
Corpus-Speci�c Stemming using WordForm Co-occurrenceW. Bruce Croft and Jinxi XuComputer Science DepartmentUniversity of Massachusetts, AmherstAbstractStemming is used in many information retrieval (IR) systems to reduce word forms tocommon roots. It is one of the simplest and most successful applications of natural languageprocessing for IR. Current stemming algorithms are, however, either inexible or di�cultto adapt to the speci�c characteristics of a text corpus, except by the manual de�nition ofexception lists. We propose a technique for using corpus-based word co-occurrence statisticsto modify a stemmer. Experiments show that this technique is e�ective and is very suitablefor query-based stemming.1 IntroductionStemming is a common form of language processing in most information retrievalsystems [4]. It is similar to the morphological processing used in natural languageprocessing, but has somewhat di�erent aims. In an information retrieval system,stemming is used to reduce di�erent word forms to common roots, and thereby im-prove the ability of the system to match query and document vocabulary. The varietyin word forms comes from both inectional and derivational morphology and stem-mers are usually designed to handle both, although in some systems stemming consistssolely of handling simple plurals. Stemmers have also been used to group or conatewords that are synonyms (such as \children" and \childhood"), rather than variantword forms, but this is not a typical function. Although stemming has been studiedmainly for English, there is evidence that it is useful for a number of languages.Stemming in English is usually done during document indexing by removing wordendings or su�xes using tables of common endings and heuristics about when it isappropriate to remove them. One of the best-known stemmers used in experimentalIR systems is the Porter stemmer [5], which iteratively removes endings from a worduntil termination conditions are met. The Porter stemmer has a number of problems.It is di�cult to understand and modify. It makes errors by being too aggressivein conation (e.g. \policy"/\police", \execute"/\executive" are conated) and by1



missing others (e.g. \European"/\Europe", \matrices"/\matrix" are not conated).It also produces stems that are not words and are often di�cult for an end user tointerpret (e.g. \iteration" produces \iter" and \general" produces \gener"). Despitethese problems, recall/precision evaluations of the Porter stemmer show that it givesconsistent (if rather small) performance bene�ts across a range of collections, andthat it is better than most other stemmers.Krovetz [4] developed a new approach to stemming based on machine-readabledictionaries and well-de�ned rules for inectional and derivational morphology. Thisstemmer (now called KSTEM) addresses many of the problems with the Porter stem-mer, but does not produce consistently better recall/precision performance. One ofthe reasons for this is that KSTEM is heavily dependent on the entries in the dic-tionary being used, and can be conservative in conation. For example, because thewords \stocks" and \bonds" are valid entries in a dictionary for general English, theyare not conated with \stock" and \bond", which are separate entries. If the databasebeing searched is the Wall St. Journal, this can be a problem.The work reported here is motivated by two ideas; corpus-speci�c stemming andquery-based stemming. Corpus-speci�c stemming refers to automatic modi�cation ofconation classes (words that result in a common stem or root) to suit the charac-teristics of a given text corpus. This should produce more e�ective results and lessobvious errors from the end user's point of view. The basic hypothesis is that wordforms that should be conated for a given corpus will co-occur in documents fromthat corpus. Based on that hypothesis, we use a co-occurrence measure similar tothe expected mutual information measure (EMIM [8, 1]) to modify conation classesgenerated by the Porter stemmer.In query-based stemming, all decisions about word conation are made when thequery is formulated, rather than at document indexing time. This greatly increasesthe exibility of stemming and is compatible with corpus-speci�c stemming in thatexplicit conation classes can be used to expand the query.In the next two sections, we present these ideas in more detail. In section 4, wediscuss the speci�c corpora we used in the experiments and give examples of theconation classes that are generated and how they are modi�ed. Section 5 gives theresults of retrieval tests that were done with the new stemming approach.2 Corpus-Speci�c StemmingGeneral-purpose language tools have generally not been successful for IR. For exam-ple, using a general thesaurus for automatic query expansion does not improve thee�ectiveness of the system and can, indeed, result in less e�ective retrieval (e.g. [9]).When the tool can be tuned to a given domain or text corpus, however, the results2



are usually much better1.From this point of view, stemming algorithms have been one of the more successfulgeneral techniques in that they consistently give small e�ectiveness improvements. Inmost applications where an IR system includes a stemmer, exception lists are used todescribe conations that are of particular importance to the application, but are nothandled appropriately by the stemmer. For example, an exception list may be used toguarantee that \Japanese" and \Chinese" are conated to \Japan" and \China" foran application containing export reports. Exception lists are constructed manuallyfor each application. Using human judgement for these lists is expensive and can beinconsistent in quality.Instead of the manual approach of exception lists, the conations performed bythe stemmer can be modi�ed automatically using corpus-based statistics. To do this,we assume that word forms that should be conated will occur in the same documentsor, more speci�cally, in the same text windows. For example, articles from the WallSt. Journal that discuss stock prices will typically contain both the words \stock"and \stocks". This technique should identify words that should be conated but arenot (\stock" and \stocks" are an example for KSTEM), and words that should notbe conated but are. Examples of the latter are the word pairs \policy"/\police" and\addition"/\additive" for the Porter stemmer.The basic measure that is used to measure the signi�cance of word form co-occurrence is a variation of EMIM [8, 1]. This measure is de�ned for a pair of wordsa and b by the following formula:em(a; b) = nabna + nbwhere na, nb are the number of occurrences of a and b in the corpus, and nab is thenumber of times both a and b fall in a text window of size win in the corpus. Wede�ne nab as the number of elements in the set f< ai; bj > jdist(ai; bj) < wing, whereai's and bj's are distinct occurrences of a and b in the corpus, and dist(ai; bj) is thedistance between ai and bj measured using a word count within each document.Given this measure, the question is which word pair statistics should be measured?In previous studies, the EMIM measure has been applied to all word pairs that co-occur in text windows. The aim of this type of study was to discover phrasal andthesuarus relationships. In this study, we have a di�erent aim, namely, to clarify therelationship between words that have similar morphology. For this reason, the emmeasure is calculated only for word pairs that potentially could be conated. The waywe have chosen to do this is to use an \aggressive" stemmer (Porter) to identify wordsthat may be conated, and then use the corpus statistics to re�ne that conation.1Jing and Croft [3] discuss a corpus-based technique for query expansion that produces signi�cante�ectiveness improvements 3



A problem with this approach is that if the aggressive stemmer is not aggressiveenough, word pairs that should be conated will be missed. There are a numberof ways that this could be addressed, such as identifying word pairs with signi�canttrigram overlap. In our work, we have combined the Porter stemmer with KSTEMto identify possible conations. Even though KSTEM is not as aggressive as Porter,it does conate some words that Porter does not. For example, the Porter stemmerconates \abdomen" and \abdomens", but not \abdominal". KSTEM conates allof these.More generally, we can view stemming as constructing equivalence classes of words.For example, the Porter stemmer conates \bonds", \bonding", and \bonded" to\bond", so these words form an equivalence class. The corpus statistics for wordpairs in the equivalence classes are used to determine the �nal classes. For example,if \bonding" and \bonded" do not co-occur signi�cantly in a particular corpus, oneor both of them may be removed from the equivalence or conation class, dependingon their relationship to the other words.More speci�cally, if a and b are stemmed to c, then all occurrences of a, b and care the same after the stemming transformation, i.e. a, b and c form an equivalenceclass. If, however, a is stemmed to b, and b is stemmed to c, then a, b and c do notform an equivalence class. The Porter stemmer occasionally makes such incompleteconations. We consider this a \bug" of the Porter stemmer, and put a, b and c inan equivalence class.Suppose the collection has a vocabulary V = fw1; w2; :::; wng. We use the union-�nd algorithm to construct the equivalence classes as follows:1. For each word wi, use the Porter stemmer to stem it to ri. Let R = frig.2. For each element in V SR form a singleton class.3. For each pair < wi; ri >, if wi and ri are not in the same equivalence class,merge the two equivalence classes into one.4. In each equivalence class, remove those elements not in V .The union �nd algorithm runs in O(n log� n), \almost" linear time because log�nis a small number even if n is very large.Given the �nal equivalence classes, a representative or stem for each class mustbe generated. We chose simply to use the shortest word in the class. As well as beingsimple, this has the desirable result of producing complete words instead of the usualtype of Porter stem.The other issue is what to do with word pairs for which there is insu�cient statis-tics. If the words in a conation class are rare in the corpus, the em measure willbe unreliable. For these pairs, we chose to use KSTEM to determine whether they4



should remain in an equivalence class. The threshold used for su�cient statistics isthat na + nb > 50.To summarize, the overall process for producing corpus-speci�c conation classesconsists of the following steps:1. Collect the unique words (the vocabulary V ) in the corpus. This is done usinga simple ex scanner. Numbers, stop words and possible proper nouns arediscarded.2. Construct equivalence classes using the Porter stemmer, sometimes augmentedby KSTEM.3. Calculate em for every pair of words in the same equivalence class.4. Form new equivalence classes. This is done by starting with every word in Vforming a singleton equivalence class. Then every em pair, if em(a; b) > minand they are not in the same class, merge the equivalence classes. If the statisticsare inadequate, use KSTEM to decide whether to merge classes.5. Make a stem dictionary from the equivalence classes for future use in indexingand query processing. The shortest word in each class is the \stem" for thatclass.Timing �gures and class statistics for sample corpora are presented in section 4.3 Query-Based StemmingThe corpus-based stemming approach described in the last section produces a dictio-nary of words with the appropriate stem. Given this dictionary, the usual process ofstemming during indexing can be replaced by dictionary lookup. Alternatively, thefull word form could be used for indexing and stemming would become part of queryprocessing. The way this would work is that when a query is entered, the equiva-lence class for each non-stopword would be used to generate an expanded query. Forexample, if the original query (in the INQUERY query language) was#SUM(stock prices for IBM)The expanded query for a particular corpus could be#SUM( #SYN(stock stocks) #SYN(price prices) IBM)5



The #SYN operator is used to group synonyms. Depending on the details of howthis is done in the underlying system, this query will produce the same result as aquery processed in an environment where the database had been indexed by stems.The advantages of query-based stemming are that the user of the system can beconsulted as to the applicability of particular word forms and queries can be restrictedto search for a speci�c word form. These advantages can be signi�cant in cases wheresmall di�erences in word forms result in large di�erences in the relevance of theretrieved documents. For example, in looking for articles about terrorist incidents,the word \assassination" is very good at discriminating relevant from non-relevantdocuments, but the word \assassinations" is much less useful [6].The main disadvantage of query-based stemming is that the queries become longerand will, therefore, take longer to process. The impact on response times will dependon the degree of query expansion. In the next section, we present statistics for somecorpora.4 Corpora and Conation ClassesThe corpora that we use in these experiments are the West collection of law documentsand the Wall St. Journal collection of newspaper articles [7, 2]. The statistics forthese corpora and the associated queries and relevance judgements are shown in Table1. Two sets of queries are used for the West collection. The �rst is where the queriesare treated as a collection of individual words. The second uses INQUERY operators(such as #PHRASE) to structure the combinations of words. In previous work,stemming on phrasal units can produce di�erent results than word-only stemming.Retrieval results for both types of query are presented in the next section.WEST WSJNumber of queries 34 66Number of documents 11,953 162,795Mean words per query 9.6 37.5Mean words per document 3,262 260Mean relevant documents per query 28.9 144Number of words in a collection 39,000,000 42,307,309Table 1: Statistics on text corporaAs an example of the timing �gures for generating conation classes, the follow-ing �gures are for the WSJ corpus. All timing �gures are CPU times for a SUN46



workstation. To collect the unique words in the corpus takes 20 minutes. Therewere 76,181 of these. The Porter stemmer takes 6 seconds to stem these words andthe union-�nd algorithm takes 9 seconds to form equivalence classes. The number ofclasses produced is 39,225 and the average class size is 1.96 word forms. Generatingthe em values for a text window of size 100 words (win = 100), takes 1 hour and10 minutes. With a threshold for the em value of .01 (min = 0:01), the number ofconation classes generated is 65,104 with an average class size of 1.17. Using theseclasses as the basis for stemming produces the best retrieval results (shown in thenext section) and avoids 70% of the conations made by Porter. This means thatquery expansion is reduced in a query-based stemming environment.For the West collection, there are 49,964 unique words which generate 27,117classes using the Porter stemmer. After application of the em threshold, there were40,012 classes.As an example, with these classes, \bonds" is conated to \bond" and \bonding"is conated to \bonded" in the WSJ corpus. In the West corpus, all words areconated to \bond".Figure 1 contains examples of the conation classes for Porter on the WSJ corporaand Figure 2 has the classes after application of the em threshold.abandon abandoned abandoning abandonment abandonments abandonsabate abated abatement abatements abates abatingabrasion abrasions abrasive abrasively abrasiveness abrasivesabsorb absorbable absorbables absorbed absorbencies absorbency absorbent-absorbents absorber absorbers absorbing absorbsabusable abuse abused abuser abusers abuses abusing abusive abusivelyaccess accessed accessibility accessible accessing accessionFigure 1: Example of conation classes on WSJ using PorterThe em value depends on the window size. The larger the window, the higherthe em values that are generated. When the window size is �xed, the em thresholdcontrols how any conations by Porter are prevented. By experimenting with di�erentwindow sizes and threshold values, we found that as long as a reasonable sized window(larger than 50) is used, performance depends only on the percentage of conationsthat are prevented.The dominant overhead of our method is the time to collect co-occurrence data.This is proportional to the window size. Since performance does not directly de-pend on window size, a 100 word window represents a good compromise betweenperformance and computational overhead.7



abandonment abandonmentsabated abatements abatementabrasive abrasivesabsorbable absorbablesabsorbencies absorbency absorbentabsorber absorbersabuse abusing abuses abusive abusers abuser abusedaccessibility accessibleFigure 2: Example of conation classes on WSJ after co-occurrence thresholding5 Retrieval ResultsThe following tables give standard recall/precision results for retrieval experimentscarried out using the Porter, KSTEM and em modi�ed Porter stemmers (NEW).Table 2 shows the results of the simple word-based queries on the West corpus. Theresults show little di�erence between the stemmers, with perhaps a small advantageat higher recall levels for the NEW stemmer. Table 3 gives the results for the phrase-based queries for West. These results give an advantage to both Porter and the NEWstemmers.Table 4 gives the results for the WSJ collection. We see again a clear advantagefor the Porter and NEW stemmers. Overall, the NEW stemmer has very consistentperformance and may be able to combine the advantages of both the Porter andKSTEM approaches.The �nal experiment, shown in Table 5, uses KSTEM to decide whether a wordpair is conated when there is insu�cient statistics. Comparing this table to theprevious one, we see there is little di�erence. Words that do not occur frequentlyenough to generate reliable em values are unlikely to a�ect retrieval on an averagebasis. For individual queries, however, this modi�cation could be very important.6 ConclusionsA new approach to stemming that uses corpus-based statistics was proposed. Thisapproach can potentially avoid making conations that are not appropriate for agiven corpus and uses an \aggressive" stemmer as a starting point. The result of thisstemmer is an actual word rather than an incomplete stem, as is often the case withthe Porter approach. It can also be implemented e�ciently and is suitable for query-based stemming. The experimental results show that the new stemmer gives more8



consistent performance improvements than either the Porter or KSTEM approaches.AcknowledgementsThis work was supported by the NSF Center for Intelligent Information Retrieval atthe University of Massachusetts. Bob Krovetz helped with the organization of theexperiments.References[1] K. Church and P. Hanks. Word association norms, mutual information, andlexicography. In Proceedings of the 27th ACL Meeting, pages 76{83, 1989.[2] D. Harman. Overview of the �rst TREC conference. In Proceedings of the 16thACM SIGIR International Conference on Research and Development in Informa-tion Retrieval, pages 36{47, 1993.[3] Y. Jing and W.B. Croft. An association thesaurus for information retrieval. InProceedings of RIAO 94, 1994. to appear.[4] Robert Krovetz. Viewing morphology as an inference process. In Proceedings ofthe 16th International Conference on Research and Development in InformationRetrieval, pages 191{202, 1993.[5] M. Porter. An algorithm for su�x stripping. Program, 14(3):130{137, 1980.[6] E. Rilo� and W. Lehnert. Information extraction as a basis for high-precision textclassi�cation. ACM Transactions on Information Systems, 12:296{333, 1994.[7] Howard Turtle. Natural language vs. Boolean query evaluation: A comparison ofretrieval performance. In Proceedings ACM SIGIR 94, pages 212{220, 1994.[8] C.J. van Rijsbergen. Information Retrieval. Butterworths, second edition, 1979.[9] E. Voorhees. Query expansion using lexical-semantic relations. In Processings ofthe 17th ACM SIGIR Conference, pages 61{69, 1994.9



Recall Precision (34 queries)KSTEM PORTER NEW(100-0.01)10 79.2 78.0 ( -1.5) 78.0 ( -1.5)20 75.7 73.7 ( -2.6) 75.3 ( -0.6)30 71.7 71.9 ( +0.2) 72.6 ( +1.3)40 61.9 61.8 ( -0.1) 62.0 ( +0.2)50 54.8 54.8 ( +0.1) 54.8 ( +0.1)60 46.2 45.0 ( -2.6) 46.2 ( +0.1)70 37.4 37.0 ( -1.1) 38.2 ( +2.2)80 29.0 29.7 ( +2.6) 31.6 ( +9.0)90 16.7 17.9 ( +7.3) 18.3 ( +9.6)100 9.1 10.6 (+16.4) 10.0 (+10.0)---------------------------------------------------avg 48.2 48.0 ( -0.2) 48.7 ( +1.1)Table 2: Retrieval experiments on the West corpusRecall Precision (34 queries)KSTEM PORTER NEW(100-0.01)10 79.2 79.7 ( +0.6) 79.3 ( +0.1)20 75.6 74.5 ( -1.4) 75.0 ( -0.8)30 71.8 71.1 ( -1.0) 71.9 ( +0.1)40 63.9 63.8 ( -0.2) 63.8 ( -0.2)50 58.1 58.4 ( +0.5) 60.0 ( +3.3)60 50.7 51.3 ( +1.1) 52.0 ( +2.5)70 41.9 42.2 ( +0.8) 42.6 ( +1.6)80 32.6 34.4 ( +5.6) 34.9 ( +7.0)90 20.5 21.4 ( +4.1) 21.8 ( +6.1)100 10.3 11.4 (+10.6) 10.5 ( +1.7)---------------------------------------------------avg 50.5 50.8 ( +0.7) 51.2 ( +1.4)Table 3: Retrieval experiments using West structured queries10



Recall Precision (66 queries)KSTEM PORTER NEW(100-0.01)10 52.3 52.7 ( +0.7) 52.8 ( +0.9)20 45.1 45.4 ( +0.6) 45.8 ( +1.6)30 39.4 40.8 ( +3.5) 41.3 ( +4.8)40 35.1 36.2 ( +3.1) 36.8 ( +5.0)50 29.9 31.1 ( +4.1) 31.3 ( +4.6)60 24.9 26.3 ( +5.8) 26.3 ( +5.5)70 20.8 22.0 ( +5.5) 22.0 ( +5.3)80 16.5 17.2 ( +4.5) 17.3 ( +5.1)90 11.4 12.0 ( +5.5) 12.1 ( +6.7)100 2.5 2.8 (+11.7) 2.8 (+15.5)---------------------------------------------------avg 27.8 28.6 ( +3.1) 28.9 ( +3.9)Table 4: Retrieval experiments using WSJ corpusRecall Precision (66 queries)KSTEM NEW(100-0.01)10 52.3 52.8 ( +0.8)20 45.1 45.8 ( +1.5)30 39.4 41.3 ( +4.8)40 35.1 36.8 ( +5.0)50 29.9 31.3 ( +4.7)60 24.9 26.3 ( +5.5)70 20.8 22.0 ( +5.3)80 16.5 17.3 ( +5.0)90 11.4 12.1 ( +6.7)100 2.5 2.8 (+15.5)-------------------------------avg 27.8 28.8 ( +3.8)Table 5: Retrieval experiments using KSTEM for pairs with insu�cient statistics(WSJ collection) 11


