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ABSTRACT

STATISTICAL MODELS FOR TEXT QUERY-BASED IMAGE

RETRIEVAL

MAY 2008

SHAOLEI FENG

B.S., SHANDONG UNIVERSITY OF TECHNOLOGY, CHINA

M.S., CHINESE ACADEMY OF SCIENCES, CHINA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor R. Manmatha

Image indexing and retrieval has been an active research area for more than one decade.

Although many accomplishments have been made in this domain, it is still a challenging

problem and far from being solved. Traditional content-based approaches make use of

queries based on image examples or image attributes like color and texture, and images are

retrieved according to the similarity of each target image with the query image. However,

image query based retrieval systems do not really capture the semantics or meanings of

images well. Furthermore, image queries are difficult and inconvenient to form for most

users.

To capture the semantics of images, libraries and other organizations have manually

annotated each image with keywords and captions, and then search on those annotations

using text retrieval engines. The disadvantage of this approach is the huge cost of anno-

tating large number of images and the inconsistency of annotations by different people. In

vi



this work, we focus on general image and historical handwritten document retrieval based

on textual queries. We explore statistical model based techniques that allow us to retrieve

general images and historical handwritten document images with text queries. These tech-

niques are (i) image retrieval based on automatic annotation, (ii) direct retrieval based on

computing the posterior of an image given a text query, and (iii) handwritten document

image recognition. We compare the performance of these approaches on several general

image and historical handwritten document collections.

The main contributions of this work include (i) two probabilistic generative models

for annotation-based retrieval, (ii) a direct retrieval model for general images, and (iii) a

thorough investigation of machine learning models for handwritten document recognition.

Our experimental results and retrieval systems show that our proposed approaches may be

applied to practical textual query based retrieval systems on large image data sets.
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CHAPTER 1

INTRODUCTION

Image retrieval is concerned with searching for useful images from large, unstructured

image collections. Given a user query, the task of image retrieval is to find those images

relevant to users’ needs, without asking users to tediously browse an entire collection. Pre-

vious work assumes that users would provide image examples or visual attributes as queries

which seriously complicates query formulation and impairs the practicability of image re-

trieval systems. In contrast, text query based image retrieval allows users to represent their

needs using textual queries and thus makes image retrieval systems more practical. This

work explores statistical modeling methods for text query based image retrieval. Specifi-

cally, we research statistical models to automatically associate words with images for re-

trieval purposes. Unlike commercial image search engines which rely on pre-existing text

surrounding images and entirely ignore the image content, we develop and investigate mod-

els to generate words for images. This is done through learning the relationship between

words and image features from a training collection of annotated images.

This work focuses on statistical modeling approaches rather than new feature extraction

and image processing methods although the features used will be discussed in context. A

common problem with much previous work is the use of different image sets and different

features making comparisons difficult. To improve our understanding it is important to be

able to compare models on standard datasets and features. The use of standard datasets has

led to advances in such fields as text information retrieval. To ensure fair comparisons, we

use the same dataset and the same feature with those used by the models we compare with,

instead of developing our own features. For some datasets used by other models, we do not
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even have the images because of licensing issues. This also prevents us from developing

our own features on those datasets.

The first part of this work will be devoted to automatic annotation based retrieval for

general images. Image annotation is a technique to automatically predict words for images

through learning from an annotated image set. The predicted words are usually some key

words depicting the high-level image content, e.g. the objects and background scene in

the image. It is not necessary for automatic annotation techniques to predict the correspon-

dence between annotation words and individual image regions, i.e. for image annotation we

do not need to know which annotation word labels which image region except that all the

annotation words loosely label the whole image. After automatically annotating each im-

age in the test collection, text retrieval techniques (e.g. language models [121, 50, 74, 57])

may be applied to the annotation words for retrieving images from the test collection. We

develop two generative models – the multiple-Bernoulli relevance model and the normal-

ized continuous relevance model – for estimating the joint distribution of annotation words

and image features, based on which images can be annotated and retrieved. These pro-

posed models build on previous work in relevance modeling approaches for text and image

retrieval but capture the special properties of the distributions of annotation words of im-

ages. We show how the newly developed models improve the retrieval performance and

how they are related to each other theoretically.

In the second part, we develop a new direct retrieval framework for text query based

image retrieval. Direct retrieval models do not involve an explicit annotation step and are

trained by directly optimizing retrieval performance. Our direct image retrieval framework

is built using Markov random fields which model the joint probabilities of query words and

image features. This Markov random field based framework is reduced to a linear model for

the retrieval task and flexible enough to model feature dependencies and combine different

visual information. We show that performance improvements may be achieved through

direct image retrieval and feature dependency modeling. We also build a discrete version
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of the Markov random field for direct image retrieval which achieves fast retrieval while

retaining comparable retrieval performance.

The third part of this work will be concerned with automatic recognition for historical

handwritten document retrieval, which follows the main stream of research on handwritten

document image analysis. We do a through investigation of applying different machine

learning models for historical handwritten document recognition. The recognizers used in

this work do not rely on character segmentation and instead recognize words holistically.

After training over a labeled handwritten document set, recognizers automatically create

transcriptions of all the handwritten documents in a collection. Then via standard text

retrieval techniques, the transcriptions automatically generated may be used for finding

lines or pages of the original manuscripts relevant to users’ textual queries. We compare

and analyze the recognition performance of various models.

1.1 Motivation

With the development of the Internet and digital imaging devices many large image

collections are being created. Popular online photo-sharing sites like Flickr [1] contain

hundreds of millions of diverse pictures. Many organizations, e.g. libraries, hospitals, gov-

ernments and commerce have also been creating their large image databases by scanning

paintings, manuscripts, prints and drawings. Searching and finding large numbers of im-

ages from a database is a challenging problem. Traditional content-based approaches make

use of information directly extracted from image pixels. Such image retrieval systems use

different kinds of user queries [111, 143, 7] which are usually categorized into one of three

kinds: example images, sketches of images and image attributes like color and texture.

Content-based image retrieval systems (e.g. [111, 143, 7] ) rank images in a collection in

proportion to the similarity between the image features from the target image and the query

image. Such approaches suffer from a number of problems. They do not really capture
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the semantics or meaning of images well. Furthermore, they often require people to pose

queries using image examples, color or texture which is difficult for most people to do.

Image queries are even harder to create for historical handwritten document image re-

trieval. Although some research work [96, 95, 94, 71] uses word templates or writing

samples as handwritten retrieval queries, it is generally impractical for users to look for ex-

ample word images or templates to form every query. So text queries are more appropriate

for historical handwritten document image retrieval. In this kind of approach, handwritten

images in the dataset are first labeled through recognizers [120, 145, 156, 59, 36], then re-

trieved through applying standard text retrieval approaches to the recognition results. More

recently, probabilistic models have been proposed for automatic word image annotation

and handwriting images are retrieved based on the annotation results [126]. Probabilistic

annotation models are used to estimate the distributions of each word given observed image

features, and then standard language models are used for document retrieval.

In this work, we focus on text query based general image retrieval and historical hand-

written document image recognition. Our approaches use statistical models to associate

words with images by learning models using a training set of labeled images and then

retrieving images based on the associated words.

The traditional “low-tech” approach to capturing the semantics of images is to anno-

tate each image manually with keywords or captions and then search on those captions

or keywords using a conventional text search engine. The rationale here is that the key-

words capture the semantic content of the image and help in retrieving the images. This

technique is also used by television news organizations to retrieve file footage from their

videos. While “low-tech”, such techniques allow text queries and are successful in finding

the relevant pictures. The main disadvantage with manual annotations is the cost and diffi-

culty of scaling it to large numbers of images. The consistency of annotations by different

people is also a problem for images, especially when the semantics of an image is not that

self-evident. Another solution to associating words with images has been to try to recog-
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nize objects in the images and then retrieve the recognition results. While some success

has been achieved for objects like faces [136, 160, 170] much work still needs to be done

to be able to recognize general objects. In addition, conventional object recognition tech-

niques usually require that a recognizer be trained for each object and extensive manual

intervention is required to create training sets.

Although keywords and captions are not easy to obtain, the advantages of text query-

based image retrieval is apparent once the annotations are available. First, it supports se-

mantic search. Second, it is easier to implement an image search engine and the searching

process is usually much faster than one based on image matching. Third, text query-based

image retrieval has the potential to achieve good retrieval performance and be success-

fully commercialized. For example, image search engines by Google, Lycos, Alta Vista

and Yahoo are popular because they provide an efficient way to search web images using

user provided text queries. A recent retrieval system by Rath et al. [126] for historical

handwritten document images also shows promising results using word queries.

For image retrieval systems based on text queries, the key problem is how to get the

metadata such as captions, titles or transcriptions. Manual annotation is not practical for

large volumes of image sets. Commercial image search engines for the Internet, e.g.

Google image and Yahoo image, use the text surrounding each image as its description.

However, these search engines entirely ignore the visual content of the images and the sur-

rounding text doesn’t always relate to the visual content of an image. The consequence is

that the returned images may be entirely unrelated to users’ needs. Figure 1.1 shows an

example of the top ranked images by Google Image in response to the query “tiger river”,

from which we can see that only one image (the third image in the bottom row) is probably

relevant. Furthermore, such search engines can never retrieve images which do not have

any surrounding text or captions even if their visual contents are relevant to users’ queries.

Surveys [25] on user behavior while searching images have shown that, in practice users

prefer using query words which are closely related to the visual information of images. To
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Figure 1.1. Top images returned by Google Image in respond to query words “tiger river”.

support visual content based retrieval while retaining the advantages of a semantic search,

this work develops statistical approaches for joint visual-text modeling on image content

and annotation words. We investigate this problem from the perspectives of automatic im-

age annotation, word image recognition and direct image retrieval models. The techniques

presented in this work assume there is a set of annotated images available for training mod-

els, in which annotation words loosely label the entire image and not necessarily individual

image regions/features. As a general requirement for supervised machine learning and sta-

tistical models, a training set may be obtained by manually annotating a portion of the

image sets. By learning the semantics of a labeled training set of images, our statistical

models estimate the probabilities of associating each annotation word to unlabeled images

and retrieve those images based on the estimated probabilities.

1.2 Contributions

In this work we focus on statistical model based approaches for general image and hand-

written historical document image retrieval that allows the user to use text as queries. The
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techniques used here are (i) image retrieval based on automatic annotation, (ii) Markov ran-

dom field based direct retrieval, (iii) handwritten document image recognition. We compare

the performance of these approaches on several general image and handwritten document

image collections.

The main contributions of this work include:

1. two probabilistic generative models for annotation-based retrieval,

2. a direct retrieval model for general images,

3. a thorough investigation of machine learning models for handwritten document recog-

nition,

4. the first application of SVM, maximum entropy models and conditional random

fields for historical handwritten document recognition

5. improved hidden Markov models for historical handwritten document recognition.

The techniques and contributions are briefly discussed as follows.

1.2.1 General Image Retrieval

We propose three models for general image retrieval with text queries–two probabilistic

generative models for annotation based retrieval, and a direct retrieval framework.

1.2.1.1 Two Probabilistic Generative Models For Annotation-Based Retrieval

For general image retrieval based on automatic annotation, we propose two probabilistic

generative models – the multiple Bernoulli relevance model and the normalized continuous

relevance model. In our models, the images are partitioned into rectangles and features are

computed over these rectangles. We then learn a joint probabilistic model for (continuous)

image features and words called a relevance model and use this model to annotate test

images which we have not seen.
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Models Bill Clinton, books, greenery, text overlay Bill Clinton

Multinomial 0.25 1.0

Bernoulli 1.0 1.0

Figure 1.2. P (Bill Clinton | image) under different models for two images with anno-
tations of different lengths.

Previous annotation models [32, 14, 66, 78] used the multinomial distribution to model

annotation words as an analogy with the text retrieval world. However, annotation text

for images has very different characteristics from full text in documents. For example,

keyword annotations occur only once. So a direct application of the multinomial distribu-

tion does not capture these special characteristics. Therefore, we model the distribution of

words in two different ways to solve this problem. The first model assumes that the word

distribution is subjected to a multiple-Bernoulli distribution while the second assumes that

they are distributed according to a normalized multinomial distribution. Experimental re-

sults show that they outperform previously reported results on other models which assume

multinomial distributions.

A multinomial distributes the probability mass between multiple words. For exam-

ple, in the first image in Figure 1.2 the image is annotated with four words including

“Bill Clinton” and with a perfect annotation the probability for each word is equal to 0.25.

In particular, “Bill Clinton” has a probability of 0.25. On the other hand, the second image

is only annotated with the word “Bill Clinton” and, therefore, with a perfect annotation the

probability of “Bill Clinton” is 1.0. If we want to rank order images with “Bill Clinton”

in terms of probability, the second image would be preferred and would be much further

ahead in rank although in reality both images contain “Bill Clinton” and there is no real

reason for preferring one over the other. This problem arises because the annotation lengths
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are very different for different images. A similar problem occurs in text retrieval when doc-

ument lengths vary although the situation is not as extreme because of the large number of

words each document contains. A Bernoulli model avoids this problem by making deci-

sions about each annotation word independent of the other annotations. In the example

above, all the four annotations in the first image would have the same probability (i.e. 1.0

- assuming perfect annotation) and the annotation in the second image would also have

probability 1.0. Specifically, this would ensure that “Bill Clinton” in both images receives

probability 1.0 and both images would, therefore, be ranked equally in a ranking of im-

ages containing faces. We demonstrate that for both a standard Corel image dataset and

also the TRECVID [2] news videos - ABC, CNN news videos - that the Bernoulli model

outperforms a multinomial model on image annotation.

While the annotations from a multiple Bernoulli relevance model are good, retrieval

using a Bernoulli retrieval model over the annotations gives poor results. One can get good

retrieval results by applying a multinomial retrieval model to the Bernoulli annotations. But

this is not a “clean model”, i.e. one assumes two different word distributions for annotation

and retrieval respectively. An alternative is to use a normalized multinomial continuous

relevance model (NCRM) which produces the same annotations and up to a constant scale

factor the same annotation probabilities as a Bernoulli relevance model. This is achieved

by forcing the annotation length to be constant (by padding training images with nulls if

necessary). So, for the example images in Figure 1.2 if we assume that the vocabulary size

is 4, each annotation word in the first image has 0.25 probability while the “Bill Clinton”

annotation in the second image also has probability 0.25 after padding with 3 nulls. Thus,

the “Bill Clinton” annotations in both images have the same 0.25 probability as is desir-

able. We show that the NCRM model has the same annotation performance as the multiple

Bernoulli relevance model but may be used with a multinomial retrieval model to give good

retrieval performance on textual queries.

9



In this work, we also investigate the relationships among three kinds of models, con-

tinuous relevance models (which uses a multinomial model), multiple Bernoulli models

and normalized continuous relevance models and compare them with other models(e.g.

machine translation models [32], latent Dirichlet allocation model (LDA) [15]). Another

contribution of this work is that by using a rectangular grid instead of regions obtained us-

ing a segmentation algorithm we show that large improvements are achieved in annotation

and retrieval performance.

Through our proposed models significant improvements are achieved in annotation and

retrieval performance over a number of other models on standard datasets.

1.2.1.2 A Direct Retrieval Framework

Most previous work on text query based image retrieval involves an explicit annota-

tion/recognition step and the models are trained through maximizing the annotation perfor-

mance. However, retrieval and annotation are basically two different tasks. Image retrieval

focuses on the order of the returned images in the ranking list while image annotation

cares about the number of words correctly predicted given an image. So models trained

by maximizing annotation performance cannot guarantee the best retrieval performance.

Direct retrieval models do not involve an explicit annotation step and directly maximize

the retrieval performance.

Little work has been done on the direct retrieval of images using text queries before.

Jeon et al. [66] proposed to rank images according to the Kullback-Liebler divergence of

the query model and the image model, which are respectively represented by the distribu-

tions of discrete visual features co-occurring with a particular word and features of the test

image. In this work, we propose a Markov random fields based framework for direct re-

trieval over general images and handwritten document images. Direct retrieval here means

that there isn’t an explicit annotation or recognition procedure before retrieval. Instead, the

retrieval is done directly through the posterior of an image given a query P (I|Q). Under
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this framework, parameters are trained through maximizing the mean average precision di-

rectly rather than maximizing the likelihood as done by most other models. This framework

is based on Markov random fields and analogous to a similar framework by Metzler and

Croft [103] for text retrieval. Another contribution of this framework is that it is flexible

enough to model the visual feature dependency, which is important to capturing the image

structure information. Our experiments show that modeling feature dependency can sig-

nificantly improve the retrieval performance. By building a discrete Markov random field

model, we also achieve greatly improved running times for training and retrieval.

1.2.2 Historical Handwritten Document Recognition

1.2.2.1 Classification Models for Holistic Word Recognition

For handwritten document image recognition and retrieval, we focus on the recognition

and retrieval over historical handwritten manuscripts. Manmatha and his colleagues have

done a lot of work [94, 95, 126, 79, 96] on this task and developed a retrieval system for

historical handwritten manuscripts [126] based on continuous relevance models. They also

proposed word spotting [94, 95, 96] and a word level hidden Markov model (HMM) [79]

for this task. Figure 1.3 shows a scanned page from the corpus of George Washington’s

letters collected by the Library of Congress. On those degraded document images, it is

very difficult to do correct character segmentation. One of the contributions of this work

is that we take the manuscript recognition problem as a handwritten word classification

problem and perform a thorough investigation of classification models for this problem.

In particular, we test and compare support vector machines(SVM), conditional maximum

entropy models and Naive Bayes with Gaussian kernel density estimate and explore their

behaviors and properties when solving this problem. This is the first application of these

models for historical handwritten document recognition. For conditional maximum entropy

models, we explore the use of different predicates including both discrete predicates and

continuous predicates.
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Figure 1.3. A scanned page from George Washington’s collection.
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1.2.2.2 Sequence Models for Holistic Word Recognition

Compared with the classification models mentioned above, sequence models have ad-

vantages in formulating term dependencies and incorporating language models. Hand-

written document images have particular properties which make it easier to use sequence

models. They are written sequentially. For example, in English they are written from left

to right, while for some other languages, a different order may be used, i.e. from right to

left in Arabic. Their ground truth transcriptions are text in natural languages. A hidden

Markov model (HMM) is a kind of widely used sequence model for handwriting recogni-

tion [101, 158, 79, 36]. In this work, we investigate the application of sequence models

for handwritten word recognition. We improve the performance of HMMs for handwrit-

ing recognition through proper smoothing techniques using HMMs with discrete features.

We also employ non-parameter estimates for HMM generative probability estimation, and

show that it significantly outperforms other HMMs.

Recent research on machine learning shows conditional random fields (CRFs) [73] have

advantages over HMMs on some tasks which involve labeling sequence data. On this kind

of task, generative models such as HMM define a joint probability over observation and

label sequences which theoretically requires enumeration of all possible observation se-

quences. CRFs, as conditional undirected graphic models, model the conditional prob-

abilities of label sequences given an observation sequence. In other words they do not

involve generating a testing observation sequence. Furthermore, CRFs allow arbitrary de-

pendencies on the observation sequence.We also investigate the use of CRFs for this task

and compare them to HMMs and maximum entropy. This is the first use of CRFs in this

domain. Our experiments, however, show that HMMs outperform CRFs for this task.

To elaborate the methods and contributions we discussed in this section, the remainder

of this work is structured as follows. Chapter 2 will go over the background of this work

and the related work in the areas of image annotation, historical handwritten document

recognition and image features. Chapter 3 will be devoted to the annotation based general
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image retrieval, where we propose two new relevance models – the multiple-Bernoulli rel-

evance model and the normalized continuous relevance model – for image annotation and

retrieval. Chapter 4 explores direct models for image retrieval based on text queries. In

this chapter, we will introduce a new direct retrieval framework based on Markov random

fields and show its advantages in directly optimizing the retrieval performance and in mod-

eling feature dependency. Chapter 5 is dedicated to the investigation of various machine

learning models for historical handwritten document recognition, analyzing and comparing

their properties and performance on the task of word-level document recognition. Finally,

we will conclude this thesis and suggest future work in Chapter 6.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter gives an overview of previously published work related to this work. The

related work falls in the areas of image annotation and retrieval and handwritten docu-

ment recognition and retrieval. Because this work emphasizes models rather than features,

we only briefly discuss image features used in these areas after the discussion of related

approaches.

2.1 Image Annotation and Retrieval

Since this dissertation focuses on image retrieval based on text queries, this section

mainly reviews the related work on associating words with images and retrieving images

using words. One can refer to [155, 29] for thorough surveys of traditional content-based

image retrieval systems which are based on the similarity search of visual features.

Object recognition is a conceivable approach for text query based image retrieval. One

can recognize all the objects in an image database and then search images by querying over

the recognition results. As a classical computer vision problem, object recognition has

been studied for decades [48, 85, 153, 108, 34, 136, 160, 5, 45, 115, 72, 123, 162, 46]. It is

still an active research topic and its study has achieved much success for objects in specific

situations, like geometric objects (e.g., polyhedrons), human faces and vehicles with well-

defined backgrounds and poses. Nevertheless, it has not satisfactorily been solved in the

more general case and the state of the art still leaves much to be desired.

Image annotation techniques automatically assign keywords to images for the purposes

of indexing or retrieving. Unlike object recognition, which usually recognizes and local-
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izes one or several kinds of target objects from images, image annotation tags the entire

image with words from a large vocabulary. Similar to how a librarian manually tags im-

ages, automatic image annotation labels the entire image rather than specific image regions.

Our image annotation models differ from traditional object recognition approaches in two

respects. First, our annotation approaches model all annotation words together and have

simpler training processes than those of most recognition models. Most object recognition

approaches train a separate model for each object to be recognized. Although the form

of the model may be the same, separate training runs are required for each object. Each

run requires positive and negative examples for that particular object. In contrast, anno-

tation models proposed in this work learn all the annotation words at the same time by

learning some underlying joint distributions of annotation words with visual features from

annotated training images, each of which usually has many annotations. Second, our an-

notation models require fewer constraints on training samples. Our proposed generative

models can handle multiple objects in the same training image with arbitrary backgrounds

and can also annotate backgrounds like sky and grass. In contrast, statistical model based

object recognition approaches usually require well-defined training examples, in which the

backgrounds are relatively simple and the target objects are manually segmented or labeled.

Although some of the newer object recognition techniques [45, 46] do not require that, they

still seem to require one object in each image.

One important attribute of our annotation models is that they utilize the context infor-

mation of image regions for annotation through modeling the joint probability of a set of

image regions and annotation words. For example, from training images they learn that an

elephant is more likely to be associated with grass and water than a car. Thus any grass

and water regions in a given image increase the probability of recognizing the object as an

elephant. Statistical models for object recognition seldom use the context information of

image backgrounds although some attempts to model background context have been made

in [9, 8, 20, 109, 152, 37]. Carbonetto et al. [20] proposed a Markov random field based
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model to map words to image regions where spatial context is employed for the estimation

of the probability of an image region aligned to a particular word. Murphy et al. [109, 152]

proposed using boosted random fields to exploit both local image information as well as

contextual information from other objects for object detection. Epshtein and Ullman [37]

proposed to use common context fragments to identify semantically equivalent parts of the

same object class in images.

Compared with object recognition, image annotation is a relatively new research topic.

In 1995, Picard and Minka [119] explored using texture similarity for interactive annota-

tion. This approach required users to first select positive or negative examples for a label

and then the label is propagated over image regions with similar texture. This interactive

annotation was applied to the MIT Photobook image retrieval system. In 1999, Mori et

al. [107] proposed a co-occurrence model to annotate new images by looking at the co-

occurrence of annotation words and quantized image regions created from an annotated

image collection using a regular grid. This model requires large numbers of training sam-

ples for reliable probability estimation and tends to associate frequent words with every

image region.

Our annotation models are closer in spirit to other recently proposed annotation models.

Barnard and Forsyth [8] proposed a hierarchical aspect cluster model for image annotation,

which models the generation of an annotated image as a sampling process from the nodes

on a path to the root in a binary tree. Duygulu et al. [32] adopted the classical statistical

machine translation models for image annotation and labeling. Their machine translation

models first create a vocabulary of blobs by quantizing image segments obtained via seg-

mentation algorithm like normalized cuts. Then the translation models translate each of

the blobs of an image to an keyword. Barnard et al. [9] applied a number of models

for image annotation and labeling which include hierarchical clustering models, machine

translation models, probabilistic latent semantic indexing and latent Dirichlet allocation,

and investigated integrating explicit correspondence of regions and words with a hierar-
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chical clustering model. Carbonetto et al. [115] presented a related contextual translation

model which indicates that using rectangular regions gives better performance than using

segmented regions. Carbonetto et al. [21] also proposed a shrinkage model which essen-

tially allows for continuous features in a translation model unlike the discrete translation

model used in [32]. Other models proposed include maximum entropy models by Jeon and

Manmatha [67], inference nets by Metzler and Manmatha [104], support vector machines

(SVM) [26] and ensembles of extremely randomized decision trees [99].

Hidden Markov models (HMMs) have also been applied for image annotation and the

related task of image categorization. Xie et al. [163] used hierarchical HMM’s on a video

dataset to associate words from a speech transcript of video with temporal video patterns,

while Li andWang [83] used two-dimensional multi-resolution HMMs on the Corel dataset

to categorize images into different concepts. Ghoshal et al. [52] proposed a HMM for

automatic image annotation and retrieval where each state represents a conceptual word.

Recently, Sivic et al. [141] proposed the use of probabilistic Latent Semantic Analysis

(pLSA) to detect objects and their locations in images. Fergus et al. [44] extended this

model to a scale invariant pLSA (TSI-pLSA) and learned object categories over noisy

training images returned by commercial image search engines. Shi et al. [140] pro-

posed a Bayesian learning framework to characterize the hierarchical concept structure

acquired from prior domain knowledge. Yavlinsky et al. [165] described a simple non-

parametric framework for image annotation using global image features. To tackle the

problem that kernel smoothing is not effective in high-dimensional space, they adopted the

Earth Mover’s Distance measure [134] for kernel estimates. Zhou et al. [171] first calcu-

late the distributions of quantized visual features from each image-keyword set – a subset of

training images containing the same annotation word. Given a new image, the distribution

of its quantized visual features is compared with the pre-calculated distributions from each

image-keyword set. For each new image, they selected a fixed number of keywords with

the k-least K-L divergence as the annotation. Magalhães and Rüger [4] proposed a logistic
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regression method for image annotation and retrieval, where the probability of a keyword

given an image is defined as a generalized linear combination of codewords. Rasiwasia et

al. [124] presented a query-by-semantic-example based image retrieval method, which ex-

tended the query-by-example for semantic image retrieval through mapping images in the

dataset and the query image into a semantic simplex defined by the keyword vocabulary and

then retrieve images according to their distances to the query image in the semantic space.

Yu and Tian [166] proposed an optimal semantic subspace project to model images in non-

linear subspaces related to concepts for image retrieval. Yuan et al. [167] investigated the

application of support vector machines for concept learning from large scale imbalanced

data set in video retrieval. To tackle the scale and imbalance problem, they developed a

meta-algorithm called the support cluster machine which iteratively selects support and

no support vectors from positive samples and clustered negative samples. Carneiro et al.

[22] defined a semantic class as the set of images labeled with a common keyword, and

treated image annotation and retrieval as classification problems of the semantic classes. In

the training step they first estimated a Gaussian mixture for features of each image in the

training set, then pooled all the mixtures within one semantic class into a density estimate

to represent the corresponding feature distribution of that semantic class. Test images are

annotated and retrieved based on the ordering of the probabilities of features from each test

image generated by the semantic classes.

To alleviate the problem of lack of adequate annotated training samples, Fei-Fei et al.

[39] proposed a Bayesian approach for learning object categories from just one or several

images utilizing prior knowledge of learned categories. Fan et al. [38] proposed to use

unlabeled samples for semi-supervised hierarchical semantic learning. Natsev et al. [110]

proposed a combination of a nearest neighbor model and a support vector machine for

semantic learning of concepts from a small number of examples for multimedia retrieval.

Statistical learning models were also applied to specific annotation tasks for image or

video retrieval. Yang and Hauptmann [164] adopted logistic regression and support vector
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machines to combine multi-modal features for annotating news video with locations, and

achieved approximately 85% accuracy in location labeling of shots from the TRECVID

dataset. Ozkan and Duygulu [114] proposed a graph based method to identify frequently

appearing persons from large scale news videos, in which a similarity graph is constructed

for all faces in some search space determined by the speech transcript text where the query

name is mentioned. Then the densest subgraph is found corresponding to the query name.

Zhao et al. [169] propose an automated method for person annotation of family photo

album using social context, body and face information. Berg and Forsyth [11] proposed

a voting method incorporating text, color, shape and texture for identifying categories of

animals from the animal images in the Web.

Models inspired by text retrieval techniques were also proposed for image annotation

and retrieval. Jeon et al. [66] proposed a cross-media relevance model (CMRM) for anno-

tation based image retrieval, which is inspired by the cross-lingual relevance model for text

retrieval [76]. Lavrenko et al. [78] extended this model to the continuous image feature

space and proposed the continuous relevance model (CRM). Both CMRM and CRM used

a doubly non-parametric model to estimate the joint probability of a set of image regions

and words. In this work we propose two relevance model based annotation approaches

for general images – the multiple Bernoulli relevance model (MBRM) and the normalized-

continuous relevance model, which are related to the CMRM and the CRM. Our models

and the continuous relevance model (CRM) are significantly different from CMRM in a

number ways. First, CMRM is a discrete model and cannot take advantage of continuous

features. To annotate images, CMRM has to quantize continuous feature vectors into a

discrete vocabulary (similarly to many other annotation models like the translation [32]

models). In contrast, our annotation models and CRM directly model continuous features

without information loss caused by the quantization process. Second, CMRM relies on

clustering of the feature vectors into blobs. The annotation quality of the CMRM is sen-

sitive to clustering errors which are hard to correct in the later annotation phase. Large
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visual vocabularies can alleviate these problems as we will show in the later part of this

work on discrete Markov random field. However, the estimation of the joint distribution in

CMRM involves a summation over products of probabilities and each of these probabilities

approaches zero because the discrete feature space is sparse. This make it difficult to use

CMRM with large visual vocabularies. On the other hand, since CRM and our models use

continuous features they do not suffer from the clustering errors and granularity issues. Our

relevance models are different from CMRM and CRM in that our models use a multiple

Bernoulli or normalized multinomial distribution for word generation while both CMRM

and CRM use a multinomial distribution.

Our annotation models are also significantly different from the GM-mixture model by

Blei and Jordan [14, 15]. Although they have a similar dependence structure among the

random variables involved, the topological structures and word distribution assumptions

are quite different. GM-mixture is a fully-parametric model estimated using the EM algo-

rithm. It assumes that some ”latent aspects” generate annotations and image regions. In

contrast, our annotation models make no assumptions about the topological structure and

are essentially non-parametric approaches. In our annotation models every individual im-

age in the training set is a support point for region and annotation generation leading to a

computation of the expectation over all the training images. In addition the GM-mixture

model words use a multinomial process while our models use a multiple Bernoulli or nor-

malized multinomial distribution.

It should be stressed that the difference between our MBRM, NCRM and previously

discussed models is not merely conceptual. In section 3.2 we will show that MBRM and

NCRM perform significantly better than previously proposed models on the tasks of image

annotation and retrieval. To ensure a fair comparison, we show results on exactly the same

data set and similar feature representations as used in [32, 66, 78].

Most previous work on image retrieval based on text queries are performed by first

annotating images then retrieving image based on the annotation results, where the whole
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system is optimized for the annotation performance. However, maximizing annotation per-

formance doesn’t guarantee the best retrieval performance, and this been experimentally

shown in text retrieval [106]. To tackle this problem we also propose a Markov random

field based direct retrieval model for images and videos. Our direct retrieval model based

on Markov random field (MRF) is analogous to the Markov random field framework pro-

posed by Metzler and Croft [103] for text retrieval. It is quite different from the traditional

applications of MRF for object recognition [20] in terms of both topological structure and

training method. In our direct retrieval framework, a MRF is composed of a set of nodes

each of which is either an image feature (e.g. color or texture features extracted from each

image region or local features represented by the SIFT descriptor) or a query word. The

links could be defined differently according to the dependency between those features and

query words. The proposed MRF is directly trained to maximize the retrieval performance,

i.e. mean average precision. For direct image retrieval based on text queries, Jeon et al. [66]

proposed a framework based on the Kullback-Liebler divergence of the query model and

the image model. Inspired by the cross-language latent semantic indexing in text retrieval,

Hare et al. [55] proposed a linear algebraic method for learning the semantic structure

of terms in an annotated training set of images. Without an explicit annotation step, they

learned a term-matrix representing an aligned semantic space of terms and documents and

projected unannotated images into the semantic document space with the learned matrix.

Then images are ranked based on their relative positions to the query terms in the space.

In addition to the work on general image annotation and retrieval, we also investigate

the problem of historical handwritten document recognition. In the next section, we will

discuss the related work in that area.

2.2 Historical Handwritten Document Recognition and Retrieval

Handwriting recognition is a classical computer vision problem which generally can

be categorized into online recognition and offline recognition, depending on whether the
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recognition is performed online and synchronized with the actually writing. Benefiting

from the dynamic information obtained in strokes using special input devices like tablets,

online handwriting recognition has advanced to the level of commercial application. One

can refer to [120] for a comprehensive survey of online handwriting recognition approaches.

Historical handwritten document recognition is an offline recognition process given that no

dynamic information is available.

Offline handwriting recognition [120, 145, 156] has only been successful in small-

vocabulary and highly constrained domains, such as postal code recognition in automatic

mail sorting and bank check reading [156, 90, 53]. Only very recently have people started

to look at offline recognition of large vocabulary handwritten documents [157]. A Hidden

Markov Model (HMM) is a popular model used for handwritten document recognition.

Rath et al. [79] described an approach to recognizing historical handwritten manuscripts

using simple HMMs with one state for each word. By adding word bigrams from similar

historical corpora they showed that the performance could approach a word level recogni-

tion accuracy of 60%. Marti et al. [101] proposed the use of a HMM for modern hand-

writing recognition. Each character is represented using a Hidden Markov model with

14 states. Words and lines are modelled as a concatenation of these Markov models. A

statistical language model was used to compute word bigrams and this improved the per-

formance by 10%. Edwards et al. [36, 35] described an approach to recognizing medieval

Latin manuscripts using generalized-HMMs, where each state is a character or the space

between characters. A similar generalized-HMM was used by Chan and Forsyth [23] for

Arabic printed and handwritten documents recognition.

Recently, other models like dynamic programming techniques [130] and boosted deci-

sion trees [59] have also been proposed for handwritten document recognition. Based on

the unit of recognition, handwritten document recognition can be classified into segmen-

tation based [101, 120, 145] and holistic analysis methods [90, 89, 79, 59]. The former

relies on segmentation word images into smaller units, like characters, strokes and image
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columns [120, 145, 88]. The latter [90, 89, 79, 59] takes word images as recognition units

and requires no further segmentation. More details on handwritten recognition may be

found in survey articles by Steinherz et al. [145], Plamondon et al. [120] and Vinciarelli

[156].

Direct retrieval approaches have also been proposed for document image retrieval with-

out involving an explicit recognition procedure. Manmatha et al. [94, 95, 96] proposed

the word spotting idea for handwritten document retrieval. Word spotting first clusters

words in a collection of handwritten documents via a word image matching algorithm

[125, 133], then automatically selects candidate clusters for indexing. Rath and Man-

matha [127, 129, 125] investigated a number of different approaches for word matching

and clustering, including SSD, shape context [10], index approach [128] and dynamic time

warping (DTW) [125]. Tan et al. [150] represent both textual queries and document image

words with features, then retrieve printed documents by matching these features. Gatos

et al. [51] proposed a similar technique which retrieves historical typewritten documents

through matching synthetic word images created from query words with automated seg-

mented document words. After the first run of retrieval for each query, they refined the

ranked list through user’s relevance feedback. Inspired by the use of eigenface in face

recognition [153], Terasawa et al. [151] proposed an eigenspace method for matching

word images which are represented as sequences of small slits. Balasubramanian et al. [3]

proposed a DTW based word matching scheme for printed document image retrieval.

More recently, Rath et al. [126] proposed relevance model based probabilistic ap-

proaches for automatic annotation of historical handwritten document images. They de-

veloped the first automatic retrieval system for historical manuscripts based on the joint

occurrence of annotation and word images in cross-modal retrieval models. Howe et al.

[59] proposed boosted decision trees for historical handwritten word recognition. They

augmented the word classes with a very few training samples to deal with the skewed dis-

tribution of class frequencies and substantially improved the recognition performance.
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In this work, we explore recognition approaches for historical handwritten manuscript.

Our recognition approaches consist of two main aspects. First, we thoroughly investigate

different classification models for handwritten word recognition. In particular, we com-

pare support vector machines, conditional maximum entropy models and Naive Bayes with

Gaussian kernel density estimates [41]. Second, we explore the use of sequence models for

whole word recognition, e.g. conditional random field models and HMMs [42].

2.3 Image Features

The performance of image annotation, recognition and retrieval is affected by image

features to a large extent. Low level visual features have been studied for decades as a

classical problem in computer vision and numerous features have been proposed. Usually,

the choice of features depends on the properties of the problem to solve. Different features

are desired for general image classification and for image search in narrow domains. For

example, in the later case it is easier to utilize domain knowledge and well-defined visual

features (e.g. flower and bird indexing proposed by Das et al. [28, 27]).

In this section, we only discuss features used in the areas of general image annotation

and retrieval, and historical handwritten document recognition.

2.3.1 Features for Image Annotation and Retrieval

Traditional content-based image retrieval (CBIR) directly relies on the extracted vi-

sual features since images in the database are directly matched with a query image or query

features in terms of visual similarity. Color, texture and shape are the most widely used fea-

tures for CBIR. Swain and Ballard [147] proposed the use of color histograms for image

indexing. Other color features were subsequently proposed, e.g. statistical color moments

[146], color constancy [49, 47], and color correlograms proposed by Huang et al. [61]

which incorporated the spatial distribution of colors based on the histograms. Tamura et

al. [149] proposed six texture features corresponding to human visual perception: coarse-
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ness, contrast, directionality, line-likeness, regularity, and roughness. Haralick et al. [54]

proposed six texture features defined on gray level co-occurrence matrices. Manjunath

and Ma [93] successfully applied Gabor filters to texture feature extraction for image re-

trieval. Wang et al. [161] used Daubechies’ wavelets to extract texture features in the

WBIIS system. Shape features are also used in image retrieval systems. The extraction

of shape features from general images usually requires the segmentation of objects from

backgrounds and thus depends on the quality of image segmentation. The state of the art

of automatic image segmentation is not close to achieving coherent semantic segments,

though some significant progress has been made, e.g. snake and region growing proposed

by Zhu and Yuille [172] and normalized cuts proposed by Shi and Malik [139]. Mokhtar-

ian [105] explored multi-scale contour models for shape representation. Del Bimbo and

Pala [13] applied elastic matching to sketch-based image retrieval. Eakins et al. [33] in-

vestigated a number of different shape features and matching techniques for trademark

image retrieval. Spatial relationships between objects or image regions were also studied

for querying images. Smith and Chang [144] used 2D-strings to describe spatial relation-

ship of image regions in image search. Petrakis and Faloutsos [117] use graphs to represent

spatial relationships among objects in medical images.

Recently, local features extracted from regions around interesting points were proposed

and showed their capability for representing image visual content. Schmid and Mohr [135]

proposed view and occlusion invariant local features for image retrieval. Local patch-

based salient features was proposed by Tuytelaars and van Gool [154] for stereo matching

and image retrieval. Lowe [87, 86] proposed the scale invariant feature transform (SIFT)

approach for detecting and extracting local feature descriptors that are invariant to scale,

rotation, illumination, image noise, and small changes in viewpoint. Sivic and Zisserman

[142] proposed an object and scene retrieval system for videos called “video Google” which

adopted SIFT descriptors as indexing features. Nister and Stewenius [112] constructed a

vocabulary tree to index SIFT descriptors of objects and objects are retrieved based on
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term frequency-inverse document frequency (tf-idf) measures of the visual words. Philbin

et al. [118] presented fast object retrieval approaches using large visual vocabularies con-

structed by an approximate k-means clustering method over SIFT descriptors. Other local

features include Harris corners proposed by Harris and Stephens [56], and the Maximally

Stable Extremal Regions (MSERs) proposed by Matas et al. [102]. For the purpose of fair

comparisons between our models and others, this work on general image annotation and

retrieval builds on color and texture features previously used for these datasets. features

based on interest point

2.3.2 Features for Historical Handwritten Document Recognition

Recognition of historical manuscripts is quite different from object recognition in gen-

eral images. First, historical manuscripts are often degraded and noisy. To correctly rec-

ognize the handwriting in historical manuscripts, a preprocessing stage is usually required

to remove noise, enhance document images and localize text in document images. Second,

because of the symbolic nature of text, features extracted from recognition units (words or

characters) are more texture or shape related in order to capture the symbol forms of word

or character images.

One can find the various pre-processing steps usually employed in handwritten docu-

ment recognition searchable in previous surveys [145, 156]. In particular, to reverse the

distortions caused by wrapping scan or slightly rotation of scanned pages, Hutchison and

Barrett [62] proposed documents registration using Fourier-Mellin transform based affine

warping. Cao et al. [19] wrapped scanned book pages according to a reconstructed or-

thonormal projection. Work on removing noise from scanned pages includes the removal

of black margins and long lines (e.g. [97] proposed by Manmatha and Rothfeder), and the

removal of bleed-through (e.g. [150] proposed by Tan et al.). Layout analysis techniques

were employed to detect text regions from scanned pages [6, 17] and then segment these

regions into lines or words [98, 97, 100, 92]. Page segmentation is very important for
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recognition since the accuracy of the segmentation has direct impact on recognition perfor-

mance. Manmatha and Srimal [98] proposed the use of anisotropic Laplacian of Gaussian

filters to segment pages into word objects. They specialized the algorithm to select the scale

at which the images can be filtered into connected word blobs. Manmatha and Rothfeder

[97] refined this algorithm experimentally to avoid under- and over-word segmentation.

Mahadevan and Nagabushnam [91], and Marti and Bunke [100] presented gap metric ap-

proaches for line segmentation of handwritten text. Feldbach and Tonnies [40] combined

piecewise estimates for the location estimates of the lower baseline and the upper baseline

and used it for detecting and separating lines of historical handwritten church registers. Af-

ter lines and words are segmented from scanned pages, standard deskewing or deslanting

techniques are employed to remove slant and skew from the segmented units. One can find

deskewing techniques described in [16, 159] and deslanting techniques in [16, 70].

After the preprocessing step, features are extracted from each recognition units, e.g.

word images or character images. Extensive research has been done on the design of fea-

tures for handwritten document recognition and the amount of related literature is large.

For features extracted from characters, [113, 137] are good reviews which investigate

pixel based features, and features based on the distribution of pixels and geometrical and

topological features. For feature representation of word images, Rath and Manmatha

[129] described a set of features for holistic word matching and recognition in histori-

cal manuscripts, which includes six kinds of scalar features, such as word image height and

width, number of descenders and ascenders in the word, and five kinds of profile based fea-

tures, such as projection profiles, upper/lower word profiles, background to ink transitions

and gray scale variance. Based on the Harris corner detection, Rothfeder et al. [133] pro-

posed an effective matching approach for handwritten word images using corner feature

correspondences. Given model comparison is what we focus on, this work on historical

handwritten document recognition is mainly built on the features described in [129]. We

will compare our results on the dataset reported in [80].
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CHAPTER 3

GENERAL IMAGE RETRIEVAL BASED ON ANNOTATION

In this chapter, we focus on general image retrieval using probabilistic annotations.

We describe two kinds of statistical models, multiple Bernoulli relevance models and nor-

malized continuous relevance model, for general image annotation and retrieval and show

experimental results using them.

3.1 Relevance-modeling Approach for Image Retrieval

3.1.1 Overview of Relevance-modeling Approach

As a formal way of doing query expansion in information retrieval, relevance models

have been successfully used in text retrieval [81] and cross-lingual information retrieval

[76]. Our relevance-modeling approaches are analogous to these applications. In the image

annotation and retrieval scenario, relevance models exploit the image context. They give

meaning to an image region in the context of that image, without which isolated pixels or

regions are hard to interpret.

The fundamental assumption of relevance models is the generative relevance hypothesis

[75](Page 22):

“The Generative Relevance Hypothesis (GRH): for a given information need,

queries expressing that need and documents relevant to that need can be viewed

as independent random samples from the same underlying generative model.”

This hypothesis implies an identical distribution for both queries and documents, and that

the relevance of a document to a query is determined by their ”similarity”. However, it
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seems an unreasonable assumption in many scenarios since queries and documents can

have quite different representations. For example, in image retrieval via text queries,

queries may consist of several keywords while documents are un-annotated images. It

is not plausible that these two entirely different representations - words and images - have

an identical underlying distribution. To handle this problem, relevance models assume that

both queries and documents originate from a common representational space which is rich

enough to represent all the attributes of both. But before being presented to us both queries

and documents are transformed by some deterministic functions into the forms which we

actually observe. For image retrieval based on text queries we assume that both queries and

documents stem from some underlying common space of an infinite collection of images,

each of which contains the textual description of its visual content. So a query embodies

an image along with its textual description in the common representational space although

actually it consists of several keywords, and an image contains a textual description al-

though in reality the images may have no annotation associated. A query and its relevant

documents are close in the representational space and sampled according to an identical

underlying distribution. Before they are presented to us the query is stripped of the image

portion and the documents of descriptions.

So the basic idea of the relevance-modeling approach in this work is that images and

annotation words may be thought of as random samples from the same underlying gen-

erative process defined over a common representational space which is formed by all the

annotated images. This generative process is formulated using a joint probability distribu-

tion P (r,w) where r is some representation of the image content, and w represents the

annotation. With the estimated joint distribution, we can automatically annotate a given

image with the most probable caption and retrieve the most relevant image in response to

any text query.

The joint distribution P (r,w) is estimated using a completely non-parametric approach,

as proposed in the cross-media relevance model (CMRM) whose details will be given in
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section 3.1.1.3:

P (r,w) =
∑

J∈T

P (J)P (w|J)P (r|J) (3.1)

where P (r|J) is the content component of the relevance model responsible for generating

the image content r from each training example J . Similarly, P (w|J) is the language

component of the relevance model used to sample the word w from annotations of each

training example. The exact distributions of these two components depend on the repre-

sentation for r and w and will be detailed in sections 3.1.2 and 3.1.3 respectively. P (J) is

a distribution that determines the relative importance of the various training images, which

is assumed to be uniform in the absence of prior knowledge. In relevance models, the joint

distribution P (r,w) is calculated as the expectation of generating the image content r and

annotation w over all the training images J ∈ T . This may also be viewed as a mixture

over all the training images. Some other proposed methods which also use a joint distribu-

tion to annotate images assume some latent topological structure of the random variables.

For example, the hierarchical aspect cluster model [8] and the machine translation model

[32] define hidden variables from image clusters, and the GM-mixture model [14] assumes

higher level “latent aspects”. Unlike those models, the relevance model makes no assump-

tions about the topological structure of the random variables and employs a non-parametric

expectation approach over every individual point in the training set.

Relevance models assume that visual features are independent given an observed image.

Under this assumption the content component P (r|J) in equation (3.1) is computed as:

P (r|J) =
n
∏

i=1

P (~ri|J) (3.2)

where ~ri denotes the feature vector extracted from an image region.

In the following sections 3.1.1.1 and 3.1.1.2, we show how to annotate new images and

retrieve images relevant to a text query based on Equation (3.1).
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3.1.1.1 Automated image annotation

We can use equation (3.1) to annotate an un-labeled image I . Suppose the image

contents are represented using a feature vector rI and we are given a training set T , the

most likely annotation w for image I is computed as:

w∗ = arg max
w

′

P (w′, rI)
∑

w
P (w, rI)

(3.3)

In general, it is expensive to search over all possible annotations w to find the optimized

one w∗. In practice we limit the search to single-word annotations and annotate I with

the k most-probable words under equation (3.3). k could be a fixed number for all images

(e.g. the average or maximum length of all the annotations in the training set) or a variable

adapted to each image by trimming all the annotation words with probabilities less than a

threshold.

3.1.1.2 Text-based ranked retrieval

Ranked retrieval is strongly related to automatic annotation but is a very different prob-

lem. The purpose of automatic annotation is to find the set of annotation words best de-

scribing the content of each image as defined in equation 3.3. In automatic annotation given

an image I , the words compete for the probability of being its annotations. In contrast, the

goal of ranked retrieval is: given a text query w, rank all the images in an un-annotated

collection C such that the relevant images are ranked as high as possible. We consider an

image I relevant to a query wq if a user would use all the words from wq in her annotation

of image I . This suggests a straightforward solution to the retrieval problem based on the

automatic annotations – first annotate each image with the k most likely words using the

equation 3.3, then return those images with all words from wq present in the annotation.

Unfortunately, this approach suffers some problems. First, it will drop many relevant im-

ages in the returned list because of the trimmed annotations for each image, and thus cause

recall to be low. Especially for long queries wq the chance of finding all query words in
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the same annotation is vanishingly small. Second, this approach simply classifies all im-

ages into two categories relevant and irrelevant and ignores the probability information for

modeling the “relevance” of images to the query. Because retrieval and annotation are two

different tasks, it is possible to achieve good retrieval performance for a given query, even

if the annotation is poor. For example, assume an image I consists of a bird and the sky,

and that the most probable annotation words are sky and aircraft. The annotation perfor-

mance for image I will be poor, since the image does not contain aircraft. However, the

poor annotations for image I may not affect the retrieval performance for the query aircraft

as long as I is ranked lower than all aircraft images, which happens when the likelihood of

aircraft given I is lower than the likelihood of aircraft given any image I ′ that does indeed

contain aircraft.

For ranked retrieval, we need to model the “relevance” of an image to the query, i.e. the

possibility that an image is relevant to this query. Here we adopt a variant of the language-

modeling approach to retrieval pioneered by Ponte and Croft [121], which estimates a

language model MI for each image in the collection, and then ranks the images by the

probability of observing the query wq = (v1, . . . , vm) when randomly sampling from the

language model of each image. Specifically, the language modeling approach to retrieval

is formulated as:

P (wq|MI) =
∏

v∈wq

P (v|MI) =
∏

v∈wq

P (v, rI)
∑

v′ P (v′, rI)
(3.4)

where the product goes over all words v in the query wq. The language model MI is

computed as: P (v|MI) = P (v,rI)∑
v′ P (v′,rI)

, where the summation goes over all words v ′ in the

vocabulary of the training set. Under equation 3.4 images that are more likely to generate

a query are considered more relevant and ranked at the top in the returned list.
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3.1.1.3 Existing Relevance Models for Image Annotation and Retrieval

In this section we give a brief review of existing relevance models for image annotation

and retrieval, and in the following sections we will discuss the weakness of these models

in modeling image content and annotations and introduce our new relevance models.

1. Cross Media Relevance Model

Jeon et al. [66] proposed the cross media relevance model (CMRM) for image an-

notation and retrieval. Analogous to the relevance model for cross language text

retrieval proposed by Lavrenko et al. [76], CMRM treats an image as a document

consisting of “visual words” or “visterms”, and estimates the joint distribution of the

set of “visual words” with a set of textual words. The visterms are obtained through

clustering continuous visual features extracted from image regions.

CMRM assumes multinomial distributions for both the annotation word probability

and the visterm probability. Let v represent an annotation word and b a visterm. The

probability of P (v|J) is estimated using a smoothed likelihood:

P (v|J) = (1 − α)
♯(v, J)

|J |
+ α

♯(v, τ)

|τ |
(3.5)

where |J | and |τ | are the numbers of annotation words in image J and in the training

set τ respectively. α is a smoothing parameter over the background distribution to

avoid zero probabilities for those words absent from the annotation of image J . This

is a standard way of estimating the word probabilities in text retrieval [168].

Similarly, the probability P (b|J) of a visual feature given image J is estimated as:

P (b|J) = (1 − β)
♯(b, J)

|J |
+ β

♯(b, τ)

|τ |
(3.6)

where |J | and |τ | are the numbers of visterms in image J and in the training set τ

respectively. β is a smoothing parameter for the visual word distribution.
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CMRM is a discrete model and cannot take advantage of continuous features. It

relies on clustering visual features into a discrete vocabulary and thus is sensitive

to clustering errors. Furthermore, its performance heavily depends on the cluster

granularity which is usually manually pre-selected. Too many clusters can result in

a very sparse space and overfitting while a small number of clusters is insufficient to

distinguish different objects.

2. Continuous Relevance Model

Lavrenko et al. [78] expanded CMRM into the continuous space of image features

and proposed the continuous relevance model (CRM). Instead of quantizing contin-

uous features into a discrete visual vocabulary, they directly estimate the probability

of a continuous feature generated by an image through kernel density estimation.

Like CMRM, CRM also makes an assumption that the word probability given an

image is subject to some underlying multinomial distribution. In particular, the joint

distribution of a set of continuous image features r and a set of words w is given by:

P (r,w) =
∑

J∈T

P (J)
n
∏

i=1

P (~ri|J)
∏

v∈w

P (v|J) (3.7)

P (v|J) is estimated as in CMRM (see Equation 3.5). P (~ri|J) is estimated using a

Gaussian kernel density estimate, which we will discuss in 3.1.2.1.

3.1.2 Modeling Image Content

The way images are represented can strongly affect the overall annotation and re-

trieval performance. For the relevance modeling approach, the ideal case is that we obtain

semantically-coherent regions for each image which correspond to the annotation words of

that image. A number of previous approaches have used segmentation algorithms to auto-

matically partition the image into regions [32, 9, 14, 66] in the expectation that these will

produce semantic regions. However the performance of current segmentation algorithms
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is still error-prone and leaves much to be desired in the sense of producing semantically

meaningful regions. The errors introduced by segmentation usually cannot be corrected in

the later annotation stage. Furthermore automatic segmentation is usually expensive and

hence it is computationally impractical for large image datasets.

Instead of automatic segmentation, our current models first partition images into rect-

angular regions and then extract features from each of those regions. In our models, we

impose a fixed-size rectangular grid on each image and represent the image as a set of tiles.

Our experimental results show that, compared with using Normalized-cut based segmen-

tation, the rectangular representation itself achieves a 38% improvement (in mean average

precision) for the task of image retrieval on a dataset of the Corel images. On a similar ob-

ject recognition task, Carbonetto and Freitas [115] show that grid partitions generate better

recognition results. It is not surprising that simple rectangular partitions outperform auto-

matic segmentation for image retrieval, given the poor performance of current segmentation

algorithms. The algorithms for automatic image segmentation are performed on single im-

ages. When segmenting one image, these algorithms do not utilize the information present

in other images. So they tend not to produce semantically coherent regions. Furthermore,

the granularity of image partitions is important to train robust models for image annotation

and retrieval. Our experiments show that with finer partitions of images, i.e. more num-

ber of regions per image up to some point, the models usually have better performance.

Across all images in the training set, the models can collect more reliable statistics of the

occurrences of image features with finer image partitions.

Compared with using segmentation, the benefits of using an image grid include a signif-

icant reduction in computational overhead and a simplification of the parameter estimation

due to the fixed number of regions for each image. Furthermore, it is easier to incorporate

structure information into the model using a grid representation. For example, the relative

position may greatly help in distinguishing adjacent regions like sea and sky.
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From each image region, we extract color and texture features similar to those used by

[32, 8]. More details on the features used in the experiments is available in the experimental

section 3.2.

3.1.2.1 Feature Generation Model

PR(·|J) is a density function responsible for generating the feature vectors ~r1. . . ~rn.

It is estimated through a non-parametric kernel-based density. A kernel density estimate

is essentially a kind of local regression method requiring little training. We use a non-

parametric kernel density to estimate the probability PR(~r|J) of generating the feature

vector ~r from image J . Let rJ = {~r1. . . ~rn} be the set of region features of image J we

estimate:

PR(~r|J) =
1

n

n
∑

i=1

exp
{

−(~r − ~ri))
⊤Σ−1(~r − ~ri))

}

√

2kπk|Σ|
(3.8)

Equation (3.8) arises by placing a Gaussian kernel over the feature vector ~ri of every

region of image J . Each kernel is parameterized by the feature covariance matrix Σ. As

a matter of convenience we assumed Σ = ρ·I , where I is the identity matrix1. ρ plays

the role of kernel bandwidth, which determines the degree of smoothing of PR around the

support point ~ri. The value of ρ is selected empirically on a held-out portion of the training

set T . The actual value selected for ρ is related to the dimension and variance of features as

well as the training set, and will be reported in the experiments section 3.2. The drawback

of kernel estimation is that it has high online computational complexity.

1We actually tried the diagonal matrix based on the variance of visterms corresponding to each annotation

word, but the results are worse because there is not enough training data.
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Models Bill Clinton, books, greenery, text overlay Bill Clinton

Multinomial 0.25 1.0

Bernoulli 1.0 1.0

Figure 3.1. P (Bill Clinton | image) under different models for two images with anno-
tations of different lengths.

3.1.3 Modeling Captions

The continuous relevance model (CRM) assumes that annotation words for any given

image are subject to a multinomial distribution. Here an alternative model, the multiple-

Bernoulli model [43] is discussed and compared with the multinomial model.

3.1.3.1 Multiple-Bernoulli word model

A multinomial model distributes the probability mass between all the words in a given

annotation, where each word may appear multiple times. The event space of a multinomial

model is all the strings composed of words from a vocabulary. During the estimation

process all the words will compete for the probability mass. Take as an example the two

images in Figure 1.2 in the introduction section. For convenience, we repeat the figure

here again (Figure 3.1). Both these two images contain Bill Clinton, but the first image

is annotated with four key words “Bill Clinton, books, greenery, text overlay” and the

second with only one “Bill Clinton”. Using a multinomial model, the first image splits the

probability mass equally between the four annotation words and P (Bill Clinton|I) = 1
4
.

On the other hand, the second image assigns all probability mass to the word “Bill Clinton”,

i.e. P (Bill Clinton|I) = 1. The multinomial models capture the prominence of a word in

the annotation and words with multiple occurrence are assigned higher probabilities. But

arguably, since both images contain Bill Clinton, the probability of “Bill Clinton” shouldn’t
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be that different. Otherwise, the second image will be ranked much further ahead of the first

image in response to the query “Bill Clinton” although there is no real reason for preferring

one over the other. This can be avoided by using a multiple-Bernoulli model.

A multiple-Bernoulli model explicitly focuses on the presence or absence of words

in the annotation rather than on their prominence, which models the annotators’ behavior

better: when people annotate an entire image, they care about what objects and environment

exist in the image rather than their prominence. Using a multiple-Bernoulli model, both

images will have the same probability of “Bill Clinton” (equal to 1) since both of them

contain Bill Clinton. By representing each word in the vocabulary as a binary variable,

then each possible annotation of an image is a binary occurrence vector in {0, 1}V , where

V is the size of vocabulary. So the event space of the multiple-Bernoulli model is the set of

all subsets of the given vocabulary. Individual components of each vector are assumed to

be independent and identically (Bernoulli-) distributed given the particular image.

For most annotated image datasets, a Bernoulli model provides a closer match than

the multinomial because of the following factors: i) no word is ever used more than once

in a given annotation, so modeling word frequency is pointless. ii) most annotations have

varying length, especially for those hierarchically annotated, e.g. the video datasets [2]. iii)

words are usually assigned to the annotation based on the presence of an object in a image,

not on its prominence. Our hypothesis is also supported by experimental results which will

be discussed in section 3.2.

3.1.4 Multiple-Bernoulli Relevance Model

We describe the notations used in this section as follows:

1. V: the annotation vocabulary.

2. T : the training set of annotated images.

3. J : an image in T .

39



4. rJ = {~r1. . . ~rn}: all feature vectors extracted from image regions of J .

5. wJ ∈ {0, 1}V : the set of annotation words of J .

6. A: an un-annotated image A.

7. nA: the number of image regions of A.

8. rA = {~r1. . . ~rnA
}: the feature vectors of A.

9. wB: some arbitrary subset of V .

10. nB: the number of words in wB.

In our multiple-Bernoulli relevance model (MBRM), two distinct probability distribu-

tions PV(·|J) and PR(·|J) dominate the generation of J . According to the previous section,

the annotation words wJ of J are a subset of the whole vocabulary V , represented as a bi-

nary occurrence vector. PV(·|J) is some underlying multiple-Bernoulli distribution from

which every component of this binary vector is independently sampled. PR(·|J) is some

underlying multi-variate density function from which the set of real-valued feature vectors

r of dimension k is sampled. Each of the feature vectors represents an image region of rJ .

Given an un-annotated image A represented as a set of region feature vectors rA, we

would like to model the joint probability P (rA,wB) of rA and some arbitrary word subset

wB via an expectation over all images J∈T . The overall process is as follows:

1. Pick a training image J∈T with probability PT (J)

2. Sample wB from a multiple-Bernoulli model PV(·|J).

3. For a = 1 . . . nA:

(a) Sample a generator vector ~ra from the probability density PR(·|J).
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Figure 3.2. MBRM viewed as a generative process. The annotation w is a binary vector

sampled from the underlying multiple-Bernoulli model. First we randomly pick a training

example J which generates two distributions P (r|J) and P (w|J). The image is produced
by sampling a set of feature vectors {~r1. . . ~rn}, each of which represents an image region.
Resulting regions are tiled to form the image.

Figure 3.2 2 shows a graphical dependency diagram for the generative process outlined

above. We show the process of generating a simple image consisting of three regions and

a corresponding 3-word annotation. Note that the number of words in the annotation nB

does not have to be the same as the number of image regions nA. Formally, the probability

of a joint observation {rA,wB} is given by:

P (rA,wB) =
∑

J∈T

{

PT (J)

nA
∏

a=1

PR(~ra|J) ×
∏

v∈wB

PV(v|J)
∏

v 6∈wB

(1 − PV(v|J))

}

(3.9)

Equation (3.9) allows us to annotate the image by finding that subset of vocabulary w
∗

which is most likely to co-occur with the image:

w
∗ = arg max

w∈{0,1}V

P (rA,w)

P (rA)
(3.10)

2Modified from the MBRM diagram in [43]
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In practice we only consider subsets of a fixed size. The maximization in equation (3.10)

can be done very efficiently because of the factored nature of the Bernoulli component.

3.1.4.1 Simplifying the Computation

A simplification is made for the calculation of the joint probability of a single word

with a set of region features P (rA, w). This simplification is based on the assumption that

when one associates a word with an image, he/she synthesizes all the situations of that word

occurring in the image, i.e. all the possible word subsets containing that particular word.

Let V again be the word vocabulary. Then a possible annotation is represented by a

vector V of length |V| where each element can be either 0 or 1 depending on whether that

particular word is selected. We let Z be the entire annotation space obtained by taking the

power set (|Z| = 2V ), and Zw be the sub-space defined by word w. Zw is noted as a set

of word subsets S where Zw = {S ∈ Z : w ∈ S}, and S is a subset of V , represented as

a binary vector and si = 1 if vi ∈ S. That is Zw is the set of all the subsets of V which

contain the word w. As mentioned above, we assume that when people annotate an image

with one word w, they are actually annotating it with all the possible subsets of words, Zw,

each of which must contain the word w. Based on this assumption, we have3:

P (rA, w) = P (rA, Zw) = P (rA,
⋃

S:w∈S S)

Because P is additive in Z, which is the space of P , this gives:

P (rA,
⋃

S:w∈S

S) =
∑

S:w∈S

P (rA, S)

3Courtesy of Victor Lavrenko for the discussion and an original proof.
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Using equation (3.9), the RHS of the above equation may be written as:

∑

J

P (J)
∏

a

P (~ra|J)
∑

S:w∈S

∏

v∈S

P (v|J) ×
∏

v 6∈S

(1 − P (v|J))

If we explicitly represent all the possible S ∈ Zw by enumerating whether each word occurs

in S, we can rewrite the above expression as:

∑

J

P (J)
∏

a

P (~ra|J)
∑

s1∈{0,1}

∑

s2∈{0,1}

. . .

. . .
∑

sw=1

∑

sw+1∈{0,1}

. . .

. . .
∑

sN∈{0,1}

N
∏

v=1

(P (v|J)sv(1 − P (v|J))1−sv)

which may be expressed as:

∑

J

P (J)
∏

a

P (~ra|J)
∑

s1∈{0,1}[P (v1|J)s1(1 − P (v1|J))1−s1 ]

∑

s2∈{0,1}[P (v2|J)s2(1 − P (v2|J))1−s2 ] . . .

. . .
∑

sw=1[P (v1|J)sw(1 − P (v1|J))1−sw ] . . .

. . .
∑

sN∈{0,1}[P (vN |J)sN (1 − P (vN |J))1−sN ]

which can be rewritten as:

∑

J P (J)
∏

a

P (~ra|J)
∏

i6∈w

∑

Si∈0,1

[P (vi|J)Si(1 − P (vi|J))1−Si ] × P (w|J)

=
∑

J

P (J)
∏

a

P (~ra|J)
∏

i6∈w

[P (vi|J) + (1 − P (vi|J))] × P (w|J)

=
∑

J

P (J)(
∏

a

P (~ra|J))P (w|J)
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Thus we have:

P (rA, ”word w”) =
∑

J

P (J)(
∏

a

P (~ra|J))P (w|J) (3.11)

We showed that the joint probability of a word and an image, which is represented as a set

of visual features rA, is independent of the other words. Note the simplification arises from

the assumption that when a person annotates an image with a word, she synthesizes all the

situations of that words occurring in that image.

3.1.4.2 Estimating Parameters of the Multiple Bernoulli Model

In this section we will discuss simple but effective estimation techniques for the three

components of the model: PT , PV and PR. PT (J) is the probability of selecting the under-

lying model of image J to generate some new observation rA,w. In the absence of any task

knowledge we use a uniform prior PT (J) = 1/NT , where NT is the size of the training

set. The distribution PR(·|J) is estimated by a Gaussian kernel density and the details are

given in equation 3.8.

PV(v|J) is the v’th component of the multiple-Bernoulli distribution that is assumed to

have generated the annotation wJ of image J∈T . Maximum likelihood estimates (MLE)

are widely used for parameter estimations of various distributions including the multiple-

Bernoulli distribution. However, the bias of MLE could be substantial with sparse training

samples. According to the definition of the multiple-Bernoulli distribution, the subset of

words w associated with an image is distributed as:

P (w|θ) =

|V |
∏

i=1

θxi

i (1 − θi)
1−xi (3.12)

where V is the size of the vocabulary and xi indicates if word wi occurs in a particular

image and if so it is equal to 1 and 0 otherwise. The distribution P is parameterized by

θ = {θ1 . . . θ|v|} for each word variable wi. The MLE estimates of parameter θi are:
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θML
i = arg max

θi

L(θi)

= arg max
θi

log P (w|θ)

= arg max
θi

(xi log θi + (1 − xi)log(1 − θi))

Maximizing by solving ∂L
∂θi

= 0 gives θML
i = xi, i.e. the binary indicator of occurrence of

wi in the image annotation.

The problem with this MLE estimation is that if a word doesn’t occur in the annotation,

the estimation predicts that it can never have been associated with that image. This could

lead to a very biased estimation because it is not uncommon to see sparse data in the

real world, especially for the image annotation task. The expense of manually annotating

images, the annotator’s preferences in describing an image, polysemy and synonyms, all

these factors can prevent us from seeing sufficient data for an unbiased maximum likelihood

estimation of θ.

Therefore, instead of an MLE we estimate PV(v|J) using a Bayesian estimate, which

solves the pathology through calculating the posterior P (θ|w) of the parameters θ given

annotationw with incorporation of priors of the parameters. A Beta distribution is selected

to formulate the prior of θi because it is conjugate to the Bernoulli distribution, i.e. the

posterior resulting from multiplying the prior and the likelihood is in the same family as

the Beta prior.

The parameter θ is distributed according to a Beta distribution given by:

P (θ) =
∏

i

{θαi

i (1 − θi)
βi

Γ(αi + βi + 2)

Γ(αi + 1)Γ(βi + 1)
} (3.13)

where Γ is the Gamma function. The parameters αi and βi act like “pseudo counts” of the

occurrence and non-occurrence of word wi in an un-observed Bernoulli sequence.
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The Bayesian estimate of P (θ|w) is given by:

P (θ|w) =
P (w|θ)P (θ)

∫

θ
P (w|θ)P (θ)dθ

(3.14)

The numerator is equal to:

∏

i

θxi

i (1 − θi)
1−xiθαi

i (1 − θi)
βi

Γ(αi + βi + 2)

Γ(αi + 1)Γ(βi + 1)
(3.15)

The denominator is just the integral of the numerator and can be obtained by observing

that:
∫

θi

θxi+αi

i (1 − θi)
βi+1−xidθi =

Γ(xi + αi + 1)Γ(βi + 2 − xi)

Γ(αi + βi + 3)
(3.16)

Therefore,

P (θ|w) =
∏

i

Γ(αi + βi + 3)

Γ(αi + xi + 1)Γ(βi + 2 − xi)
θαi+xi

i (1 − θi)
βi+1−xi (3.17)

Therefore, we have P (θi|wi) ∼ Beta(αi + xi, βi + 1 − xi), which indicates that the

observed occurrence or non-occurrence xi, 1 − xi of wi is accumulated on its ”pseudo

counts” αi, βi to form an updated Beta distribution. So far we obtained the distribution of

the posterior P (θ|w). To collapse to a single point, it is common to pick the posterior mean.

Based on the fact that the expected value of a standard Beta distribution X ∼ Beta(α, β)

is E(x) = α
α+β
, we have:

P (wi|J) = θ̃i = E[θi|wi] =
αi + xi

αi + βi + 1

Since α and β act as ”pseudo counts” of wi in the annotation of an image, a plausible

way is to select the parameter values based on the whole collection. We pick the parameter

values as αi = Nwi
/µ and βi = ((N − Nwi

)/µ), where Nwi
is the number of training
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images that contain wi in the annotation and N is the number of images in the training

set (see [168] for the Dirichlet case). µ here is a smoothing parameter. Substituting the

selected values for the αi and βi in equation (3.18) yields:

P (wi|J) =
Nwi

/µ + xi

N/µ + 1
=

µxi + Nwi

µ + N
(3.18)

Let v be an arbitrary word in the vocabulary and δv,J indicate whether v occurs in J ,

the above equation could be rewritten as:

P (v|J) =
µδv,J + Nv

µ + N
(3.19)

where δv,J = 1 if the word v occurs in the annotation of image J and zero otherwise.

3.1.4.3 Ranked Retrieval with the Bernoulli Model

Relevance modeling approaches rank images according to the probability P (wQ|MI)

of generating the querywQ by a language modelMI associated with image I . The calcula-

tion of the probability P (wQ|MI) differs significantly from model to model, mainly based

on the representation of the query wQ. In a multinomial relevance model, the query is rep-

resented as a sequence of variables and so P (wQ|MI) is estimated under the multinomial

language framework under equation 3.4. But in MBRM the query wQ is represented as a

binary vector over the entire vocabulary, so the retrieval model for MBRM should be based

on the multiple-Bernoulli language modeling approach proposed in [121]. According to

this retrieval model, the images I are ranked by:

P (wQ|MI) =
∏

w∈wQ

P (w|MI)
∏

w 6∈wQ

(1 − P (w|MI)) (3.20)

However, our experimental results in section 3.2 show that although MBRM produces

better annotation results than CRM, using the MBRM with the Bernoulli retrieval model

gives poor retrieval results. In practice, we found that a combination of MBRM with

the multinomial retrieval model outperforms the purely multinomial model (CRM) for
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retrieval. This is not a ”clean” model because we assume that words follow a multiple-

Bernoulli distribution for annotation but a multinomial distribution for retrieval. The next

section shows how to construct a modified multinomial model (the normalized continuous

relevance model) which has the annotation performance of the Bernoulli model and the

retrieval performance of a multinomial model.

3.1.5 Normalized CRM

This section describes an alternative to the MBRM, called the normalized Continu-

ous Relevance Model, which performs the same as MBRM on the task of annotation but

achieves excellent retrieval performance.

The normalized CRM [77] is a modification of the CRM and bears the same formulation

for the joint distribution P (w, r) as equations (3.1) and (3.10), wherew is an arbitrary set

of words and r={~r1. . . ~rn} a given image with regions.

Under the multinomial assumption, the original CRM [78] estimated the annotation

probability P (w|J) based on the relative frequency of the word w in the annotation of

image J :

P (w|J) = λ
Nw,J

NJ

+ (1 − λ)
Nw

L
(3.21)

Here Nw,J is the number of times w occurs in the annotation of J and NJ the length of the

annotation for image J. The probability is smoothed by the background probability of w

over the whole training set. The degree of smoothing is denoted by the parameter λ. Nw

is the total number of times w occurs in the training set, and L the aggregate length of all

training annotations.

In section 3.1.3.1, we have described the problem of multinomial model for annotation

words. For images which contain the same object described by the annotation word ”w”, if

the lengths of their annotations vary a lot, the probabilities of word ”w” given these images

will be significantly different. Arguably, there is no real reason for the large difference

between these probabilities since all the images contain “w”. An alternative to using a
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multiple-Bernoulli model is to (pad) all annotations to a fixed length N ∗ = maxJ{NJ} by

adding (N ∗−NJ) instances of a special “null” word to the annotation of image J . We

refer to this variation of the model as Normalized-CRM and demonstrate that it achieves

substantially better retrieval performance than the original CRM.

For the feature component of the Normalized-CRM, we also use a non-parametric

kernel-based density estimate for the distribution P (~r|J), just as the CRM and the multiple-

Bernoulli model do in equation (3.8).

We can show that the joint distributions in MBRM and NCRM differ only by a constant

factor - the length of each image annotation in the Normalized-CRM model, and hence

they have the same annotation performance.

The multinomial retrieval model [31, 50, 57] is more appropriate for the CRM and

Normalized CRM models since it assumes a multinomial distribution for the annotation

words:

P (wQ|MI) =
∏

w∈wQ

P (w|MI) (3.22)

The language model P (w|MI) may be calculated using P (w|MI) = P (w, rI)/P (rI),

where P (w, rI) is the joint distribution for every word w and P (rI) is calculated by

marginalizing the joint distribution.

3.1.5.1 Relation of Normalized CRM to MBRM

We now demonstrate that the Normalized-CRM gives the same annotation performance

as the MBRM and the annotation probabilities produced by the two models differ by a

constant factor. In section 3.1.4.1, we showed that we could use MBRM to annotate

each word separately. Both MBRM and normalized CRM, therefore, compute the joint

distribution for a single word

P (w, r) =
∑

J∈T

P (J)P (w|J)
∏

~r∈r

P (~r|J) (3.23)
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The feature probabilities
∏

~r∈r
P (~r|J) are identical for both models and hence we only

need to consider the word probabilities P (w|J).

1. P (w|J) in MBRM:

According to equation (3.19):

P (w|J) =
µ δw,J + Nw

µ + N
(3.24)

where µ is a smoothing parameter, δw,J = 1 if the word w occurs in the annotation

of image J and zero otherwise. Nw is the number of training images that contain w

in the annotation and N is the total number of training images. Let λb = µ

µ+N
, then

1 − λb = N
µ+N
. Let δw,C represent the frequency of word w in the whole training set

C, then δw,C = Nw since in image/video annotations, every word is either absent or

occurs only once for each image or frame. We, therefore, have

P (w|J) = λbδw,J + (1 − λb)
δw,C

N
(3.25)

2. P (w|J) in Normalized-CRM

From equation (3.21),

P (w|J) = λ
Nw,J

NJ

+ (1 − λ)
Nw

L
(3.26)

In the NCRM all annotations are padded to the same length, say |a|, so for each

image the annotation length NJ is the constant |a|
4. Again, since for image/video

4Usually |a| is the size of the vocabulary
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annotations, a word is either absent or occurs exactly once in the annotation of an

image, we have Nw,J = δw,J , Nw = δw,C and L = |a|N . We, therefore, have:

P (w|J) =
1

|a|
[λδw,J + (1 − λ)

δw,C

N
] (3.27)

which is the same as for the MBRM model except for the constant factor |a|.

We have thus shown that the joint distributions in the two models differ only by a

constant factor - the length of each image annotation in the Normalized-CRM model.

Assume that the joint probability for word wi and image {J = r} using the Bernoulli

model is, P (wi, r) = ki. Then, the annotation probability using the Bernoulli model is

given by:

P (wi|r) =
P (wi, r)

P (wi, r) + P (w̃i, r)
= ki (3.28)

where w̃i stands for (not wi) (for example not face for face).

The annotation probability for a word for the Normalized-CRM model is given by:

P (wi|r) =
P (wi, r)

P (r)
=

P (wi, r)
∑

j P (wj, r)
=

ki‖a|
∑

j kj‖a|
=

ki
∑

j kj

(3.29)

Since
∑

j kj/|a| = 1 we have
∑

j kj = |a| which is a constant and hence P (w|r) = ki/|a|.

Hence the annotations produced by the models are identical and the probabilities pro-

duced by the Normalized-CRMmodel differ from those produced by the multiple-Bernoulli

relevance model by a constant factor given (usually) by the length of the vocabulary. This is

a nice result. As a practical side effect, to compute the Normalized-CRM we just compute

the annotations using the Bernoulli Relevance Model. If necessary, we can obtain the prob-

abilities by dividing by the constant factor. For most practical purposes including retrieval

we can usually ignore this constant factor. Formalizing the Normalized-CRM allows us to

use these annotations with a multinomial retrieval model.
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3.2 Experiments

This section discusses annotation and retrieval results comparing the annotation and

retrieval performance of a number of different models on 5 different datasets. Subsection

3.2.1 mentions the details of the datasets used while subsections 3.2.3 and 3.2.4 discuss the

results of running different algorithms.

3.2.1 Datasets

Five different datasets were used in all. The first two were from the Corel image data

set and were exactly the same as that used in Duygulu et al. [32] and in Barnard et al.

[9] respectively. 5 One subset of video keyframes from NIST’s TRECVID 2003 [2] was

also used for testing. Finally, a large scale test was done using the entire TRECVID 2003

dataset.

We first used the Corel dataset in [32] to be able to directly compare with their results.

This dataset consists of 5000 images from 50 Corel Stock Photo CD’s. Each CD includes

100 images on the same topic, and each image is also associated with 1-5 keywords. Overall

there are 371 keywords in the dataset. In the experiments, we divided this dataset into 3

parts: a training set of 4000 images, a validation set of 500 images and a test set of 500

images. The validation set is used to find model parameters. After finding the parameters,

we merged the 4000 images in the training set and 500 images in the validation set to

form a new training set. This corresponds to the training set of 4500 images and the test

set of 500 images used by Duygulu et al. [32]. There are 260 words present in the test

set. Refer Appendix A for these 260 annotation words. Most annotation words in this

dataset denote objects, scenes or other directly visual-related concepts. Theoretically the

models proposed in this work can be used for retrieving more general or abstract queries,

e.g. “peace, intentions”. But it is still a well-known open problem on how to reduce the

5We thank Kobus Barnard for making the Corel datasets available at:

http://www.cs.arizona.edu/people/kobus/research/data/eccv 2002 and http://kobus.ca/research/data/jmlr 2003/
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semantic gap between computational image representation and human understanding of

images. This work did not focus on developing high-level feature representations to tackle

this problem, but based on statistical models it provides a way to associate the low level

image features to semantic concepts.

For a more complete comparison with the models of Barnard et at in [9], we then tested

our model on the exact same dataset as in [9], which is a larger Corel image dataset consist-

ing of 160 CD’s, each of which includes 100 images on the same topic. The configuration

of the dataset for testing our model is also exactly the same as in [9]. From the 160 CD’s,

80 CD’s were drawn as a sample and further divided into training (75%) and ”standard”

held-out (25%) sets. The remaining CD’s formed a more difficult “novel” held-out set.

Final results were averaged over 10 such random samples. The vocabulary of each sample

contains 150 ∼ 170 words. To find system parameters for our model, we used the train-

ing set of the first sample. We trained our model on the first 4188 images of it and tuned

parameters on the last 1000 images.

Another dataset we used is from NIST’s TRECVID 2003 dataset. This dataset consists

of a set of mpeg files. Each file is a 30 minute section of CNN or ABC news (including

advertisements). NIST provided shot segmentations. The participants in TREC annotated

a portion of the videos. The word vocabulary for human annotation is represented as a

hierarchical tree with each annotation word as a node, which means many key frames

are annotated hierarchically, e.g. a key frame can be assigned a set of words like “face,

male face, male news subject”. This means that the annotation length for key frames may

vary widely.

The first dataset (small video set) consists of 12 of the mpeg files. 5200 key frames

were extracted using NIST provided shot segmentations. There are 137 keywords in the

whole dataset after ignoring the audio annotations. The dataset was randomly divided into

a training set (1735 key frames), a validation set (1735 key frames) and a test set (1730 key
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frames). As for the Corel set, the validation set is used to find system parameters, and then

merged into the training set after we find the parameters.

We then tested our algorithms on a larger subset from NIST’s TRECVID dataset. This

set consists of 39 mpg files, 14,202 key frames in total. In this dataset the key frames for

the training and test sets are obtained from different mpeg files. That is, the training and

test sets are separated in time. There are 9,415 key frames from 26 mpg files in the training

set and 4,787 key frames from the 13 other mpeg files in the test set.

Finally tests were run on NIST’s entire TRECVID development dataset containing 58

mpeg files of ABC World News Tonight and 57 mpeg files of CNN Headline News, about

44,100 key frames in total. In the final test of our algorithms, the set is divided into 45

hours of training data and 15 hours of test data, with 34,880 key frames for training and

9,220 key frames for test. Also the training set and the test set are separated in time. Each

key frame in the TRECVID3 development dataset has been manually annotated with key

words from about 100 semantic concepts, from which about 75 concepts are selected in

our experiments to guarantee that each of them has more than 20 training examples in the

development set.

3.2.2 Features Used

For the small Corel dataset, one experiment using CRM is run with the original seg-

mentations and features as in Duygulu et al. [32] to make a direct comparison possible.

For the large Corel dateset, all experiments used the segmentations and features provided

by Barnard et al. [9] to fairly compare the performance of our model and their models

in [9]. Images in both of these two Corel sets were automatically segmented using the

Normalized-Cut algorithm in their original settings as in [32] and [9]. The feature set con-

sists of 6 area, position and shape features, 24 color features and 16 texture features (see

Barnard et al. [9]). Refer Appendix B for the feature details.
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For all other experiments, every image is partitioned using a rectangular grid, and a fea-

ture vector is then calculated for every grid region. The number of rectangles is empirically

selected using the training and validation sets. We tested different numbers and selected the

one with the best performance on the validation set. We didn’t do a thorough sweeping for

tuning the number of rectangles per image because the model’s computational complexity

dramatically increases with the number of regions per image. The number of regions we

used for the final test is 24 for the Corel set, and 35 for the video dataset sets. For the

Corel dataset, 30 features are used (18 color features and 12 texture features). The color

features for an image region include the average, the standard deviation and the skewness

of the pixel values for each channel of the L∗a∗b color space. The texture features consist

of Gabor energy computed over 3 scales and 4 orientations. Separate values of bandwidth

β (equation 3.8) are used for the color features and for the texture features from the Corel

set and the values are selected empirically using a validation set.

For the large video dataset and the entire TRECVID development dataset, the fea-

tures used include 12 moments computed in the L∗a∗b color space and 20 gray level co-

occurrence matrices 6 (refer Appendix B for the feature details).

3.2.3 Results of Automatic Image Annotation

In this section we evaluate and compare the performance of MBRM on automatic image

annotation. Given an un-annotated image or key frame, we can calculate the probability

of generating every candidate word in the vocabulary conditioned on the image. For the

Corel set, we take the top 5 words (according to probability) as an automatic annotation

of that image. For the video set, we take the top 6 words (the average length of human

annotations over all key frames). Experiments are performed on the same dataset with

identical preprocessing, features and training sets. Results show that MBRM performs

better than CRM (although on average their performance is close to each other).

6The features were kindly supplied by Giridharan Iyengar at IBM Research
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Image CRM MBRM Groundtruth
clouds water bridge
plane sky tower
jet bridge water
water boat
sky tree

tree sand beach
plane water kauai
water people people
zebra beach water
herd umbrella

non-

studio setting

non-studio setting non-studio setting

people people sport event
sport event sport event basketball
basketball basketball
face face

face face indoors
male face indoors studio setting
indoors news subject monologue face
news subject mo-

nologue

female face graphics and text overlay

male news person female news person monologue

Figure 3.3. Top automatic annotations produced by the CRM and MBRM models, with

ground truth words correctly predicted marked in blue. MBRM performs better than CRM

for the first two images and the fourth image. For the third image the annotations are

identical. Note that many video frames are annotated with the words graphics and text and

text overlay because of the station logos - difficult to see in these images. Interestingly,

some of the automatic labels do not correspond to human labels but are perfectly reasonable

e.g sky in the first image, sand in the second one and people in the third.

Figure 3.3 shows examples of the automatic annotations obtained using CRM and

MBRM models on the TREC Video set. These results are obtained on the same dataset

with identical preprocessing, features and training sets. Note that MBRM performs better

than CRM (although on average their performance is close to each other).

Figure 3.4 shows some examples of automatic annotations and probabilities obtained

using CRM and MBRM models on the Corel dataset and TREC Video. For the first image,

MBRM performs better than CRM. For the second image, they have similar performance.

56



Image CRM MBRM Ground Truth
tree 0.28 water 0.89 fox
fox 0.18 fox 0.86 ice
den 0.18 river 0.86 water

elephant 0.12 arctic 0.86 river
water 0.09 sky 0.03
. . . . . . . . . . . .

graphics and text 0.21 graphics and text 0.95 outdoors
text overlay 0.20 text overlay 0.95 crowd
monologue 0.17 monologue 0.92 graphics and text

crowd 0.13 crowd 0.91 text overlay
physical violence 0.10 physical violence 0.91 monologue

riot 0.10 riot 0.91 physical violence
. . . . . . . . . . . . riot

Figure 3.4. Examples of annotation and probabilities for CRM and MBRM, with words

correctly predicated marked in blue.

Models Co-occurrence Translation CMRM CRM-Seg CRM MBRM

#Words Recall > 0 19 49 66 107 119 122

Results on 49 best words, as in[32, 66]

Mean Recall/Word – 0.34 0.48 0.70 0.75
∗

0.78
∗

Mean Precision/Word – 0.20 0.40 0.59 0.72
∗

0.74
∗

Results on all 260 words

Mean Recall/Word 0.02 0.04 0.09 0.19 0.23
∗

0.25
†

Mean Precision/Word 0.03 0.06 0.10 0.16 0.22
∗

0.24
†

Table 3.1. Performance comparison on the task of automatic image annotation on the

small Corel dataset. CRM-Seg refers to CRM with segmentations while CRM is the same

model with a grid. MBRM performs best outperforming CRM by a small amount. Sym-

bol * indicates a significant improvement over the CRM-Seg, and † indicates a significant
improvement over both CRM-Seg and CRM.

However, in both cases the probabilities obtained from MBRM are easier to interpret. In

CRM the probability of a word given an image must be compared with those of all other

words to decide whether it is an important annotation because all words compete for the

probability mass. In contrast, in MBRM the probability of a word given an image explic-

itly tells us if the word appears in that image. For example, it is not clear whether a 0.1

probability of water in the CRM model is significant or not while in the MBRM case if sky

gets a probability of 0.03 it is clear that the possibility of sky in the image is very low.
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The first evaluation on annotation is done as in [32, 66, 78] using recall and precision

calculated for every word in the test set. For this part of the process we do not use the actual

rankings. Let A be the number of images automatically annotated with a given word, B the

number of images correctly annotated with that word, C the number of images having that

word in the ground-truth annotation. Then recall = B
C
, and precision = B

A
. To evaluate

the system performance, recall and precision values are averaged over the testing words.

The first set of results are shown for the Corel dataset in Table 3.1. Results are reported

for all (260) words in the test set. Annotation performance is also reported for the top 49

annotations to make a direct comparison with the results reported in [32] for IBM Trans-

lation Model 2. The three relevance model approaches are clearly much better than the

translation model approach in [32] with MBRM outperforming all other models (4 times

better than the translation model). Both CRM and CRM-Seg are identical except for the

fact that CRM uses regions partitioned into rectangles while the regions in the CRM-Seg

model are obtained using normalized cuts segmentation. As the results show this improves

the performance significantly (almost 38% improvement in precision). Segmentation is a

difficult error prone process in computer vision. Each image is segmented on its own with-

out reference to any of the other training images. Since the probabilistic model deals with

regions as entities, it cannot undo segmentation errors (if for example two distinct image

regions are combined together in the segmentation). If we start from a rectangular partition

(at a finer granular level), the probabilistic model which learns from multiple training im-

ages has a better chance of associating the rectangular regions with the correct words. We

believe that this accounts for the better performance using a rectangular partition.

To have a fair and complete comparison with the models reported by Barnard et al. [9]

on the automatic annotation task, we tested our MBRM on the same data set using the same

features, data configurations and evaluation measurements as in [9]. To measure how well

a model predicts words, [9] proposed using prediction score (PR) and normalized classifi-

cation score (NS). The former is based on predicting the same number of words for each

58



Held-out data Novel data
Measurements PR NS KL PR NS KL
Best Results in [9] 0.298 0.604 0.747 0.249 0.506 0.268
MBRM 0.371 0.647 1.129 0.255 0.514 0.274

Table 3.2. Performance comparison on automatic annotation between MBRM and the

models reported in [9]. Three different measurements are used as in [9]: the prediction

score (PR), the normalized classification score (NS) and the reduction of the KL-divergence

from that computed using the empirical distribution (KL). Results show that MBRM con-

sistently outperforms better than all the models reported in [9] on the automatic annotation

task.

test image as the number of associated ground truth words with it, while the latter is based

on predicting all words which exceed a certain probability threshold. PR is basically the

prediction accuracy on the predicted words for a image and NS is basically the normalized

correct and incorrect classifications. Let N be the vocabulary size, n the number of ground

truth words for the image, c the number of correctly predicted words, and e the number

of incorrectly predicted words. Then for an image, NS is calculated as c
n
− e

N−n
and PR

is calculated as c
n
. To measure the quality of word posterior distribution, [9] proposed us-

ing the reduction of the KL-divergence (KL) between the computed predictive distribution

and the target distribution from that between the empirical word distribution and the target

distribution. For the target distribution, they simply assume that the ground truth words

should be predicted uniformly and all other words should not be predicted at all. The aver-

age values of these performance measurements over all the images are reported. Table 4.4

reports the results of MBRM on the large Corel data set using those three measurements

for automatic annotation. It should be noted that the best results by Barnard et al. [9] in

Table 4.4 are not from the same model, e.g. the best NS in [9] for held-out data is from

their ”D-2”(D for dependent) model, while the best NS in [9] for novel data is from their

”I-0”(I for independent) model and the best KL in [9] for novel data is from their ”D-0”

model. The comparison with the models in [9] shows our MBRM consistently outperforms

all those models on both the ”standard” held-out data and the ”novel” data.
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Unlike those performance measurements used in [9], which essentially measures the

mean precsion/recall per image, mean precision per word and mean recall per word are

more retrieval-related, i.e. they measures how well the automatic annotation supports

the retrieval task. The annotation measurements based on mean precision/recall per im-

age sometimes can give misleading results. For example, simply assigning high frequent

background words to each testing image can be a tricky way to achieve high mean pre-

cision/recall per image, although the annotation system may mess up most other object

words for those testing images. Furthermore, the mean precision and recall per word have

become the standard measurements for annotation performance. Since our ultimate goal

is image retrieval using key words, we also report the precision and recall of the MBRM

on this larger Corel dataset, and for all other experiments we only report the performance

using recall and precision. Table 3.3 shows the mean precision and mean recall of MBRM

on the large Corel dataset.

Held-out data Novel data
Average #Words in test sets 161 148
Average #Words recall > 0 123 62

Results on all words in test sets
Mean Recall/Word 0.256 0.078
Mean Precision/Word 0.260 0.067

Results on all words with recall > 0
Mean Recall/Word 0.336 0.185
Mean Precision/Word 0.344 0.158

Table 3.3. Mean recall and mean precision of MBRM on the large Corel data set [9] for

the automatic annotation task.

Figure 3.5 shows some annotation examples of using MBRM over the Corel image

set, in which the automatically predicted words are quite different from the ground truth

annotation. The first image shows the failure because of the inconsistency of human anno-

tation. Note the MBRM does generate a set of reasonable annotations for the image, e.g.

clouds, coast, sunset and water, but the human annotator ignored these words and selected

light and shore which are more rarely used in the training set. For the second image, we
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MBRM clouds beach coast sunset wa-

ter

snow fox shrubs water sky

Ground truth light shore bulls elk field snow

Figure 3.5. Negative annotation examples of using MBRM over the Corel image set.

found that the contributions to the probabilities of snow, fox and shrubs are from a large

number of training images which share very similar backgrounds but contain a fox rather

than an elk. On the other hand, most training images of elk have different background so

they contribute little to the probability of elk for the second image. This example shows

the important role of background context in relevance models. Although they can provide

very useful information to distinguish objects, sometime they make it difficult to correctly

predict objects appearing in an unusual environment. For example, we mentioned at the

beginning of this chapter that tiger rarely appears in an office environment. But if this does

happen – assuming a toy tiger on the desk of an office, the MBRM may fail to predict

the tiger. In this case we believe better image features and more training images will help

solve this problem. Better image features may distinguish tiger from other objects easily,

and larger training sets may train the model better to identify a common background and

weight it less for probability contributions.

3.2.4 Ranked Retrieval with Single Word Queries

The annotation results reported above ignore rank order. That is, imagine that one

wanted to find all car images. One would ideally like to rank these according to the proba-

bility of annotation and hope that the top ranked ones are all cars. In fact, in large databases

most users are not likely to even want to see more than 10 or 20 images in response to a

query. Rank order is, therefore, very important for such applications. Figures 3.6-3.7 show
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(a)

(b)

Figure 3.6. First 4 ranked results for the query “tiger” in the Corel dataset using a) CRM

and b) MBRM.

(a) CRM Results

(b) MBRM Results

Figure 3.7. First 4 ranked results for the query “addressing”. According to the ground truth

the first and the third returned by the CRM are relevant, but the other two are not. For the

MBRM, all the four images are relevant.

the performance of CRM and MBRM in response to one word text queries. The first image

in Figure 3.6 is an Israeli city view. We found both CRM and MBRM wrongly predict

62



words “cat tiger” for this image because the training set lacks images with similar city or

building views but has many tiger images with similar colors and texture. But its positions

in the ranked lists are quite different for CRM and MBRM – CRM ranks it at the first

place and MBRM ranks it at the ninth place. Although the annotation performance of the

two models does not seem to be that different, the results below show that the retrieval

performance can be very different.

Models Corel Dataset Small Video Dataset

All 260 Recall > 0 All 107 Recall > 0

CRM 0.26 0.30 0.25 0.29

MBRM 0.30 0.35 0.29 0.37

P-value 0.000037 0.0000082 0.000013 0.000000026

Table 3.4. Ranked retrieval results (in terms of mean average precision) based on one word

queries. MBRM performs much better than the multinomial model [CRM]. The second

row lists which words are used as queries. The last row gives the P-value produced by the

sign test showing that the performance improvement is statistically significant.

We use a standard information retrieval metric called mean average precision to evaluate

the retrieval performances. Average precision is the average of precision values at the

ranks where relevant (here ’relevant’ means that the ground-truth annotation of this image

contains the query word) items occurs. This is further averaged over all queries to give

mean average precision. Table 3.4 shows that for ranked retrieval the Bernoulli model

substantially outperforms (by 15% for the Corel dataset and by 16% for the small Trecvid

dataset) the multinomial model.

3.2.5 Experiments Using the Retrieval Model for Multiple Word Queries

For one word queries, images may be ranked according to the annotation probabilities

of the query word given each image or keyframe. The previous section shows the experi-

mental results of image ranking for single word queries directly according to the annotation

probabilities. However, for multiple word queries the images should be ranked by apply-

ing language models over the annotation probabilities. The form of the language models

depends on how we represent the queries. This section reports the retrieval performance
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with one word or multiple-word queries using different retrieval models. Given a text query

and a collection of un-annotated key frames, then our goal is to return all the relevant key

frames, ranked according to the probabilities obtained using our retrieval model. In our

retrieval experiments, we use three sets of queries 7 constructed from all 1-, 2-, 3- combi-

nations of words which occur at least 10 times in the testing set. For each set of queries,

we do comparative experiments using both CRM and the Bernoulli retrieval model. An im-

age is considered relevant to a given query if its manual annotation contains all the query

words. Evaluation metrics are precision at 5 retrieved key frames and non-interpolated av-

erage precision, averaged over the entire query set. These two different metrics are good

measures suitable for the distinct needs of casual users and professional users.

Table 3.5 compares the performance of CRM and the Bernoulli model for three sets of

queries. We observe that the Bernoulli retrieval model performs really poorly in compari-

son with the CRM although it has better annotation performance. What seems unusual is

that the performance of MBRM on one word queries in Table 3.5 is much worse than the

performance on one word queries reported in Table 3.4. Note that this is because in Table

3.4 the ranking is based directly on annotation probability while in Table 3.5 the values

of MBRM is obtained by applying the multiple-Bernoulli retrieval model over multiple-

Bernoulli annotation probabilities. Based on the comparisons, it may be inferred that the

multinomial retrieval model is better in modeling a user’s retrieval behavior: when a user

retrieves images using a query, she/he doesn’t care about whether the images contain the ob-

jects referred by the words which are not included in the query. But for multiple-Bernoulli

retrieval models, they explicitly consider the presence or absence of every word in the im-

ages.

Closer examination reveals that the one word query retrieval used in Table 3.4 ranks the

images according to the probability of the annotation of a single word. This is essentially

7Given that we used only a subset of TRECVID it did not make sense to use TRECVID queries
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Query length 1 word 2 words 3 words
Number of queries 107 431 402

Precision at 5 retrieved key frames
CRM 0.36 0.33 0.42
MBRM 0.21 0.16 0.17
Normalized CRM 0.49∗ 0.47∗ 0.58∗

Mean Average Precision
CRM 0.26 0.19 0.25
MBRM 0.08 0.07 0.09
Normalized CRM 0.30∗ 0.26∗ 0.32∗

Table 3.5. Retrieval performance of different algorithms on the small video dataset for

different query lengths. Symbol * indicates that the result is statistically significant better

than CRM.

equivalent to using a multinomial retrieval model. On the other hand in Table 3.5 the

multiple Bernoulli annotations are ranked using the Bernoulli retrieval model which takes

the product of the probability of the query word and one minus the probability of words

absent from the query. This means that words absent from the query dominate the model. It

may also be a function of the fact that our estimate for many of these words is poor. That is,

the Bernoulli retrieval model expects us to produce good estimates for all the annotations

not only the most likely ones.

Clearly, this shows that for one word queries, the multinomial retrieval model per-

forms a lot better with even the multiple-Bernoulli annotation model. Further, the multiple

Bernoulli annotation model combined with the multinomial retrieval model does much bet-

ter than using the purely multinomial (CRM) model for both retrieval and annotation. This

was the rationale for creating the Normalized-CRM model.

Table 3.5 also reports the results of doing ranked retrieval using a multinomial retrieval

model and the Normalized-CRM model. The results show that there is a substantial im-

provement in retrieval using the Normalized-CRM with the multinomial retrieval model.

Specifically, Normalized-CRM outperforms CRM by 15%, 37% and 28% on the 1-, 2- and

3-words query sets respectively, For all three query sets the differences in precision are
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statistically significant according to the sign test. The precision at 5 retrieved key frames

also indicates that Normalized-CRM significantly outperforms CRM.

Performance on the larger video dataset (Table 3.6) where the training and test datasets

are separated in time is also good. Normalized-CRM again outperforms CRM by 21%,

29% and 40% for 1-, 2- and 3-word queries respectively.

The Large Video Dataset
Query length 1 word 2 words 3 words
Number of queries 115 431 682

Precision at 5 retrieved key frames
CRM 0.18 0.11 0.09
MBRM 0.06 0.05 0.05
normalized CRM 0.28∗ 0.20∗ 0.15∗

Mean Average Precision
CRM 0.14 0.07 0.05
MBRM 0.03 0.02 0.02
Normalized-CRM 0.17∗ 0.10∗ 0.08∗

Table 3.6. Retrieval performance of CRM, MBRM and Normalized-CRM on the large

video dataset for different query lengths. Symbol * indicates that the result is statistically

significant better than CRM.

While the average precision indicates how the algorithms perform on average, a recall-

precision curve shows how the algorithms behave at different recall levels. Figure 3.8

shows the recall precision graphs for queries of different lengths. Again the graphs indicate

that Normalized-CRM consistently outperforms CRM at all recall levels. These graphs

also indicate that at the high ranks, the precision is quite high.

Figure 3.9 shows the top 4 images in rank order using both CRM and NCRM corre-

sponding to the text query “outdoors snow person” on the small video set. Among the top

4 ranked images by the CRM the second and the forth are relevant according to the ground

truth. The first image is actually a picture of a ski run. The third one shows a person skating

indoors. In contrast, all the top 4 ranked images by NCRM are relevant according to the

human annotation.
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(a) (b)

Figure 3.8. Recall/Precision graphs the large video dataset with 1- and 3-word queries

(a) CRM Results

(b) Normalized CRM Results

Figure 3.9. First 4 ranked results for the query “Outdoors, Snow, Person”.

Based on the performance comparisons above, we tested the retrieval performance of

the NCRM on the entire development dataset of TRECVID 2003. The mean average pre-

cision achieved is 0.158 based on color and texture features. Figure 3.10 compares recall-

precision graphs for NCRM and the IBM translation model one (this was shown to out-

perform other translation models) [122]. For low recall (i.e. for the top documents) the

NCRM clearly performs substantially than the translation model. In the next chapter, we

will update this figure with a more comprehensive comparison with Markov random field

and other models.
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Figure 3.10. Recall-precision graphs for the NCRM, the machine translation (MT) model.

In this chapter, we proposed the Multiple-Bernoulli relevance model (MBRM) and the

normalized continuous relevance model (NCRM) for image annotation and retrieval, and

demonstrated that they outperform many previous models. However, all the relevance mod-

eling approaches for images have some common limitations. Here we highlight two limi-

tations which we consider to be important. First, relevance models assume that the visual

features/visterms of a test image are independent given a training image and treat them as

a bag of visterms. This assumption prevents relevance modeling approaches from utilizing

the feature dependency information among images, which is important to image under-

standing. In the next chapter, we will propose a Markov random field based framework

for image retrieval which models the feature dependency. Another limitation of relevance

models is the relatively high computational expense due to the non-parameter kernel-based

estimates, although they show statistically significant improvement in performance. The

non-parameter kernel estimate does not assume any underlying probability distribution

functions and needs to calculate an expectation over all the training images for each test

image. Although accelerating methods (e.g. pruning the training set and selecting a subset

of training image more likely to be similar to the test image) can reduce the computation,

the problem is only alleviated to some extent.
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CHAPTER 4

DIRECT RETRIEVAL USING MARKOV RANDOM FIELDS

Most retrieval approaches for un-annotated images require an explicit annotation or

recognition procedure, then retrieve those images based on the annotation or recognition

results. Models for automatic annotation based image retrieval are trained based on an-

notation performance rather than retrieval performance. However, maximizing annotation

performance doesn’t guarantee the best retrieval performance since annotation is about how

well words are predicted for each image while retrieval emphasizes the order of images in

a ranked list given a query. More precisely, annotation models are usually evaluated based

on prediction accuracy and trained by maximizing the likelihood of generating the training

set, while retrieval performance is evaluated using mean average precision. Mean average

precision weights each query equally and so it is important to do well on as many of the

queries as possible. However, annotation accuracy gives more weight to those words which

occur more frequently in the dataset. For example in a database of nature images where

sky or grass occurs much more frequently than animals such tigers or lions, finding sky

or grass accurately improves the annotation results substantially - in fact one could have

very good annotation performance based on just detecting sky and grass. It is almost as if

stop words dominated the annotation results. It has also been experimentally shown in text

retrieval that the likelihood surface is unlikely to correlate with the retrieval metric surface

[106].

In this chapter, we propose a Markov random field (MRF) based framework for direct

image retrieval. OurMRF framework is analogous to a framework proposed byMetzler and

Croft [103] to capture feature dependence for text retrieval. Although Markov random field
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models have been widely used in computer vision for low-level (e.g. edge detection and

image segmentation) and high-level tasks (e.g. matching) [148, 20], our Markov random

field based model is quite different from them in terms of the problems tackled, topological

structure and training strategy. Many computer vision problems solved by MRF based

methods are essentially problems involving labeling image sites with word labels, while in

this chapter the proposed MRF models solve a problem of ranking images in response to

a text query. So the goal of our proposed MRF model is to compute the joint probabilities

of images and queries. The graph consists of a set of region nodes representing an image

and a set of word nodes representing a query, with edges determining the dependency

among these nodes. Unlike labeling problems, our proposed model neither requires that

every training image is labeled region by region nor outputs annotations at the region level.

Instead, it calculates the joint probability of a query word with the entire image in order

to rank images. We also show that the proposed MRF model may be simplified to a linear

form for the ranking task and trained through maximizing the retrieval performance - mean

average precision. So here the “direct” has two meanings: 1) The model does not involve an

explicit annotation step for retrieval. 2) The model is trained through directly maximizing

retrieval performance.

Little previous work has been done on direct image retrieval based on text queries. Jeon

et al. [66] directly ranked images according to the K-L divergence of visterm distributions

of the query model and the document model. Their approach assumed that the query and

a relevant image have similar visterm distributions. However, in the real world these dis-

tributions may be very different. Inspired by the cross-language latent semantic indexing

(LSI) in text retrieval [30], Hare et al. [55] proposed a singular value decomposition (SVD)

based approach to learn the semantic structure of the visterms and annotation words from

the training set and retrieve images according to the positions of the text images in the

semantic space. Like the LSI techniques in text retrieval, their approach assumed latent

concepts linking the visual terms and annotation words.
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Our direct retrieval framework doesn’t make such assumptions. It directly estimates an

underlying joint distribution of queries and images PΛ(Q, I) through modeling the depen-

dency of annotation words and each image region among a test image, and formulates this

as a Markov random field with a set of parameters Λ. Images are ranked according to the

posterior PΛ(I|Q). Given a set of query and image pairs, the parameters Λ are estimated by

directly maximizing mean average precision rather than the likelihood of the training data.

In this chapter, we discuss a Markov random field framework and a number of models.

The specific contributions include:

1. Avoiding the problem of unbalanced/uneven human annotations in the training set.

Annotation or recognition models usually do not perform very well when the labels

are distributed very unevenly in the training set. Our direct retrieval framework di-

rectly ranks images given a query so it doesn’t require an annotation step.

2. Overcoming the problem of metric divergence caused by applying parameters opti-

mized over annotation performance for retrieval purpose. Parameters trained through

maximizing the performance of annotation and recognition are not guaranteed to op-

timize the performance of retrieval. Without an explicit annotation step, we directly

rank images according to the posterior probabilities of image features given a query

in the general statistical framework. In our Markov random field based framework,

the parameters are trained by maximizing mean average precision directly.

3. Investigating the incorporation of structure information present in images for re-

trieval. We show that by modeling feature dependencies in the continuous space the

retrieval performance may be significantly improved. Although recently some anno-

tation or classification models [68, 82] have modeled feature dependencies based on

the statistics of co-occurrences of image parts or interest point descriptors, they have

only yielded negative or small improvements on performance. In this chapter, we

define and model one kind of region bigram to capture the dependence among image
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regions. The region bigrams are defined over real-valued region features and signif-

icantly improve the retrieval performance after integration into the Markov random

field model.

4. Investigation of Markov random fields using continuous features and discrete fea-

tures respectively. We first formulate MRFs using continuous features then develop

a discrete Markov random field which runs much faster than previous models while

showing comparable retrieval performance.

4.1 Markov Random Field Framework for Image Retrieval

In this section we describe a Markov random field based model for text query based

image and video retrieval. Markov random fields have been widely used in the machine

learning domain to model joint distributions of random variables. In computer vision,

MRFs have been used for image restoration, edge detection, texture analysis, image seg-

mentation and image matching [84], where all these problems are formulated as a visual

labeling problem which assigns a label from a label set to each image site which could be

an image region, an edge or a pixel.

In this chapter we use a MRF to model the joint distribution PΛ(Q, I) over text queries

Q and images I , parameterized by Λ. Based on the joint distribution, images are ranked

according to the posterior probability of PΛ(I|Q) without an explicit annotation step. The

parameter Λ is estimated by directly maximizing the retrieval performance over an anno-

tated training/validation set.

4.1.1 Framework Overview

A Markov random field (MRF) is defined as an undirected graph modeling the joint

distribution of a set of random variables. In a MRF, the nodes represent random variables,

and the edges define the dependency between these random variables. Every node in aMRF

is subject to the Markov property, i.e. the random variable represented by it is conditionally
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independent of all other random variables given its neighborhood set. Our Markov random

field framework is similar to one for textual retrieval proposed by Metzler and Croft [103].

In our MRF framework G for image retrieval based on text queries, the random variables

are the key words {qi} in a query Q and the image I which is represented by a set of image

regions {ri} . The joint distribution P (Q, I) of a query Q and image I is given by:

P (Q, I) =
1

ZΛ

∏

c∈C(G)

φ(c; Λ) (4.1)

where Q = q1 . . . qn, I is represented by a set of regions of {ri}, and φ(c; Λ) is a set of

non-negative potential functions parameterized by Λ, one for each clique c in graphG. The

normalizing constant ZΛ is:

ZΛ =
∑

Q,I

∏

c∈C(G)

φ(c; Λ) (4.2)

which is usually expensive to compute because of the exponential number of summations.

The non-negative potential function usually has an exponential form:

φ(c; Λ) = exp[λcf(c)] (4.3)

where f(c) is some feature function over clique c, and λc is the weight of this particular

feature function.

For textual query based image retrieval, we rank images according to the posteriors

P (I|Q) of each image I given the query Q:

P (I|Q) =
PΛ(Q, I)

PΛ(Q)
(4.4)

rank
= log PΛ(Q, I) − log PΛ(Q)

rank
=

∑

c∈C(G)

log φ(c; Λ)
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where
rank
= implies rank equivalence. By the definition of potential functions 4.3, the

ranking function may be re-written as:

PΛ(I|Q)
rank
=

∑

c∈C(G)

λcf(c) (4.5)

4.2 Image Representation and Variants of MRF

The model proposed here has no specific requirements on the image representation.

Each image is represented as a set of sites, which may be either local interest descriptors or

image regions. In this chapter, an image I is represented as a set of regions {r1, r2, . . . , rm},

either obtained through superimposing a rectangular grid or by automatic segmentation of

the image. Real-valued visual features (color, texture) are first extracted from each region.

Depending on whether the model uses continuous features or discrete features, the image

representation is different. In the case of the model for continuous features, each region can

be directly represented as a real-valued vector and an image is represented as a set of real-

valued vectors, each of which is associated with the location information in the original

image. On the other hand, if the model uses discrete features, we first quantize all the

real-valued features to build a visual vocabulary, and then each region has a corresponding

visterm (visual word). Consequently, the image will be represented as a set of visual words

with the location information in the original image. In the following sections, continuous

Markov random field models and discrete Markov random fields models will be proposed

and discussed respectively.

We explore two variants of the MRF model, with different dependence assumptions.

The first one is the fully independence variant (MRF-FI) and the other one is the nearest

region dependence variant (MRF-NRD). The fully independent variant makes the assump-

tion that all image regions are independent of each other given some query Q, which is

made by many annotation or retrieval models for images and videos, e.g. relevance models

and machine translation models. Under this assumption, the likelihood of one image re-
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Figure 4.1. The configuration of MRF models for image retrieval. The top line shows the

original image and its regional representation. The bottom line shows the full-independence

MRF variant(left) and the nearest region dependence MRF variant(right), where edges in

red are determined by nearest region pairs. To obtain the nearest region pairs, we look for

the nearest neighbor of each region in terms of their mass centers in the image (e.g. the

nearest region of r1 is r4, and of r4 is r5 in the figure), and then accordingly add an edge

for each pair of these two regions in the MRF configuration

gion is independent of others given the query. The nearest dependence variant assumes that

only neighboring regions have a dependence on each other (given the query) and that two

regions which do not neighbor each other are independent given the query. It is straight-

forward to generalize the MRF to model higher order dependencies but the computational

load becomes higher and so they are not explored in this chapter. One can also easily model

other kinds of features such as point features. Figure 4.1 illustrates the configurations of

the fully independent MRF and the nearest region dependent MRF.

4.3 Continuous Markov Random Fields for Image Retrieval

This section presents the details of continuous Markov random fields for image re-

trieval, in which each region ri is a real-valued feature vector.
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4.3.1 Clique Potentials

We do not calculate the exact joint probability P (Q, I). Instead, by choosing proper

potential functions we try to approximate the joint distribution in a generalized exponential

form. For example, the potential function should give a higher value for a clique including

the query word “tiger” and an orange image region with black strips than a clique of the

same query word and an image region in blue. The proposed MRF explicitly models the

context information since each query word node is connected to all image regions or region

pairs. As an example, given an image of a tiger in forest and the query word ”tiger”,

every region in this image will contribute to the energy function with a non-negative value

depending on how compatible that region is with the query word. This is quite different

from standard MRF based annotation or recognition methods which make hard decisions

for each region by labeling it with one word.

For any clique which doesn’t involve an image region node, the potential is assumed to

be one since it does not have an impact on ranking. In the fully-independent graph model

the simplest clique is a 2-clique consisting of a query node w and an image region node

r, while in the nearest dependent model there are cliques containing two image regions

and a query word. Based on the region dependency, we define the potential functions over

2-cliques and 3-cliques in the graph respectively. The potential functions may be easily

generalized to cliques of higher order.

4.3.1.1 Full Independence (MRF-FI)

The basic idea of the potential function for a 2-clique consisting of one image region r

and one query word w is to formulate the possibility of predicting the query word w given

the region r, weighted by the importance of this region r in the image I . Formally, the

potential function is defined as (where the left-hand side is equal to λcf(c) in equation (2)).

ϕF (w, r) = λF P (w|r)P (r|I) (4.6)

76



where λ is the weight of this potential function and P (r|I) = 1
|I|
with |I| as the number of

regions in the image I , and P (w|r) is calculated using Bayes’ rule as:

P (w|r) =
P (w, r)

P (r)
=

P (w, r)
∑

w P (w, r)
(4.7)

1
P (r)

= 1∑
w P (w,r)

acts like an “inverse document frequency - idf” in the continuous case,

which measures the capability of a visual feature in distinguishing different words.

To calculate P (w, r), where image region r is represented by a real-valued feature

vector, we utilize a kernel-based estimate over all the training images:

P (w, r) =
∑

J∈τ

P (J)P (w|J)P (r|J) (4.8)

where τ is the training set and J is an image in the training set. Note the estimation of

P (w, r) has a form very similar to the generative distribution estimation presented for the

continuous relevance model [78, 43, 77], except that here it is a joint distribution of a single

region with one query word. So we adopt the same estimate for P (w|J) and P (r|J) as in

[77]:

P (r|J) =
1

m

m
∑

t=1

K(
‖r − rt‖

β
) (4.9)

where m is the number of regions in image J and t is an index over the set of bigrams in

a training image J . This equation arises by placing a Gaussian kernel K over the feature

vector rt of every region of image J . β parameterizes each kernel and plays the role of

kernel bandwidth. The value of β is selected empirically on a held-out portion of the

training set.

The word probability P (w|J) is estimated based on the relative frequency of the word

w in the annotation of image J which has been padded to a fixed length with a special

“null” word:

P (w|J) = λ
Nw,J

NJ

+ (1 − λ)
Nw

N
(4.10)
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where NJ is the fixed length of annotations of training images, Nw,J the number of occur-

rence of word w in image J , Nw the number of w in the whole training set and N the total

number of annotation words in the training set.

4.3.1.2 Nearest Region Dependence (MRF-NRD)

In the nearest regional dependence variant, the 3-cliques consisting of two nearest re-

gions and one query word basically capture the dependency between the query word and

“region bigrams”. The potential function over the 3-cliques measures the compatibilities

of the region bigrams and the query word. In this chapter, the region bigrams of an image I

are determined in the vertical and horizontal directions respectively and form two different

bigram sets. We obtain the vertical region bigrams from an image through the following

steps:

1. For each image region ri, first look for its nearest region rj in the image in the vertical

direction. The distance of two image regions is measured based on their mass centers.

2. Then rearrange these two regions according to their relative position always keeping

them in the top-down order.

3. Finally remove repeated pairs from the image bigram set.

The horizontal bigrams are obtained similarly except that the region pairs are selected

in the horizontal direction and rearranged in the left-right order. The bigrams selected in

this way keep the relative position information.

The potentials of vertical bigrams and horizontal bigrams have the same functional

form, but are calculated separately. In experiments we use one weight for the potentials of

all bigrams. For the sake of the simplicity of notation, all bigrams in this chapter are from

the same kind of bigrams hereafter, either vertical bigrams or horizontal bigrams. Without

the loss of generalization, let (ri, rj) be one region bigram from image I . The potential

function for a 3-clique of a region bigram and query word w is defined as:
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ϕN(w, (ri, rj)) = λNP (w|(ri, rj))P ((ri, rj)|I)

= λN

P (w, (ri, rj))

P ((ri, rj))

1

♯((rg, rh), I)
(4.11)

where λN is the weight of the bigram potential functions, ♯((rg, rh), I) here is the number

of region bigrams of image I , and P ((ri, rj)) =
∑

w P (w, (ri, rj)).

The joint probability P (w, (ri, rj)) of a region bigram (ri, rj) with a query word w is

calculated through a kernel estimate over all training images:

P (w, (ri, rj)) =
∑

J∈τ

P (J)P (w|J)P ((ri, rj)|J) (4.12)

where P (w|J) is estimated using equation 4.10 and P ((ri, rj)|J) is estimated through a

Gaussian kernel density estimate over each bigram of image J :

P ((ri, rj)|J) =
1

m

m
∑

t=1

K(
‖(ri, rj) − (ri, rj)Jt‖

β
)

=
1

m

m
∑

t=1

K(
max(‖ri − ri Jt‖, ‖rj − rj Jt‖)

β
)

wherem is the number of bigrams in image J , K a Gaussian kernel and β is the band-

width of the density estimate and has the same value as in equation 4.9. In this equation the

distance between two pairs of region bigrams in the feature space is the maximum distance

of the two pairs of corresponding regions. Note that since the two regions of each bigram

have been rearranged w.r.t their spatial location in the image, the feature distance is always

calculated between regions with the same relative position. For example, feature distances

are calculated between the two top regions and the two bottom regions respectively for

vertical bigrams. The intuition behind using a “maximum” rather than an “average” is to

impose a strict compatibility requirement for a bigram and a query word, that is, only when
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both regions of a bigram have high correlations with the query word, the potential of the

corresponding clique has a high value.

4.4 Discrete Markov Random Fields for Image Retrieval

This section proposes Markov random fields built on discrete image features, which are

called discrete Markov random fields distinguished from the continuous models in the pre-

vious section. Using the continuous feature space is usually much more compute-intensive

than using the discrete feature space. So one important purpose of developing discrete

Markov random field models is to speed up the retrieval procedure. Experiments shows

that our discrete Markov random fields run extremely fast on even very large datasets while

having comparable retrieval performance to continuous models.

4.4.1 Feature Quantization and Building a Large Visual Vocabulary

Since a discrete Markov random field is build on discrete image features, the first step is

to quantize image features into discrete visual words (visterms). Unsupervised clustering

methods are usually employed for this purpose, e.g. K-means clustering or hierarchical

clustering. Most clustering methods require that one pre-defines either the number of cate-

gories or some threshold controlling the number of categories. Each category corresponds

to one visual word, so the number of categories is actually the size of the visual vocabulary.

Recent literature on object or image matching [112, 118] using discrete features has shown

that 1 the size of visual vocabulary can substantially affect the matching performance and

good performance requires large visual vocabularies. This is reasonable since large visual

vocabularies are better at distinguishing different visual features. However, too large a vi-

sual vocabulary can also segregate features originating from the same objects. So selecting

the appropriate size of visual vocabulary is very important, but usually very difficult with-

out any domain knowledge. To test on different size of visual vocabularies, one requires a

1Jeon and Manmatha also noticed this in unpublished work.
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fast clustering approach which can deal with large-scale features in high dimension space.

A flat K-means clustering or a hierarchical agglomerative clustering (e.g. single linkage

clustering) doesn’t meet this requirement. The time complexity of K-means is linear to

the number of training features and the number of clusters, while the complexity of the

hierarchical agglomerative clustering is at least square of the number of training features.

It is impractical to use these two clustering methods to build large visual vocabularies (e.g.

more than 1 million categories for more than 10 million features). For this reason, we adopt

the hierarchical k-means for clustering in our work [112, 118].

Hierarchical k-means applies a tree structure for representation of the clustering results

over a set of training features, where k defines the branch factor of the tree rather than

the total number of the categories. Initially, the k-means algorithm partitions the training

features into k categories/clusters, each of which forms a node in the tree consisting of

feature vectors closest to a particular cluster center. The same k-means algorithm is then

recursively applied to each node and splits each of them into k finer clusters. This process is

recursively performed until the depth of the tree reaches a pre-defined level. So if the depth

of the tree is d, the number of categories at the leaf level will be kd. The computational

cost of the hierarchical k-means is logarithmic in the number of leaf nodes, which is much

smaller than that of non-hierarchical clustering methods.

The visual vocabulary tree is constructed by clustering all the feature vectors in the

training set using the hierarchical k-means. Then the feature vectors of the test set will

be clustered through an efficient search procedure, which propagates the vector down the

tree till the leaf level by comparing the vector with the k candidates cluster centers at

each level and selecting the closest one. This lookup only takes O(log(n)) compared with

the complexity O(n) of a flat K-means for the same task, where n is the size of the visual

vocabulary. In the case of an extremely large training set, the visual vocabulary tree may be

constructed using a portion of the training feature vectors sampled from the whole training

set. Then the corresponding visual words of the rest of training vectors are obtained through
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searching over the tree as for the test vectors. So finally, an image is represented as a

set of visual words (visterms) each of which corresponds to one image region, noted as

{v1, . . . , vm}, wherem is the number of the regions.

Our discrete MRFs have the same configurations as shown in figure 4.1 but feature

functions for each clique are calculated in different ways.

4.4.2 Full Independent Discrete MRF

As in the continuous case, the potential function of the fully independent MRF is de-

fined over an image region represented as a discrete visterm v and one query word w.

Formally, it is formulated as:

ϕF (w, v) = λF λvP (w|v)P (v|I) (4.13)

where λF is the weight of the full independent potential function and λv the weight of

the visterm v. λF is identical to all the full independent potential functions and tuned

over a validation set. λv is directly calculated as the idf (inverse document frequency)

λv = log |D|
♯(dj v∈dj)

which measures the general importance of the discrete visterm v. P (v|I)

is the probability of a visual word v observed in the test image I and P (w|v) is the posterior

probability of a query wordw given a visual word v. So here the potential function basically

represents the possibility of predicting query word w from the occurrences of visual word

v in the test image I .

Estimating the probabilities P (w|v) and P (v|I) depends on the distributions of the

words and the visterms. In our previous chapter on relevance models, we have shown that

the normalized multinomial or multiple Bernoulli model is more suitable for annotation

word distribution. So here, we utilize normalized multinomial distribution for word proba-

bility estimation. Without any prior knowledge about the discrete visterm distribution, we

investigate both multinomial and multiple Bernoulli models for P (v|I).
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4.4.2.1 Multinomial Visterm Model

Based on a multinomial distribution assumption of the visterms from images, the prob-

ability of P (v|I) is calculated as the frequency of the visterm v in image I:

P (v|I) =
♯(v, I)

∑

v ♯(v, I)
(4.14)

where ♯(v, I) is the number of occurrences of the visterm v in image I .

The posterior probability P (w|v) is calculated under the Bayesian framework:

P (w|v) =
P (w, v)

P (v)
=

P (w, v)
∑

w P (w, v)
(4.15)

As in the continuous case, the joint probability of P (w, v) is calculated through an

expectation over all training images:

P (w, v) =
∑

J∈τ

P (J)P (w|J)P (v|J) (4.16)

where τ is the training set and J is an image in the training set. The word probability

P (w|J) is estimated under the normalized multinomial word distribution framework as in

Equation 4.10. With a multinomial distribution, the visterm probability P (v|J) of a visterm

v generated by a training image J is estimated as:

P (v|J) =
♯(v, J)

∑

v ♯(v, J)
(4.17)

4.4.2.2 Multiple Bernoulli Visterm Model

A multiple Bernoulli visterm model only considers if a particular discrete visterm oc-

curs in the image or not and ignores the number of occurrences of that visterm if it does

exist in the image. Correspondingly, the probability of P (v|I) is estimated as:

P (v|I) = δv,I (4.18)
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where δv,I = 1 if the word v occurs in the annotation of image I and zero otherwise.

Similarly, the probability P (w, v) is calculated using Equation 4.16 but P (v|J) is com-

puted based on the multiple Bernoulli distribution: P (v|J) = δv,J .

So far we have talked about the fully-independent model which treats visterms inde-

pendently and ignores the latent relationships among the image features. It is desirable

that the model also discover the visterm dependency for retrieval. We have investigated

multiple ways to incorporate visterm dependency in the discrete case including the nearest

neighboring region dependency, local constrained region dependency and full dependency

among regions. Although our MRFs in the continuous cases have shown that modeling

feature dependency can significantly improve the performance, our MRFs in the discrete

cases haven’t achieved that through modeling discrete visterm dependency. The main rea-

son we find is that in the discrete case, a very large visual vocabulary generates very sparse

distributions of visterm bigram, i.e. most visterm bigrams observed in the test set have

no occurrence in the training set at all. Although this problem can be alleviated through

reducing the size of visual vocabulary dramatically, a smaller visual vocabulary loses the

expressivity of representation of the images and our experiments show that it leads to low

performance.

4.5 MRF Training for Image Retrieval

Discrete MRF models in the previous section are parameterized by the weights λR, λL

and λN for particular feature functions. In standard training approaches for MRF, these

parameters are set through maximizing the log likelihood or the posterior of observing a

given annotated or labeled image.

However, as claimed in [103], there are several disadvantages using these standard ap-

proaches for training MRF models for retrieval purpose: First, the event space of Q × I

is extremely large so that maximizing likelihood tends to generate a biased estimation of

the distribution. Second, it is difficult to compute the normalization factor Zλ given a large
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training set. Third, it has been shown [103] that maximizing the likelihood of generating

the training set doesn’t guarantee maximizing the retrieval performance, say mean average

precision. So based on the observation in [103] that the surface of the mean average preci-

sion is concave or nearly concave over an interesting range of parameter values , we directly

maximize the mean average precision through coordinate-level hill climbing search.

4.6 Experimental Results

We used three different datasets in our experiments for comparison between our model

and other models. These three datasets have been described in the experimental section

[3.2] of Chapter 3. The first one is the small Corel image set which contains 5000 images

and the second one is the 160-CD Corel image data set (including features) which is exactly

the same as that used by Barnard et al. [9]. Models are also tested on the large scale data

set consisting of the entire TRECVID 2003 development dataset and feature set used by

[63]. The same features as described in Section 3.2 were used for the purpose of fairly

comparing models.

4.6.1 Retrieval Results of Continuous MRFs

Given a test set of images or key frames, our goal is to rank them according to the

posteriorP (I|Q) calculated in equation (4.5). An image or key frame is considered relevant

to a given query if its true annotation contains all query words. For simplicity, in our

experiments we only considered one word queries. One can easily generalize it to multiple-

word query cases since given the linear form of the ranking equation given in 4.5 and the

independence assumption among query words implies that the ranking score for a multiple-

word query is equal to the sum over the scores of individual query words. So the retrieval

system can calculate the ranking score for each key word through an offline procedure

and store them for further use when retrieving arbitrary queries. To accelerate the score

calculation, we adopted a voting scheme to first quickly determine a small subset of images
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Corel Standard Corel Novel TRECVID03

mAP P@10 mAP P@10 mAP P@10
N-CRM 0.258 0.377 0.054 0.102 0.158 0.319
MRF-FI 0.269 0.389 0.055 0.107∗ 0.175∗ 0.397∗

(+4%) (+3%) (+2%) (+5%) (+11%) (+25%)
MRF-NRD 0.272∗ 0.392 0.056∗ 0.113∗ 0.200† 0.431†

-Exp1 (+5%) (+4%) (+4%) (+11%) (+27%) (+35%)
MRF-NRD 0.285† 0.420† 0.059† 0.137† 0.216† 0.449†

-Exp2 (+11%) (+11%) (+9%) (+34%) (+37%) (+41%)

Table 4.1. Comparisons of retrieval performance of various models, which are normalized-

continuous relevance model (N-CRM), full-independent MRF model(MRF-FI) and nearest

region dependent MRF model(MRF-NRD). MRF-NRD-Exp1 and MRF-NRD-Exp2 are

both nearest region dependent MRF models, but their parameters (λF , λN) are trained dif-
ferently. For MRF-NRD-Exp1, we trained one identical set of parameters for all query

words while for MRF-NRD-Exp2 we tuned parameters separately for each individual

words. Symbol * indicates a statistically significant improvement over the N-CRM, and

† indicates a statistically significant improvement over both N-CRM and MRF-FI.

in the training set most similar to a test image, then calculate ranking scores based on the

selected subset of images.

To evaluate the performance of a retrieval system, we use the standard metric - mean

average precision (mAP). Average precision is calculated for each query as the average of

precision values at correctly returned points, which is further averaged over all queries to

get a reliable measurement. Since for large datasets, it is more likely that users are only

interested in the top 10 or 20 ranked images, we also report the average precision at the

10th ranked images (P@10). In our experiments, we take each word present in the test set

as a single query and report average precision over all the queries. For the 5k Corel image

set, the queries are 260 annotation words which occur in the test set. The average numbers

of queries are 161 and 134 for the 10 samples of Corel standard held-out set and the 10

samples of the Corel novel held-out set respectively. For the TRECVID, each of the 75

selected concepts is a single query.

Table 4.1 shows the retrieval performance of various models over the Corel standard

held-out set, Corel novel held-out set and the TRECVID set. For the nearest region de-
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pendency MRF, we performed two different experiments. The first one (MRF-NRD-Exp1

in the table) tuned one identical set of parameters (λF , λN) for all query words, while the

second one (MRF-NRD-Exp2) tuned separate sets of (λF , λN) for each individual query

words. A statistical significance test was implemented using a t-test with p ≤ 0.05. The

table shows that MRF-NRD-Exp2 consistently performs better than other models over all

these datasets. From the Table 4.1, we can see that:

query AP of MRF-FI AP of MRF-NRD (λF , λN)

clouds 0.407 0.407 (1.0,0.0)
tree 0.359 0.361 (0.9, 0.1)
woman 0.546 0.55 (0.9, 0.1)
sunset 0.465 0.483 (0.8, 0.2)
dunes 0.527 0.578 (0.7, 0.3)
boats 0.275 0.289 (0.6, 0.4)
tiger 0.550 0.573 (0.5, 0.5)
bear 0.427 0.474 (0.4, 0.6)
tulip 0.091 0.173 (0.3, 0.7)
sailboats 0.312 0.329 (0.2, 0.8)

Table 4.2. Query examples on Corel Standard test set. MRF-NRD parameters (λF , λN)
were separately tuned for each word.

1. The fully independent MRF model is comparable in performance with the normal-

ized continuous relevance model on the Corel datasets and significantly better than it

on the TRECVID dataset. We believe one reason is that the TRECVID has a larger

training set.

2. Nearest region dependent MRF models outperform the fully independent MRF and

the normalized-continuous relevance models, which shows that appropriately incor-

porating structure information could significantly improve retrieval performance.

3. Separately tuning parameters (λF , λN) for individual query words outperforms using

one identical parameter for all query words. Table 4.2 shows some query examples

from the Corel standard dataset with the tuned parameters for the MRF-NRD model,
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MBRM Carneiro et al. [22] MRF-FI MRF-NRD-Exp1 MRF-NRD-Exp2
mAP 0.30 0.31 0.30 0.31 0.34

Table 4.3. Comparison of retrieval performance of different models on the small corel set

of 5k images.

Figure 4.2. Recall-precision graphs of various models over the TRECVID set, which are

the full-independent MRF model(MRF-FI), nearest region dependent MRF model(MRF-

NRD), the NCRM, the machine translation model(MT) and the HMM model.

which shows that different words require different weights for independent regions

and region bigrams.

Table 4.3 shows retrieval performance comparisons over the 5k Corel dataset, our best

results are obtained using MRF-NRD with separately tuned weights for each word, with a

mean average precision (mAP) of 0.34 which outperforms the best result (0.31) published

before (achieved by Carneiro et al. [22]).

Figure 4.2 shows the recall-precision curves of various models over the TRECVID3

set, from which we can see that MRF-NRD outperforms other models consistently over

the whole curve (the NCRM and translation model curves are from [63] while the HMM
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Figure 4.3. Examples of top 4 ranked images in response to query “birds” and query

“train” using MRF-NRD over the small Corel set. Each image in this set is 192x128 and

partitioned into 24 rectangular regions

Figure 4.4. Examples of top 4 ranked key frames in response to query “waterfall” and

query “clock” using MRF NRD over the TRECVID2003 set. Note that the 4th image

bottom contains a clock on the wall at the top right corner. It is a relevant image to clock

in the ground truth. Each frame (352x264) is partitioned into 35 rectangular regions.
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Figure 4.5. Top ranked images in response to the query “boats” using MRF-NRD over the

small Corel data set. The second and the third images are irrelevant.

Figure 4.6. Some supporting images for the word “boats” in the training set.

curve is from [52]). Figure 4.4 and Figure 4.3 show some examples of top ranked images in

response to queries using the MRF-NRD model. All the images shown in these two figures

are relevant to their corresponding queries.

Figure 4.5 shows the top ranked images in response to query “boats” using MRF-NRD

over the small Corel data set. Both the second and the third are irrelevant to the query

according to the ground truth, although they are highly ranked. Again these false positives

are caused by the significant contributions from the background contexts of the “boats” in

the training images. Although the second image doesn’t contain a boat, its background is

very close to the backgrounds of some supporting images to “boats” in the training set. The

first two images in Figure 4.6 show two such examples. The boat in the second supporting

image (under the sun) is very tiny and hard to identify, but the human annotator did annotate

it with “boats”. It is the same reason for the third image in 4.5 being highly ranked – note

that the last two supporting examples in Figure 4.6 have very similar backgrounds with it.
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Remember that this problem also happens when using relevance modeling approaches for

annotation and retrieval (see Section 3.2.3). This is not surprising because in both MRF and

relevance models the context information plays an important role. The context information

is obtained through allowing every image region to contribute to the probability of a query

word. As we suggested before, better image features and larger training sets will help solve

this problem. Better image features may distinguish the target object from other objects

easily, and larger training sets may train the model better to identify a common background

and weight it less for probability contributions.

Although our MRF models are proposed for image retrieval, we can also apply them

for image annotation. We annotate each image in this way: first calculate the ranking

scores for each word based on equation 4.1, then annotate each image with those words in

descending order of the ranking scores. We compared the annotation performance of our

full-independent MRF model with MBRM and all the models proposed in [9] and Table 4.4

presents the results. We used the same measurements with those used by [9], which have

been briefly described in the experimental section (Section 3.2.3) of the previous chapter.

Table 4.4 shows both MRF models and MBRM consistently outperform the models pro-

posed in [9] on image annotation. The difference between MRF-FI and MBRM shown in

this table is not statistically significant.

Corel standard set Corel Novel set
Measurements PR NS KL PR NS KL
Best Results in [9] 0.298 0.604 0.747 0.249 0.506 0.268
MBRM 0.371 0.647 1.129 0.255 0.514 0.274
MRF-FI 0.372 0.650 1.126 0.264 0.518 0.270

Table 4.4. Performance comparison on automatic annotation between MRF-FI, MBRM

and the models reported in [barnard:matching]. Results show that MRF-FI consistently

outperforms the models in [barnard:matching].
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Figure 4.7. Curves of performance vs visual vocabulary size for multinomial visterm

model and multiple Bernoulli visterm model.

4.6.2 Retrieval Results for Discrete MRFs

In our experiments on discrete MRFs, images are first partitioned into rectangular re-

gions and the discrete visterms are build from those regions. Since we do not have the

original images of the 100-CD Corel set, our experiments on discrete MRFs are conducted

over the 5k Corel image set and the TRECVID03 set.

On the 5k Corel image set, we tested the effects of the size of the visual vocabulary on

the retrieval performance and compared the multinomial visterm model and the multiple

Bernoulli visterm model (see Figure 4.7). From which we can see that the mean average

precision dramatically increases with vocabulary size and then flattens out. We can also see

that the multiple Bernoulli visterm model works better than the multinomial visterm model

by a small margin.

We also observed that with the same visual vocabulary size, the performance increases

with the branching factor (see Figure 4.8). We believe this is because of the property

of the hierarchical k-means clustering. Since the visual vocabulary is constructed from a
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Figure 4.8. Performance vs branch factors with 1M leaf nodes

CMRM CRM N-CRM SML [22] Discrete MRF
mAP 0.14 0.26 0.30 0.31 0.28
RunningTime(secs) 10 660 660 - 16

Table 4.5. Retrieval performance comparison between discrete MRF and other models on

the 5k Corel set. The running time is measured for all the 371 words in the vocabulary.

hierarchical k-means tree, then any errors in clustering made at the higher level will be

propagated to the lower level and cannot be corrected. A tree with a larger branch factor

reduces the chances of propagation of the clustering error. In our experiments we also

tested the discrete visterm sets constructed from the multiple-scale space of the original

image via the image Gaussian pyramid. However, the results didn’t show any apparent

improvement over the single scale setting.

The best results of our discrete MRF is from the multiple Bernoulli visterm model with

a 2085136 (384) vocabulary size over 16x16 rectangular partitions, which achieves mAP

of 0.28 and precision@10 of 0.198. Table 4.5 shows the comparison with other models,

from which we can see that our discrete MRF achieves better results than the cross-media

relevance models (CMRM), the continuous relevance model (CRM) and is comparable
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N-CRM Discrete MRF
mAP 0.158 0.152
P@10 0.319 0.335
RunningTime 6.8(hrs) 90(secs)

Table 4.6. Retrieval performance comparison between discrete MRF and N-CRM on the

TRECVID03 set. The running time is measured for all the 75 query words.

Figure 4.9. 5 top ranked images of the disrete MRF in the test set of the 5k Corel set in

responding to the query word ”birds”

to normalized-continuous relevance models and Carneiro’s hierarchical Gaussian mixture

model [22]. However our discrete MRF is much more efficient than continuous models in

terms of running time. The implementation used sparse matrix techniques to accelerate the

probability calculation.

Finally, our discreteMRFmodel was tested on the TRECVID03 dataset. Each keyframe

in this dataset is partitioned into 32x32 rectangular regions, and then color and texture fea-

tures are extracted from each region. We randomly sampled 1/10-th of the training features

to construct a visual vocabulary of size 2085136 (384). Then the remaining training fea-

tures and all test features are determined by looking up using the tree to obtained their

corresponding discrete visterms. Our results are shown in table 4.6, from which we can see

that the mean average precision of our discrete models on this dataset is very close to the

NCRM and the precision@10 is slightly better. Compared to the 6.8 hours of running time

measured for the NCRM, our discrete model only takes 1.5 minutes to complete the whole

procedure after the discrete visterm set is obtained.

Figure 4.9 shows the 5 top ranked images in the returned rank list of the discrete MRF in

response to the query word “birds” over the 5k Corel set. Note the third image does contains
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Figure 4.10. 5 top ranked images of the disrete MRF in the test set of the TRECVID03 set

in response to the query word ”sport event”

a bird (seagull) although it is quite small and the ground-truth annotation of that image does

have the word “birds”. Although the ground-truth annotation of the first image doesn’t

contain the word “birds” (instead it has “albatross”), our model correctly associates word

“birds” with it. Figure 4.10 shows a retrieval example for the discrete MRF in response to

the query word “sport event” over the TRECVID03 dataset.
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CHAPTER 5

HISTORICAL HANDWRITTEN DOCUMENT RECOGNITION

In this chapter, we discuss historical handwritten document recognition. We describe

and compare the application of various classification and sequence models to the recogni-

tion task.

In particular, our historical handwritten document recognition is performed at the word

level, i.e. the recognition units are word images. Character segmentation on degraded his-

torical handwritten document is still a difficult problem. To avoid the errors introduced by

character segmentation, recognition in this work is directly done on the word level where

historical handwritten documents are first segmented into word images. Word segmenta-

tion is much easier to do than character segmentation. Once features are extracted from

each word image, machine learning techniques may be employed to label each feature by

learning over transcribed documents. For the purpose of fair comparisons between differ-

ent models, this chapter employs the same dataset and the same features for experiments

with those used by [79]. The dataset consists of 20 pages from a collection of letters by

George Washington. Each page is segmented into individual word images, from which

scalar image features and profile-based image features are extracted. One can refer to the

experimental section 5.3 for more details about the dataset and features.

This chapter is devoted to the investigation of various statistical models on word image

recognition for historical handwritten documents. Most of the models discussed in this

chapter, including support vector machines, maximum entropy, naive Bayes with kernel

density estimate, and conditional random field, have been employed for this task for the

first time. Although HMMs have been widely used for this problem, we proposed two
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different ways to improve the recognition performance with HMM’s. One is the smoothing

of the probabilities of feature generation and the other is the combination of HMM and

kernel density estimates. The recognition results may be used for retrieval. To do this, we

can directly use a text retrieval model over the automatically generated transcripts of the

handwritten images.

In this chapter, classification models are first discussed followed by sequence models.

Finally, experiments over these models are reported and compared.

5.1 Classification Models for Handwritten Word Recognition

We investigate a number of different classification models for historical handwritten

word recognition - both discriminative and generative. The model selection is based on

their general classification performance and their usefulness to our recognition problem.

5.1.1 Support Vector Machines

Originally introduced as a binary linear classifier, support vector machines (SVMs)

attempt to find an oriented hyper-plane which separates the linear separable space defined

by the training data while maximizing the margin. The margin is the distance of each

training instance to the hyperplane.

To extend this to classifying nonlinear separable data, SVM uses a kernel function K

to map the training data to a higher Euclidean space, in which the data may be linearly

separable. The kernel function is defined as : K(xi, xj) =< φ(xi), φ(xj) >, where φ(x) is

somemapping. For dealing with nonseparable data and avoiding overfitting, SVM’s usually

use a soft margin which allows some instances to be misclassified. A SVM classifier solves

the optimization problem:

min
ξ,w,b

< w,w > +C
N
∑

i=1

ξi (5.1)

such that yi(< w, φ(xi) > +b) ≥ 1 − ξi, and ξi ≥ 0. Here w is a vector pointing

perpendicularly to the separating hyper-plane and b is the offset parameter of this hyper-
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plane. yi ∈ {−1, 1} is the label of instance xi. The slack variable ξi measures the degree

of misclassification of the datum xi and the capability C determines the cost of margin

constraint violations.

SVM has shown a powerful classification capability in many applications [60]. In the

handwritten word recognition scenario, xi is a feature vector representing a word image and

yi ∈ {−1, 1} is an indicator of whether that word image is labeled as a particular word. To

adapt the original SVM to the multiple-class case, we adopt the max-win strategy, which

uses k binary SVMs for the k-class problem. Each of these binary SVMs separates the

word images of a particular class/label w and the non-w word images. For a test word

image, the class/label with the highest value wins. Since the max-win has to train k binary

SVMs for k classes (labels), the complexity of SVM training is high for recognition at the

word level, since the vocabulary may be very large.

5.1.2 Conditional Maximum Entropy Models

Maximum entropy models have been recently widely applied in domains involving se-

quential data learning, e.g. natural languages [12, 132], biological sequence analysis [18],

and very promising results have been achieved. Since maximum entropy models utilize

information based on the entire history of a sequence, unlike HMMs whose predictions are

usually based only on a short fixed length of prior emissions, we expect maximum entropy

models to work well for handwritten document recognition problems since in our case each

page may be taken as a long sequence of words, each of which emits a set of observations

represented as word image features.

The goal of conditional maximum entropy models is to estimate the conditional dis-

tribution of label y given data x, say P (y|x). The framework is fairly straightforward. It

basically specifies that the modeled distribution should be as uniform as possible, while

being consistent with the constraints that are given by the features of the training data.
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Given a set of predicates1 fi(x, y), which may be real or binary values and represent some

observation properties (e.g. co-occurrence) of the input x and output y, the constraints are

that for each predicate its expectation value under the model P (y|x) should be the same as

its expectation under the empirical joint distribution P̃ (x, y), i.e.

∑

x,y

P̃ (x)P (y|x, λ)f(x, y) =
∑

x,y

P̃ (x, y)f(x, y) (5.2)

With these constraints, the maximum conditional entropy principle picks the model

maximizing the conditional entropy:

H(P ) = −
∑

x∈X,y∈Y

P̃ (x)P (y|x, λ)logP (y|x, λ) (5.3)

It has been shown [131] that there is always a unique distribution that satisfies the con-

straints and maximizes the conditional entropy. This distribution has the exponential form:

P (y|x, λ) =
1

Z
e

∑
i λifi(x,y) (5.4)

where Z is a normalization constant such that
∑

y P (y|x, λ) = 1 and λi is the weight of

predicate fi in the model.

The maximum entropy model’s flexibility comes from the ability to use arbitrary predi-

cate definitions as constraints. These feature definitions represent knowledge learned from

the training set. So our test of conditional maximum entropy modeling on our task fo-

cuses on the aspect of predicate definitions and their effects on performance. Both discrete

predicates and continuous predicates are investigated in our work.

1We use the term predicates rather than features to differentiate these from image features.
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5.1.2.1 Discrete Predicates

We do a linear vector quantization (VQ) on the original continuous features measured

from the images and discretize each of them into a fixed number of bins. We define two

types of binary predicates for the maximum entropy model based on the discrete features

extracted from word images and the corresponding label sequence:

1. Unigram Predicates The frequency of a discrete feature x and the current word w:

fu
i (x,w) =







1 if the feature set of w contains x

0 otherwise
(5.5)

2. Bigram Predicates We define two sets of bigram predicates, which intuitively rep-

resent the statistical properties of a word and the features of this word’s neighboring

word images. For example, if in the training set the word “force” always follows the

word “Fredericksburgh’s”, then in the test set it will increase the probability of the

current word being recognized as “force” given that its previous word image is very

long. One set of bigram predicates we define is the joint frequency of the word w

and a discrete feature x which appears in the feature set of the word image preceding

word w:

f bf
i (x,w) =







1 if the feature set of the word image preceding w contains x

0 otherwise

(5.6)

and the other set is the frequency of word w and a discrete feature x which appears

in the feature set of the word image following word w:

f bb
i (x,w) =







1 if the feature set of the word image following w contains x

0 otherwise

(5.7)
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5.1.2.2 Continuous Predicates

Since the VQ process causes loss of information from the raw continuous features and

there is little literature on maximum entropy models using continuous predicates, we are

interested in investigating continuous features for maximum entropy models.

1. Raw Predicates In theory, the raw continuous features can be directly fed into the

maximum entropy models, defining the predicate as the values of feature ϕ (feature

name, e.g. width, height...) of word w:

f cr
i (ϕ,w) = x (5.8)

i.e. the feature ϕ of w has value x

2. Distance Predicates Maximum entropy models have a problem with the raw pred-

icates. Note that in Equation 5.4, the conditional probability of a label given the

observed features is formulated as an exponential function of the predicates. This

exponential form implies that the conditional probability is basically monotonically

non-decreasing over each predicate. In the case of raw predicates, since each pred-

icate is an observed feature, the label probability is monotonically non-decreasing

with each feature. However we know that the distribution of a visual feature over a

specific class/label is usually not a single monotonic function but more complicated

(e.g. it may be modeled as a Gaussian mixture which is not monotonically non-

decreasing). For example, word image length is a real-valued visual feature widely

used for word recognition. In the case of raw predicates, the probability of a word

is non-decreasing with the increasing of the word image length, which is apparently

not in accordance with reality. To solve this problem, we use distance predicates.

The intuition of using distance predicates is to convert the raw features to some pred-

icates with whose increasing the label probability is truly non-decreasing. Assuming
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that each kind of visual features of a label is subject to a certain Gaussian distribu-

tion whose mean is the average value of the features, then the larger the distance of

an observed feature distance to this mean, the smaller the probability of that label

given that observed feature. So one approach to computing distance predicates is to

first calculate the centers of each set of features which is labeled as the same word,

then use the distances of each raw feature to all these centers as the new feature set

substituting for the original raw feature. However if the number of class labels (the

size of the vocabulary in our case) is too large , this method will generate too many

features to let the maximum entropy models finish all the runs in reasonable time.

An alternative idea is to use k-means to cluster each feature into a fixed number

of categories (for simplicity, 5 in our experiments) and calculate the distances of

each feature to the centers of every category instead of to the centers of each word

class. This distance predicate for maximum entropy is defined as the negative of the

distance of each feature of each word to every center:

f cd
i (ϕc, w) = −d (5.9)

i.e. the negative of the distance of feature ϕ of w to the c-th center is d.

5.1.3 Naive Bayes with Gaussian Kernel Density Estimate

Since our dataset is from letters which use natural language it is unbalanced. That is,

since word frequencies follow a Zipfian-like distribution [58] their frequencies vary widely.

On the other hand the dataset also provides us with reasonable prior probabilities of words

in the document corpus. So instead of discriminative models like SVMs and maximum

entropy, we want to use some kind of generative probability density model like Naive

Bayes.
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The Naive Bayes framework is pretty simple:

P (w|x) =
P (x|w)P (w)

∑

w P (x|w)P (w)
(5.10)

where x is the feature vector of a word image and w a word. We estimate the prior prob-

ability of word w directly as its relative frequency in the training set. We calculate the

probability of the visual features of a word image given a word w using a non-parametric

Gaussian kernel density estimate:

P (x|w) =
1

‖w‖

‖w‖
∑

i=1

exp{−(x − xi)
T Σ−1(x − xi)}

√

2kπk|Σ|
(5.11)

This equation arises out of placing a Gaussian kernel over the feature vector xi of every

word image labeled as word w. ‖w‖ denotes the number of word images labeled as ”w”.

xi is a feature of the i-th word image labeled as ”w”. Each kernel is parameterized by the

feature covariance matrix Σ. We assumed Σ = β · I , where I is the identity matrix and

β plays the role of kernel bandwidth, which determines the smoothness of P (x|w) around

the support points xi. The value of β is selected empirically on a validation set.

5.2 Sequence Models for Word Recognition

This section investigates machine learning sequence models for the task of handwritten

document recognition. Although HMMs have been widely used for this task, most of them

estimate the probability of an image feature generated by a label using a Gaussian distribu-

tion in the continuous feature space. Instead, we discussed the probability estimation in the

discrete feature space and also propose combining kernel density estimates with HMMs

for more accurate estimates in the continuous feature space. The conditional random field

(CRF) is a recently developed graphical model for information extraction. This work intro-

duces CRFs for historical handwritten document recognition for the first time. This is also

the first application of CRF on a large state space.
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5.2.1 Word Recognition with Discrete HMMs

We first test a HMM based on discrete features. As a generative model, a HMM es-

timates the joint probability of a hidden state sequence and a given observation sequence,

which in our task are a sequence of words S =< s1, s2, . . . , sT > and a sequence of discrete

feature vectors O =< o1, o2, . . . , oT > extracted from word images respectively:

P (S,O) =
T
∏

t=0

P (st|st−1)P (ot|st) (5.12)

where T denotes the length of the sequences, and both transition probabilities P (st|st−1)

and generative probabilities P (ot|st) are assumed to be subject to multinomial distributions.

For each discrete feature in the feature vector ot =< ot1, ot2, . . . , otm > extracted from the

t-th word image, we assume it is independent of others given a hidden word st. Thus we

have P (ot|st) =
∏m

i=0 P (oti|st). Given labeled handwritten documents as a training set τ ,

these probabilities can be easily computed using maximum likelihood estimation (MLE).

Let w and v be two arbitrary words from vocabulary V , the transition probabilities are

calculated as:

P (st = w|st−1 = v) =
♯(word pair(v, w) occurs in τ)

♯(word v occurs in τ)
(5.13)

Let Iw denotes all the word images labeled as w in the training set τ , then the generative

probabilities are calculated as

P (oti|st = w) =
♯( oti occurs as a feature of Iw )

♯(all features of Iw )
(5.14)

The estimation of transition probabilities is done as in [79] and includes an averaging

over the background distributions of these labels to smooth the probabilities:
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P̂ (st = w|st−1 = v) =
1

2
P (st = w|st−1 = v)

+
1

2
P (st = w) (5.15)

where P (st) is the background probability of label st in the collection τ and calculated as:

P̂ (st = w) =
1

2
·

♯(w in τ )

♯(all words in τ)
+

1

2
·

1

|V |
(5.16)

where |V | is the size of the whole vocabulary.

Experiments in section 5.3 show this model doesn’t perform that well.

5.2.1.1 Feature Probability Smoothing for HMMs

We explore using smoothing techniques to improve the performance of our original

HMM model in section 5.2.1 - note that we are smoothing the features here not just the

words as is usually done. The maximum likelihood estimate for generative probabilities

in equation 5.14 is prone to be biased when the sample size is relative small. To alleviate

this bias we smooth the generative probabilities using background probabilities of discrete

features. Instead of a direct averaging as in [79], we tune the weight to optimize the like-

lihood on a held-out portion of a training sample. The formulation for feature probability

smoothing has a linear form as follows:

P̂ (oti|st) = (1 − λ)P (oti|st) + λP (oti) (5.17)

where P (oti) is the background probability of discrete feature oti in the training set τ ,

directly calculated as the frequency of oti in τ . λ is the parameter of this linear smoothing

and tuned through optimizing the likelihood on a validation set created from a portion of

the training sample. Note that we use one identical smoothing parameter λ for all the

generative probabilities.
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5.2.2 Conditional Random Fields Framework

ACRF [73] is defined as an undirected graphical model used to calculate the probability

of a possible label sequence conditioned on the observation sequence. The structure of

random fields is basically an arbitrary graph obeying the Markov property. Let O =<

o1, o2, . . . , oT > and S =< s1, s2, . . . , sT > denote the observation sequence and the label

sequence respectively (In general CRFs, T need not be the same for O and S). A CRF

formulates the conditional probability of S given O as:

Pθ(S|O) =
1

Zθ(O)

∏

q

(

exp

(

∑

k

λkfk(sq,oq)

))

(5.18)

where feature functions {fk} are defined on any subset of the random variables in the

sequences sq ⊂ S, oq ⊂ O, λk is a learned weight for each feature function, and Z is a

normalization factor over all possible state sequences:

Zθ(O) =
∑

S∈ST

∏

q

(

exp

(

∑

k

λkfk(sq,oq)

))

(5.19)

In the simplest case, the graph is an undirected linear chain among output states, where

CRFs make a first-orderMarkov independence assumption. Under this configuration, equa-

tion (5.18) is rewritten as:

Pθ(S|O) =
1

Zθ(O)
exp

(

T
∑

t=1

∑

k

λkfk(st, st−1, O, t)

)

(5.20)

A feature function (as distinct from an image feature) is defined over the current state, the

previous state and image features computed over the whole observation sequence. Usually

feature functions are binary predicates. For example, assume that the only image feature

used is the length of the current word image. Then, the feature function fk is 1 if the

current state corresponds to “Washington”, the previous state to “Colonel” and the length
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of the current word is 8, else fk = 0. Note that even in the simplest case the number of

weights is O(|S|2T), where T is the sequence length and |S| is the size of the state space.

To reduce the number of parameters estimated, we further simplify the model into a

conditionally-trained hidden Markov model, in which all the incoming transitions into a

state will share the same weight and only at each separate step of the sequence we cre-

ate weights for the current state and observation. In this case, the conditional probability

becomes:

Pθ(S|O) =
1

Zθ(O)
exp

(

T
∑

t=1

(

∑

k

(λkfk(st, O, t)) +
∑

l

(µlgl(st, st−1))

))

(5.21)

The number of parameters becomes O(|S|T + |S|2).

5.2.2.1 Inference and Training in CRFs

Inference in CRFs is done as follows: Given an observation sequence Õ, from all pos-

sible label (state) sequences find the one S̃ with the largest conditional probability over

the distribution of P (S|Õ). This distribution is defined by the undirected graphic struc-

ture and the set of weights. Note the number of possible state sequences is exponential in

the sequence length T . For an arbitrarily-structured CRF, it is intractable to calculate the

normalization factor in equation (5.19). In HMM-Style CRFs, the normalization factor

becomes:

Zθ(O) =
∑

S∈ST

exp

(

T
∑

t=1

(

∑

k

(λkfk(st, O, t)) +
∑

l

(µlgl(st, st−1))

))

(5.22)

A dynamic programming algorithm like Viterbi decoding can be used to efficiently

calculate the normalization factor.
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The parameters θ = {λk, µl} are estimated by optimizing the model over a training set

consisting of labeled sequences,D = {O(i), S(i)}N
i=1, i.e. by trying to find the set of weights

that maximize the log-likelihood of the labeled sequences in the training set:

L =
N
∑

i=1

log(P (S(i)|O(i))) −
∑

k

λ2
k

2σ2
(5.23)

where the second term is a Gaussian prior over parameters smoothing over the training data

[24].

Iterative scaling [73] is a general method to optimize parameters of CRFs and other ex-

ponential models. Sha and Pereira [138] use the limited memory quasi-Newton (L-BFGS)

[69] method instead, which is shown to be several orders of magnitude faster than iterative

scaling. Like iterative scaling, L-BFGS is also a gradient based optimization procedure but

only requires the first-derivative of the objective function.

Here, every word is taken as a state so there could be thousands of states. We apply

beam search for CRFs to significantly speed up the forward-backward procedure.

5.2.2.2 Training and Inference with Beam Search

The basic idea of beam search is simple. At each stage of the inference before passing

any message to the next stage we first purge the states at this stage and keep only a small

fraction of them. The number of states kept is usually called the beam width. So when

using beam search for forward-backward procedure, the number of outgoing transitions

from the current stage to the next stage will dramatically drop. Our goal is to prune as

many states as possible while minimizing the performance loss. To determine the states to

eliminate, we need some criteria (see below). Based on different criteria for purging states

the beam search method works differently. Note that we talk about the probabilities of states

here, but the actual implementations of inference and the forward-backward algorithm uses

costs which are equal to the negative logarithm of the probabilities. In the implementation

of beam search these costs need to be converted into probabilities.
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1. N-best Beam Search

The simplest way to do beam search is to sort all the states in the current stage

according to their probabilities in descending order. Then only the top N states are

kept and the other states are eliminated.

2. Ratio Threshold based Beam Search

At stage i, we first determine the maximal probability P m
i of all the states:

Pm
i = max

s
Pi(s) (5.24)

Then a dynamic threshold is calculated based on the value P m
i :

τi =
Pm

i

K
(5.25)

where K is a empirically selected constant. Then all states s′ at this stage whose

Pi(s
′) < τi will be eliminated.

This method doesn’t have a fixed width of the beam at each stage and the criterion

for purge is based on the individual probability of every state. This method is widely

used with HMMs in speech recognition [65].

3. K-L Divergence based Beam Search

Pal et al. [116] recently present a novel beam search method based on K-L Diver-

gence. The basic idea is to approximate single variable potentials with a constrained

adaptively sized sum of Kronecker delta functions and minimize the KL divergence

between the approximated distribution and its original. At each stage of the trellis for

Viterbi inference or forward-backward procedure, the probabilities of all the states

form some arbitrary discrete probability distribution, say p. Any subset of these

states, indexed with I = {1, . . . , k}, forms some other distribution which could be
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approximated as a sum of weighted and normalized Kronecker deltas, say q. The

goal is to find the subset of these states which minimize the K-L divergence between

p and q. Pal et al. [116] show this K-L divergence is equal to the negative logarithm

of the sum of the probabilities of the subset states. More formally, suppose we want

to find the minimal subset of states such that the K-L divergenceKL(q||p) ≤ ǫ, then

that implies minimizing |I| s.t.

KL(q||p) = − log
∑

i∈I

pi ≤ ǫ (5.26)

The solution involves sorting the states according to their probabilities in a descend-

ing order and then selecting the states from the top until the sum of their probabilities

satisfies equation (5.26).

5.2.2.3 Word Recognition with CRFs

Using CRFs for word recognition is straightforward when the data are given as labeled

handwritten documents. Handwritten documents are segmented into word images. Each

word image is an observation and its corresponding label is the value of its state in CRFs.

The ideal case in each instance is a labeled sentence. However this is intractable for de-

graded handwritten documents because important clues for sentences such as punctuations

are faded or connected with words and hence hard to detect. In our case each sequence

instance is a completely labeled page, with a length between 200 to 300 words. The draw-

back of using pages as training instances is that unreliable transitions between connections

of two separate sentences will be involved and learned by the model.

Because both the size of the state space and the length of sequences in our project are

large, we use the HMM-Style CRFs described by equation (5.21) in section 5.2.2.

Continuous image features are first extracted from each word image based on its scale

and shape. Each continuous feature is quantized into a fixed number of bins. The set of
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discretized features of each word image is its observation representation. Details on image

features are given in section 5.3.

The model features are defined in a straightforward way. For example fk(st, O, t) is

equal to 1 if the word image at position t is labeled as ”Fredericksburgh” and its length is

at level 10 (the highest level for our discretized image features), otherwise it is zero. The

transition features gk(st, st−1) are defined in a similar manner. For example gk(st, st−1) is

equal to 1 if the word image at position t is labeled as ”Fredericksburgh” and the previous

word is ”defend”, otherwise zero.

5.2.3 HMM with Gaussian Kernel Density Estimates

Both HMMs and CRFs discussed so far in this section use discrete word image features.

Discrete features are easy to use, but could cause information loss when doing vector quan-

tization. To utilize real-valued continuous features, we employs a Gaussian kernel density

estimate for probabilities of generating features from a word state.

The HMM framework used here is just the same as in Section 5.2.1 except that now the

observation sequence O =< o1, o2, . . . , oT > is a sequence of real-valued feature vectors

and the generative probability P (oi|wi) is now estimated through a Gaussian kernel density

function:

P (oi|wi) =
1

‖wi‖

‖wi‖
∑

i=1

exp{−(oi − oj)
T Σ−1(oi − oj)}

√

2kπk|Σ|
(5.27)

As in the equation 5.11, each kernel is parameterized by the feature covariance matrix Σ

and assumed Σ = β · I , where I is the identity matrix and β plays the role of kernel

bandwidth, which determines the smoothness of P (oi|wi) around the support points oj .

The value of β is selected empirically on a validation set.
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5.3 Experimental Results

5.3.1 Experimental Setup

Our evaluation dataset consists of 20 pages from a collection of letters by GeorgeWash-

ington. This is a publicly available standard dataset used by [79]). Each page is accurately

segmented into individual word images, each of which has been manually transcribed. We

do not lowercase transcribed words, so “region” and “Region” are taken as two different

words. There are 4865 words in the corpus in total and 1187 of them are unique. Figure

5.1 shows a part of a segmented page in our dataset.

For the purpose of fair comparisons between different models, we used the same fea-

tures with those used by [79]. For a quick reference, the word images features are briefly

described here. One can refer to [79] for more detailed information about the extracted fea-

tures. Two kinds of features are extracted from each word image: scalar image features and

profile-based image features. Scalar features consist of 6 different coarse measurements

on each word image. Given a word image with a tight bounding box, the scalar features

are respectively: the height h of the image in pixels, the width w of the image, the aspect

ratio w/h, the area w · h, the number of descenders in the word image, and the number of

ascenders in the word. Profile-based features are computed from different profiles of the

word image. This work uses projection, upper word and lower word profiles, each of which

has the same length as the image width. The project profile is computed by summing over

the pixel values at each image column of the word. The upper/lower profile is calculated

as the distance from the upper/lower boundary of the word image to the closest ink pixel

at each image column. After these profiles are computed, the Discrete Fourier Transform

(DFT) is applied to each of them and a fixed number of lower-order DFT coefficients are

used to represent each profile. So given 3 profiles and 7 DFT coefficients for each of them,

there are 21 profile-based features. Plus the 6 scalar features, 27 features are used for each

word image.
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Figure 5.1. A part of one segmented page in our dataset.

We use word accuracy rate as our performance measure, i.e. the proportion of the words

that are recovered exactly as they were in the manual transcript. 20-fold cross-validation is

used to get a stable performance evaluation for each model. Each iteration leaves one page

for test, and trains the model over the other 19 pages. We use the mean accuracy rate as

the final evaluation measure. Since our dataset is relatively small, many words in the test

set do not occur in any training pages - these are called out-of-vocabulary(OOV) terms as

in [79] and cause errors of the recognition, we use two types of mean accuracy rate – mean

accuracy rate with OOVs and mean accuracy rate without OOVs.

Since our data are from a collection of natural language documents (letters), the fre-

quency of words can be approximated by a Zipf distribution. As Figure 5.2 shows, a few

words have very high frequencies, however most words occur very infrequently. Over our

whole dataset, 681 words have only one occurrence; 1008 words have less than 5 occur-

rences each but 30 words have 1856 occurrences in total. The unbalance and sparsity of

training data for different words make the multi-classification problem intractable for some

standard classifiers such as decision trees and neural networks as shown in [64].
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Figure 5.2. The histogram of the word frequency in our dataset, which is subject to a Zipf

distribution.

5.3.2 Results on Different Classification Models

5.3.2.1 SVMs

We use the MATLAB Support Vector Machine Toolbox developed by Gavin Cawley to

build the SVM model on the data. By using the ’max wins’ algorithm, we tried linear

kernels and polynomial kernels of degree 2 on the data.

Accuracy with OOV w/o OOV

Linear Kernel 0.3827 0.4642
Polynomial d-2 0.4463 0.5281

Table 5.1. Experimental results using SVMs. Word accuracy is reported for two different

sets of words respectively – all words in the test set (with OOV) and the set without out-of-

vocabulary (OOV) words included.

Table 5.1 shows the experimental results using support vector machines, from which

we see that the polynomial kernel performs much better than the linear kernel. This is

unsurprising since the kernel function plays a crucial role in SVMs. The kernel determines
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the mapping of instances to a high dimensional space and whether the space is separable or

not. However, it is not generally easy to locate the proper kernel. In other words, deciding

to which space the original data should be projected requires a deeper understanding of the

data - usually background knowledge is needed. In our case, both the linear kernel and the

polynomial kernel of degree 2 do not work very well on the data. Other kernels that project

the data into higher dimension spaces might help in this case but there is no simple way to

determine these short of trying all of them.

5.3.2.2 Conditional Maximum Entropy Models

We use the maximum entropy toolkit from http://homepages.inf.ed.ac.uk/s0450736/maxent-

toolkit.html, which was developed in C++ based on the java version at http://maxent.sf.net.

To extract unigram and bigram discrete predicates in section 5.1.2, we linearly quantize

each of the 27 continuous features into 19 bins. To test the influence of different numbers

of bins into which the raw features is quantized, we also gradually changed the number of

bins and re-ran the maximum entropy model. The performance varies only slightly with

the change in the number of bins except at 100 bins the performance drops sharply.

Accuracy with OOV w/o OOV

Discrete Unigram 0.4164 0.4939
Discrete Unigram + Bigram 0.4432 0.5234

Raw Continuous 0.4161 0.5259
Distance Continuous 0.4454∗ 0.5629∗

Raw + Dist 0.4367 0.5515

Table 5.2. Performance Comparisons for maximum entropy models and features

Table 5.2 shows the results of the maximum entropy model using discrete predicates

and continuous predicates, from which we can see the distance features outperform all

other features. Significance testing with the t-test shows that the difference between the

results from distance features and raw continuous feature are significant with P-value of

0.03, while the P-value for distance feature vs unigram + bigram is 0.003. These numbers

also show that using both unigram and bigram information outperforms only using unigram
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Fixed Beam Width 10 80 105 106 107 132 264
Accuracy w/o OOV 0.001 0.001 0.001 0.645 0.645 0.645 0.645
Run Time (in Secs) 60 131 140 142 142 153 2944

Table 5.3. N-best Beam Search with different fixed beam widths

K in Equation (5.25) 1.0001 1.001 1.01 1.1 1.2 1.5 2
Accuracy w/o OOV 0.505 0.518 0.645 0.645 0.645 0.645 0.645
Run Time (in Secs) 97 99 107 1127 1238 1340 1527

Table 5.4. Ratio Threshold Beam Search with differentK values

ǫ inKL ≤ ǫ 0.9 0.8 0.79 0.77 0.75 0.5 0
Accuracy w/o OOV 0.001 0.001 0.475 0.584 0.645 0.645 0.645
Run Time (in Secs) 62 70 75 87 91 209 2944

Table 5.5. KL Divergence Beam Search with different ǫ inKL ≤ ǫ

information by a small margin. Note that the concept of bigram here is defined between

label states and features unlike that in HMMs where it is depicted as the dependency be-

tween label spaces. Since our dataset is relatively small and the vocabulary is huge, it is

more difficult to capture useful bigram information for maximum entropy.

5.3.2.3 Naive Bayes with Gaussian Density Estimate

The mean accuracies achieved using the Naive Bayes model with Gaussian kernel den-

sity estimates are 0.542 with OOVs and 0.640 without OOVs. It is not surprising that Naive

Bayes achieves good results on our task for at least two reasons. One is that the model pro-

vides prior probabilities of the words - that is the frequency of the words. This corresponds

to unigram language model information used in [79] where it was shown to improve per-

formance. Another is that the Gaussian density emphasizes the local information provided

by each instance, which has been shown to be very useful in multimedia data analysis.

5.3.3 Tune and Compare Beam Search for Our CRF Model

All the three kinds of Beam Search in section 5.2.2.2 require us to experimentally

decide the parameters controlling the width of beam. For this purpose, we select two pages
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Accuracy Rate with OOV w/o OOV

SVM with polynomial d-2 kernel 0.446 0.528
ME with unigram (in [41]) 0.416 0.494
ME with unigram and bigram 0.443 0.523
ME with distance predicates 0.445 0.563
Naive Bayes with Gaussian-KDE 0.542 0.640

CRFs with Ratio threshold beam search 0.417 0.503
CRFs with K-L divergence beam search 0.428 0.525
HMM with discrete features 0.336 0.404
HMM with discrete features after smoothing 0.504 0.595
HMM with continuous features (in [79]) 0.497 0.586
HMM with Gaussian-KDE 0.583 0.688

HMM with continuous features + external corpora (in [79]) 0.551 0.651
HMM with Gaussian-KDE + external corpora 0.611 0.723

Table 5.6. Results comparing different models. The external corpora used for transition

estimates consists of a large electronic collection of writings by George Washington and

Thomas Jefferson. CRFs cannot really be used with the continuous features described here

and so are not directly comparable with HMMs using continuous features.

from our handwritten documents and use them as a training and a test example respectively.

Even in this small dataset with 486 words in total, there are 264 states (unique words). On

average there are less than 2 instances for each state, which means our model has been very

starved for training data. But for this project, this is the largest unit we can use for tuning,

including more pages results in a sharp increase in run time.

Tables 5.3, 5.4 and 5.5 show the results of using different values of tuning parameters

for the N-best, ratio threshold and K-L divergence based beam search respectively. As

the tables show the accuracy changes non-linearly with the tuning parameters. In certain

regions it is relatively insensitive while in others it is very sensitive. The tables only show

some values of the parameters - mostly those where very large changes occur.

Since with comparable accuracy N-best runs much slower than the other two methods,

we did not do experiments using N-best over the whole dataset. We select K = 1.01 and

ǫ = 0.75 as the parameters of ratio threshold and KL-divergence respectively when testing

over the whole dataset.
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5.3.4 Result Comparisons

Table 5.6 compares the models we tested. To make the comparison fair, we report

two set of results of the HMMs from a recent paper [79]. The first of the HMM models

includes word bigrams obtained from the training set but not from the external corpora (the

Naive Bayes model as well as the other models here do not use any bigrams). The second

uses an external George Washington and Thomas Jefferson electronic text corpus for tran-

sition estimation. We can see that, with external text corpus both HMMs from [79] and our

HMMs improve the performance significantly. From this table, we see that HMMs with

a Gaussian density estimate achieved the best performance on our task. The t-test shows

that the HMM with a Gaussian density estimate outperforms other HMMs significantly by

a P-value of 0.01. With a Gaussian kernel density estimate, even naive Bayes can achieve

very good results. The good performance of naive Bayes in our experiments shows that

the prior probabilities (unigram information) is important for analysis on natural language

document corpus (especially heavily unbalanced datasets). In contrast, prior distribution

information is difficult to utilize in other discriminative models such as maximum entropy

and SVM. Gaussian density estimates also show that localized models and local informa-

tion are preferable for handwriting recognition. Such local information is suitable for many

multimedia data problem in which each category could be a mixture of different patterns.

Table 5.6 also shows the results using CRFs with ratio threshold based beam search and

K-L divergence based beam search respectively and HMMs with discrete features. For the

maximum entropy model with unigram predicates, the model features are defined as those

in CRFs for observational-state pairs, only observation and state at the same position are

considered (see [41] for details). From the results, CRFs with a K-L divergence based beam

search outperforms that with a ratio threshold based beam search by a small margin. Both

CRFs outperform the maximum entropy model with unigram predicates, showing the im-

portance of transition information. The HMM with discrete features where the features are

not smoothed does not perform that well (the words are smoothed for all HMMs). HMM
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performance can be improved substantially by also smoothing the features and as can be

seen this makes them better than the CRF’s. For reference, CRFs and Maximum Entropy

use some kind of Gaussian prior for smoothing [24]. However, we believe that the poorer

performance of CRFs is due to the substantially larger number of parameters that need to

be estimated. In addition all the parameters are estimated at the same time while the prob-

abilities for HMM’s are estimated separately in this special case. More training data might

improve the results but there are significant difficulties in using more training data. First,

creating large amounts of training data is labor intensive and expensive. Second, CRFs are

much slower and hence this would also require large amounts of computation. An alter-

native approach to increasing the amount of training data required would be to drastically

reduce the state space. This would probably require dropping the whole word paradigm

and moving to a character based approach with its attendant segmentation difficulties.

We have so far compared all techniques on the same features. Continuous features

can substantially improve performance. However, using continuous features directly for

CRFs is still problematical. CRFs require the continuous features to have a monotonic

distribution. Most of the continuous features used in the paper here are not monotonic

and in general it is non-trivial to find such features. Using the existing non-monotonic

continuous features with CRFs leads to poor performance.
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CHAPTER 6

CONCLUSION

In this dissertation, we presented our work on using statistical models for text query

based on general image retrieval and historical handwritten manuscript recognition. We

tackle these problems using automatic annotation based image retrieval, direct retrieval

models for image retrieval and historical handwritten document recognition. Since the

main goal of this work is to develop and compare different statistical models for the task

of image retrieval, we have investigated the properties of various models, analyzed their

drawbacks and benefits in modeling image contents and annotations, and developed new

models more suitable for image annotation and retrieval. Besides the theoretical analysis

of the effectiveness of our proposed models in text query based image retrieval, we have

empirically demonstrated that our proposed annotation, recognition and retrieval models

meet or exceed the state-of-the-art performance of previously proposed techniques. We

summarize our findings and suggest future research directions to improve the retrieval per-

formance.

6.1 Summary

The development of the new annotation based retrieval models was based on the exam-

ination of the word probabilities for image annotations employed by previous models. We

observed and claimed that the multiple-Bernoulli model and normalized multinomial model

are more suitable for formalizing the word distribution of annotated images although previ-

ous models for image annotation and retrieval used multinomial distributions. Based on this

observation and the previous work on using relevance modeling approach for text retrieval
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and image retrieval, we developed the multiple-Bernoulli relevance model to automatically

annotate images and then retrieve images based on the annotation results. As a generative

model, the multiple- Bernoulli relevance model estimated the joint distribution of visterms

(image features or quantized image features) and annotations. This joint distribution is

computed as an expectation over each image in the training set, leading to a non-parametric

estimation. By comparing with other models using multinomial distribution for word prob-

abilities, we demonstrated that the multiple-Bernoulli model has (statistically significant)

better annotation performance. However, we found that the retrieval performance was poor

when a multiple-Bernoulli language model was used for retrieval along with a multiple-

Bernoulli annotation model. A multinomial language model combined with the multiple-

Bernoulli annotation model resulted in superior retrieval performance. This inspired an-

other annotation and retrieval model – the normalized continuous relevance model – which

achieves the same performance on image annotation but much better retrieval performance

than the multiple-Bernoulli relevance model. The normalized continuous relevance models

padded all the annotations for each image to a fixed length using a special “null” word and

then estimates the word probabilities using a multinomial model. Theoretically, we have

shown the relationships between the continuous relevance model, the multiple-Bernoulli

relevance model and the normalized continuous relevance model, and shown that the nor-

malized continuous relevance model and the multiple-Bernoulli relevance model have the

same annotation performance. Our experimental results demonstrated that the multiple-

Bernoulli relevance model and the normalized continuous relevance models outperform

most of the previous models.

Direct retrieval models were proposed to retrieve images without involving an explicit

annotation step so that the models were trained by directly maximizing the retrieval perfor-

mance rather than annotation performance. Our proposed direct retrieval model is based

on the Markov random field and is flexible enough to model feature dependencies. We

showed that the Markov random field model may be reduced to a linear combination of
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different feature functions for the task of image retrieval. That makes it easy to incorporate

different kinds of image features and the dependency between image features. We explored

MRF based direct retrieval using both continuous image features and discrete features. Ex-

perimental results showed that our MRF with continuous features outperforms previous

models for image retrieval. By modeling feature dependency it further improves the re-

trieval performance. Using an MRF model with discrete image features showed that large

visual vocabularies improve the retrieval performance. In our discrete MRF model, large

visual vocabularies are obtained by using hierarchical K-means to cluster image features.

We demonstrated that the discrete MRF model runs much faster while having comparable

retrieval performance with the continuous models.

For historical handwritten manuscripts, we mainly focused on statistical models for au-

tomatic recognition. The automatic recognition results can be used for retrieving the origi-

nal manuscripts. We adopted the holistic word recognition approach to avoid the character

segmentation problem which is one of the most challenging problems in handwritten doc-

ument analysis. We tackled the holistic word recognition problem from two aspects. One

was to take this problem as a multiple-classification problem using different machine learn-

ing classifiers. Specifically, we introduced and compared support vector machine (SVM),

maximum entropy and naive Bayes models. The other aspect used graphical models for his-

torical handwritten document recognition at the word level. Compared with non-graphical

classifiers, graphical models can take the advantages of language modeling to capture the

word dependency/transitions from the manuscript corpus. In particular, we studied the ap-

plication of hidden Markov model (HMM) and conditional random fields (CRF) for this

task. Although HMMs have been widely used for handwriting recognition, we explored

ways to improve HMMs through probability smoothing of discrete features and kernel den-

sity estimation for generative probability estimation. It was also the first time that the CRF

has been applied to historical handwritten document recognition. To deal with the large

state space problem, we investigated different pruning techniques for CRFs. We compared
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all these models and the experimental results showed that a HMM with a kernel density

estimate outperforms other models.

6.2 Future Work

The focus of this work is on the exploration of new statistical models for the task of the

text query based image retrieval. Appropriate statistical models are critical to effectively

learn image semantics in order to achieve excellent retrieval performance. The remainder

of this chapter will briefly outline promising directions for improving text query based

image retrieval and handwritten document recognition and retrieval.

6.2.1 Models for General Image Retrieval

The models proposed in this work for general image retrieval have demonstrated com-

parable or superior performance compared with previously proposed techniques. We be-

lieve the models can be further improved in many ways:

1. Improving the feature dependency modeling. When modeling the feature depen-

dency in our continuous Markov random field, we only considered the nearest region

pairs. The MRF retrieval framework allows arbitrary dependency structures in prin-

ciple. More advanced feature dependency, e.g. dependency of a group of features,

may improve the learning of image semantics and benefit image retrieval.

2. Modeling word dependency. The current MRFs only considered the feature depen-

dency and assumed that words are independent of each other. However, word inde-

pendence may not be true for real image annotation and retrieval. For example, the

annotation word ”airplane” may be dependent on the annotation word ”sky” and ex-

clude the word ”fish” most of the time, although an airplane and a fish may bear some

visual similarities. Another example is that in the case of hierarchical annotation, a

word always has strong dependencies with its children and parent annotation words.

So modeling word dependency may be useful for annotating and retrieving images.
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3. Incorporating different visual features. The proposed MRF models may be extended

to incorporate different visual information, e.g. features from segmented/partitioned

regions or local interest point based features. Different features describe the image

from different aspects. For example, local descriptors focus on salient parts of an

images which are usually captured in object corner or edge regions. However, local

descriptors may ignore a lot of image regions which have relatively uniform texture

or color information, such as image regions corresponding to sky, grass, beach, water.

These regions provide important context information for object recognition or anno-

tation. So combining different visual features in the retrieval model may improve the

retrieval performance.

6.2.2 Models for Historical Handwritten Documents

Our investigation of historical handwritten document recognition is focused on holistic

word recognition. Although this avoided the challenges of character segmentation, it suf-

fers some problems e.g. out-of-vocabulary words cannot be recognized and it is sensitive

to over- or under-segmentation. It is worth investigating sub-word modeling techniques to

do segmentation and recognition simultaneously. A sub-word model could be a character,

bi-character (a pair of consecutive characters) or tri-character (a triple of consecutive char-

acters) model. Although there is a lot of work employing HMMs for handwritten recog-

nition at the character level, one common issue with them is that similarity information

among characters of an word image is generally ignored when decoding characters. One

possible way is that we can first train a set of HMMs for single characters, then train and

refine the models for bi-characters or tri-characters through tying their parameters based

on similarities between the models. When decoding a line of handwritten image, we use

the similarity information between sub-word parts of the test image as a constraint over the

decoding algorithm. i.e. more similar pairs of sub-word parts of a test image should have
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higher probabilities of being decoded into the same label while dissimilar pairs should have

a lower probability of being labeled the same.

This work investigated historical handwritten document recognition separately and sug-

gests retrieval based on the recognition results. Since scanned historical handwritten docu-

ments can be taken as a special kind of general image, we believe our direct retrieval models

may also be applied to them. As is the case for general image retrieval, our MRF based

direct retrieval model can avoid the metric divergence between recognition performance

and retrieval performance. It can model the feature dependency between different local

characteristics for handwritings, which should be very important considering that words

are meaningful permutations of individual characters.
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APPENDIX A

ANNOTATION WORDS

We provide here the 260 annotation words present in the human annotations of the test

set of the 5k-images Corel dataset:

water sky tree people grass buildings mountain flowers snow clouds rocks stone street

plane field bear sand birds beach boats jet leaf cars plants house bridge valley polar garden

hills close-up ruins statue tracks horses sun ice wall ocean cat train temple tiger scotland

coral swimmers coast window branch pool foals sunset sculpture frost nest head fox for-

est mare city railroad ground shops petals horizon arch reefs palace reflection park desert

skyline locomotive shore pillar castle town river road deer waves smoke sea church tower

market zebra sign light coyote courtyard bush village pyramid landscape fence door roofs

black tundra shadows elk display island rodent harbor grizzly flight stems runway woman

turn tulip palm man dunes antlers restaurant formula fish white-tailed kauai buddha hut

herd wood formation food museum oahu indian ships prototype prop lizard hillside hats

flag farms bengal gate frozen face moose log caribou canyon bulls buddhist baby arctic

tables night hotel fountain costume stairs path lawn hawaii giraffe meadow maui land cubs

crystals booby windmills tusks sphinx mule monastery lake reptile monks marine iguana

elephant cottage clothes ceremony anemone tails pots girl fruit f-16 albatross horns fly

cow athlete shrubs relief post entrance crab column antelope vines vegetation sunrise slope

plaza goat fan squirrel mosque lion glass blooms barn architecture vineyard sheep monu-

ment mist lynx interior dress detail cathedral canal african terrace silhouette outside kit den

decoration cactus balcony art truck store porcupine nets needles marsh lighthouse dance
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basket whales trunk peaks dock cave vendor snake festival doorway crafts butterfly vehicle

sidewalk calf cafe sails orchid cougar
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APPENDIX B

IMAGE FEATURES

We list here the 36 features extracted from each segmentation for the large Corel dataset

(160CD) and the experiments of CRM with the segmentations for the 5K-images Corel set

(Features are kindly provided by Kobus Barnard, please refer to Barnard et al. [9]). The 36

features are listed below, where the number in each parenthesis indicates the dimension of

each kind of features:

1. Area, x-location, y-location, boundary lengh2/area, convexity, moment-of-inertia (6)

2. Average RGB (3)

3. Average RGB (3, duplicated to increase RGB color’s weight)

4. RGB standard derivative (3)

5. Average L*a*b (3)

6. Average L*a*b (3, duplicated to increase Lab color’s weight)

7. L*a*b standard derivative (3)

8. Mean oriented energy, 30 degree increments (12)

We list here the 30 features we extracted from each rectangular regions for the 5K Corel

images:

1. Average RGB (3)

2. Average RGB (3, duplicated to increase RGB color’s weight)
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3. RGB standard derivative (3)

4. Average L*a*b (3)

5. Average L*a*b (3, duplicated to increase Lab color’s weight)

6. L*a*b standard derivative (3)

7. Gabor Energy in 3 scales and 4 directions (12)

32 Features are used for the TRECVID dataset, kindly provided by Giridharan Iyengar

at IBM Research. They are listed here:

1. Average L*a*b (3)

2. Average L*a*b (3, duplicated to increase Lab color’s weight)

3. L*a*b standard derivative (3)

4. Gray-level co-occurrence matrices (GLCM)(20)
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