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Abstract. In this paper we investigate a general purpose interactive
information organization system. The system organizes documents by
placing them into 1-, 2-, or 3-dimensional space based on their similarity
and a spring-embedding algorithm. We begin by designing a method for
estimating the quality of the organization when it is applied to a set
of documents returned in response to a query. We show how the rele-
vant documents tend to clump with each other in space. We proceed
by presenting a method for measuring the amount of structure in the
organization and we explain how this knowledge can be used to refine
the system. We also show that increasing the dimensionality of the or-
ganization generally improves its quality. We introduce two methods for
modifying the organization based on the information obtained from the
user and show how such feedback improves the organization. All the
analysis is done off-line without direct user intervention.

1 Introduction

An important part of a digital library is the ability to access the stored informa-
tion effectively. Methods for interactive information presentation and organiza-
tion have been getting much attention in recent years. In this paper we present a
non-interactive approach for evaluating a graphical document organization sys-
tem. This is a general purpose tool that could find important applications in the
context of digital libraries when it is necessary to locate what one is interested
in rapidly or to assess the content of a document group quickly. Our study of
this system in an information retrieval setting is motivated by automatic search
and retrieval being an important way of accessing the content of a digital library
and also by the large amount of readily available experimental data.

An information retrieval system places retrieved documents in a list in the
order they are most likely to be relevant: the first document is the best match to
the user’s query, the second is the next most likely to be helpful, and so on. We
are interested in situations where this simple model breaks down — where the user
is unable to find enough relevant material in the first ten retrieved documents.



In particular, we are interested in helping a searcher find all of the relevant
material in the ranked list without forcing him or her to wade through all of the
non-relevant material. We believe that in this case an information organization
technique that arranges the retrieved data and reveals how individual documents
relate to each other will help the user to isolate relevant material quickly.

In this study we investigate an interactive visualization technique where re-
trieved documents are placed in 3-dimensional space and positioned according
to the similarity among them [5]. To begin with, the documents are represented
as vectors of terms, the vector size is equal to the vocabulary size of the retrieved
set. Each retrieved document’s vector defines a point in a high dimensional space.
The distances between these points and their relative position are strong indi-
cators of the similarity among the corresponding documents. Unfortunately, it
is difficult to visualize objects in more than three dimensions. To display the
points properly and show the relationships to the user we need to reduce the
number of dimensions to 1, 2, or 3. There are many different algorithms that do
dimensionality reduction. We use spring-embedding in our system.

The following questions are investigated in this study:

— The Cluster Hypothesis of Information Retrieval states that “closely asso-
ciated documents tend to be relevant to the same requests.” [20, p.45]. In
our experiments we found continued support for the hypothesis’ truth in
retrieved documents — relevant documents tend to appear in close proximity
to each other, often forming tight “clumps” that stand apart from the rest of
the material. Is the observed separation between relevant and non-relevant
a natural attribute of the visualization?

— Feedback techniques enhance the separation between relevant and non-rele-
vant documents and visualizations can capitalize on that improvement. If a
searcher expends the effort to mark some documents as relevant and others as
non-relevant, can the separation between the two sets be enhanced — among
both the marked documents and the unmarked part of the retrieved set?

— Is a high dimensional visualization more useful than a low dimensional one
for the purpose of isolating the relevant documents? That is, is a 2-D pic-
ture more helpful than its 1-D counterpart; is 3-D better than 2-D? The
documents exist in an extremely high-dimensional space (e.g., thousands of
dimensions). When these configurations are forced down into 2 or 3 dimen-
sions for the purpose of visualization, some documents are shown “nearby”
when they are actually unrelated. We expect that visualizing in extra di-
mensions will show the relationships among documents more accurately and
the relevant documents will be better isolated from non-relevant ones.

We begin by discussing related studies in clustering and visualization. In
Section 3 we briefly summarize the visualization technique at the core of our
system and proceed to define evaluation metrics used in this work in Section 4.
Section 5 describes the experimental setup and we conclude with discussion of
the results in Section 6 and plans for future work.



2 Related Work

The Cluster Hypothesis was originally conceived as applying to an entire col-
lection where it holds for only some collections [21]. There is strong evidence,
however that the hypothesis is valid within a set of documents retrieved in re-
sponse to a query. Two decades ago, Croft showed that the top-ranked documents
usually contained a “best” cluster — one that had most of the relevant docu-
ments [10]. More recently Hearst and Pedersen showed the same effect by using
Scatter/Gather to cluster the top-ranked documents presented to searchers [14].

2.1 Textual Presentations

The Scatter/Gather interface [14] presents the document clusters as text. It
groups the documents into five (or another preselected number) clusters and
displays them simultaneously as lists. On a large enough screen, the top several
documents from each cluster are clearly visible. Another text-based visualization
is presented by Leouski and Croft [16]. Their method is similar to the one used
by Scatter/Gather, but the number of clusters is based on a similarity threshold.
Their display looks more like a standard ranked list because they can have an
arbitrarily large number of clusters (limited only by the size of the retrieved set).

2.2 Graphical Presentations

It is very common for clusters to be presented graphically. The documents are
usually presented as points or objects in space with their relative positions indi-
cating how closely they are related. Links are often drawn between highly-related
documents to make the fact that there is a relationship clearer.

2-D Visualization Allan [1,2] developed a visualization for showing the rela-
tionship between documents and parts of documents. It arrayed the documents
around an oval and connected them when their similarity was strong enough.
Allan’s immediate goal was not to find the groups of relevant documents, but to
find unusual patterns of relationships between documents.

The Vibe system [11] is a 2-D display that shows how documents relate to
each other in terms of user-selected dimensions. The documents being browsed
are placed in the center of a circle. The user can locate any number of terms
inside the circle and along its edge, where they form “gravity wells” that attract
documents depending on the significance of that terms in that document. The
user can shift the location of terms and adjust their weights to better understand
the relationships between the documents.

3-D Visualization High-powered graphics workstations and the visual appeal
of 3-dimensional graphics have encouraged efforts to present document relation-
ships in 3-space. The LyberWorld system [15] includes an implementation of the
Vibe system described above, but presented in 3-space. The user still must select



terms, but now the terms are placed on the surface of a sphere rather than the
edge of a circle. The additional dimension should allow the user to see separation
more readily.

Our system is similar in approach to the Bead system [8] in that both use
forms of spring embedding for placing high-dimensional objects in 3-space. The
Bead research did not investigate the question of separating relevant and non-
relevant documents. Figure 1 shows sample visuals of our system (they are ex-
plained in more detail in later sections).

2.3 Evaluation of Presentation

In their user study, Hearst and Pederson [14] showed that users are able to
choose the cluster with the largest number of relevant documents using the
textual summaries Scatter/Gather creates. This analysis does not apply in our
situation, as we neither create clusters nor create any textual representations.

Our approach to evaluation carries some similarity to predictive evaluation
(e.g., see Card and Moran [7]): we define a precise task (the rapid identification of
relevant material) and we evaluate the system particularly for this task. We also
assume a set of possible strategies for the user. However, instead of predicting
the actual time that is required to execute the task using the system, we estimate
the ability of the system to support the task.

3 Spring-Embedder

In order to display high-dimensional vectors, they have to be approximated by
vectors in a smaller number of dimensions. We used a spring-embedding ap-
proach [12]. Our choice was rather arbitrary and any other technique (e.g., Linear
Programming) is entirely possible.

The idea of spring-embedder is simple but elegant: Consider a set of points in
a high-dimensional space and a function that defines the distance between two
points. We will call this high-dimensional space t-space, where ¢ is the actual
dimension of the space. Consider also a low-dimensional space where this point
set is going to be visualized e.g., 1, 2, or 3 dimensions. We call this space v-space
(as in visualization). The algorithm creates a point configuration in v-space space
that “mimics” the configuration in ¢-space — it attempts to preserve the relative
distances and positions of the points in ¢-space. Generally, it is impossible to
reproduce the same configuration ezactly in low dimensions.

Each object in t-space is modeled with a steel ring in v-space. The rings
repel each other with a constant force: the rings are pushing away from each
other and the system is striving to break apart. The “break-away” does not
happen because the rings are inter-connected with springs. The force constant
of a spring is proportional to the original distance between points in ¢-space.
This way a “mechanical” model is created. Left to itself the model oscillates and
assumes an “optimal” final state. If two points were very close to each other in
t-space, the corresponding rings are connected with a very strong spring, and



they are very likely to end up close to each other. On the other hand, the rings
that correspond to pairs points that are far apart have a weak link and the
general repulsive force among the rings will push them apart.

Although ring placements may vary widely across oscillations, the final con-
figuration does not usually depend on the original ring locations and these lo-
cations are randomly selected. For N objects there are (N2 — N)/2 springs. If
all springs are presented in the model, all rings are connected very strongly and
the final configuration tend to resemble a tight “soccer-ball.” To prevent this
from happening and to reduce computational expense, we impose a limit on the
inter-point distances in t-space. If a distance between two points in ¢t-space ex-
ceeds a predefined threshold, such points are consider to be infinitely far apart
and the corresponding rings are not connected with a spring. Indeed, this allows
us to model a situation when two documents are said to be different, when at
the same time they have some terms in common.

Unfortunately, selecting the right threshold is a difficult task. Changing the
threshold value adds or removes springs in the model and can have a dramatic
effect on visualization. This leads us to another question that we investigate in
this study:

— For N objects there are (N2 —N)/2 springs, so there are (N? —N)/2 different
threshold values as each threshold allows an additional spring into the model.
In the absence of any information, a threshold has to be chosen randomly
across all (N? — N)/2 values. How much effect has a threshold value on the
final configuration? How can we select the “best” threshold value, or at least
limit our choice only to “good” thresholds?

4 Evaluation Method

Our proposed visualization analysis is task-oriented. For this study we define
the task as fast identification of relevant material. Given that the user already
knows some of the relevant documents, the question is: how fast could he or
she identify the rest of the relevant documents from the visual image created
by the system? There are two main components to this problem. First, there
is the spatial configuration of the points representing the retrieved data — the
amount of structure in the image, the separation between relevant and non-
relevant objects. Second, there is a question of how the user goes about finding
the relevant information — the user’s strategy. Both of these aspects are the
variables in the evaluation.

4.1 Spatial Properties
The system used in this study represents documents with objects that are float-

ing in space. These objects form visual patterns. We are interested in spatial
properties of these patterns and require some evaluation technique to quantify



these properties. This section discusses what kind of properties we are inter-
ested in, establishes requirements for the evaluation technique, and suggests
some statistics that might be of use. Specifically:

— Do the spatial locations appear to be random, or are they clustered? A
spatial point pattern that exhibits some structure provides potentially more
information than a set of randomly scattered objects. We require a statistical
test to determine if the spatial pattern shows any structure.

— If the spatial pattern shows any structure, what is the extent of the struc-
ture? We require a way to quantify the amount of “clumpiness” in the point
pattern. Such a statistic is crucial for this study: different observers would
disagree as to the amount of structure in the point pattern. Further, the
process of obtaining such judgments would be enormously expensive.

— Suppose the objects in question are of different type, e.g. relevant and non-
relevant documents. Given that we do not define any cluster boundaries,
how can we measure the separation between objects of different type? How
can we evaluate the “purity” of the spatial structure?

In the following sections we introduce a function K that serves to measure the
amount of spatial structure. We also show how the ideas behind the K function
could be used to extend and adapt the notion of precision to analyze the quality
of these structures.

4.2 K Function

The theory of point fields (i.e., point processes) [9,19] introduces a simple and
efficient technique for measuring spatial dependencies between different regions
of a point pattern'. Consider a set of points in a d-dimensional space and a
distance function on this space. Suppose A is the number of points in a unit
volume of space, or the intensity of the point field. Let N(h) be the number of
extra points within a distance h of a randomly chosen point. Then Barlett [6]
defines the K function as

K(h) =\T'E(N(h)), h>0, (1)

where E(-) is the expectation operator on the point field. In other words, the
K function is the average number of points in the point field within distance h
of any point in this field, normalized by the number of points in a unit volume
of space. Practically, it measures a local concentration of points, or what part
of the point field on average is within distance h of any point in the point field.
Ripley [17,18] shows that the K function has properties that make it an effective
summary of spatial dependence in a point field over wide range of scales.

The main application of the K function is to test if a point field exhibits
any structure [19, p. 224]. Indeed, K (h) is proportional to the number of points

! Random point fields are mathematical models for irregular “random” point patterns.
‘We will use this terminology to describe the location pattern of objects corresponding
to the retrieved documents.



at most h away from an arbitrary point. If this number is unusually high, we
find many points in close proximity of every given point — i.e., we have clumps
or clusters of points in the point field. If the number is low, we have few points
in close proximity — i.e., we have gaps in the field. Because of the expectation
operator in (1) these conclusions apply “on average” to the whole point field.
Therefore, the K function should not be much affected by outliers. The function
does not explicitly depend on point locations, making it independent of the shape
of the point field.

The K function is just a metric for comparing one point field to another.
To decide if the the point field has clusters, we compare this field to some con-
figuration that is known not to have clusters. Generally, a completely random
arrangement of points with neither clumps nor gaps is selected. This configura-
tion of points is called a “random point field.”

It is customary [9] to model this random point field with a Poisson point
field, a configuration where a point is equally likely to occupy any location in
the space of the field. The only condition is that no two points can occupy
the same location in space. The K function for a d-dimensional Poisson field is
defined as

ad/2pd
Kpoisson(h) = ——< 2
P ( ) F(l + %) ( )
It is also customary to use the following statistic L(h) instead of K (h):
g i+ 4y
L(h) = K(h)T;, note that Lpyisson(h) = h (3)
m

When L(h) is greater than Lpgisson(h) = h, there are clumps in the point
field; L(h) < h implies gaps in the configuration.
The test variable

7 = max|L(h) — h| , (4)
is used to test the amount of structure in the point fields, here hg is the upper
bound on the interpoint distance. The outcome of the test is based on comparing
T with its table values [19, p. 225].

To compute the values of the K function the expectation operator in (1) is
replaced with an empirical average over the N given points:

N N

K(h) =533 I(llsi — il < B)/N, i#ih>0. (5)

i=1 j=1

Here A = N /v is the estimator of the intensity, v is the volume that contains
the point field, s; is the location of the ith point, and I(z) is the indicator
function: 1 if z is true, 0 otherwise.



4.3 Average Spatial Precision

Evaluation using recall and precision has a long history in Information Retrieval.
Using the same ideas that are behind the K function we define a spatial statistic
that closely resembles precision. We call this measure spatial precision.
Suppose we have a point field 2 — a set of points representing the retrieved
documents. As defined by our task, some of the relevant documents are known
to us, some of them are not. We are interested in how fast we could find the
unknown relevant documents. We select three subsets of the point field:

— kg C 2 — points that represent known relevant documents.
— ygr C 2 — points that represent unknown relevant documents.
— un C 2 — points that represent unknown non-relevant documents.

Let us define N(r; 2kr, 2ur, 2un) as the proportion of the documents of
set yr among documents of both 2yr and 2y that are at least as close to
an arbitrary document of set 2k as are the closest r documents of set 2yg.
Then the spatial precision is defined as:

P(r; kg, Qur, 2un) = E(N(r; @k R, Qur, 2uN)) (6)
For example, pick a random known relevant document and from its location start
to grow a d-dimensional sphere. Let it grow until it includes two unknown rele-
vant documents. P(2; 2k g, 2ur, 2un) is the expected fraction of the unknown
documents inside the sphere that are relevant. There is a particular similarity
with a ranked list: given a starting point we move away from it, marking docu-
ments as we encounter them, recreating the ranking. Instead of moving in one
direction, as in ranked list, we move out in all directions simultaneously. It is
can be thought of as traversing a “multidimensional” ranked list. One difference
is that we have several starting points that we are equally likely to choose from
(i.e., members of 2xg). In this case we average the performance over all these
starting points.
The average spatial precision is then obtained by averaging P(-) in (6) over
the set of possible values for 7:

P(Qkg, 2ur, Qun) = E(P(r; kg, Qur, QuN)) (M)
To compute P we replace the expectation operator in (7) with an empirical
average:

P(2kR, 2ur, 2un) =

1 [Qur| 1 i
. )
|QUR| ; |'QKR| VkGZ.QKR v+ ZVnEQUN I(“k - n|| < pi,k)
where p; 1, is such that
S I(lk—rl| < pig) =i 9)

VreQunr



The average spatial precision P (a function) is a generalization of “conven-
tional” average precision (a number). The conventional definition of the average
precision assumes given sets of relevant and non-relevant documents (2yg and
Nun)- Tt also assumes a starting point for the computation: the top of the ranked
list (2kR)- In the following text unless otherwise noted we use term “precision”
to mean the average spatial precision.

4.4 User’s Strategy

As we mentioned at the beginning of this section, the evaluation analysis re-
quires some assumptions about the user’s strategy or how the user is looking for
the relevant material. It is impossible to define the degree of separation between
the relevant documents and the non-relevant documents without assuming some
searching strategy first. Generally, the strategy is rather intuitive and goes un-
specified. For example, consider a linear separation test — two sets of points in
2-dimensions are considered well-separated if it is possible to draw a straight
line between them. Here the assumed strategy is “draw the line; consider all the
points that are on one side of the line.”

We have assumed a particularly user’s strategy when we defined the average
precision. We assumed that the user begins from an arbitrary known relevant
document and looks at the closest unknown document. He or she then proceeds to
the next closest document and so on. In other words, the unknown documents are
reordered based on their proximity to the starting point. Average precision serves
as the measure of the visualization effectiveness. It characterizes not only the
spatial configuration presented by the visualization but also the user’s strategy.
Some experiments to validate the suggested strategy are clearly needed. This
was not done for this paper.

Note that this strategy depends to some degree upon the visualization we
have described. Other presentation approaches might require a different model
of interaction.

5 Experiments

For this study we used TREC ad-hoc queries with the corresponding collections
and relevance judgments [13]. Specifically, TREC topics 251-300 were converted
into queries and run against the documents in TREC volumes 2 and 4 (2.1GB).
Our intent was to study the effect that different types of queries have on the
result. For each TREC topic we considered four types of queries: (1) the title
of the topic; (2) the description field of the topic; (3) a query constructed by
extensive analysis and expansion [3]; and (4) a query constructed from the title
by expanding it using Local Context Analysis (LCA) [22].

The top 50 documents for each query were selected. Because each query
behaved differently, there were four different ranked lists for each topic. We
are interested in situations when there was not enough relevant material in
the top ten documents. We ignored each run that contained too many relevant



documents — it is a success already and the visualization is unnecessary. We also
discarded complete failures, or runs that had just a few relevant documents. We
are interested in how the visualization changes when the user’s feedback about
both relevant and non-relevant documents is provided. A small amount of either
relevant or non-relevant data renders such analysis uninteresting. Therefore, the
lists with fewer than 6 relevant documents in the top 50 or fewer than 3 or
greater than 9 relevant documents in the top 10 were discarded. This resulted
in 20 queries for title-only version, 24 for the description queries, 26 for the full
versions, and 17 for the expanded title version.

We also collected the same data using a different set of queries on a differ-
ent collection. We used TREC topics 301-350 to create the queries and ran the
queries against TREC volumes 4 and 5 (2.2GB). Again four different types of
queries were constructed: (1) the title of the topic; (2) the title and the descrip-
tion field of the topic; (3) the full version constructed by expansion [4]; and (4)
the expanded version of title query. The same restrictions were imposed on the
retrieved set. This resulted in 25, 27, 25, and 22 queries of each type, respectively.

5.1 Vector Generation and Embedding

For each document we created a vector V such that v; was a tf - idf weight of
the ith term in the document. For each query this resulted in a set of vectors in
t-space, where t is the size of the vocabulary of the top 50 retrieved documents
(about 3000 words in most cases).

The t-dimensional vectors were embedded in 1-, 2-, and 3-dimensional space
using the spring-embedder described in Section 3. Distance between vectors was
measured by the sine of the angle between the vectors. The embedded structure
depended on the number of springs among objects. This number is determined by
a threshold: a maximum distance between documents at which the corresponding
objects are connected with a spring. For a set of 50 objects there are 1225
different spring configurations, and therefore, 1225 different embeddings.

Figure 1 shows several presentations of the 50 documents retrieved in re-
sponse to a representative query. Figures 1a and 1b show that the relevant doc-
uments (dark spheres) are very well separated from the non-relevant documents
(light spheres) in both 2- and 3-D embeddings of the visualization.

5.2 Threshold Selection

Nothing in the spring-embedding approach suggests a way of choosing one thresh-
old value over another (i.e., one embedding over another). In the absence of the
information we would have to randomly select one structure to show to the user.
We analyze system performance by averaging precision over all possible values
of threshold.

We also determine what is the probability of randomly selecting a “good”
threshold value. For all queries in question and for all possible spatial embeddings
(for all threshold values) we count the number of of times each average precision
value occurs and normalize them over the total number of embeddings. This



gives us probability distribution for precision values. If we take this distribution,
fix some value of the precision (precg), and add all the values in the distribution
for each point that exceeds precg, we compute the probability for an arbitrary
selected spatial configuration among all possible embeddings (remember, that
the embeddings vary because of the threshold) to exceed precy, or P(prec|prec >
preco)

Our hypothesis is that embeddings with high spatial structure will have high
precision score. Here we rely on the Cluster Hypothesis: if the spatial structure
has clusters, it is likely that these clusters are “pure” clusters of relevant doc-
uments. The clusters of non-relevant documents are also possible, but “mixed”
clusters are less likely. As an alternative to selecting the threshold value ran-
domly, we choose an embedding with 7 = max(L(h) — h) in the top 20% of the
values ranging over all threshold values.

5.3 Warping

One hypothesis of this work was that if the system had information about the
relevance or non-relevance of some documents, it could adjust the visualization to
emphasize the separation between the two classes. To this end, we implemented
a form of relevance feedback to create a new set of vectors.

A subset of the 50 documents being used was presumed known and marked as
relevant or not using the TREC relevance judgments. We experimented with the
subsets of different sizes. The known relevant documents were averaged to create
a representative relevant vector, Vg. Similarly, the remaining known non-relevant
documents were averaged to create a representative non-relevant document, V.
With AV = Vg — 0.25 - Vv, each known relevant vector was modified by adding
AV to it and the known non-relevant vectors were modified by subtracting AV.
Any resulting negative values were replaced by zero.

This approach is very similar to relevance feedback methods traditionally ap-
plied in Information Retrieval, but rather than modifying the query, the relevant
documents themselves are modified to be brought “closer” to each other.

The vectors were modified in ¢-dimensional space and the entire set of 50
was then embedded in 1-, 2-; and 3-dimensional space as described previously.
The hope was that unjudged relevant documents would move towards the known
relevant, and unjudged non-relevant would shift towards the known non-relevant.

Figure 1c shows how the warping process can improve the separation between
relevant and non-relevant documents. It shows the same documents as those
in Figure 1b, but with space warping added. The relevant and non-relevant
documents are still grouped apart from each other, but the location of the groups
is much more easily recognizable — particularly since 10 of the documents in the
presentation have already been judged.

5.4 Restraining Spheres

An advantage of a ranked list is the direction it implies: the user always knows
where to start looking for relevant information (at the top of the list) and where



to go to keep looking (down the list). We observed that the space warping, how-
ever effective it is in bringing together relevant documents, tends to “crowd” the
objects, making the whole structure more compact and not easily separable. We
developed a small modification to the warping approach that enhances separa-
tion among documents. At the same time this technique creates a general sense
of direction on the object structure.

During spring-embedding, judged relevant documents were forced to lie in-
side a small sphere. Similarly, judged non-relevant documents were forced into
another sphere positioned apart from the first one. The rest of the documents
were allowed to assume any location outside of these spheres. In other words,
we took the spring-embedded structure by the judged documents and “pulled it
apart”.

Figures 1d shows the effect of restraining spheres. In this particular case, the
simple warping would probably be useful, but the location of unjudged relevant
documents is even more obvious since the documents have been stretched.

6 Results and Analysis

We begin by assuming that the user has identified two documents: one relevant
and one non-relevant. (We believe this is a reasonable strategy and almost always
could be done by looking at the titles in the ranked list.) For simplicity, let us
assume the user identified the highest ranked relevant and the highest ranked
non-relevant document. We evaluate how quickly the user would be able to find
the rest of the relevant documents starting from the known relevant one using
the spatial information.

6.1 Threshold Selection

In the absence of any other information, a threshold value would have to be
chosen randomly. Limiting our choice to the embeddings with spatial structure
(1) in the top 20% has proved very effective. The average precision across all
“eligible” threshold values was significantly increased by 17.2% (pi_est < 107°).
The solid line on Figures 2a and 2b show how the threshold selection procedure
increases the probability of randomly choosing a high quality spatial structure
without any information supplied by the user. The effect is also consistent across
relevance feedback methods. Note that there is almost no change in maximum
and minimum values of precision. It means the method does not limit our choices
of quality on the spatial structure: it just makes it more probable we will select
a “good” one.

6.2 Comparison to Ranked List

Table 1 shows average precision values for different query sets in different di-
mensions. (Recall that spatial precision is used.) The ranked list is treated as an
embedding in 1-dimension where each document is positioned on a line according
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Fig. 1. Visualization of retrieved documents for one of the queries. Both 2- and 3-
space embeddings are shown, plus two variations on the 3-space. Relevant documents
are shown as black spheres; non-relevant as grey.

to its rank value. In this table, the numbers for the ranked list are always better
than the numbers for the embedded structures. However, there are several impor-
tant points to consider. First, the precision numbers for spatial embeddings are
averaged across many different configurations. If only the best possible precision
value is considered for each query, the precision numbers are about 75-80% (20%
higher than for the ranked list). Second, the threshold selection procedure signif-
icantly improves the result. Third, the actual numbers are not that different. For
example, compare the first and the last columns with numbers. For each query
we are considering 50 documents. There are 18 relevant documents on average.
A difference of 6% means that the user will consider one extra non-relevant doc-
ument before finding all the relevant ones. Last, in this experiment we assumed
that only the top ranked relevant document is known. Table 3 shows that when
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Fig. 2. Probability of selecting an embedding at random with a given precision value
or higher for the full queries on TREC5 collection in 2 dimensions. It illustrates the
effect of different user’s feedback techniques. (a) No restrictions are imposed on the set
of possible embeddings. (b) The set of embeddings is limited by the threshold selection
procedure.

all the relevant documents from the top 10 are known both ranked list and vi-
sualization perform equally — in 12 out of 24 points visualization outperforms
ranked list.

6.3 Dimensionality Effect

We hypothesized that extra dimensions would prove useful for the task of visu-
alization of separation between documents. Our results support this hypothesis
only partially. Indeed, a step from 1 dimension to 2 leads to a statistically sig-
nificant jump of 23.1% in precision (p < 107°). The difference between 2- and
3-dimensional embeddings is 1.1%, and this result, however consistent, is not
significant. (It is significant by the sign test, but not by the t-test. The cut-off
value of p = 0.05 is used in both tests.)

Figure 3 shows how an increase in dimensionality of embedding leads to a
general growth in precision. It is difficult to see, but the maximum precision value
for 1-D is higher than for 2-D or 3-D. It means that a better separation between
relevant and non-relevant documents could be achieved in 1-dimension than in
2- or 3-dimensions. However, to randomly select a high precision structure in
1-dimension is extremely difficult.

6.4 Interactive Embedding

We studied how the quality of the visualization changes as the system is supplied
with more and more relevance information. Given the first relevant /non-relevant
pair of documents, we use it to warp the embedding space and apply the restrain-
ing spheres. Then we add the information about the next relevant/non-relevant



Table 1. Visualization quality evaluation of different query sets in different dimensions.
Percent of average precision is shown. The first column is for the system’s ranked
list. The second column is for the original structure in ¢-dimensional space. The third
column shows the result of spring-embedding. The last column is for embedding with
threshold selection done by 7 measure. The relevance judgments for two documents
are known to the system — the top ranked both relevant and non-relevant documents.

Embedding
Queries Rank| ¢-D |w/o threshold|w/ threshold
List |space| selection selection
1-D 2-D 3-D|1-D 2-D 3-D
Title 63.0 | 43.8 |38.0 41.8 41.8|42.5 58.2 59.1
TREC5 |Desc. 54.7 142.1 |139.2 42.1 42.1|41.0 51.3 52.2
Full 58.4 | 53.1 |45.3 46.3 46.7|47.0 49.9 50.9
Exp. Title| 66.6 | 60.0 |46.6 48.5 48.5|49.0 57.3 59.7
Title 58.8 | 52.1 (44.7 47.5 47.8146.9 57.6 59.9
TREC6 |Desc. 57.7 | 48.2 |139.8 44.0 44.6 |41.7 54.8 55.3
Full 68.6 | 53.9 |42.5 48.8 49.5|43.4 57.9 59.4
Exp. Title| 64.3 | 52.0 {42.3 45.5 45.9|44.0 55.9 59.0
! \\\\ — 1D
N
i: 0.8 B UEEE— e I D
A \
E 0.6 N —— 3D
5 AN
S 04 S
; b
& 02 = S
\\%—-&
40.5 54.4 68.3 82.2

Average spatial precision, P(%)

Fig. 3. Probability of selecting an embedding with a given precision value or higher for
the full queries on TRECS5 collection. The effect of different dimensions on the original
embedding is illustrated. The set of embeddings is limited by the threshold selection
procedure. The values on X-axis are averaged over the query set.

pair. And so on. Table 2 and Figure 4 illustrate how the average precision in-
creases as more data become available to the system. We show the average pre-
cision computed starting from five top ranked relevant documents. The warping
does not have any effect after the first two steps. The restraining spheres keep
pulling the documents apart; however, their influence is also diminishing.



Table 2. Average precision computed starting from the first 5 relevant documents.
The retrieved documents from TREC5/full queries are embedded in 2 dimensions. The
first column of numbers is for the case when no feedback has been yet received.

Type of Number of pairs judged
feedback 0 1 2 3 5
warping 49.3 50.5 514 514 515
restraining |49.3 49.9 514 523 534
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Fig. 4. Average precision computed starting from the first § relevant documents. The
retrieved documents from TRECS5/full queries are embedded in 2 dimensions.

6.5 User’s Feedback

Our second strategy was to evaluate the effect of a user’s feedback on the vi-
sualization. Suppose the user extended his or her effort and judged the top 10
documents in the ranked list. We are interested in how fast it is possible to iden-
tify the rest of the relevant material starting from the known relevant documents.
We compare the effects warping and restraining have on this task.

From Table 3 we conclude that warping did not do as well as we expected. It
increased average precision by 1.1% consistently, but not significantly (psign <
0.02 and p;_¢est < 0.37). It actually hurt precision in 3D. The effect of warping
together with restraining was more profound and nearly always beneficial. The
procedure significantly increased precision by 7.4% (psign < 0.001 and pi—test <
0.037).

Figures 2a and 2b show that feedback techniques increase the probability
of selecting an embedded structure with high precision value. The growth is
observed both with and without threshold selection, but with threshold selection
the difference between restrained and original cases is more prominent.



Table 3. Relevance feedback effect on different queries in different dimensions. Percent
of average spatial precision is shown. The threshold selection procedure was applied.

Queries Rank|Embedded|Original| Warping Restraining
List in

1-D 35.7 [36.2 (+1.3%)|31.5 (-11.7%)

Title 46.8 2-D 47.3 (489 (+3.3%) |40.7 (-14.0%)

3-D 48.4 [50.3 (+3.9%) |40.2 (-17.0%)

1-D 38.6 (39.8 (+3.3%)(37.1 (-3.1%)

Desc. 40.8 2-D 48.5 |48.8 (+0.6%) |49.6 (+2.2%)

TREC5 3-D 49.6 (48.3 (-2.5%) |47.3 (-4.5%)

1D 419 |42.4 (+1.2%) |47.3 (+12.8%)

Full 43.1 2-D 45.9 (47.1 (+2.8%)|52.0 (+13.4%)

3-D 46.1 |47.0 (+2.0%) |47.5 (+3.0%)

1-D 42.4 |42.7 (+0.6%) |51.7 (+22.1%)

Exp. Title |42.5 2-D 46.2 |46.8 (+1.4%) |54.4 (+17.8%)

3-D 46.6 (46.2 (-0.8%) |52.4 (+12.5%)

1-D 429 |45.0 (+4.8%) |45.7 (+6.6%)

Title 50.6 2-D 53.6 [53.9 (+0.7%) |57.4 (+7.2%)

3-D 55.9 [55.4 (-0.9%) |58.9 (+5.5%)

1-D 37.6 |38.8 (+3.2%) |43.8 (+16.6%)

Desc.+Title| 45.7 2-D 49.8 [51.0 (+2.4%) |56.2 (+13.0%)

TREC6 3-D 51.3 [50.9 (-0.8%) |56.4 (+9.9%)

1-D 36.3 [37.4 ( +2.9%)|44.5 (+22.5%)

Full 53.1 2-D 46.6 [47.0 (+0.7%) |55.3 (+18.5%)

3-D 489 (475 (-2.8%) |54.0 (+10.5%)

1-D 39.1 (387 (-0.9%) |42.5 (+8.9%)

Exp. Title |53.7 2-D 48.4 |49.7 (+2.8%)|56.0 (+15.7%)

3-D 50.6 |50.0 (-1.1%) |56.5 (+11.7%)

We also observed a strong effect that poorly formulated and ambiguous
queries have on feedback. The restraining spheres largely decreased the pre-
cision of the embeddings generated for documents retrieved by the title queries
on TRECS collection. Expanding the “bad” queries (see “TREC5/Exp. Title”
row in Table 3) to eliminate the possible ambiguity seems to alleviate the prob-
lem. The TRECG title queries were created to be of higher quality and ranked
better.

6.6 Best Case Analysis

We have also done some “best case” analysis, when instead of averaging precision
over the set of possible embeddings we considered the structure with highest
precision. In this case the values are about 15-20 points higher than in the average
case and the system beats ranked list hands down. There are good embeddings
out there — it is just difficult to find them.



7 Conclusion

In this paper we presented a non-interactive analysis of graphical interface for
an information retrieval system that might be part of a digital library. Such
analysis could help the researcher to isolate what part of the performance in a
system-user pair is attributed to the visualization as compared to the user’s skill.
It could help the researcher to form an objective opinion of the system’s abilities,
generate clear expectations of the system performance in real life situations. We
envision this approach as a companion to a user study — clearly stated hypotheses
about the system actions should lead to a more accurate and potentially more
productive user study.

— It has been known for at least two decades that the Cluster Hypothesis is
true within the top-ranked retrieved documents. Although the system used
in this study does not explicitly generate clusters, we show that the objects
representing relevant documents tend to group together. Each query has, on
average, about 18 relevant documents in the top 50. If the documents are
randomly scattered in space, one would expect an average precision be about
27.8%. The average precision value around 50% speaks of clustering among
relevant documents.

— In the context of our visualization, we confirmed the hypothesis that rele-
vance feedback methods can improve separation between relevant and non-
relevant documents. Figure 1 shows an example of how these methods can
have a significant influence on the embedding structure.

— We have hypothesized that an extra dimension is always helpful for visual-
ization. Our results support this hypothesis only partially. There is a clear
advantage in using higher dimensions over 1-D. However, there is almost no
improvement in adding an extra dimension to a 2-D visualization.

— We have introduced an evaluation technique to assess the system’s perfor-
mance off-line. That allowed us to collect a large amount of data to make
statistically significant claims about the system’s quality without requiring
an extensive user study.

However, we made an important assumption that a clear separation between
relevant and non-relevant material will help the user to find the relevant
material. This assumption is rather intuitive, but nevertheless a user study
is necessary for its validation.

We have also made some assumptions about the user’s search strategy. An
alternative strategies could result from observations of real users. Our anal-
ysis allows us to compare different strategies and select the best one for the
visualization.

— The Cluster Hypothesis also helped us to select good embedding structures.
As a result we show that embeddings with high clumpiness value 7 tend to
have higher precision.

— The “best case” analysis shows that the suggested visualization has a very
high potential. It seems to be worthwhile to attempt a deeper investigation
in how to make the threshold selection process more robust.



— The suggested visualization method in its current state (no robust threshold
selection procedure) works on average just about as well as a ranked list for
finding relevant documents. In another study [4] most of the users loved this
visualization: they found it intuitive and fun to use. That study also found no
difference in precision between ranked list and 3-D visualization. We provide
additional support that suggests visualization is neither better nor worse
than a ranked list. In this study we showed that although the visualization
does not help, it at least does not hinder the actual effectiveness of the
system and it has much potential to be better.

7.1 Future Work

In this study we considered only two classes of documents: relevant and non-
relevant. This was caused by the lack of data of any other kind. We are looking
into extending our approach into situations when the user places the relevant
documents into multiple classes. That task is modeled after the interactive TREC
task of “aspect retrieval.”

We are planning to do more work to investigate different user strategies
before attempting a real user study. The user study is an important final test
of our hypotheses. We are also interested in visualizations that show how new
documents relate to previously known material.

In this study we assumed that the user has already found some of the relevant
documents (e.g., by means of the ranked list). We plan to look into the problem
of helping the user to establish these first relevant documents. One way is to
check the “clumpiest” areas of the visualization.
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