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Abstract

In this paper, we propose a novel method

for semi-supervised learning of non-

projective log-linear dependency parsers

using directly expressed linguistic prior

knowledge (e.g. a noun’s parent is often a

verb). Model parameters are estimated us-

ing a generalized expectation (GE) objec-

tive function that penalizes the mismatch

between model predictions and linguistic

expectation constraints. In a comparison

with two prominent “unsupervised” learn-

ing methods that require indirect biasing

toward the correct syntactic structure, we

show that GE can attain better accuracy

with as few as 20 intuitive constraints. We

also present positive experimental results

on longer sentences in multiple languages.

1 Introduction

Early approaches to parsing assumed a grammar

provided by human experts (Quirk et al., 1985).

Later approaches avoided grammar writing by

learning the grammar from sentences explicitly

annotated with their syntactic structure (Black et

al., 1992). While such supervised approaches have

yielded accurate parsers (Charniak, 2001), the

syntactic annotation of corpora such as the Penn

Treebank is extremely costly, and consequently

there are few treebanks of comparable size.

As a result, there has been recent interest in

unsupervised parsing. However, in order to at-

tain reasonable accuracy, these methods have to

be carefully biased towards the desired syntac-

tic structure. This weak supervision has been

encoded using priors and initializations (Klein

and Manning, 2004; Smith, 2006), specialized

models (Klein and Manning, 2004; Seginer,

2007; Bod, 2006), and implicit negative evi-

dence (Smith, 2006). These indirect methods for

leveraging prior knowledge can be cumbersome

and unintuitive for a non-machine-learning expert.

This paper proposes a method for directly guid-

ing the learning of dependency parsers with nat-

urally encoded linguistic insights. Generalized

expectation (GE) (Mann and McCallum, 2008;

Druck et al., 2008) is a recently proposed frame-

work for incorporating prior knowledge into the

learning of conditional random fields (CRFs) (Laf-

ferty et al., 2001). GE criteria express a preference

on the value of a model expectation. For example,

we know that “in English, when a determiner is di-

rectly to the left of a noun, the noun is usually the

parent of the determiner”. With GE we may add

a term to the objective function that encourages a

feature-rich CRF to match this expectation on un-

labeled data, and in the process learn about related

features. In this paper we use a non-projective de-

pendency tree CRF (Smith and Smith, 2007).

While a complete exploration of linguistic prior

knowledge for dependency parsing is beyond the

scope of this paper, we provide several promis-

ing demonstrations of the proposed method. On

the English WSJ10 data set, GE training outper-

forms two prominent unsupervised methods using

only 20 constraints either elicited from a human

or provided by an “oracle” simulating a human.

We also present experiments on longer sentences

in Dutch, Spanish, and Turkish in which we obtain

accuracy comparable to supervised learning with

tens to hundreds of complete parsed sentences.

2 Related Work

This work is closely related to the prototype-

driven grammar induction method of Haghighi

and Klein (2006), which uses prototype phrases

to guide the EM algorithm in learning a PCFG.

Direct comparison with this method is not possi-

ble because we are interested in dependency syn-

tax rather than phrase structure syntax. However,

the approach we advocate has several significant



advantages. GE is more general than prototype-

driven learning because GE constraints can be un-

certain. Additionally prototype-driven grammar

induction needs to be used in conjunction with

other unsupervised methods (distributional simi-

larity and CCM (Klein and Manning, 2004)) to

attain reasonable accuracy, and is only evaluated

on length 10 or less sentences with no lexical in-

formation. In contrast, GE uses only the provided

constraints and unparsed sentences, and is used to

train a feature-rich discriminative model.

Conventional semi-supervised learning requires

parsed sentences. Kate and Mooney (2007) and

McClosky et al. (2006) both use modified forms

of self-training to bootstrap parsers from limited

labeled data. Wang et al. (2008) combine a struc-

tured loss on parsed sentences with a least squares

loss on unlabeled sentences. Koo et al. (2008) use

a large unlabeled corpus to estimate cluster fea-

tures which help the parser generalize with fewer

examples. Smith and Eisner (2007) apply entropy

regularization to dependency parsing. The above

methods can be applied to small seed corpora, but

McDonald1 has criticized such methods as work-

ing from an unrealistic premise, as a significant

amount of the effort required to build a treebank

comes in the first 100 sentences (both because of

the time it takes to create an appropriate rubric and

to train annotators).

There are also a number of methods for unsu-

pervised learning of dependency parsers. Klein

and Manning (2004) use a carefully initialized and

structured generative model (DMV) in conjunc-

tion with the EM algorithm to get the first positive

results on unsupervised dependency parsing. As

empirical evidence of the sensitivity of DMV to

initialization, Smith (2006) (pg. 37) uses three dif-

ferent initializations, and only one, the method of

Klein and Manning (2004), gives accuracy higher

than 31% on the WSJ10 corpus (see Section 5).

This initialization encodes the prior knowledge

that long distance attachments are unlikely.

Smith and Eisner (2005) develop contrastive

estimation (CE), in which the model is encour-

aged to move probability mass away from im-

plicit negative examples defined using a care-

fully chosen neighborhood function. For instance,

Smith (2006) (pg. 82) uses eight different neigh-

borhood functions to estimate parameters for the

DMV model. The best performing neighborhood

1R. McDonald, personal communication, 2007

function DEL1ORTRANS1 provides accuracy of

57.6% on WSJ10 (see Section 5). Another neigh-

borhood, DEL1ORTRANS2, provides accuracy of

51.2%. The remaining six neighborhood func-

tions provide accuracy below 50%. This demon-

strates that constructing an appropriate neighbor-

hood function can be delicate and challenging.

Smith and Eisner (2006) propose structural an-

nealing (SA), in which a strong bias for local de-

pendency attachments is enforced early in learn-

ing, and then gradually relaxed. This method is

sensitive to the annealing schedule. Smith (2006)

(pg. 136) use 10 annealing schedules in conjunc-

tion with three initializers. The best performing

combination attains accuracy of 66.7% on WSJ10,

but the worst attains accuracy of 32.5%.

Finally, Seginer (2007) and Bod (2006) ap-

proach unsupervised parsing by constructing

novel syntactic models. The development and tun-

ing of the above methods constitute the encoding

of prior domain knowledge about the desired syn-

tactic structure. In contrast, our framework pro-

vides a straightforward and explicit method for in-

corporating prior knowledge.

Ganchev et al. (2009) propose a related method

that uses posterior constrained EM to learn a pro-

jective target language parser using only a source

language parser and word alignments.

3 Generalized Expectation Criteria

Generalized expectation criteria (Mann and Mc-

Callum, 2008; Druck et al., 2008) are terms in

a parameter estimation objective function that ex-

press a preference on the value of a model expec-

tation. Let x represent input variables (i.e. a sen-

tence) and y represent output variables (i.e. a parse

tree). A generalized expectation term G(λ) is de-

fined by a constraint function G(y,x) that returns

a non-negative real value given input and output

variables, an empirical distribution p̃(x) over in-

put variables (i.e. unlabeled data), a model distri-

bution pλ(y|x), and a score function S:

G(λ) = S(Ep̃(x)[Epλ(y|x)[G(y,x)]]).

In this paper, we use a score function that is the

squared difference of the model expectation of G

and some target expectation G̃:

Ssq = −(G̃ − Ep̃(x)[Epλ(y|x)[G(y,x)]])2 (1)

We can incorporate prior knowledge into the train-

ing of pλ(y|x) by specifying the from of the con-

straint function G and the target expectation G̃.



Importantly, G does not need to match a particular

feature in the underlying model.

The complete objective function2 includes mul-

tiple GE terms and a prior on parameters3, p(λ)

O(λ;D) = p(λ) +
∑

G

G(λ)

GE has been applied to logistic regression mod-

els (Mann and McCallum, 2007; Druck et al.,

2008) and linear chain CRFs (Mann and McCal-

lum, 2008). In the following sections we apply

GE to non-projective CRF dependency parsing.

3.1 GE in General CRFs

We first consider an arbitrarily structured condi-

tional random field (Lafferty et al., 2001) pλ(y|x).
We describe the CRF for non-projective depen-

dency parsing in Section 3.2. The probability of

an output y conditioned on an input x is

pλ(y|x) =
1

Zx

exp
(

∑

j

λjFj(y,x)
)

,

where Fj are feature functions over the cliques

of the graphical model and Z(x) is a normaliz-

ing constant that ensures pλ(y|x) sums to 1. We

are interested in the expectation of constraint func-

tion G(x,y) under this model. We abbreviate this

model expectation as:

Gλ = Ep̃(x)[Epλ(y|x)[G(y,x)]]

It can be shown that partial derivative of G(λ) us-

ing Ssq
4 with respect to model parameter λj is

∂

∂λj

G(λ) = 2(G̃ − Gλ) (2)

(

Ep̃(x)

[

Epλ(y|x) [G(y,x)Fj(y,x)]

−Epλ(y|x) [G(y,x)]Epλ(y|x) [Fj(y,x)]
])

.

Equation 2 has an intuitive interpretation. The first

term (on the first line) is the difference between the

model and target expectations. The second term

2In general, the objective function could also include the
likelihood of available labeled data, but throughout this paper
we assume we have no parsed sentences.

3Throughout this paper we use a Gaussian prior on pa-
rameters with σ2

= 10.
4In previous work, S was the KL-divergence from the tar-

get expectation. The partial derivative of the KL divergence
score function includes the same covariance term as above
but substitutes a different multiplicative term: G̃/Gλ.

(the rest of the equation) is the predicted covari-

ance between the constraint function G and the

model feature function Fj . Therefore, if the con-

straint is not satisfied, GE updates parameters for

features that the model predicts are related to the

constraint function.

If there are constraint functions G for all model

feature functions Fj , and the target expectations

G̃ are estimated from labeled data, then the glob-

ally optimal parameter setting under the GE objec-

tive function is equivalent to the maximum likeli-

hood solution. However, GE does not require such

a one-to-one correspondence between constraint

functions and model feature functions. This al-

lows bootstrapping of feature-rich models with a

small number of prior expectation constraints.

3.2 Non-Projective Dependency Tree CRFs

We now define a CRF pλ(y|x) for unlabeled, non-

projective5 dependency parsing. The tree y is rep-

resented as a vector of the same length as the sen-

tence, where yi is the index of the parent of word

i. The probability of a tree y given sentence x is

pλ(y|x) =
1

Zx

exp
(

n
∑

i=1

∑

j

λjfj(xi, xyi
,x)

)

,

where fj are edge-factored feature functions that

consider the child input (word, tag, or other fea-

ture), the parent input, and the rest of the sen-

tence. This factorization implies that dependency

decisions are independent conditioned on the in-

put sentence x if y is a tree. Computing Zx and the

edge expectations needed for partial derivatives re-

quires summing over all possible trees for x.

By relating the sum of the scores of all possible

trees to counting the number of spanning trees in a

graph, it can be shown that Zx is the determinant

of the Kirchoff matrix K, which is constructed us-

ing the scores of possible edges. (McDonald and

Satta, 2007; Smith and Smith, 2007). Computing

the determinant takes O(n3) time, where n is the

length of the sentence. To compute the marginal

probability of a particular edge k → i (i.e. yi =k),

the score of any edge k′ → i such that k′ 6= k is

set to 0. The determinant of the resulting modi-

fied Kirchoff matrix Kk→i is then the sum of the

scores of all trees that include the edge k → i. The

5Note that we could instead define a CRF for projective
dependency parse trees and use a variant of the inside outside
algorithm for inference. We choose non-projective because it
is the more general case.



marginal p(yi =k|x; θ) can be computed by divid-

ing this score by Zx (McDonald and Satta, 2007).

Computing all edge expectations with this algo-

rithm takes O(n5) time. Smith and Smith (2007)

describe a more efficient algorithm that can com-

pute all edge expectations in O(n3) time using the

inverse of the Kirchoff matrix K−1.

3.3 GE for Non-Projective Dependency Tree

CRFs

While in general constraint functions G may

consider multiple edges, in this paper we use

edge-factored constraint functions. In this case

Epλ(y|x)[G(y,x)]Epλ(y|x)[Fj(y,x)], the second

term of the covariance in Equation 2, can be

computed using the edge marginal distributions

pλ(yi|x). The first term of the covariance

Epλ(y|x)[G(y,x)Fj(y,x)] is more difficult to

compute because it requires the marginal proba-

bility of two edges pλ(yi, yi′ |x). It is important to

note that the model pλ is still edge-factored.

The sum of the scores of all trees that contain

edges k → i and k′ → i′ can be computed by set-

ting the scores of edges j → i such that j 6= k and

j′ → i′ such that j′ 6= k′ to 0, and computing the

determinant of the resulting modified Kirchoff ma-

trix Kk→i,k′→i′ . There are O(n4) pairs of possible

edges, and the determinant computation takes time

O(n3), so this naive algorithm takes O(n7) time.

An improved algorithm computes, for each pos-

sible edge k → i, a modified Kirchoff matrix

Kk→i that requires the presence of that edge.

Then, the method of Smith and Smith (2007) can

be used to compute the probability of every pos-

sible edge conditioned on the presence of k → i,

pλ(yi′ =k′|yi = k,x), using K−1
k→i. Multiplying

this probability by pλ(yi=k|x) yields the desired

two edge marginal. Because this algorithm pulls

the O(n3) matrix operation out of the inner loop

over edges, the run time is reduced to O(n5).

If it were possible to perform only one O(n3)
matrix operation per sentence, then the gradient

computation would take only O(n4) time, the time

required to consider all pairs of edges. Unfortu-

nately, there is no straightforward generalization

of the method of Smith and Smith (2007) to the

two edge marginal problem. Specifically, Laplace

expansion generalizes to second-order matrix mi-

nors, but it is not clear how to compute second-

order cofactors from the inverse Kirchoff matrix

alone (c.f. (Smith and Smith, 2007)).

Consequently, we also propose an approxima-

tion that can be used to speed up GE training at

the expense of a less accurate covariance compu-

tation. We consider different cases of the edges

k → i, and k′ → i′.

• pλ(yi=k, yi′=k′|x)=0 when i=i′ and k 6=k′

(different parent for the same word), or when

i=k′ and k=i′ (cycle), because these pairs of

edges break the tree constraint.

• pλ(yi=k, yi′ =k′|x)=pλ(yi=k|x) when i=
i′, k=k′.

• pλ(yi =k, yi′ =k′|x)≈pλ(yi =k|x)pλ(yi′ =
k′|x) when i 6= i′ and i 6= k′ or i′ 6= k

(different words, do not create a cycle). This

approximation assumes that pairs of edges

that do not fall into one of the above cases

are conditionally independent given x. This

is not true because there are partial trees in

which k → i and k′ → i′ can appear sepa-

rately, but not together (for example if i = k′

and the partial tree contains i′ → k).

Using this approximation, the covariance for one

sentence is approximately equal to

n
∑

i

Epλ(yi|x)[fj(xi, xyi
,x)g(xi, xyi

,x)]

−

n
∑

i

Epλ(yi|x)[fj(xi, xyi
,x)]Epλ(yi|x)[g(xi, xyi

,x)]

−

n
∑

i

n
∑

k

pλ(yi =k|x)pλ(yk = i|x)fj(xi, xk,x)g(xk, xi,x).

Intuitively, the first and second terms compute a

covariance over possible parents for a single word,

and the third term accounts for cycles. Computing

the above takes O(n3) time, the time required to

compute single edge marginals. In this paper, we

use the O(n5) exact method, though we find that

the accuracy attained by approximate training is

usually within 5% of the exact method.

If G is not edge-factored, then we need to com-

pute a marginal over three or more edges, making

exact training intractable. An appealing alterna-

tive to a similar approximation to the above would

use loopy belief propagation to efficiently approx-

imate the marginals (Smith and Eisner, 2008).

In this paper g is binary and normalized by its

total count in the corpus. The expectation of g is

then the probability that it indicates a true edge.



4 Linguistic Prior Knowledge

Training parsers using GE with the aid of linguists

is an exciting direction for future work. In this pa-

per, we use constraints derived from several basic

types of linguistic knowledge.

One simple form of linguistic knowledge is the

set of possible parent tags for a given child tag.

This type of constraint was used in the devel-

opment of a rule-based dependency parser (De-

busmann et al., 2004). Additional information

can be obtained from small grammar fragments.

Haghighi and Klein (2006) provide a list of proto-

type phrase structure rules that can be augmented

with dependencies and used to define constraints

involving parent and child tags, surrounding or

interposing tags, direction, and distance. Finally

there are well known hypotheses about the direc-

tion and distance of attachments that can be used

to define constraints. Eisner and Smith (2005) use

the fact that short attachments are more common

to improve unsupervised parsing accuracy.

4.1 “Oracle” constraints

For some experiments that follow we use “ora-

cle” constraints that are estimated from labeled

data. This involves choosing feature templates

(motivated by the linguistic knowledge described

above) and estimating target expectations. Oracle

methods used in this paper consider three simple

statistics of candidate constraint functions: count

c̃(g), edge count c̃edge(g), and edge probability

p̃(edge|g). Let D be the labeled corpus.

c̃(g) =
∑

x∈D

∑

i

∑

j

g(xi, xj ,x)

c̃edge(g) =
∑

(x,y)∈D

∑

i

g(xi, xyi
,x)

p̃(edge|g) =
c̃edge(g)

c̃(g)

Constraint functions are selected according to

some combination of the above statistics. In

some cases we additionally prune the candidate

set by considering only certain templates. To

compute the target expectation, we simply use

bin(p̃(edge|g)), where bin returns the closest

value in the set {0, 0.1, 0.25, 0.5, 0.75, 1}. This

can be viewed as specifying that g is very indica-

tive of edge, somewhat indicative of edge, etc.

5 Experimental Comparison with

Unsupervised Learning

In this section we compare GE training with meth-

ods for unsupervised parsing. We use the WSJ10

corpus (as processed by Smith (2006)), which is

comprised of English sentences of ten words or

fewer (after stripping punctuation) from the WSJ

portion of the Penn Treebank. As in previous work

sentences contain only part-of-speech tags.

We compare GE and supervised training of an

edge-factored CRF with unsupervised learning of

a DMV model (Klein and Manning, 2004) using

EM and contrastive estimation (CE) (Smith and

Eisner, 2005). We also report the accuracy of an

attach-right baseline6. Finally, we report the ac-

curacy of a constraint baseline that assigns a score

to each possible edge that is the sum of the target

expectations for all constraints on that edge. Pos-

sible edges without constraints receive a score of

0. These scores are used as input to the maximum

spanning tree algorithm, which returns the best

tree. Note that this is a strong baseline because it

can handle uncertain constraints, and the tree con-

straint imposed by the MST algorithm helps infor-

mation propagate across edges.

We note that there are considerable differences

between the DMV and CRF models. The DMV

model is more expressive than the CRF because

it can model the arity of a head as well as sib-

ling relationships. Because these features consider

multiple edges, including them in the CRF model

would make exact inference intractable (McDon-

ald and Satta, 2007). However, the CRF may con-

sider the distance between head and child, whereas

DMV does not model distance. The CRF also

models non-projective trees, which when evaluat-

ing on English is likely a disadvantage.

Consequently, we experiment with two sets of

features for the CRF model. The first, restricted

set includes features that consider the head and

child tags of the dependency conjoined with the

direction of the attachment, (parent-POS,child-

POS,direction). With this feature set, the CRF

model is less expressive than DMV. The sec-

ond full set includes standard features for edge-

factored dependency parsers (McDonald et al.,

2005), though still unlexicalized. The CRF can-

not consider valency even with the full feature set,

but this is balanced by the ability to use distance.

6The reported accuracies with the DMV model and the
attach-right baseline are taken from (Smith, 2006).



feature ex. feature ex.

MD→ VB 1.00 NNS← VBD 0.75
POS← NN 0.75 PRP← VBD 0.75
JJ← NNS 0.75 VBD→ TO 1.00

NNP← POS 0.75 VBD→ VBN 0.75

ROOT→MD 0.75 NNS← VBP 0.75
ROOT→ VBD 1.00 PRP← VBP 0.75
ROOT→ VBP 0.75 VBP→ VBN 0.75
ROOT→ VBZ 0.75 PRP← VBZ 0.75

TO→ VB 1.00 NN← VBZ 0.75
VBN→ IN 0.75 VBZ→ VBN 0.75

Table 1: 20 constraints that give 61.3% accuracy

on WSJ10. Tags are grouped according to heads,

and are in the order they appear in the sentence,

with the arrow pointing from head to modifier.

We generate constraints in two ways. First,

we use oracle constraints of the form (parent-

POS,child-POS,direction) such that c̃(g) ≥ 200.

We choose constraints in descending order of

p̃(edge|g). The first 20 constraints selected using

this method are displayed in Table 1.

Although the reader can verify that the con-

straints in Table 1 are reasonable, we addition-

ally experiment with human-provided constraints.

We use the prototype phrase-structure constraints

provided by Haghighi and Klein (2006), and

with the aid of head-finding rules, extract 14

(parent-pos,child-pos,direction) constraints.7 We

then estimated target expectations for these con-

straints using our prior knowledge, without look-

ing at the training data. We also created a second

constraint set with an additional six constraints for

tag pairs that were previously underrepresented.

5.1 Results

We present results varying the number of con-

straints in Figures 1 and 2. Figure 1 compares

supervised and GE training of the CRF model, as

well as the feature constraint baseline. First we

note that GE training using the full feature set sub-

stantially outperforms the restricted feature set,

despite the fact that the same set of constraints

is used for both experiments. This result demon-

strates GE’s ability to learn about related but non-

constrained features. GE training also outper-

forms the baseline8.

We compare GE training of the CRF model

7Because the CFG rules in (Haghighi and Klein, 2006)
are “flattened” and in some cases do not generate appropriate
dependency constraints, we only used a subset.

8The baseline eventually matches the accuracy of the re-
stricted CRF but this is understandable because GE’s ability
to bootstrap is greatly reduced with the restricted feature set.

with unsupervised learning of the DMV model

in Figure 29. Despite the fact that the restricted

CRF is less expressive than DMV, GE training of

this model outperforms EM with 30 constraints

and CE with 50 constraints. GE training of the

full CRF outperforms EM with 10 constraints and

CE with 20 constraints (those displayed in Ta-

ble 1). GE training of the full CRF with the set of

14 constraints from (Haghighi and Klein, 2006),

gives accuracy of 53.8%, which is above the inter-

polated oracle constraints curve (43.5% accuracy

with 10 constraints, 61.3% accuracy with 20 con-

straints). With the 6 additional constraints, we ob-

tain accuracy of 57.7% and match CE.

Recall that CE, EM, and the DMV model in-

corporate prior knowledge indirectly, and that the

reported results are heavily-tuned ideal cases (see

Section 2). In contrast, GE provides a method to

directly encode intuitive linguistic insights.

Finally, note that structural annealing (Smith

and Eisner, 2006) provides 66.7% accuracy on

WSJ10 when choosing the best performing an-

nealing schedule (Smith, 2006). As noted in Sec-

tion 2 other annealing schedules provide accuracy

as low as 32.5%. GE training of the full CRF at-

tains accuracy of 67.0% with 30 constraints.

6 Experimental Comparison with

Supervised Training on Long

Sentences

Unsupervised parsing methods are typically eval-

uated on short sentences, as in Section 5. In this

section we show that GE can be used to train

parsers for longer sentences that provide compa-

rable accuracy to supervised training with tens to

hundreds of parsed sentences.

We use the standard train/test splits of the

Spanish, Dutch, and Turkish data from the 2006

CoNLL Shared Task. We also use standard

edge-factored feature templates (McDonald et al.,

2005)10. We experiment with versions of the dat-

9Klein and Manning (2004) report 43.2% accuracy for
DMV with EM on WSJ10. When jointly modeling con-
stituency and dependencies, Klein and Manning (2004) re-
port accuracy of 47.5%. Seginer (2007) and Bod (2006) pro-
pose unsupervised phrase structure parsing methods that give
better unlabeled F-scores than DMV with EM, but they do
not report directed dependency accuracy.

10Typical feature processing uses only supported features,
or those features that occur on at least one true edge in the
training data. Because we assume that the data is unlabeled,
we instead use features on all possible edges. This generates
tens of millions features, so we prune those features that oc-
cur fewer than 10 total times, as in (Smith and Eisner, 2007).
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Figure 1: Comparison of the constraint baseline and

both GE and supervised training of the restricted and

full CRF. Note that supervised training uses 5,301

parsed sentences. GE with human provided con-

straints closely matches the oracle results.
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Figure 2: Comparison of GE training of the re-

stricted and full CRFs with unsupervised learning of

DMV. GE training of the full CRF outperforms CE

with just 20 constraints. GE also matches CE with

20 human provided constraints.

sets in which we remove sentences that are longer

than 20 words and 60 words.

For these experiments, we use an oracle

constraint selection method motivated by the

linguistic prior knowledge described in Section 4.

The first set of constraints specify the most

frequent head tag, attachment direction, and

distance combinations for each child tag. Specif-

ically, we select oracle constraints of the type

(parent-CPOS,child-CPOS,direction,distance)11.

We add constraints for every g such that

c̃edge(g) > 100 for max length 60 data sets, and

c̃edge(g)>10 times for max length 20 data sets.

In some cases, the possible parent constraints

described above will not be enough to provide

high accuracy, because they do not consider other

tags in the sentence (McDonald et al., 2005).

Consequently, we experiment with adding an

additional 25 sequence constraints (for what are

often called “between” and “surrounding” fea-

tures). The oracle feature selection method aims to

choose such constraints that help to reduce uncer-

tainty in the possible parents constraint set. Con-

sequently, we consider sequence features gs with

p̃(edge|gs =1) ≥ 0.75, and whose corresponding

(parent-CPOS,child-CPOS,direction,distance)

constraint g, has edge probability p̃(edge|g) ≤
0.25. Among these candidates, we sort by

c̃(gs =1), and select the top 25.

We compare with the constraint baseline de-

scribed in Section 5. Additionally, we report

11For these experiments we use coarse-grained part-of-
speech tags in constraints.

the number of parsed sentences required for su-

pervised CRF training (averaged over 5 random

splits) to match the accuracy of GE training using

the possible parents + sequence constraint set.

The results are provided in Table 2. We first

observe that GE always beats the baseline, espe-

cially on parent decisions for which there are no

constraints (not reported in Table 2, but for exam-

ple 53.8% vs. 20.5% on Turkish 20). Second, we

note that accuracy is always improved by adding

sequence constraints. Importantly, we observe

that GE gives comparable performance to super-

vised training with tens or hundreds of parsed sen-

tences. These parsed sentences provide a tremen-

dous amount of information to the model, as for

example in 20 Spanish length ≤ 60 sentences, a

total of 1,630,466 features are observed, 330,856

of them unique. In contrast, the constraint-based

methods are provided at most a few hundred con-

straints. When comparing the human costs of

parsing sentences and specifying constraints, re-

member that parsing sentences requires the devel-

opment of detailed annotation guidelines, which

can be extremely time-consuming (see also the

discussion is Section 2).

Finally, we experiment with iteratively

adding constraints. We sort constraints with

c̃(g) > 50 by p̃(edge|g), and ensure that 50%

are (parent-CPOS,child-CPOS,direction,distance)

constraints and 50% are sequence constraints.

For lack of space, we only show the results for

Spanish 60. In Figure 3, we see that GE beats

the baseline more soundly than above, and that



possible parent constraints + sequence constraints complete trees

baseline GE baseline GE

dutch 20 69.5 70.7 69.8 71.8 80-160
dutch 60 66.5 69.3 66.7 69.8 40-80

spanish 20 70.0 73.2 71.2 75.8 40-80
spanish 60 62.1 66.2 62.7 66.9 20-40

turkish 20 66.3 71.8 67.1 72.9 80-160
turkish 60 62.1 65.5 62.3 66.6 20-40

Table 2: Experiments on Dutch, Spanish, and Turkish with maximum sentence lengths of 20 and 60. Observe that GE
outperforms the baseline, adding sequence constraints improves accuracy, and accuracy with GE training is comparable to
supervised training with tens to hundreds of parsed sentences.

parent tag true predicted

det. 0.005 0.005
adv. 0.018 0.013
conj. 0.012 0.001
pron. 0.011 0.009
verb 0.355 0.405
adj. 0.067 0.075
punc. 0.031 0.013
noun 0.276 0.272
prep. 0.181 0.165

direction true predicted

right 0.621 0.598
left 0.339 0.362

distance true predicted

1 0.495 0.564
2 0.194 0.206
3 0.066 0.050
4 0.042 0.037
5 0.028 0.031
6-10 0.069 0.033
> 10 0.066 0.039

feature (distance) false pos. occ.

verb→ punc. (>10) 1183
noun→ prep. (1) 1139
adj. → prep. (1) 855

verb→ verb (6-10) 756
verb→ verb (>10) 569
noun← punc. (1) 512
verb← punc. (2) 509
prep. ← punc. (1) 476
verb→ punc. (4) 427
verb→ prep. (1) 422

Table 3: Error analysis for GE training with possible parent + sequence constraints on Spanish 60 data. On the left, the
predicted and true distribution over parent coarse part-of-speech tags. In the middle, the predicted and true distributions over
attachment directions and distances. On the right, common features on false positive edges.
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Figure 3: Comparing GE training of a CRF and constraint
baseline while increasing the number of oracle constraints.

adding constraints continues to increase accuracy.

7 Error Analysis

In this section, we analyze the errors of the model

learned with the possible parent + sequence con-

straints on the Spanish 60 data. In Table 3, we

present four types of analysis. First, we present

the predicted and true distributions over coarse-

grained parent part of speech tags. We can see

that verb is being predicted as a parent tag more

often then it should be, while most other tags are

predicted less often than they should be. Next, we

show the predicted and true distributions over at-

tachment direction and distance. From this we see

that the model is often incorrectly predicting left

attachments, and is predicting too many short at-

tachments. Finally, we show the most common

parent-child tag with direction and distance fea-

tures that occur on false positive edges. From this

table, we see that many errors concern the attach-

ments of punctuation. The second line indicates a

prepositional phrase attachment ambiguity.

This analysis could also be performed by a lin-

guist by looking at predicted trees for selected sen-

tences. Once errors are identified, GE constraints

could be added to address these problems.

8 Conclusions

In this paper, we developed a novel method for

the semi-supervised learning of a non-projective

CRF dependency parser that directly uses linguis-

tic prior knowledge as a training signal. It is our

hope that this method will permit more effective

leveraging of linguistic insight and resources and

enable the construction of parsers in languages and

domains where treebanks are not available.
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