaces or introductions, additional footers and headers and
formatting changes. Two editions of Shakespeare’s Othello
may differ substantially. For example, one may contain only
the main text while a second variorum edition may contain
only 30% of the main text on the page with the rest being
footnotes. In addition there may be spelling changes and
OCR errors. To simplify matters we will refer to this pro-
cess of finding editions and versions as one of finding partial
duplicates. Note that a near duplicate or an exact duplicate
is a special case of a partial duplicate. It is not common to
find near duplicates in books - both because of OCR errors
and the addition of new material.

Books must preserve the linear progression of ideas for
them to be valid duplicates. Re-ordering the chapters of a
book such as Twain’s Huckleberry Finn would either not
make it meaningful or make it a different book. This struc-
ture is preserved even if material is inserted in the form of
footnotes or a preface is inserted. One approach, therefore,
to finding a duplicate is to consider each book as a sequence
of words and do a full alignment. This has been suggested
for various tasks such as finding plagiarized portions of docu-
ments [8, 11]. However, methods to fully align two texts are
expensive even for papers (let alone books) and do not scale
well to large collections. Most plagiarism detection tech-
niques instead use a prefiltering stage which involves chunk
overlap to detect possible duplicates before running a full
alignment to detect which portions are duplicated [11].

We propose an alternative representations for finding par-
tial duplicates efficiently for books which works for docu-
ments in the same language. We exploit the characteristics
of language - specifically Zipf’s law - to come up with a
representation. The crux of the idea is to represent each
document using the sequence of unique words in the doc-
ument (not in the collection). By unique words we mean
words which occur only once in the document. A sequence
is created from the unique words by following their natural

Robert Burns
Original Version

Robert Burns
Modern Version

To purchase peace and rest To purchase peace and rest

[t’s no in makin muckle, mair

[t’s not in making much, more
It’s not in books, it’s not in learning
To make us truly blessed

l

Extraction of unique
words in vocabulary

l

It’s no in books, it’s no in lear

Extraction of unique
words in vocabulary

purchase purchase
peace Alignment peace
rest using rest
makin longest making
muckle common much
Hl&ir suhseq}lence more
books (LCs) books
lair learning
make

us
truly
blessed

Figure 1: Illustration of partial duplicate detection. Two versions
of Robert Burns’ poem. Unique words are underlined in the text.
The two sequences of unique words are aligned using LCS.

order in the document. Two documents are similar if their
sequences are similar '. Figure 1 shows two versions of a
portion of Robert Burns’ poem. For each document, the
sequence of unique words is shown from top to bottom.

This representation is compact since unique words are a
small percent of all the words in the document. A typical
100K word English book has around 2-3K unique words.
Two books are compared by finding the longest common
subsequence (LCS) between the two unique word sequences.
Since the LCS is done over the sequence of unique words
and not over the sequence of all words, the alignment time
is drastically reduced. There are additional characteristics
of this representation which make the alignment even more
efficient and it will be discussed later. For a 100K dataset of
books (over 5 billion book pairs), DUPNIQ has a precision
of 0.996 and a recall of 0.833. It is more accurate than a 0
mod p shingling technique with p = 50 and 4-grams which
has a precision of 0.992 and a recall of 0.720. Our technique
is also fast and comparable to shingling in terms of speed.
Total processing time for the 100K dataset is 30 min on a
350 core cluster. Experiments over several data sets are also
reported including a collection of French books.

There are many uses of such duplicate detection work.
The humanities and library communities have a great in-
terest in aggregating works and finding all versions of say
Shakespeare’s Othello. IFLA’s Functional Requirements for
Bibliographic Records (FRBR) proposes that the new gen-
eration of cataloging systems will include works aggregation
[21]. Search engines such as those at the Internet Archive
could collapse duplicate books or show the most appropriate
work in a set of duplicates - for example an ordinary reader
may prefer an uncommented version while a scholar might
want a commented version.

1Unlike web documents, books don’t have the problem of
dealing with spammers who might create documents con-
taining only unique words.

In the next section, we characterize the problem of dupli-
cate detection. This is followed by a review of the literature.
Section 4 discusses how to find duplicates explaining the
unique word representation, the sequence alignment and the
scoring used. Datasets and experiments are described next.
Finally, we conclude and point to future research directions.

2. PROBLEM CHARACTERIZATION

Our aim here is to find segments of texts which are partial
duplicates - for example, this may include an entire book,
the main text of a Shakespeare play, a story from a selec-
tion of short stories or long excerpts. We exclude quotations
or short passages the reason being that a quotation may be
used almost anywhere (see [23] on finding quotations). Doc-
uments on the same topic (e.g. optics) are not necessarily
duplicates so our problem is different from topic detection.

Figure 2 illustrates the variety of duplicates. These images
are a selection of duplicates found by the 100K dataset. A
full alignment was done on each pair of duplicates. The
lengths show the relative lengths of the two book pairs. The
books are binned and if the alignment density of a bin is
greater than 50% the bin is green, otherwise it is red. Note
that the actual play is only a third of the (bottom) Tempest
book in Figures 2(b) and 2(c). The figures show that even
small portions of duplicates in books can be found even when
the metadata gives little hint that the books are duplicates.

Sometimes one may have two collections of short stories
with some overlapping stories. However, the overlapping
stories may not have the same order in both books. Note
that we just need one short story to do the duplicate de-
tection. Identifying which portion of each book aligns (the
full alignment task) is more complicated but that is not the
focus of this paper. Certain books like dictionaries, word
lists and encyclopedias have an unusually large number of
unique words which follow an alphabetical order. This leads
to many false matches. Our focus is not on such books.

Note that metadata is not a good solution to finding dupli-
cates since it is often erroneous. Even when correct it is not
easy to tell two books are duplicates. Table 1 shows three
versions of Shakespeare’s Othello. It is not easy to find an
automatic algorithm (which works for all books) which will
tell from the metadata alone that all contain Shakespeare’s
Othello. Exact title matches may not also always indicate
duplicates. For example, there are two books titled “1914” -
one a book of fiction while another is a non-fiction book.

3. RELATED WORK

Several approaches have been previously studied for find-
ing duplicates in different contexts. One well-known ap-
plication, the Unix program “diff” [17] first creates chunks
from each line and then computes the LCS between two se-
quences of chunks. It works well for comparing different
versions of source codes but fails for finding duplicates in
scanned book collections because of noise (OCR errors) and
variations in line formatting which cause chunks not to be
consistent across books.

Most of the work in near duplicate detection involves using
either fingerprinting algorithms or using relative frequency
techniques (based on using words with similar frequencies)
[3]. The fingerprint techniques [3, 5] assume that each docu-
ment can be broken up into “distinctive” chunks or shingles
and two documents which have a large number of chunks

(a)

.
()

Figure 2: Examples of duplication. Green bars show matching portions of text with 50% or above word overlap. (a) The book Points
of Humour (top) contains a selection of verses from the Complete Works of Robert Burns (bottom). (b) Tales from Shakespeare (top)
contains selections from Shakespeare’s plays including the Tempest (bottom). (c) Clegg’s Elocutionist (top) contains a wide selection of

texts including a passage from the Tempest (bottom).

Creator

Title

#

1 No Author

2 William Shakespeare and H. H. Furness
3

Shakespeare’s Tragedy of Othello
A New Variorum Edition of Shakespeare

Wiliam Shakespeare, Tommaso Salvini and James Henry Mapleson Othello: A Tragedy in Five Acts

Table 1: Internet Archive catalogue records for Othello

in common are likely to be similar to each other compared
to documents which only have a small number in common.
Chunks are created by n-grams of words or characters. Note
that this is more likely to make the chunks unique since an n-
gram is less common than the original word. Hash-keys are
generated by hashing the chunks and then indexed using an
inverted file (sometimes the chunks are also indexed). Since
a document can contain a large number of chunks, most
algorithms subsample this set of chunks and differences in
sampling strategy distinguish the various approaches [16].
Several sampling techniques have been tried such as full
sampling, random sampling, picking every k*" chunk [14].
Another approach windows the chunks [22] by picking the
chunk with the lowest hash-key as a window is moved over
the document. [3] use the fact that every sub-chunk of a
duplicated chunk must be non-unique to reduce the number
of chunks in multiple passes. Other chunking algorithms
include those by [4, 20, 25]. The sub-sampling required in
practice means that many of these algorithms do not work
as well [3] when the documents are only partial duplicates or
noisy OCR output is considered. I-Match [7] extracts words
with certain statistical characteristics and hashes their ag-
gregation. These hash values are compared to determine
duplication. Talent [9] similarly finds certain kinds of con-
tent words and hashes them. Note that both I-Match and
Talent use collection statistics rather than individual docu-
ment statistics as done here. Charikar [6] applied a random
projection based method - essentially locality sensitive hash-
ing on the terms of a document - to find near duplicates and
Henzinger [15] applied this to the web domain. Hajishirzi et
al. [13] also worked on near duplicates by representing each
document as a sparse ngram vector and learning the weights
depending on the similarity measure being optimized.

Relative frequency techniques assume that two documents
with similar words and frequencies must be similar or dupli-
cated [16, 24] and claim to be more accurate than chunking
based methods. Local text reuse is a related problem where
the duplicates may not be exact. [23] used a Discrete Cosine
Transform (DCT) fingerprinting algorithm for this problem.

In plagiarism detection full alignment has been used to
find plagiarized passages [8] but is impractical for long doc-
uments and large collections. For example, e TBLAST was
used to align Medline abstracts [11] but is too computation-
ally expensive for whole documents and instead an essen-
tially chunking based approach was used.

The idea of using sequences of unique words to find du-
plicates is an extension of Feng and Manmatha’s work [12].
Given the OCR output and the ground truth text, Feng and
Manmatha find OCR errors with a HMM based alignment
approach using unique words as anchors. This approach was
later used by Stewart et al. [26] for OCR error correction.

4. FRAMEWORK

The duplicate detection framework DUPNIQ consists of
two stages. In the first stage unique words in the docu-
ment along with their relative positions are extracted from
the documents. For efficiency this is done once for every
book in the entire collection and thus the process is linear
in the number of documents. For a collection consisting of
100K books, it takes about 3.5 min on a cluster of 350 cores
to extract and record lists of unique words sorted by their
original order in documents. In the second stage the se-
quences of unique words from two books is compared using
an alignment algorithm. If the duplication score is greater
than a threshold, the pair is classified as a duplicate. Al-
though there are d(d — 1)/2 book pairs in a collection of size
d, pair-wise comparisons can be done rapidly.

4.1 Extraction of Unique Words

Each book in the collection is represented by the sequence
of words (in the order they appear in the text) which ap-
pear only once in the context of the book. These words are
referred to as “unique words” and they constitute a small
percent of all the words in a typical book. The representa-
tion is tolerant to OCR errors. While an OCR error may
map a non-unique word to a unique word, it is unlikely that
two books will have the same corrupted word let alone in
the same position in the sequence. Punctuation and nu-
meric characters are removed since the recognition accuracy
and consistency is low for them. This also eliminates page
numbers which may not be consistent across books but can
form a sequence of their own. In addition, the unique words
are fairly frequent further reducing the effect of OCR errors
and other noise. In a book of 100K words, every second
sentence of the document contains a unique word.

4.2 Sequence Matching

Each pair of books in the collection is compared using
the sequence of their unique words. The aim is to find the
longest subsequence (LCS) of unique words which preserves

Table 2: DUPNIQ-cs and DUPNIQ-its scores for three pairs of books.

Book Y respectively. GT is the ground truth.

X and Y refer to the sequences of unique words for Book X and

Book X | Book Y | IX| Y] | XNY| |LCS| DUPNIQ-cs DUPNIQ-its GT
Shakespeare’s Law; S. G. | Shakespeare’s Law; S. G. | 1482 1563 1406 1404 0.922 0.979 Yes
Greenwood Greenwood
Departmental ditties and other | Departmental ditties bal- | 1787 4512 955 739 0.260 0.765 Yes
verses; R. Kipling lads barrackroom ballads

& other verses; R. Kipling
Metrical Translations; J. Muir | Ausonius | 7526 12695 689 53 0.005 0.400 No

the same order in both books. The problem turns out to be
a search for the longest common subsequence between the
sequences. The length of the LCS is a good indication of
duplication between two books (see Figure 1).

There are a number of LCS algorithms in the literature.
The standard dynamic programming algorithm has O(mn)
time and space requirements, where m and n are the lengths
of the two input sequences. There are also algorithms requir-
ing O(mn) time and linear space for computing the LCS.
There is also a O(nloglogn) time algorithm with the restric-
tion that no word appears more than once within either
input string [18]. This algorithm is actually suitable for the
duplication detection case since input sequences are com-
posed of only unique words. For a more detailed discussion
on longest common subsequences, please refer to [10].

It is not necessary to compute the LCS length for each
book pair in the collection. Given the duplication threshold,
it is possible to solve for a lower bound for the LCS length L
which makes the book pair a duplicate. If the total number
of common unique words between the two sequences is less
than L, then the pair is guaranteed to have a duplication
score which is below the threshold and therefore the pair
can be skipped without any alignment. It is observed that
less than 1% of book pairs in the collection pass this test.
This test, therefore, provides a considerable speed-up. It
is also not necessary to compute the LCS over the entire
sequences of unique words. The reason is that a word must
appear in both sequences to be in the LCS. Therefore, LCS is
run over the sequence of unique words which appear in both
sequences [10]. Table 2 shows that the number of common
words X NY is much smaller than the unique words in either
sequence.

4.3 Scoring Function

The LCS length is used to detect duplicates. However,
the LCS length is a function of book length and needs to be
normalized. Below two normalization schemes are proposed.
Other approaches involving normalizing the LCS length by
the minimum or average of the lengths of the two sequences
did not work well and therefore, are not reported.

4.3.1 Correlation Score (CS)

The CS score for two (unique word) sequences X and Y’
is defined by analogy with correlation as:

ILCS(X,Y))
es(X,Y) = 12 Y]
N DT D) .

where |[LCS(X,Y)| is the LCS length of the two sequences.
|X| and |Y| denote the length of X and Y respectively. The
range of values is [0,1] and the highest score is obtained when
the two sequences are identical.

4.3.2 Information Theoretic Score (ITS)

From an information theoretic point of view, the similarity
between two objects X and Y maybe defined as [19]:
log Pr(common(X,Y))

similarity(X,Y) = log Pr(description(X,Y)))

where X and Y are any objects generated by a probabilis-
tic model. According to the formula, two objects are more
similar if they share more features. The similarity value is
maximized when the two objects are identical.

In our case, X and Y are sequences of unique words.
The overlapping content between X and Y is defined by
the longest common subsequence:

common(X,Y) = LCS(X,Y) (3)

and the total information content (description) of X and Y
is defined by the alignment of X and Y. Assuming that the
probability of any word sequence is inversely proportional
to its length, then Eq.2 simplifies as:

log |LCS(X,Y)|

TN = g - res vy Y

The score has a range [0,1] and the maximum value is ob-
tained when the sequences are identical. If | X| and |Y'| have
no common words, then the score is assumed to be zero.
Table 2 shows two duplicates (first two rows) and a non-
duplicate. Duplicates have higher LCS scores and higher
DUPNIQ-cs and DUPNIQ-its scores. The thresholds are
0.12 and 0.72 for DUPNIQ-cs and DUPNIQ-its respectively.

S. SYNTHETIC EXPERIMENTS

Synthetic documents are generated for investigating the
effect of OCR errors and the amount of overlapping text be-
tween two books. A pair of texts is created as follows: A
clean (without OCR errors) book from the Project Guten-
berg website [2] is used as a reference text. The second text
is created by replacing a random portion of the reference
text with a sample from another book from the Gutenberg
website while ensuring that its length remains the same. A
specified amount of character level document noise is added
to the second text to simulate OCR errors creating a syn-
thetic document [12]. DUPNIQ-cs and DUPNIQ-its scores
are computed between the synthetic and reference book. Ex-
periments are performed 20 times and the scores are aver-
aged. Two different scenarios are experimented: In the first
scenario two different books on different topics by different
authors are used to generate the reference and the synthetic
documents. In the second scenario, the same process is ap-
plied using two different novels from the same writer (Joseph
A. Altsheler) on the same subject (Civil War). Figure 3

° °
> > -

o
IS
\
N

DUPNIQ-CS
DUPNIQ-CS

0.2

0.00
—0.02
—0.04
—0.06
—0.08

0.10
—0.12
0.14
—0.16
—0.18
—0.20

o=
0 10 20 30
b) Overlap - the same topic & writer

0 =
0 10 20 0 50 60 70 80 90 100
a) Overlap - different topic & writer

70 80 90 100

0
0 10 20 30 40 50 60 70 80 90 100
d) Overlap - the same topic & writer

0
0 10 20 30 40 50 60 70 80 90 100
c) Overlap - different topic & writer

Figure 3: DUPNIQ-its and DUPNIQ-cs versus percentage of overlap and character level document noise. Each line in the plot represents
results for the given amount of noise. Note that word error rate is around 75% for 20% character level noise.

shows the duplication scores as the amount of noise and the
percentage of text overlap are varied for both scenarios. It is
seen that the duplication score does not significantly depend
on which scenario is used. DUPNIQ-cs is more sensitive to
OCR errors as the amount of noise increases.

6. DUPLICATION EXPERIMENTS

Books from the Internet Archive (IA) [1] were used to
construct datasets of various sizes in English and French.
The datasets are diverse and include religious books, liter-
ary works, technical reports, engineering books, and nov-
els. Language identification was run on all datasets to en-
sure that the dominant language of each book is as desired.
Some of these datasets will be made publicly available at
http://ciir.cs.umass.edu/downloads/

The Training Set consists of 151 English books contain-
ing 67 duplicate pairs labeled manually. This set is used
to learn duplicate detection thresholds. The 1K Set con-
sists of 1,092 English books containing 258 duplicate pairs.
The 3K Set consists of 2,884 French books containing 483
duplicate pairs. The ground truth for 1K and 3K sets are
created using a manual technique. The 100K Set is a large
dataset consisting 103,455 English books containing 45,485
duplicate pairs. A major challenge is to estimate the ground
truth for this dataset. Metadata alone is not sufficient to
create the ground truth since it may be missing, incorrect
or incomplete. We made a best effort approach to finding
the groundtruth duplicates in this dataset by pooling the
outputs of the three different techniques (i.e. DUPNIQ-cs,
DUPNIQ-its, and Shingling). Pooling is the strategy used
by TREC to judge relevant documents. For pooling we use
a lower threshold than the one we estimated on the train-
ing set to identify candidate duplicate pairs. Then we do
a full alignment on those candidate pairs which is guaran-
teed to align all duplicate parts. By analyzing the results
of the full alignment experiments, we created a subset from
the candidate pairs and used the subset as ground truth.
In the future we expect to improve the groundtruth on this
set. The Partial Set has 458 books and tests how well the
techniques work on partial duplicates. There are 460 partial
duplicate pairs (e.g. ranging from 15% to 80% of a book).

6.1 Evaluation

The threshold is taken to be the value which maximizes
the F-measure (the harmonic mean of recall and precision)
on the training set. This threshold is used for all datasets
including the French dataset.

We considered four baselines - the overlap of unique words

(UWO), the overlap of vocabulary words (VO), a 0 mod p
Shingling algorithm [3, 20] and I-match. Jaccard similarity
is used for the first three. For shingling we tried ngrams
with n=2, 4 and 8 and p = 10, 25 and 50. The best shin-
gling results over all datasets were obtained for n=4, p=50
and are reported below. I-match performed poorly. This is
understandable given that books are very rarely near dupli-
cates and contain a lot of OCR and other errors. We note
that VO - the overlap of vocabulary words - does much bet-
ter than I-match (see below) indicating that the problem is
the global hash function in I-match is sensitive to even small
numbers of vocabulary words being wrong (in other words
noisy words are found at a variety of IDF values and can’t
easily be filtered out). We do not discuss I-match further.
For the other baselines thresholds are estimated by maxi-
mizing the F-measure over the training set as for DUPNIQ.

We provide precision and recall scores for different meth-
ods on the datasets in Table 3. For the smaller datasets,
DUPNIQ-its did best in terms of F-measure while DUPNIQ-
cs did slightly better for the 100K dataset. While shingling
did reasonably well on the smaller datasets it did not per-
form well on the 100K dataset. It is interesting to note that
a threshold trained on English books does fine on a French
dataset. On the 100K set DUPNIQ-cs and DUPNIQ-its
did much better than any other technique in terms of F-
measure (DUPNIQ-cs - 0.918, DUPNIQ-its - 0.907, UWO -
0.724, VO - 0.552, Shingling - 0.834). We can understand
the performance of the top 3 techniques better by looking
at their performance on the Partial dataset. As the results
show, both DUPNIQ techniques work better than shingling.
DUPNIQ-its, in particular, is a lot better than shingling on
partial duplicates. DUPNIQ-its has better performance over
DUPNIQ-cs and it is consistent with the synthetic experi-
ments. Between UWO and VO, UWO is the best on most
counts. Besides, UWO is much faster since it has many fewer
words to deal with.

Results on the 100K set show that some duplicates are
missed by DUPNIQ-its and DUPNIQ-cs because their score
is slightly lower than the threshold even though they have
a high LCS length. This indicates that there is scope for
further improvement in length normalization. It may also
help to use a larger training set to compute the threshold.
14% of the false negatives are due to dictionaries and ency-
clopedias. As mentioned before the technique is not meant
to work on such books because of their alphabetical order-
ing. 16% of the false matches are religious book pairs (e.g.
gospels, hymns, and prayer books), 12% are literary books,
and 6% of them are technical book pairs. The flavor of re-

Table 3: Precision (P) and Recall (R) scores for Training, Small-Test, 1K, 3K, 100K and Partial sets.

Dataset Training Set 1K Set 3K Set 100k Set Partial Set
P R P R P R P R P R
DUPNIQ-cs | 0.971 0.985 1.000 0.945 0.940 0.940 0.903 0.933 0.989 0.808
DUPNIQ-its | 1.000 0.985 1.000 0.957 0.991 0.944 0.996 0.833 0.995 0.919
UWO 0.956 0970 0979 0.937 0.833 0.915 0.593 0.929 - -
VO 0970 0940 0.987 0.887 0.958 0.722 0.440 0.741 - -
Shingling 0.971 1.000 0.983 0.941 0.932 0.892 0.992 0.720 0.963 0.799

sults obtained is similar to that shown in Figure 2. There
are also some unusual duplicates. For example, two techni-
cal reports published by Johns Hopkins University matched
because they contained very similar mailing distribution lists
at the end.

7. CONCLUSIONS

The sequence of unique words in a document is proposed
as a representation for long documents. In this context, a
long document is considered to be one which has at least a
few pages of text. The effectiveness of our approach is shown
for finding partial duplicates on different datasets in differ-
ent languages at different scales. Experiments also show that
the proposed approach is quite scalable. Although it checks
every pair of documents in the collection, partial duplicates
can be found in a 100K dataset of books in 30 min on a
350 core cluster with high precision and recall figures. Fu-
ture work includes further speed-ups, extensions to multiple
languages and mapping duplicated portions to each other.

8. ACKNOWLEDGMENTS

We thank James Allan, Bruce Croft and David Smith for
discussions and Marek Blat and Logan Giorda for helping
with annotations. This work was supported in part by the
Center for Intelligent Information Retrieval and in part by
NSF grant #I1S-0910884. Any opinions, findings and con-
clusions or recommendations expressed in this material are
the authors’ and do not necessarily reflect those of the spon-
SOr.

9['1] Ir%grgpﬁ(gfl\ig%%://www.archive.org, 2010.

[2] Project Gutenberg. http://www.gutenberg.org, 2010.

[3] Y. Bernstein and J. Zobel. A scalable system for identifying
co-derivative documents. In SPIRE, pages 55-67, 2004.

[4] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection
mechanisms for digital documents. In ACM SIGMOD,
pages 398-409, 1995.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks, 29(8-13):1157-1166, 1997.

[6] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In 34th Ann. ACM Symp. on Theory
of computing, pages 380-388, 2002.

[7] A. Chowdhury, O. Frieder, D. A. Grossman, and M. C.
McCabe. Collection statistics for fast duplicate document
detection. ACM Trans. Inf. Syst., 20(2):171-191, 2002.

[8] P. Clough. Old and new challenges in automatic pla-
giarism detection. National UK Plagiarism Advisory Service,

http://www.ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf,

2003.
[9] J. Cooper, A. Coden, and E. Brown. Detecting similar

documents using salient terms. In CIKM, pages 245-251,
2002.

[10] S. Deorowicz. Solving longest common subsequence and
related problems on graphical processing units. Softw.
Pract. Ezxper., 40:673-700, July 2010.

[11] M. Errami, Z. Sun, A. C. George, T. C. Long, M. A.
Skinner, J. D. Wren, and H. R. Garner. Identifying
duplicate content using statistically improbable phrases.
Bioinformatics, 26(11):1453-1457, 2010.

[12] S. Feng and R. Manmatha. A hierarchical, HMM-based
automatic evaluation of OCR accuracy for a digital library
of books. In JCDL, pages 109-118, 2006.

[13] H. Hajishirzi, W. tau Yih, and A. Kolcz. Adaptive
near-duplicate detection via similarity learning. In
SIGIR’10, pages 419-426, 2010.

[14] N. Heintze. Scalable document fingerprinting. In USENIX
Workshop on Electronic Commerce, 1996.

[15] M. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In ACM SIGIR, pages
284-291, 2006.

[16] T. C. Hoad and J. Zobel. Methods for identifying versioned
and plagiarized documents. JASIST, 54(3):203-215, 2003.

[17] J. W. Hunt and M. D. Mcllroy. An algorithm for
differential file comparison. Technical Report CSTR 41,
Bell Laboratories, Murray Hill, NJ, 1976.

[18] J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences. Commun. ACM,
20:350-353, May 1977.

[19] D. Lin. An information-theoretic definition of similarity. In
ICML 98, pages 296-304, 1998.

[20] U. Manber. Finding similar files in a large file system. In
USENIX Winter 1994 Tech. Conf, pages 1-10, 1994.

[21] D. Mimno, G. Crane, and A. Jones. Hierarchical catalog
records: Implementing a FRBR catalog. In D-Lib
Magazine,
hitp://www.dlib.org/dlib/october05/crane/10crane. html,
volume 11, Oct 2005.

[22] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing:
local algorithms for document fingerprinting. In ACM
SIGMOD conference, pages 76—85, 2003.

[23] J. Seo and W. B. Croft. Local text reuse detection. In ACM
SIGIR, pages 571-578, 2008.

[24] N. Shivakumar and H. Garcia-Molina. Scam: A copy
detection mechanism for digital documents. In Ann. Conf.
on the Theory and Practice of Digital Libraries, 1995.

[25] N. Shivakumar and H. Garcia-Molina. Finding near-replicas
of documents on the web. In Intl. Workshop on the World
Wide Web and Databases, 1999.

[26] G. Stewart, G. Crane, and A. Babeu. A new generation of
textual corpora: mining corpora from very large collections.
In JCDL, pages 356-365, 2007.

