
Discovering Missing Click-through Query Language
Information for Web Search

Xing Yi and James Allan
Center for Intelligent Information Retrieval

Computer Science Department
University of Massachusetts, Amherst, MA, USA

{yixing,allan}@cs.umass.edu

ABSTRACT

The click-through information in web query logs has been
widely used for web search tasks. However, it usually suf-
fers from the data sparseness problem, known as the miss-
ing/incomplete click problems, where large volume of pages
receive few or no clicks. In this paper, we adapt two lan-
guage modeling based approaches to address this issue in the
context of using web query logs for web search. The first ap-
proach discovers missing click-through query language fea-
tures for web pages with no or few clicks from their simi-
lar pages’ click-associated queries in the query logs, to help
search. We further propose combining this content based ap-
proach with the random walk approach on the click graph to
further reduce click-through sparseness for search. The sec-
ond approach follows the query expansion method and uti-
lizes the queries and their clicked web pages in the query logs
to reconstruct a structured variant of the relevance based
language models for each user-input query for search. We
design experiments with one publicly available query log and
two recent sets of the TREC web search tasks on the GOV2
and ClueWeb09 corpora to evaluate different approaches for
handling missing click-through information for search. Our
results show that using discovered semantic click-through
query language features can statistically significantly im-
prove the search performance, compared with the baseline
that does not use the discovered information. The combi-
nation approach that uses discovered click-through features
from both random walk and the content based approach can
further improve search performance.

1. INTRODUCTION
Click-through data provide important user preference in-

formation (both individual and collective) over the returned
web search results and play important roles in designing and
improving web search engines. For example, click-through
information can be used to derive labeled training data for
optimizing web ranking functions used by web search en-
gines [14, 26]; user clicks can be directly used as relevance
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judgments of the clicked URLs to generate evaluation data
for comparing different retrieval approaches[28, 3]; and col-
lective click-through features can be extracted to enhance
the ranking models of search engines[30, 1].

Unfortunately, click-through data usually suffer from a
data sparseness problem where large volume of queries have
few or no associated clicks [9, 11]. This problem may be
caused by two related user click behaviors. One is that users
may only click a very limited number of pages for a query so
that the clicks are not complete; the other one is that users
may just browse the returned snippets to fetch some use-
ful information while not clicking any results even they are
relevant. Gao et al. [11] referred to these two situations as
the incomplete click problem and the missing click problem,
respectively. These problems greatly limit the possibility
and reliability of using click-through features for web search.
For example, click-through features cannot be extracted for
pages with no clicks. To overcome the click-through sparse-
ness, Craswell and Szummer [9] built a query-URL bipartite
click graph from a web query log and then proposed a ran-
dom walk algorithm on the graph to discover missing clicks
between query nodes and URL nodes. The intuition behind
this approach is to use the transitions of the semantic re-
lation between queries and their clicked URLs on the click
graph to find plausible missing clicks.

However, the random walk approach can only partially al-
leviate the click-through sparseness because it requires spe-
cific link structures in the click graph to discover missing
clicks. For example, URLs (web pages) that have not yet
received any clicks in the search history can never be associ-
ated with any previously issued queries in the query logs.
To address this issue, Gao et al. [11] considered an al-
ternative approach to compute click-through features from
sparse click-through data. They introduced a Good-Turing
estimator [12] based discounting method to smooth click-
through features of web pages, so that pages with no clicks
can have very small non-zero click-through features com-
puted by discounting the average of the click-through fea-
tures of all pages that receive exactly one click. Intuitively,
their approach follows the smoothing approach of computing
out-of-vocabulary (OOV) words’ probabilities in statistical
language models to compute missing click-through features
for web pages with no clicks.

Notice that although OOV words and missing clicks of
web pages can be both viewed as events unseen in training
data and thus handled in a similar way, there is an impor-
tant difference between the two types of unseen events: we
usually have little semantic information about OOV words



while we normally have indexed the content of the web
pages that have not received clicks yet. Gao et al.’s smooth-
ing approach does not use any semantic information in the
web page content, thus pages that have completely different
content but no clicks will obtain the same smoothed click-
through features. This is counter-intuitive and makes some
smoothed features ineffective for ranking. Indeed, in the ex-
periments they found that using the smoothed click-through
features extracted from the content of a web page’s click-
associated query strings (called query-dependent features by
them) helped little for retrieval [11].
To overcome the weaknesses of the random walk approach

[9] and the Good-Turing smoothing approach [11], we pro-
pose to utilize the content similarity between web pages to
address the click-through sparseness problem. Our content
based approach is able to discover click-through query lan-
guage model features that can properly convey semantic in-
formation in the content of pages with no clicks to help re-
trieval.
Specifically, we hypothesize that web pages that are simi-

lar in content may be clicked by web searchers issuing simi-
lar queries. Under this assumption, we introduce a language
modeling based technique for discovering a target web page’s
plausible missing click-associated queries, using the queries
that led to the clicks on the target page’s similar pages. We
then use the discovered query language features for search.
We further present a way of combining the advantages of
both the random walk approach and the content based ap-
proach for helping search. In addition, we adapt an alterna-
tive approach, based on the relevance-based language mod-
els (RM)[18] to address the click-through sparseness issue
for search. This approach, Structured Relevance Models,
has been used to handle missing fields when searching semi-
structured documents[19].
We evaluate the retrieval performance of different approaches

using the Microsoft Live Search 2006 search query log ex-
cerpt (MS-QLOG), which has been used in some query log
studies [28, 3], and two different sets of adhoc web search
tasks: (1) the ones in the TREC 2004-2005 Terabyte Tracks
[8, 7] and (2) the ones in the TREC 2009-2010 Web Tracks
[6, 15]1. Our work has four major contributions: 1) To the
best of our knowledge, we are the first to utilize web content
similarity to discover missing click-through query language
features for improving web search, although content similar-
ity has been used in many other applications. 2) We adapt
two language modeling based approaches to address click-
through sparseness in the context of using query logs for
web search; we also propose combining the content based
approach and the random walk approach [9] for comput-
ing effective ranking features from query logs that have the
click-through sparseness issue. 3) We empirically show that
using our approaches can statistically significantly improve
web search performance. 4) We empirically compare differ-
ent approaches of discovering missing click-through query
language features for web search and do in-depth analysis
on their advantages and weaknesses.
We begin by reviewing some related work. In §3, we de-

scribe three approaches for discovering missing click-through
query language features. In §4 we present how we use dif-
ferent discovered information for search, then compare and
analyze retrieval performance of different approaches using

1http://plg.uwaterloo.ca/˜trecweb/2010.html

the TREC ad hoc web search tasks. Then we conclude in §5.

2. RELATED WORK
Previous research has encountered the data sparseness

problem in click-through data, including the incomplete click
problem and the missing click problem, when leveraging
web query logs for helping different web search tasks [9, 1,
26]. However, there is relatively little of work directly han-
dling the click-through sparseness. Craswell and Szummer
[9] proposed a random walk approach on the query-URL
click graph to discover plausible missing clicks. Gao et al.
[11] have recently proposed a discounting method inspired
by the Good-Turing estimator [12] to smooth click-through
features for web pages that have received no clicks. Dif-
ferent from previous work, we propose using web content
similarity to address the click-through sparseness. Recently,
Seo et al. [27] proposed applying spectral graph analysis on
the web content similarity graph to smooth click counts in
the query logs and then using the smoothed counts for im-
proving search. Our approach is similar to their approach
in terms of using web content similarity to address click-
through sparseness; however, we specifically focus on dis-
covering click-through query language features for search.

Our approach is closely related to other similarity-based
techniques, such as clustering similar documents for smooth-
ing document language models[16, 21], smoothing documents
based on document-content similarity graph [22], and us-
ing web content similarity for missing anchor text discovery
[31]; however, we focus on enriching web pages’ semantic
click-through features for web search by using their similar
pages’ click-associated queries. We further consider combin-
ing web content similarity and click graph information to
improve discovered missing semantic click-through features
for web search. We notice that Li et al. [20] also considered
combining web content features and click graph information
for mitigating the click-through sparseness they experienced
when classifying the web search intents of the queries in the
web query logs.

There is significant research on using click-through data
in the query log for enhancing web search performance: us-
ing query-page click-through pairs to derive labeled training
pairs for learning web page ranking functions [14, 26], ex-
tracting click-through features and incorporating them into
ranking models for web search [30, 1, 11]. The incom-
plete/missing click problems present major challenges for
both approaches of using click-through data for web search.
Our research on discovering missing click-through features
can benefit the latter research direction in particular.

3. DISCOVERING MISSING CLICK INFOR-

MATION FOR WEB PAGES
We first describe two different approaches for discovering

plausible missing click-through query language information
for web pages with few or no clicks. Next, we present one
way to combine the advantages of the two approaches. We
emphasize that in our research we are particularly interested
in obtaining click-through query language features, which can
convey some semantic information of the target web page, for
search.

3.1 Finding More Click-associated Queries by
Random Walk on Click Graph
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Figure 1: An illustration example of using random
walk approach to discover plausible missing clicks
(denoted by dashed lines): (a) the original click
graph; (b) the link-enriched click graph after ap-
plying rank walk algorithm.

We start by reviewing the random walk approach that
uses co-clicks in the click-through data to discover plausible
missing clicks for web pages [9, 11]. This approach first
builds a query-URL bipartite click graph from a web query
log, by assigning the same query strings/URLs to the same
query/URL nodes and linking them according to the click
pairs in the query log; then it uses a random walk algorithm
to discover plausible missing click edges. Intuitively, this
approach assumes there exists close semantic relation among
neighbor nodes in the click graph, and uses the transitions
of the semantic relation on the graph for missing click edge
discovery. For example, in Figure 1, 𝑞1 and 𝑞4 both lead to
the clicks on 𝑢1, thus 𝑞1 and 𝑞4 may be semantically related;
therefore 𝑞4 may also lead to the click on 𝑢2, which is 𝑞1’s
clicked URL. Similarly, due to the co-clicks on 𝑢3 by 𝑞2 and
𝑞3, 𝑞2 may also lead to the click on 𝑞3’s clicked URL 𝑢4.
Formally, assume a bipartite click graph 𝐺 =< 𝑄,𝑈,𝐸 >

is constructed from a set of query nodes 𝑄 = {𝑞1. . .𝑞𝑚}, a
set of web page URL nodes 𝑈 = {𝑢1. . .𝑢𝑛} and the edges 𝐸
between the query nodes and the URL nodes. (𝑞𝑖, 𝑢𝑗) ∈ 𝐸

is an edge in 𝐺 when 𝑞𝑖 leads to at least one click on 𝑢𝑗 ,
and 𝑤(𝑞𝑖, 𝑢𝑗) represents the click count associated with the
edge (𝑞𝑖, 𝑢𝑗). We can normalize the 𝑤(𝑞𝑖, 𝑢𝑗) to obtain the
transition probability 𝑝(𝑢𝑗 ∣𝑞𝑖) on the click graph between a
query 𝑞𝑖 and each of its clicked web page 𝑢𝑗 by:

𝑝(𝑢𝑗 ∣𝑞𝑖) =
𝑤(𝑞𝑖, 𝑢𝑗)∑

𝑘∈{1...𝑛},(𝑞𝑖,𝑢𝑘)∈𝐸

𝑤(𝑞𝑖, 𝑢𝑘)
, (1)

and also the transition probability 𝑝(𝑞𝑖∣𝑢𝑗) between a page
𝑢𝑗 and each of its click-associated queries 𝑞𝑖 by:

𝑝(𝑞𝑖∣𝑢𝑗) =
𝑤(𝑞𝑖, 𝑢𝑗)∑

𝑘∈{1...𝑚},(𝑞𝑘,𝑢𝑗)∈𝐸

𝑤(𝑞𝑘, 𝑢𝑗)
. (2)

We can use the above transition probabilities 𝑝(𝑢𝑗 ∣𝑞𝑖), 𝑝(𝑞𝑖∣𝑢𝑗),

𝑖 ∈ {1. . .𝑚}, 𝑗 ∈ {1. . .𝑛} to compute the probability 𝑝(2𝑡)(𝑞𝑗 ∣𝑞𝑖)
of one query 𝑞𝑖 transiting to another one 𝑞𝑗 on the click graph
in 2𝑡 steps by the following iterative equations:

# click pairs #unique queries #unique URLs
(query nodes) (URL nodes)

12,251,067 3,545,174 4,971,990

# click edges in the graph
original counts 6,853,498

random walk(𝑡 = 1)
𝛼 = 0 (no noise filtering) 42,999,932

𝛼 = 0.001 32,240,647
𝛼 = 0.005 24,365,787
𝛼 = 0.01 20,265,365

Table 1: Some summary statistics of the click graph
built from the MS-QLOG dataset and different en-
riched graphs by the random walk approach with
different noise filtering parameters.

𝑝(2𝑡)(𝑞𝑗 ∣𝑞𝑖) =
∑

𝑘∈{1...𝑛},(𝑞𝑗 ,𝑢𝑘)∈𝐸

[𝑝(𝑞𝑗 ∣𝑢𝑘)𝑝
(2𝑡−1)(𝑢𝑘∣𝑞𝑖)], 𝑡 ≥ 1;

𝑝(2𝑡−1)(𝑢𝑗 ∣𝑞𝑖) =
∑

𝑘∈{1...𝑚},(𝑞𝑘,𝑢𝑗)∈𝐸

[𝑝(𝑢𝑗 ∣𝑞𝑘)𝑝
(2𝑡−2)(𝑞𝑘∣𝑞𝑖)], 𝑡 > 1;

𝑝(1)(𝑢𝑗 ∣𝑞𝑖) = 𝑝(𝑢𝑗 ∣𝑞𝑖), 𝑖 ∈ {1...𝑚}, 𝑗 ∈ {1...𝑛}.
(3)

We can see that longer transition steps can discover tran-
sitions to additional queries for a target query 𝑞𝑖 while the
discovered semantic relation between them becomes weaker
and noisier. Thus for effectiveness and efficiency, we follow
Gao et al.[11] to set 𝑡 = 1 in our experiments. In order to
further filter some plausible noise, we follow their approach
and require that the discovered transitions for the target
query 𝑞𝑖 should satisfy 𝑝(2)(𝑞𝑗 ∣𝑞𝑖) > 𝛼, where 𝛼 is a control-
ling parameter and tuned empirically on training data for
different tasks.

After discovering similar queries for each query using the
random walk approach, Gao et al.[11] expanded each web
page’s click-associated queries with discovered similar queries.
In this way, web pages are linked with more semantically
related queries so that the incomplete click problem is par-
tially mitigated. Then they used the enriched representation
of the click-associated queries for each web page to extract
click-through features to improve web search performance.

Table 1 shows some summary statistics of the original click
graph and the enriched click graphs by the random walk ap-
proach when we use the click pairs in MS-QLOG to build the
graph. The first four rows in Table 1 show some summary
statistics of the original click graph, indicating the click-
through information is very sparse even for the pages that
received some clicks – on average, each page only received
2.5 clicks and has about 1.4 unique click-associated queries.
The last four rows show the number of click edges in each
enriched graph by the random walk approach using different
noise filtering parameters, indicating that incomplete click
problem can be partially mitigated – on average, the num-
ber of the unique click-associated queries of each web page
has been raised to 6.5 when 𝛼 = 0.001.

3.2 Discovering Missing Click-associated
Queries through Finding Similar Pages

Notice that the random walk approach needs specific click
graph structures to discover plausible missing clicks, mean-
ing it cannot handle web pages with no clicks. Therefore,
we propose to adapt a content based approach, which was
originally proposed by Yi and Allan for addressing the miss-
ing anchor text issue in web search [31]. Intuitively, our



approach assumes that web pages that are similar in con-
tent may receive clicks from web searchers issuing similar
queries. Under this assumption, we aim to discover a query
language model for each page, in order to obtain effective
missing semantic click-through features to help search.
We adapt Yi and Allan’s contextual translation approach

of discovering missing anchor text [31] for our task. Briefly
speaking, their approach first views the content of web pages
as their anchor text’s descriptive context and utilizes the
contextual translation approach [28] to measure the seman-
tic relation between the anchor text associated with differ-
ent pages. Given any page 𝑃𝑖 and a target page 𝑃0, the
semantic relation between their associated anchor text 𝐴𝑖

and 𝐴0 is measured by the contextual translation proba-
bility 𝑡(𝐴𝑖∣𝐴0), computed from the Kullback-Leibler diver-
gence (KL-div) between the document language models of
𝑃𝑖 and 𝑃0. Then they use 𝑡(𝐴𝑖∣𝐴0) to compute a relevant
anchor text language model 𝑝(𝑤∣𝐴0) for a target page 𝑃0 to
discover 𝑃0’s plausible missing anchor terms by:

𝑝(𝑤∣𝐴0) =
∑

𝐴𝑖∈𝒜
𝑝(𝑤∣𝐴𝑖)× 𝑡(𝐴𝑖∣𝐴0), (4)

where 𝒜 denotes the complete anchor text space of all pages
and 𝑝(𝑤∣𝐴𝑖) is a multinomial distribution of anchor terms
(𝑤) over the vocabulary 𝒱𝒜.
Similarly, we first view each page 𝑃𝑖’s content as the de-

scriptive context of the page’s click-associated queries 𝑄𝑖

and use 𝑃𝑖’s document language model, 𝑝𝑖 = {𝑝(𝑤∣𝑃𝑖)}, as
𝑄𝑖’s contextual language model, which is computed by ap-
plying Dirichlet smoothing [17] on the original un-smoothed
document language model:

𝑝(𝑤∣𝑃𝑖) =
𝑁𝑃𝑖

𝑁𝑃𝑖
+ 𝜇

𝑝𝑀𝐿(𝑤∣𝑃𝑖) +
𝜇

𝑁𝑃𝑖
+ 𝜇

𝑝(𝑤∣𝒞), (5)

where 𝑝𝑀𝐿(𝑤∣𝑃𝑖) is the maximum likelihood (ML) estimate
of observing a word 𝑤 in the page, 𝑝(𝑤∣𝒞) is 𝑤’s probability
in the collection 𝒞, 𝑁𝑃𝑖

is the length of 𝑃𝑖’s content and 𝜇

is the Dirichlet smoothing parameter.
Then given any page 𝑃𝑖 and a target page 𝑃0, we mea-

sure the semantic relation between their click associated
queries 𝑄𝑖 and 𝑄0 by their contextual translation probabil-
ity 𝑡(𝑄𝑖∣𝑄0), computed from the KL-div 𝐷𝑖𝑣(⋅∣∣⋅) between
their contextual models 𝑝0 and 𝑝𝑖:

𝑡(𝑄𝑖∣𝑄0) =
exp(−𝐷𝑖𝑣(𝑝0∣∣𝑝𝑖))∑
𝑖 exp(−𝐷𝑖𝑣(𝑝0∣∣𝑝𝑖))

∝
∏
𝑤

𝑝(𝑤∣𝑃𝑖)
𝑝(𝑤∣𝑃0). (6)

The end of Equation 6 is the likelihood of generating 𝑄0’s
context 𝑃0 from the smoothed language model of 𝑄𝑖’s con-
text 𝑃𝑖, being normalized by 𝑄0’s context length.
After that, for each given target page 𝑃0, we calculate a

relevant (click-associated) query language model (RQLM)
𝑝(𝑤∣𝑄0) to discover 𝑃0’s plausible click-associated query terms
by:

𝑝(𝑤∣𝑄0) =
∑

𝑄𝑖∈𝒬

𝑝(𝑤∣𝑄𝑖)× 𝑡(𝑄𝑖∣𝑄0), (7)

where 𝑄𝑖 denotes all the queries that may lead to the clicks
on 𝑃𝑖 but may be incomplete or missing, 𝒬 denotes the
complete textual space of the click-associated queries of all
pages, 𝑝(𝑤∣𝑄𝑖) is a multinomial distribution of query terms
(𝑤) over the click-associated query language vocabulary 𝒱𝒬.
To compute the RQLM 𝑝(𝑤∣𝑄0) in Equation 7, we use

each page 𝑃𝑖’s click-associated queries originally observed in
the query log to estimate a query language model 𝑝𝑜𝑏𝑠(𝑤∣𝑄𝑖)

to approximate 𝑝(𝑤∣𝑄𝑖), which should be estimated ideally
from some unknown complete set of 𝑃𝑖’s all plausible click-
associated queries in the query log2. In practice, for effec-
tiveness and efficiency we compute the RQLM of the target
page 𝑃0 using the click-associated queries of 𝑃0’s top-𝑘 most
similar pages in the query log. This choice is due to two rea-
sons: (1) 𝑡(𝑄𝑖∣𝑄0) is very small for other pages thus has less
impact on the RQLM; (2) increasing 𝑘 can increase the num-
ber of query samples for better estimating RQLM but also
may introduce more noise to degrade the quality of the es-
timated RQLM. We tune 𝑘’s value on the training data for
each different retrieval task.

3.3 Combining Random Walk Approach and
Finding Similar Approach

We can take advantages of both the random walk ap-
proach in §3.1 and our content based approach to further
reduce the click-through sparseness and calculate better se-
mantic click-through features for search. Here we present
one language modeling based way to combine the advan-
tages of two approaches.

We first employ the random walk approach to enrich the
original bipartite click graph and discover more click-associated
queries for each web page. Then we estimate a query lan-
guage model 𝑝(𝑤∣𝑄𝑎𝑢𝑔) for each web page from the new
added click-associated queries, which we call augmented queries,
of the page. We also estimate a query language model
𝑝(𝑤∣𝑄𝑜𝑟𝑖𝑔) for each page from its click-associated queries
originally observed in the query log that has not been en-
riched by the random walk approach. Next, we employ the
mixture model approach [23, 24] to combine two query lan-
guage models 𝑝(𝑤∣𝑄𝑜𝑟𝑖𝑔) and 𝑝(𝑤∣𝑄𝑎𝑢𝑔), and compute a bet-
ter smoothed query language model 𝑝(𝑤∣𝑄) by:

𝑝(𝑤∣𝑄) = 𝛾𝑝(𝑤∣𝑄𝑜𝑟𝑖𝑔) + (1− 𝛾)𝑝(𝑤∣𝑄𝑎𝑢𝑔), (8)

where 𝛾 is a meta-parameter to control the mixture weight
(or prior probability) of each component and can be tuned
on training data for different tasks. Then we use the up-
dated query language model 𝑝(𝑤∣𝑄) of each page to better
approximate the 𝑝(𝑤∣𝑄𝑖) in Equation 7 so that we can better
estimate the RQLM 𝑝(𝑤∣𝑄0) of each page to help retrieval.

Next, we describe how we utilize missing click-through
query language information discovered by these different ap-
proaches to help improve search performance.

4. USING DISCOVERED CLICK-THROUGH

INFORMATION FOR WEB SEARCH
We have described several ways to infer click-through in-

formation when in situations where a page or query has few
clicks. In this section we consider how to use the inferred
information and measure its utility. We first present how we
utilize discovered missing click-through query language in-
formation for retrieval in §4.1, following the language mod-
eling based retrieval framework[25]. Then in §4.2 we con-
sider an approach that expands the query with additional
terms, also inferred from the click-through log. For the con-
venience of discussing different retrieval models and base-
lines, we start by briefly describing the data and methodol-
ogy we used for evaluating different approaches.

2We will use this fact in §3.3 to combine the random walk
approach and the content based approach for discovering
missing click-through features.



Mainly due to privacy and security concerns, there are
very limited publicly available query log data for research.
Here we use the MS-QLOG dataset which contains about
12m click-through events and also information of about 15m
additional user-issued web queries that received no clicks,
sampled from the query log of Microsoft’s web search engine
during 05/01/2006 to 05/31/2006. We only use the click-
through records in this dataset for our experiments.
We use the queries and the relevance judgments in two

different sets of the TREC web search tasks to design re-
trieval experiments. The first set consists of the adhoc web
search tasks in the TREC 2004-2005 Terabyte Tracks [8, 7],
where the GOV2 collection (a TREC web collection crawled
from government web sites during early 2004) was used for
search; the second set consists of the adhoc web search tasks
in the TREC 2009 Web Track [6, 15] and the TREC 2010
Web Track3, where the search was originally performed on
the ClueWeb-09 Dataset4(a larger TREC web collection re-
cently crawled during 01/06/2009 to 02/27/2009 from all
domains of the Web).
Because our approach depends on web page content simi-

larity, we crawl the web pages of all the clicked URLs in MS-
QLOG and use the crawled pages and their click-associated
queries in MS-QLOG as the training data for extracting se-
mantic click-through features. The GOV2 collection and
the TREC category B subset of the ClueWeb09 web collec-
tion (or ClueWeb09-T09B dataset), are used as the searched
targets in our experiments. Each ClueWeb09 or GOV2 web
page can be viewed as a page whose click information is com-
pletely missing5, thus we need to handle the click-through
sparseness problem in both the training pages and the searched
collections.
More details about the data and methodology used for

evaluating the retrieval performance of different approaches
will be described in §4.3.1. Then we will discuss the experi-
mental results in §4.3.2 and §4.3.3.

4.1 Document Smoothing Approach
The first baseline is a query likelihood baseline following

the typical language modeling based retrieval approach[25].
This baseline does not use any click-through features and
ranks each web page 𝑃 for a query 𝑄 by the likelihood of
the page 𝑃 ’s document language model 𝑝(𝑤∣𝑃 ) generating
the query 𝑄:

𝑝(𝑄∣𝑃 ) =
∏

𝑤∈𝑄

𝑝(𝑤∣𝑃 ). (9)

We use Dirichlet smoothing [17] to compute the document
language model 𝑝(𝑤∣𝑃 ) used in the above equation and de-
note this query likelihood baseline QL here. We tune the
Dirichlet parameter 𝜇 for QL to achieve the best retrieval
performance for different tasks. Note that 𝜇 is fixed to 2500
when using Equation 5 to compute the document models of
the crawled clicked pages for estimating RQLMs (relevant
click-associated query language models described in §3.2).
We follow the mixture model approach [23, 24] to use the

discovered click-through query language model features to
help search. After we estimate the RQLM 𝑝(𝑤∣𝑄0) for each
page, we mix a web page 𝑃 ’s document language model

3http://plg.uwaterloo.ca/˜trecweb/2010.html
4http://boston.lti.cs.cmu.edu/Data/clueweb09/
5Some research showed that there is very small overlap between
the clicked URLs in MS-QLOG and the GOV2 collection[3].

𝑝(𝑤∣𝑃 ) with the RQLM to obtain a better document lan-
guage model 𝑝(𝑤∣𝑃 ) by:

𝑝(𝑤∣𝑃 ) = 𝛽𝑝(𝑤∣𝑃 ) + (1− 𝛽)𝑝(𝑤∣𝑄0), (10)

where 𝑝(𝑤∣𝑃 ) is the original smoothed document model in
the QL baseline and 𝛽 is the meta-parameter controlling the
mixture weights of the component distributions. Then we
can use the updated document language model 𝑝(𝑤∣𝑃 ) and
Equation 9 for retrieval.

We have described three different approaches of discover-
ing semantic missing click-through features in §3. We point
out because the searched items here are ClueWeb09 or GOV2
web pages with no click information, only using the random
walk approach cannot discover any click-associated queries
for them. Therefore, we do not use the sparse click count
(which is zero for almost all pages and not helpful for re-
trieval) in our experiments, but use our content based ap-
proach and the combination approach for improving search
performance. In the combination approach, we first dis-
cover plausible missing links in the click graph (built from
MS-QLOG) by the random walk approach and then use
the enriched click graph to estimate better RQLMs for the
ClueWeb09 or GOV2 pages as described in §3.3. We de-
note the retrieval baseline that employs our content based
approach to update document models for search as RQLM,
and the baseline that uses combination approach for search
as RW+RQLM in later discussions.

4.2 Query Expansion Approach
Besides document smoothing approaches, we are also in-

terested in exploring some query-side alternative approaches
of handling missing click-through information for search.
Here we adapt a structured variant of the relevance based
language models [18], which was proposed by Lavrenko et
al.[19] and called Structured Relevance Models (SRM), for
discovering useful click-through query information to recon-
struct queries. The SRM technique was originally developed
to search semi-structured documents with incomplete/missing
fields; thus, here we introduce field structure for the queries
and pages, represent click-through information using this
structure and then utilize the SRM approach for search.

Formally, we view each web page as a semi-structured
document containing two fields: (1) the PageContent field
(denoted by w𝑝) which contains the original page content
and (2) the QueryContent field (denoted by w𝑞) which con-
tains all the click-associated queries of the page in the web
query log. Then for each unstructured query 𝑞, we generate
a semi-structured query q = {w𝑝,w𝑞} that has the same
semi-structure as the web page document by duplicating
the query string in both fields, i.e. w𝑝 = w𝑞 = 𝑞: intu-
itively, the query is searching for pages that match the query
in content and/or their click-associated queries. We assume
that both fields are incomplete and then use the SRM ap-
proach to estimate plausible missing field values in q based
on the observed {w𝑝,w𝑞}. We use our crawled pages of
the clicked URLs in MS-QLOG and their click-associated
queries in MS-QLOG to form the training semi-structured
document collection 𝒲.

We then use the training collection to calculate the SRM
{𝑅𝑝(⋅),𝑅𝑞(⋅)} for q, where each relevance model 𝑅𝑖(𝑤) spec-
ifies how plausible it is the word 𝑤 would occur in the field
𝑖 (𝑖 ∈ {𝑝, 𝑞}) of q given the observed q = {w𝑝,w𝑞}, i.e.

𝑅𝑖(𝑤) = 𝑃 (𝑤∘w𝑖∣q) = 𝑃 (𝑤∘w𝑖∣w𝑝,w𝑞), 𝑖 ∈ {𝑝, 𝑞}, 𝑤∈𝒱𝑖, (11)



where 𝑤∘w𝑖 denotes appending word 𝑤 to the string w𝑖 and
𝒱𝑖 denotes the vocabulary of the field 𝑖. Using the training
web page documents w′ ∈ 𝒲 and Equation 11, 𝑅𝑖(𝑤) can
be further calculated by:

𝑅𝑖(𝑤) =
∑

w
′∈𝒲

𝑝(𝑤∣w′
𝑖)× 𝑃 (w′∣q), 𝑖 ∈ {𝑝, 𝑞}, 𝑤∈𝒱𝑖. (12)

To calculate the posterior probability 𝑃 (w′∣q),we use the
following equations:

𝑃 (w′∣q) ∝ 𝑃 (q∣w′) ∗ 𝑃 (w′),
𝑃 (q∣w′) = 𝑃 (w𝑝∣w′

𝑝)
𝛽𝑝 ∗ 𝑃 (w𝑞 ∣w′

𝑞)
𝛽𝑞 ,

(13)

where 𝑃 (w′) is assumed to be a uniform distribution, the
meta-parameters 𝛽𝑝, 𝛽𝑞 are used to control the impact of
each field on the posterior probability and tuned with the
training queries. When computing 𝑃 (w𝑖∣w

′
𝑖), 𝑖 ∈ {𝑝, 𝑞} in

Equation 13, we fix the Dirichlet smoothing parameter 𝜇𝑝 =
50, 𝜇𝑞 = 1 for the PageContent and QueryContent fields,
respectively.6

For efficiency and effectiveness we use q’s top-𝑘 most simi-
lar documents instead of all w′ ∈ 𝒲 to calculate 𝑅𝑖(𝑤). 𝑘 is
tuned with the training queries. Because the click informa-
tion is completely missing in our two searched target collec-
tions 𝒲 ′′ (ClueWeb09-T09B and GOV2), the QueryContent
field is missing there. Therefore, we only use the relevance
model 𝑅𝑝(𝑤) of the estimated SRM in the PageContent field
to search each target collection. We interpolate it with the
original query language model to obtain a better relevance
model for retrieval:

𝑅
′
𝑝(𝑤) = 𝜆 ∗ (𝑝(𝑤∣w𝑝)) + (1− 𝜆) ∗𝑅𝑝(𝑤), (14)

which is similar as in the Relevance Model 3 [10]. We use
the parameter 𝜆 to control the impact of the original query
language model on the updated relevance model and tune
it with the training queries. Then the searched documents
w′′ ∈ 𝒲 ′′ are ranked by their weighted cross-entropy [17]
based similarity to 𝑅′

𝑝(𝑤):

𝐻(𝑅′
𝑝;w

′′
𝑝 ) =

∑

𝑤∈𝒱𝑝

𝑅
′
𝑝(𝑤) log 𝑝(𝑤∣w′′

𝑝 ) (15)

We denote this query expansion retrieval baseline as SRM
in our experiments.
For comparison, we also provide the typical highly effec-

tive language modeling based query expansion baseline –
Relevance Model [18] – in our experiments. We use the ver-
sion of Relevance Model 3 [10] and denote it as RM. Note
that different from SRM, here RM does not use any click-
through information for search: it builds a relevance model
from the top results of the QL baseline, which is obtained by
running the original query directly against the search target
(ClueWeb09-T09B or GOV2); then it mixes the built rele-
vance model with the original query language model (similar
as in Equation 14) and ranks the searched pages again using
the updated model.
In addition, we consider an approach that combines the

advantages of both the RM approach and the combination

6When using some sampled queries in MS-QLOG to search their
clicked URLs in our crawled web collection, we found that these
smoothing parameters can perform the best, if the user click is
directly used as the relevance indicator of a web page. Note that
only very sparse, biased and incomplete relevance judgments may
be obtained in this way.

approach (RW+RQLM in §4.1) for further improving search
performance. This approach first uses discovered click-through
query information from RW+RQLM to get a better query-
likelihood ranked list of pages for a given query, and then
uses the top ranked pages to compute a plausibly better rel-
evance model for query expansion and re-retrieval. This ap-
proach is similar in spirit to previous research that combines
document expansion techniques and RM for further improv-
ing search [29]. We denote this approach asRW+RQLM+RM
in the experiments.

4.3 IR Experiments

4.3.1 Data and Methodology

As described at the beginning of §4, we consider two set of
retrieval tasks. The first one is performed on GOV2 which
contains about 25m U.S. government web pages; the second
one is performed on ClueWeb09-T09B which contains about
50m English web pages. We use the Indri Search Engine7

to index each collection by removing a standard list of 418
INQUERY [4] stopwords and applying Krovetz stemmer.

For the first retrieval task, we use 50 adhoc queries (topic
id:701-750,title-only) in the TREC 2004 Terabyte Track [7]
for train and 50 adhoc queries (topic id:751-800,title-only)
in the TREC 2005 Terabyte Tracks[8] for test. For the sec-
ond retrieval task, we use 50 adhoc queries (title-only) in
the TREC 2009 Web Track [6, 15] for train and 50 queries
(title-only) in the TREC 2010 Web Track for test. More-
over, instead of using the whole ClueWeb09 collection as the
search target as in the TREC 2010 Web Track, we only use
the ClueWeb09-T09B subset here; thus only relevant pages
in this subset collection are used for evaluation.

We crawled the web pages of the clicked URLs in the MS-
QLOG during June 2010 and use the HTML pages down-
loadable during that time period and their click-associated
queries in the MS-QLOG as the training collection for our
experiments. Originally there are about 5m unique clicked
URLs in this query log, as shown in Table 1; we successfully
crawled about 3m HTML pages of the clicked URLs and in-
dexed them using the Indri Search Engine. We remove 418
INQUERY stopwords and apply Krovetz stemmer during
the indexing and call the indexed collection as MS-QLOG-
Web, which contains about 21.5 million unique words and
4.1 billion word postings. These training pages are then
used to discover click-through query language features for
the GOV2 or ClueWeb09 pages. We also preprocess the
queries in the MS-QLOG using the same stopwords remov-
ing and stemming procedure.

To evaluate the retrieval performance, we calculate typ-
ical IR evaluation measurements including Mean Average
Precision (MAP), Precision at position 𝑘 (P@𝑘), Normal-
ized Discounted Cumulative Gain (NDCG) [13]. For the
TREC 2009 Web Track queries, we report two additional
measurements: statMAP and MPC(30), which were used
by the TREC community for that track [6] and computed
by the TREC evaluation tool statAP MQ eval v3.pl 8; thus,
we can compare our results with other researchers’ published
results on the same query set. Intuitively, both statMAP
and MPC(30) measurements are used for addressing the in-
complete judgment issue [2]: the former one is a statistical

7http://www.lemurproject.org/indri/
8It is downloadable at: http://trec.nist.gov/data/
web09.html



MAP P@10 P@30 NDCG
QL 0.2617 0.5102 0.4694 0.4829

SRM 0.2777‡ 0.5551‡ 0.5020‡ 0.4945

RQLM 0.2688 0.5388‡ 0.4796 0.4927‡

RW+RQLM 0.2691† 0.5347‡ 0.4823† 0.4933‡

RM 0.2824‡ 0.5449‡ 0.4966‡ 0.4928

RW+RQLM+RM 0.2875‡ 0.5612‡ 0.5061‡ 0.4974‡

Optimal Parameters:
QL 𝜇 = 1000
SRM 𝑘 = 10, 𝑁 = 50, 𝜆 = 0.3, 𝛽𝑝 = 0.99, 𝛽𝑞 = 0.01
RQLM 𝑘 = 100, 𝛽 = 0.95
RW+RQLM 𝑘 = 100, 𝛽 = 0.95, 𝛼 = 0.01, 𝛾 = 0.6
RM 𝑘 = 50, 𝑁 = 50, 𝜆′ = 0.2
RW+RQLM+RM 𝑘′ = 50, 𝑁 = 50, 𝜆′ = 0.2

Table 2: Retrieval performance and tuned param-
eters on the TREC 2004 Terabyte Track queries
(train).

version of the MAP measurement and the latter one is a
statistical version of the measurement P@30.
In each retrieval task, we first tune the Dirichlet smooth-

ing parameter 𝜇 in Equation 5 to obtain the best QL base-
line that can achieve the highest MAP with training queries
on each searched target collection (GOV2 or ClueWeb09-
T09B). Then for both the RQLM baseline (using our con-
tent based approach) and the RW+RQLM baseline (using
the combination approach), we follow the reranking scheme,
where we use the updated document language model by each
approach to recompute the query likelihood scores of the
top-1000 web pages returned by the QL baseline for each
query and then rerank the pages. For the RQLM baseline,
we tune these two parameters: the number (𝑘) of the similar
pages whose click-associated queries are used to compute the
RQLM and the mixture weight 𝛽 in Equation 10. For the
RW+RQLM baseline, we tune two additional parameters:
the transition probability threshold 𝛼 (discussed in §3.1) and
the query language model updating weight 𝛾 in Equation
8. For the SRM baseline, as described in §4.2, we tune the
number of the similar pages (𝑘) used to build SRM, the num-
ber of terms (𝑁) in each field of the built SRM, the meta-
parameters 𝜆 in Equation 14 and 𝛽𝑝, 𝛽𝑞 in Equation 13. For
the RM baseline, we tune the number of top ranked pages
(𝑘), the number of terms (𝑁) used to build a relevance model
and the mixture weight 𝜆′ between the relevance model and
the original query model. For the RW+RQLM+RM base-
line, we first use the tuned RW+RQLM baseline to obtain a
best query likelihood ranked list of pages, then we use this
best ranked list to build a relevance model and tune the
number of top ranked pages (𝑘′), the number of terms (𝑁)
and the mixture weight 𝜆′ similarly as in the RM baseline.
In each retrieval task, we tune the parameters of each

approach with the training queries, and then test their per-
formance on the test queries.

4.3.2 Results

Table 2 and 3 show the retrieval performance of different
approaches with the training and testing queries, respec-
tively, in the first retrieval task. Table 4 and 5 show the
retrieval performance of different approaches with the train-
ing and testing queries, respectively, in the second retrieval
task. The ‡ and † in these tables indicate statistically signifi-
cant improvement over of the QL baseline based on one-sided

MAP P@10 P@30 NDCG
QL 0.3043 0.5560 0.4980 0.5475

SRM 0.3110 0.5700 0.5060 0.5502

RQLM 0.3161‡ 0.5960‡ 0.5120 0.5601‡

RW+RQLM 0.3132† 0.5840‡ 0.5067 0.5579‡

RM 0.3540‡ 0.5800‡ 0.5440‡ 0.5797‡

RW+RQLM+RM 0.3617‡∗ 0.6080‡∗ 0.5580‡ 0.5866‡∗

Table 3: Retrieval performance on the TREC 2005
Terabyte Track queries (test).

t-test with 𝑝 < 0.05 and 𝑝 < 0.1,respectively. The ∗ in these
tables indicates statistically significant improvement over of
the highly effective RM baseline based on one-sided t-test
with 𝑝 < 0.05. Table 2 and 4 also show the corresponding
tuned parameters of each approach in the first and second re-
trieval task, respectively. We can see from these tables that
using click-through query information discovered by differ-
ent approaches can help to improve web search performance,
although their performance is affected in different degree by
different query sets. We have the following main observa-
tions:
1. Using click-through query language features from MS-
QLOG benefit more for the web search tasks on the ClueWeb09
data than the ones on the GOV2 data. This is not surpris-
ing because the TREC adhoc search tasks on the ClueWeb09
data are, in nature, more similar to real-world web search
scenarios as those recorded in MS-QLOG: (1) the ClueWeb09
dataset were crawled from the general web while the GOV2
data was crawled only from government web sites; (2) the
TREC Web Tracks queries were created to closely simulate
the real-world web search scenarios, while the TREC Ter-
abyte Track queries targeted government web pages in order
to have some relevant pages in the GOV2 data.
2. On the test query sets in both retrieval tasks, (a) both
RQLM and RW+RQLM performed statistically significantly
better than QL in terms of MAP,P@10 and NDCG; (b)
RW+RQLM+RM performed statistically significantly bet-
ter than RM in terms of MAP and NDCG. This result
demonstrates that using click-through query language model
features discovered by our content based approach can help
to improve the web search performance significantly, even
compared with a highly effective typical query expansion
baseline. This also indicates that our content based ap-
proach can effectively alleviate the click-through sparseness
problem. In addition, RW+RQLM performed slightly better
than RQLM on the training query sets in both retrieval tasks
and the test query set in the ClueWeb09 retrieval task, indi-
cating that the combination of our content based approach
and the click-graph based random walk approach can further
reduce the click-through sparseness and refine the discovered
missing click-through features for search.
3. The structured query expansion approach (SRM) achieved
very good performance (3𝑟𝑑 on GOV2 and 2𝑛𝑑 on ClueWeb
data) on the training query sets in both retrieval tasks.
This shows when the model parameters are carefully tuned,
SRM can use click-through information to discover miss-
ing query language information to improve the search ef-
fectiveness. 𝛽𝑝 = 0.99, 𝛽𝑞 = 0.01 in the first retrieval task
implies that the reconstructed query field content mainly
comes from the content of the MS-QLOG-Web pages that
have the highest likelihoods of generating the original query.



MAP P@10 P@30 statMAP MPC(30)
QL 0.1951 0.3408 0.3354 0.1732 0.3636

SRM 0.2258‡ 0.4388‡ 0.3959‡ 0.2069 0.4661

RQLM 0.2107‡ 0.3714† 0.3694‡ 0.1916 0.4215

RW+RQLM 0.2123‡ 0.3796‡ 0.3728‡ 0.1908 0.4359

RM 0.2113† 0.3939‡ 0.3646‡ 0.1993 0.3970
RW+RQLM

+RM 0.2284‡∗ 0.4408‡∗ 0.3891‡∗ 0.2213 0.4299
Optimal Parameters:

QL 𝜇 = 1000
SRM 𝑘 = 5, 𝑁 = 100, 𝜆 = 0.4, 𝛽𝑝 = 0.01, 𝛽𝑞 = 0.99
RQLM 𝑘 = 25, 𝛽 = 0.9
RW+RQLM 𝑘 = 25, 𝛽 = 0.9, 𝛼 = 0.01, 𝛾 = 0.5
RM 𝑘 = 50, 𝑁 = 200, 𝜆′ = 0.3
RW+RQLM
+RW 𝑘′ = 50, 𝑁 = 200, 𝜆′ = 0.3

Table 4: Retrieval performance and tuned parame-
ters on the TREC 2009 Web Track queries (train).

MAP P@10 P@30 NDCG
QL 0.1761 0.2292 0.2451 0.3347

SRM 0.1808 0.2354 0.2556 0.3264

RQLM 0.1925‡ 0.2646† 0.2708† 0.3509‡

RW+RQLM 0.1995‡ 0.2688‡ 0.2715† 0.3526‡

RM 0.1751 0.2729‡ 0.2535 0.3233

RW+RQLM+RW 0.1979‡∗ 0.3125‡ 0.2958‡∗ 0.3401∗

Table 5: Retrieval performance on the TREC 2010
Web Track queries (test).

In contrast, 𝛽𝑝 = 0.01, 𝛽𝑞 = 0.99 in the second retrieval task
implies that the reconstructed query field content mainly de-
termined by each query’s similar queries’ clicked pages, thus
the query log information is more helpful for the search task
on the ClueWeb09 data. However, we observe that on the
test queries SRM achieved little improvement over the QL
baseline. We will do more analysis on this issue in §4.3.3
to investigate some plausible causes, such as the sensitivity
of the performance of SRM is to the change of its model
parameters and irrelevant noise in the training data across
different query sets.
4. The typical query expansion approach (RM) failed (i.e.
performed worse than QL) on the TREC 2010 Web Track
web search task (in Table 5), but leveraging the click-through
query information discovered from random walk and our
content based approach can make RM more resistent to ir-
relevant noise in the searched collection and effectively re-
duce the risk of topic-drifting. Indeed, on both training and
test queries across different searched collections and retrieval
tasks, RW+RQLM+RM approach performed robustly and
very well: it achieved the best MAP on 3 of 4 query sets and
the second best MAP on the remained query set.

statMAP MPC(30)
QL 0.1442 0.3079
Anchor 0.0567 0.5558
Mix 0.1643 0.4812

UDWAxQEWeb 0.1999 0.5010
uogTrdphCEwP 0.2072 0.4966
ICTNETADRun4 0.1746 0.4368

Table 6: Retrieval performance of some published
results on the TREC 2009 Web Track ad hoc queries.

It is worthwhile to compare our results with some very
recently published results on the TREC Web Track ad hoc
web search tasks on the ClueWeb09-T09B collection (our
second retrieval task). Table 6 shows some results on the
TREC 2009 Web Track ad hoc search task from some par-
ticipants [15]. The 2nd-4th rows of the table show Koolen
and Kamps’ results[15] on the same retrieval task when they
examined the potential of using existing anchor text in large
scale web corpora for helping search. One major difference
between their QL baseline and ours is that they used lin-
ear smoothing approach while we used Dirichlet smooth-
ing. The 5th-7th rows of Table 6 show the top3 best official
TREC submissions for the same retrieval task from other
participants. Comparing Table 6 with our results in Table
4, our retrieval approaches that use discovered click-through
query language information from sparse click-through data
achieved similar or better performance, compared to these
top-performing TREC submissions.

To summarize, our content based approach can effectively
discover missing click-through query language information
to help improving retrieval performance. The content based
approach can be combined with the random walk approach
to further improve the quality of the discovered language
model information from click-through data. The query-side
approach of handling click-through sparseness performs very
well on some query sets but not on other query sets. The
discovered click-through query information can be combined
with the typical relevance model to further improve web
search performance.

4.3.3 More Analysis

We are concerned about how sensitive different approaches’
performance is to the change of their retrieval model param-
eters. Specifically, for the content based approach (RQLM),
we are interested in the number of similar pages needed
to build RQLMs for each page to be able to perform rea-
sonably well and how the change of this number will af-
fect the retrieval performance; for the combination approach
(RW+RQLM), we are further interested in the impact of the
augmented queries discovered by the random walk approach
on the performance. For the SRM based approach, we are
concerned about the impact of different number of feedback
pages used to build SRM and the mixture weight between
the original query language and the built SRM on the re-
trieval performance. As discussed in the previous section,
our second retrieval task on the ClueWeb09-T09B collection
better simulates the real-world web search scenarios; there-
fore, here we use this task for our investigation.

Figure 2(a) and (b) depict the model parameters’ im-
pact for RW+RQLM with training/testing queries in this
retrieval task, respectively, where we fix 𝛼 = 0.01, 𝛽 = 0.9
while varying 𝛾 and 𝑘. Figure 3(a) and (b) depict the model
parameters’ impact for SRM with training/testing queries,
respectively, where we fix 𝛽𝑝 = 0.01, 𝛽𝑞 = 0.99, 𝑁 = 100
while varying 𝜆 and 𝑘.

From Figure 2, we have the following major observations:
1. Using click-associated queries from about 25 ∼ 35 most
similar pages to build RQLM for each page can achieve near
optimal retrieval performance on both training/test query
sets. Increasing 𝑘 beyond 35 brings little additional ben-
efit to (or even hurt) the retrieval performance, and only
changes the performance very slowly. This property means
that in real-world use, for efficiency we need only index click-



through information from a small number of similar pages
of each page, without sacrificing the retrieval effectiveness.
2. Using augmented queries discovered by the random walk
approach from the click graph can slightly help the retrieval
effectiveness. The mixture weight 𝛾’s value can be selected
between 0.4 ∼ 0.6 across different query sets and the change
of this value among this range has little impact on the re-
trieval performance. This also indicates that the augmented
queries discovered by the random walk approach are at least
as useful as the click-through query information discovered
from the content based approach for search.
Figure 3 shows that the performance of SRM mainly de-

pends on whether the training web pages (the MS-QLOG-
Web collection here) contains useful content for helping to
search the target web collection (the ClueWeb09-T09B here).
For example, on the training queries, using only top-5 feed-
back pages for re-constructing the PageContent query field
can achieve very good performance (even better than the
RW+RQLM approach); in contrast, on the test queries, the
performance improvement is very little. Furthermore, the
mixture weight 𝜆 also affects SRM’s retrieval performance
significantly, both within the same query set and across dif-
ferent query sets. 𝜆’s choice indicates the quality of the
built SRM: the higher quality is the SRM, the smaller 𝜆 and
less information from the original query language model are
needed for better performance.

5. CONCLUSIONS
In this paper, we adapt two language modeling based ap-

proaches to address the click-through sparseness problem in
the context of using web query logs for helping web search.
Our first approach stems from the contextual translation

approaches [28, 31] and uses web content similarity for dis-
covering missing click-through query language model infor-
mation for web pages with no or few clicks, in order to help
search. This approach computes a relevant (click-associated)
query language model, called RQLM, for each web page from
the click-associated queries of its similar pages in the web
query log, and then uses the RQLM to smooth the original
document language model of each page for achieving better
retrieval performance. Compared with the random walk ap-
proach [9], this content based approach does not need to use
specific click graph structure to discover missing clicks thus
can further mitigate the click-through sparseness. Further-
more, we present a combination approach that takes advan-
tage of both random walk and the content based approach
to further improve search.
Our second approach follows the query expansion approach

and utilizes the semantic relation between the queries and
the content of their clicked URLs in the web query log to
reconstruct a structured variant of the relevance based lan-
guage models, called Structured Relevance Models (SRM)[18,
19], for each user-input query, to help search.
We then demonstrated the effectiveness and compared the

performance of different approaches of handling the click-
through sparseness problem for web search with two recent
sets of TREC ad hoc web search tasks. The results showed
that discovering missing click-through query language infor-
mation from click-through data can statistically significantly
improve search performance, compared with two retrieval
baselines (QL and RM) that did not use the discovered in-
formation. The document smoothing approaches (RQLM
and RW+RQLM), performed well across different query sets

while the query expansion approach (SRM) of using sparse
click-through information was more sensitive to model pa-
rameter selection and irrelevant noise in the click-through
data. The random walk approach complemented the con-
tent approach for addressing the click-through sparseness
problem: the combination approach performed slightly bet-
ter than the content-only approach in three of the four query
sets in our experiments. In addition, the most complex ap-
proach (RW+RQLM+RM) that combines to use the typical
query expansion approach (RM) and the discovered click-
through query language information from RW+RQLM can
achieve significantly better search performance in different
search tasks.

There are several interesting directions of future work. It
is worthwhile to explore using the discovered missing click-
through query language features beyond the language mod-
eling based retrieval framework, for example, using the dis-
covered features in the learning-to-rank retrieval approach
[5], so that we can combine different approaches described
here with the Good-Turing based smoothing approach [11]
to see whether the retrieval performance can be further im-
proved. Moreover, here we have only explored using the con-
textual translation probability 𝑝(𝑃𝑖∣𝑃0) between web pages
to discover useful missing click-through query language fea-
tures; theoretically, we may also use this probability to com-
pute an expected feature 𝐸(𝑓𝑃0

) =
∑

𝑓𝑃𝑖
∈ℱ

𝑓𝑃𝑖
× 𝑝(𝑃𝑖∣𝑃0) for

a page 𝑃0 for any selected click-through feature from the
same click-through features 𝑓𝑃𝑖

of the page’s similar pages
𝑃𝑖. Intuitively, this approach aims to smooth the click-
through features for web pages with no clicks as in Gao
et al.’s approach, but leverages the web content similarity
during the smoothing. We would like to explore the utility
of these smoothed click-through features for web search.
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