Energy Aware Information Retrieval from Mobile Phones

ABSTRACT

On mobile phones, Information Retrieval (IR) applications that search

over remote collections consume significant energy as a result of
network activity. Typical IR applications mainly focus on retrieving
and presenting relevant documents to users in an effective manner
and do not take into account the cost of network data transfer. De-
spite the improvements in network access, energy consumption of
network activity can seriously reduce battery lifetime constraining
the use of IR applications. Therefore, on mobile phones in addition
to being effective an IR application must also be energy efficient.

In this paper, we study the energy consumption of a typical IR
application on a mobile phone for the task of retrieving documents
residing on a remote server. Our measurements indicate that the
network activity of typical IR process consumes a substantial amount
of energy and can reduce battery life (up to 50%) when compared
to a completely local IR application. To explore opportunities for
saving energy, we first build a model for the energy consumption
of network activity induced by the IR application. Motivated by
the characteristics of this energy model, we explore two opportu-
nities for reducing energy consumption of a typical IR application:
1] Reducing the overall amount of data transferred using relevance
feedback and 2] Reducing the number of data transfers for each
query by bundling more data at each transfer opportunity. The mod-
ifications we propose provide substantial savings in energy (up to
25%) with additional benefits and trade-offs incurred in dead time
and latency. Actual implementations of the proposed modifications
confirm our model based findings.

1. INTRODUCTION

Smart-phones and PDA’s with their enhanced touch-screen dis-
plays and access to high-bandwidth data plans are becoming pow-
erful mobile computing devices. Recent query log studies of top
search engines indicate that the number of mobile users, and the
number and length of search sessions from mobile devices are in-
creasing [4, 8]. However, energy consumption of network activity
remains a key challenge to the use of searching for remote content
from a mobile phone.

Energy consumption of network activity on mobile phones has
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been studied for general data transfers, service discovery, location
sensing and transmission of sensor information [11],[5]. Previous
research on information retrieval from mobile phones has focused
on interface issues and handling the display and low computing
power constraints on mobile phones by adapting the search results
and the layout of web pages [10],[12],[9],[6] and location and con-
text aware search [3],[7],[1]. To the best of our knowledge there
has not been any previous research that considered the energy con-
sumption characteristics of a standard information retrieval process
on mobile phones.

Consider the standard information retrieval process: The user is-
sues a keyword query to which the retrieval engine responds with
a ranked list of snippets, typically with hyperlinks to documents.
The user peruses the snippets and then downloads one or more doc-
uments. The user requests additional result pages and repeats the
process until the information need is satisfied or another query is
entered. This process induces a significant amount of network ac-
tivity in terms of the amount of data transferred and the number
of transfers depending on the number of documents perused, the
effectiveness of the retrieval system and the number of results dis-
played per page. However, we do not know how much energy is
consumed per query under this process, how it affects battery life,
and how improvements in effectiveness can impact energy.

Indeed, standard information retrieval algorithms and applica-
tions were not designed for energy constrained devices such as mo-
bile phones. One of the main goals of the standard information
retrieval process is to present relevant information to the user as
quickly as possible without overwhelming the user. Consequently,
the number of results per page and the amount of information pre-
sented in a snippet are often determined based on display con-
straints, Ul factors and efficiency considerations such as latency of
responses. However, these choices can directly affect the network
activity in terms of the number of transfers and the amount of data
that gets transferred and may adversely impact energy consump-
tion. Modeling the network activity of a typical IR application and
understanding the energy consumption of network activity on mo-
bile phones can help to identify opportunities for reducing energy
consumption.

In this paper, we study the energy consumption characteristics
of standard information retrieval applications over a cellular data
network (GSM/EDGE). Using data transfer experiments we build
a simple model that can predict energy consumed for data transfers
of a given size. Based on the characteristics of the model we iden-
tify two simple opportunities for reducing energy consumption of
search. First, we can reduce energy consumption by reducing the
overall data transferred by improving retrieval effectiveness. Sec-
ond, we find that making fewer data transfers using bigger blocks
of data is more energy efficient than making more data transfers



using smaller blocks of data. Accordingly, we propose two mod-
ifications to the interaction model to include more data — more
snippets or documents — at each transfer opportunity to reduce the
overall energy consumption per query. Our model based evaluation
demonstrates that the modifications we propose can result in sig-
nificant energy savings (up to 25%) over the standard interaction
model. Further analysis show that the modifications also result in
additional benefits in terms of latency and dead time. Finally, we
validate our findings by using actual tuns of a search application
from a mobile phone. We conclude the energy consumption of IR
can be greatly improved by adapting IR to suit the energy model of
network activity.

2. MOTIVATION

Network activity on mobile phones consumes energy. The rate
and amount of energy consumption is dependent on a number of
factors such as the underlying network interface - cellular versus
Wi-Fi, the signal strength, network and channel congestion. Pre-
vious studies have shown that on GSM - a type of cellular data
network, power consurnption is an order of magnitude higher than
Wi-Fi and increases much faster with increase in data sizes. Our
initial energy measurements on a mobile phone (Figure 1) are con-
sistent with these results. While Wi-Fi is very energy efficient, it
is often not available, especially when mobile. Therefore, cellu-
lar data networks such as GSM/Edge are often used for performing
network activities from mobile phones. So, in this work we focus
on the energy consurnption of GSM/Edge networks.
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Figure 1: Energy consumpiion for daia transfers: Wi-Fi versus GSM
To demonstrate the energy consumption and reduction in battery
life due to network activity of an IR application, we first ran local
retrieval experiments on the phone. We simulate a user who repeat-
edly 1ssues queries, peruses snippets, selects relevant documents,
reads them and moves on to the next query. When we switch to
searching over a remote collection, the queries, snippets and docu-
ments are transferred over the cellular data network and incur ad-
ditional energy thereby reducing battery life. Table 1 displays the
energy consumption of a typical IR application using the queries
and documents for the TREC Robust 04 collection{described later).
Comparing the local versus network based search we see that there
1s almost a 50% reduction in battery life. Therefore, we focus on the
network-based search over GSM setting where energy consump-
tion is a critical 1ssue: We build an energy model for information
retrieval and explore avenues for reducing energy consumption.

3. AN ENERGY MODEL FOR IR

Our main goal 1s to model the average energy consumed in is-
suing a query and retrieving documents over the network. Under
this model reductions in energy will correspond (o an increase in
the battery life when runmng the same number of queries. Alter-

Method | Battery Life | Total Queries
Local 13.5 hours 800
Network | 6.48 hours 368

Table 1: Energy consumption of a standard Information Re-
trieval Application: Searching for 5 Relevant Documents for
each query in Robust 04 collection

natively, we can view the impact of energy savings in terms of the
number of additional queries that can be run under an improved re-
trieval method. For example, a 10% decrease in energy consumed
by method A over method B will mean that using method A we ex-
pect to tun 10% more queries before the battery drains completely.

The typical information retrieval process beging with a query 1s-
sued by a user. First, the user 1s presented with a results page that
consists of an ordered list of T snippets that serve to highlight the
relevant portions of the corresponding docurments. Then, the user
peruses the snippets, guesses the relevance of the documents based
on the snippets and selects a document to read. Iteratively, the user
selects other documents from the presented result page to read. If
necessary, the user will then proceed to request additional result
pages and repeat the process until the information need is satis-
fied or another query is entered. For consistency of analysis, we
will assumne the following: The user is interested in reading a fixed
number of relevant documents, r, for all queries and only selects
relevant documents for downloads. The network activity induced
for each query 1s a function of the number of result pages requested
and the numnber of documents downloaded by the user. In fact, if
the rth relevant document was retrieved at rank j, then the user must
have downloaded at least m = [T%] result pages each of length p
with 10 snippets, and r documents.

The energy consumed per query, E(g), is simply the sum of en-
ergy consumed by all data transfers, D{g) pertaining to the query:
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Using a reliable model that predicts energy consumption of data
transfers, we are able to estimate the energy consumnption of differ-

ent information retrieval systems without having to run time con-
surning retrieval experiments on the mobile phone.

3.1 Measuring Data Transfer Energy

To model the energy consumption of network activity induced by
an IR application, we first need to model the energy consumption
of individual data transfers. To this end, we obtain energy mea-
suremnents for data transfers of a wide range of data sizes. Ideally,
we would like to measure remaining battery life before and after
each data transfer to determine the energy consumed. However, it
18 hard to predict the remaining battery life accurately. For instance,
the device used in this study provides remaining battery life mea-
surernent in a coarse seven point scale and is also not very reliable
due to the non-linearity of battery drain. Instead, we use the fol-
lowing methodology: From the fully charged state, we repeat data
transfers of a given size, waiting for 10 seconds after each transfer,
until the battery drains completely. Based on the measured battery
life and average transfer time, we estimate the average energy per
data transfer as shown below.

The battery capacities are specified in terms of number of hours



the battery can retain its electric potential while a constant current is
drawn through it. For instance, a Nokia N95 phone has a specified
battery capacity of 950 mAh, i.e., the battery will last for 950 hours
if a steady current of 1milli-amperes is drawn from it. If we assume
unit time to be 1 second, then the total energy that the battery can
supply at a voltage of V. with a draw of 1mA is (950) % 0.001 * V.
Then, a reduced battery life [ for a particular data transfer exper-
iment implies that a higher current I is drawn through the battery
during each time instant of the data transfer (assuming at all other
times no current is drawn from the battery). Since the cumulative
energy that the battery provides is the same, we must have the cur-
rent drawn through the battery during each transfer time instance
as | = 20=0.0lxVe — 950 4 0,001 Amperes. Therefore, for a
given data transfer that lasts ¢ seconds, we must have the energy
consumption F(d) obtained as the sum of instantaneous power as
follows:

t
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3.2 Experiments

In this study we use a Nokia N95 smart phone, which runs Sym-
bian OS version 9.2 with S60 3rd Edition. The experiments for
network access were performed using a php/perl server and python
scripts as clients on the phone. The device has an idle battery life-
time of 230 hours and a battery capacity of 950 mAh. While we
restrict our experiments to a single phone for consistency purposes,
we believe the relationships we establish will hold for other devices
with similar battery capacities and network configurations.

We conducted data transfer experiments using both the cellular
data network GSM and Wi-Fi network interfaces. Each data trans-
fer experiment proceeded thus: First, the battery is charged until
it reaches its full capacity. Then a client application is invoked on
the phone which issues an http request to a server. The server upon
receiving the request transmits a fixed amount of data, some N KB,
to the phone. The phone upon completing the download, waits for
a fixed interval of time, 10 seconds, and then issues another http re-
quest. The whole process is repeated until the battery drains com-
pletely. For all the experiments, for each request/response, the data
transfer time (including the time to issue a request and receive a
response), the amount of data received and the system level power
indicator measurement were logged upon completion of each data
transfer on the phone.

3.3 Measurements based Model

Figure 2 shows the energy consumption and time taken for data
transfers of size 1K to 500K over GSM. The plot shows that the
energy consumption has a linear relationship with the data size —
for the data sizes we consider, increase in size of data causes a
proportional increase in the energy consumption.

From the plots, we infer two linear models to predict the en-
ergy consumed and the average time taken for transferring data of
a given size over GSM. The energy and time consumed by transfer-
ring data of size n kilobytes are given by the following equations:

E(n) = 0.0086(n) + 0.31 Wh ©6)
t(n) = 0.02(n) + 2.01 seconds (7)

Plugging the data transfer energy model back into Equation 1 the

PR@10 | Total Data (MB) | Energy/Query
0.1 137.96 1.95
0.5 55 0.80
0.9 45.7 0.65

Table 2: Retrieval Effectiveness vs. Energy Consumption:
PR@10 is the precision at the rank where the 10 relevant doc-
ument was retrieved.

energy consumed per query is

E(g)= Y (0.0086(|d|) +0.31) Wh (8)
deD(q)

The linear energy model is consistent with previous studies of
energy consumption of GSM/EDGE [2]. There are two charac-
teristics of the energy model that are of interest to us: First, both
reducing network activity in terms of number of transfers and the
data size per transfer result in energy savings. Second, from the
two models we see that there is a large overhead associated with
each data transfer for both energy and time taken to transfer. This
suggests that reducing the data transfers at the cost of increasing
the data size per transfer can lead to an overall reduction in energy
consumption without incurring an increase in latency.

In the subsequent sections we explore two ideas to exploit these
opportunities for saving energy: 1] In the standard IR model we
attempt to reduce the overall amount of network activity by im-
proving effectiveness of the IR system. 2] To reduce the number
of transfers, we look at modifications to the interaction model that
results in bundling more data at each transfer opportunity.

4. EFFECTIVENESS AND ENERGY

Improving retrieval effectiveness reduces the overall network ac-
tivity in two ways: 1] by reducing the overall amount of data that
gets transferred and 2] by reducing the number of transfers. To
study the impact of retrieval effectiveness on energy consumption,
we simulated three systems with varying levels of retrieval effec-
tiveness measured by the precision at the rank where the 10th rel-
evant document was retrieved, denoted by PR@ /0 (not to be con-
fused with P@10). For example, with a PR@10 of 0.5, the 10th
relevant document would be retrieved at rank 20. To illustrate the
potential savings, we assume that for each query, we know the loca-
tion of the 10th relevant document in the rank list and that the user
will not be interested in perusing the rank list beyond the 100th doc-
ument. We conducted three retrieval experiments on the phone cor-
responding to each level of system effectiveness. Each experiment
proceeded thus: For each query, we transfer a bundle of documents
created by adding relevant documents and non-relevant documents
to obtain the desired precision level. Then, we wait for a fixed inter-
val of time and then repeat the process for the next query until the
battery drains completely. Then, we can obtain the average energy
per query using Equation 5. Table 2 displays the measurements
using a set of 50 queries from the TREC Robust 04 collection.

Increasing system effectiveness decreases the overall amount of
data transferred and results in reduced energy consumption. In-
terestingly, the drop in energy consumption is higher for improve-
ments from 0.1 to 0.5 than from 0.5 to 0.9. Figure 3 shows that
in the low effectiveness region small improvements lead to larger
reductions in data transferred explaining the corresponding obser-
vations in the energy measurements.

To observe differences due to smaller improvements in system
effectiveness we analyze the energy consumption using the energy
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Figure 2: Energy consumption and iransfer times for data transfer of different sizes.
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Figure 3: Average response size summed over 50 queries — in MB (y-
axis) against the effectiveness of the reirieval system (x-axis) when the
user downloads documenis until 5 or 10 relevant documents.

model(Equation 8) in the following scenario: For each query the
user peruses aranked list of snippets, 5 at a time, and requests rele-
vant docurnents until 5 relevant documents are seen. Figure 4 plots
energy consurned for queries with different effectiveness. Poorly
performing queries cause high energy consurnption and the energy
benefits of improving precision quickly tapers off confirming the
trends we observed on the phone. This indicates that for a rea-
sonably effective retrieval system, we need significant improve-
ments in retrieval effectiveness to obtain substantial energy reduc-
tions while for a retrieval system with low effectiveness even small
improvements can prove to be useful.

Energy
]
z
T &
:
a5
H
E 4
L
a
1]
1] oz 04 ¥ 0g 1 12
Prec@5th Ral Dac

Figure 4: Per Query Energy Consumption for Robust 04: Energy
consumplion versus effectiveness.

4.1 Relevance Feedback for Reducing Energy

User interaction in the form ofrelevance feedback has been shown
to provide significant gains in retrieval effectiveness. We performed
simulations of a relevance feedback interaction on the phone as

follows: For each query, the user is presented with a result page
of snippets, the user peruses the smppets and downloads relevant
documents. When the user requests the subsequent result page we
make use of the documents that the user had downloaded to perform
relevance feedback. If the user did not download any new docu-
ments before requesting the result page then we continue sending
the next snippets from the previous retrieval. The process is re-
peated until the desired number of relevant documents 1s obtained
or up to 100 snippets have been examined. Figure 5 displays energy
consurnption using the baseline retrieval method and the relevance
feedback based method using the in the TREC Robust {4 collection
for varying number of required relevant documents. When retriev-
ing 5 relevant documnents the feedback method has lower energy
consurnption compared to the baseline method however as the num-
ber of relevant documents pursued by the user increases we see that
the feedback method’s energy consumption increases. We observed
that 1n this dataset, the size of the relevant documents retrieved by
the feedback method increased significantly when compared to the
baseline method which explains the reversal of energy gains.
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Figure 5: Energy consumpiion (y-axis) of standard reirieval and
relevance feedback reirieval when the mumber of relevant documenis
downloaded are varied (x-axis).

Improving system effectiveness reduces the overall amount of
data transferred, but the resulting energy savings are limited, par-
ticularly when the baseline system accuracy 1s reasonable. Fur-
thermore, only using positive relevance feedback does not provide
much improvernent for poorly performing queries, further limiting
the opportunity for reducing energy consumption using feedback.
Figure 6 shows the average number of result pages for each query
under different levels of system effectiveness. We see that the re-
duction in the number of result pages and the number of data trans-
fers is small even with large improvements in system effectiveness.
This result suggests that we should consider ways that directly re-
duce the number of transfers.
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Figure 6: Effectiveness versus Number of Result Pages.

5. INTERACTION MODELS

In this section, we focus on the interaction models with the goal
of reducing the number of data transfers per query. Typically, the
number of data transfers for a given query corresponds (o the sum
of the number of result pages that the user looks at and the number
of documents that the user downloads. The number of result pages
depends on the interaction model used by the IR application. For
the rest of this section, we will term the data that gets transferred in
each transfer opportunity as a bundle.

5.1 Standard

In the standard IR interaction model, for each query, the ranked
list is divided into some number of result pages, typically contain-
ing about 10 snippets each. Thus, each bundle corresponds to a
result page or a relevant document from a result page requested by
the user.

5.2 Bundling

There are two ways toreduce the number of data transfers through
bundling — sending more data at a transfer opportunity: 1] Increase
the number of results shown per result page; 2] In addition to send-
ing the snippets, send the documents corresponding (o the snippets
at each transfer opportunity. The former reduces the number of re-
sult pages that get transferred whereas the latter also reduces data
transfers needed to transfer documents. Obviously, bundling in-
creases the amount of data that gets transferred in each data transfer
and in the second case, bundling also increases the total amount of
data that gets transferred. However, based on the energy model we
expect that this increase in the data size per bundle can be offset by
the resulting reduction in number of transfers.

While the large constant in the energy model allows the increases
in data sizes to be offset by reductions in number of data trans-
fers, the actual gains are largely dependent on the actual increase
in data sizes and the likelihood of reducing data transfers. There-
fore, we use two simple heuristics to avoid increasing the data sizes
too much and to avoid sending data that is not likely to be useful.
First, we avoid adding documents that can be exceptionally long
compared to the average document size. This reduces the risk of
increasing the data size too much compared to the potential savings
we can expect. Second, the likelihood of reducing data transfers by
bundling documents reduces with increase in rank. Itis well known
and countless empirical experiments have demonstrated that, in al-
most all cases, the likelihood of finding relevant documents in the
result list falls exponentially with the rank. Therefore, we modify
the bundling approach to be more selective by only sending docu-
ments for the top N ranks. While we tried other approaches based
on the estimated precision of the rank list, we found a simple em-
pirically determined rank (15) turned out to be as effective.

5.3 Streaming

We extend the bundling approach further by sending one bun-
dle that contains all the snippets and documents retrieved for the
query (the top N). This approach reduces the number of transfers
to one. For purposes of comparison with bundling, we stream the
data as follows: We stream the first & snippets in the ranked list,
followed by the documents corresponding to those snippets, fol-
lowed by the next b snippets in the ranked list followed by the cor-
responding documents. If the user requests a particular item from
the stream and the itemn 1s not already available, the current stream
is abandoned and streaming starts from the requested item. Also,
to keep the analysis amenable, we assume that the user spends a
fixed amount of time on each relevant document and then proceeds
to make the next request.

6. MODEL BASED EVALUATION

In this section we present the model based evaluation of the pro-
posed interaction models. Specifically, we show the following: 1]
the energy impact of bundling and streaming, 2] the energy impact
of feedback on the interaction models, and 3] the effect of bundling
on effectiveness due to feedback.

We analyze the energy consumnption of the three interaction mod-
els based on the energy model (Equation &) when the user is inter-
ested in retrieving 5 relevant documents.

& Standard - Each bundle consists of a fixed number of snip-
pets. User requests for documents are served by individual
transfers.

® Bundling - Each bundle consists of a fixed number of snip-
pets and also the documents that correspond to them.

» Selective Bundling - Each bundle consists of a fixed number
of snippets. For the bundles that contain the top 15 ranks, the
documents are also included.

» Streaming - A single bundle consisting of the entire result
list 18 streamed. User request for documents or snippets page
results that are not already available results in the stream
switching to the requested item.

Asin previous analyses we will assume that the user only looks
at relevant documnents and will terminate perusing the ranked list
beyond 100 documents.
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Figure 7: Agpressive Bundling: Energy consumption according
to the energy model.

6.1 Bundling and Streaming

Figure 7 shows the energy consumption behavior for the three
interaction models according to the energy model.

Standard model shows consistent reduction in energy with in-
crease in the number of snippets shown per page due to fewer result



pages that get transferred to obtain the desired number of relevant
documents.

Bundfing model consumes more energy than the standard model.
A closer per query analysis in Figure 8 shows the relationship be-
tween retrieval effectiveness versus energy consumption under the
different interaction models. As we had seen earlier, for poorly
performing queries more data 1s retrieved using more data transfers
thereby causing increased energy consumption for all the interac-
tion models. However, the energy consumption for the bundling
and streaming models are much higher than the standard model
for poorly performing queries. The energy saved by reducing the
number of transfers is much less compared to the additional energy
spent in transferring the documents, most of which are not rele-
vant. However, the bundling and streamning models provide sub-
stantial savings in energy for queries with high precision due to the
reduction in numnber of transfers and the relatively low energy cost
incurred in transferring documents. But mostly, the energy reduc-
tions obtained for queries with higher precision are lost on poor
queries.
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Figure 8: Effectiveness versus Energy: Plot of energy consump-
tion of queries against their precision at 5" relevant document.

Selective bundfing model consistently outperforms the Standard

model for all bundle sizes. By taking a selective approach to bundling,

this model benefits from reducing the number of transfers that cor-
respond to the document requests while reducing the number of
unnecessary data transfers. The results we report are for a simple
rank based threshold (15) approach which we were able to easily
implement on the phone. We tried other adjustments such as avoid-
ing bundling large documents and dynamically selecting the rank
threshold using an estimate of the precision of the ranked list. We
were able to observe an additional 5% improvement over the results
that we report here.

Streaming model provides the best savings in energy compared
to all the other interaction models, but the benefits of the model
are largely dependent on the user activity. We assume that after
a fixed perusal time the user will switch to the next data request.
However, the time a user spend on a document 1s hard to model.
Nevertheless, the results indicate that, when possible, a data stream
that 1s dynamically adjusted based on user interactions can reduce
energy consumption by reducing the number of transfers.

6.2 Bundling with Feedback

Figure 11 shows energy consumption for the interaction models
with user feedback. In the aggressive bundling model, relevance
feedback reduces the number of bundles that get transferred and
even saving a single bundle can result in significant savings in en-
ergy. However, overall the benefits of feedback do not outweigh
the costs incurred by bundling documents in all the result pages.
On the other hand, the benefits are more pronounced for the selec-
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Figure 9: Selective Bundling: Energy consumption according
to the energy model.

tive bundling model. In addition to reducing the number of bundles
transferred due to increase in overall precision (PR@5 rose from
0.44 to 0.51), relevance feedback also improves the likelihood of
relevant documents in the first few bundles (the precision @ rank
10 rose from 0.41 to 0.47) thus increasing the number of relevant
documents 1n the imtial bundles. Finally, we also observe that the
Streaming model benefits substantially from the reduction 1in the
size of the stream due to feedback. Thus, while relevance feed-
back provided limited gains for standard IR, the bundling, selective
bundling, and streaming models gain substantial benefits from rel-
evance feedback.

6.3 Bundling versus Effectiveness

While bundling reduces energy consumption it introduces an in-
teresting trade-off in effectiveness when performing incremental
feedback. For instance, consider the scenario where each result
page (bundle) consists of 5 documents — after perusing the smip-
pets and relevant documents (if any) in the result page, the user
selects the documents that are relevant before requesting the next
page. This feedback is used to return a new result page. When we
plotted the effectiveness in terms of the precision at the 5th relevant
document, we find that (see Figure 10) the effectiveness drops with
the increase in the bundle size. This is because with increase in
the number of results in a page we obtain feedback less often and
display more results to the user.

Rebust 04: Bundle Size vs Effectiveness
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Figure 10: Bundle Size versus Effectiveness.

7. IMPLEMENTATION RESULTS

To validate the energy model based findings, we performed ac-
tual retrieval experiments from a mobile phone. We used a mock-
user agent that simulates the actions such as issuing queries, pe-
rusing snippets and downloading relevant documents. Figure 12
shows the results of actual runs on a mobile phone under the dif-
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Figure 11: Relevance Feedback for Bundling: Energy consumption according to the energy model. Figure on the left is for retrieval
with feedback using selective bundling and the one on the right is for retrieval with feedback using selective bundling.

ferent interaction models. We note that the retrieval experiments
have a higher frequency of data transfers compared to the experi-
ments used to build the energy model. This explains the slightly
higher rate of energy conumption in the implementation experi-
ments compared to the model-based experiments. However, the
relative difference in performance observed in the implementation
experiments are consistent with our model.

Energy Model Validation
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Figure 12: Predicted and actual energy consumption rates ob-
served on the phone.

The results confirm our model based findings and also demon-
strate the predictive accuracy of the energy model for different re-
trieval experiments. Energy measurements on the phone are af-
fected by various factors including the time at which the exper-
iments were conducted, the location, signal strength and others.
For instance, we observed consistently higher energy consumption
and higher energy overhead for measurements made during the day
when the data network channel 1s likely to be more congested. The
measured improvements of the selective bundling with feedback
over the standard IR model during the day rose to 22% from 18%
during the night. Similarly, energy measurements of data transfers
are higher when conducted from low signal strength locations. The
measurements used in this study were controlled for consistency in
terms of the location, the time of the day, the device used and the
battery used. We conducted two experiments on another Nokia N95
device with a different battery but with the same specifications and
found the results to be consistent with the one used in this paper.

Dead time — time spent in waiting for data to download — and
the overall {atency to access a fixed number of relevant documents
are important considerations for the interaction models. As with
energy, we expect an increase in the amount of data transferred to
result in increases in the transfer times. However, we find that as
was the case with energy, the bundling model, results in improve-
ments in both metrics compared to the Standard model. Figure 13
shows the measured average dead time and latency for the different
methods based on actual runs on the mobile phone. The selective

feedback approach saves around 10 seconds in dead time per query
on average and around 13 seconds in overall latency considering
consistent user behavior across the different runs.

Dead time and Latency
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Figure 13: Deadtime and latency measurements on actual
runs of the implementation of different methods on the mobile
phone.

To summarize, we observe that for the data sizes of the Robust
{4 collection, altering the interaction models leads to reduced en-
ergy consumption by reducing the number of data transfers at the
cost of increasing the size of each individual data transfer. The pre-
dicted energy savings of the selective bundling model with feed-
back ranges up to 25% and the observed savings around 18% com-
pared to the standard IR model with no feedback and the results
translated into corresponding increases in number of queries han-
dled. While relevance feedback did not reduce energy, we see that
it helps improve the impact of the bundling approaches. Further-
more, when the number of required relevant documents increases
we observe that energy reduction due to the bundling model in-
creases consistently as shown in Figure 14, Finally, our simple
approach to building a reliable energy model 1s easily repeatable
on devices whose remaining battery life accuracy and granularity
are not adequate.

8. COLLECTION CHARACTERISTICS

There are two main characteristics of the Robust 04 collection
that benefit the bundling models. First, the document sizes are
relatively small compared to the size of the snippets. Therefore,
sending documents instead of snippets for a few documents does
not dramatically increase the energy consumption compared to en-
ergy savings obtained by reducing few data transfers. Second, the
queries for Robust {4 collection contain several relevant documents
and it 1s fair to assume that users interested in searching this collec-
tion would look for many relevant documents for each query.

However, these assurnptions do not hold on larger web type doc-
ument collections where the average document size (around 25K)
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Figure 14: Energy consumption of the different interaction
models for increasing number of relevant documents down-
loaded by the user.

18 much higher and a large fraction of the queries have few relevant
documents {e.g., home page and navigational queries). To evalu-
ate the benefits of the models on larger web type document collec-
tions we ran the interaction models on the TREC Gov?2 collection
consisting of 25 million web pages from the .gov domain.. The re-
sults for the interaction models are shown in Figure 15. The energy
reductions we observe for this collection are modest compared to
the Robust {4 results. The increase in data sizes far outweigh the
reductions obtained through reducing the number of transfers in
the bundling models. Furthermore, the streaming model consumed
more energy compared to the Standard model, as most of the data
the streaming model takes longer to deliver documents and 1s never
able to stream enough data ahead of time.

Certain extensions can be implemented to further reduce the en-
ergy consumption for web documents. For example, the impact
of bundling can be improved further with prior information on the
effectiveness of queries and the prior probability of clicks on doc-
uments in the result set. These extensions are part of future work.
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Figure 15: Gov2 Collection: Energy consumption of the differ-
ent interaction models.

9. CONCLUSIONS

In this work, we studied energy consumption of network based
information retrieval resulting in the following contributions:

® We characterized the energy consumption of an IR applica-
tion and described an energy model that can be used to ana-
lyze energy consumption of different retrieval and interaction
models.

# Based on the energy model, we found that systems with low
effectiveness have high energy consumption. Across all ef-
fectiveness levels, we need large improvements in effective-
ness in order to observe substantial energy savings, but that

is particularly true when a systern’s baseline performance 1s
good.

® Our results show that for the energy model we observe, ad-
Jjusting the interaction models to reduce the number of trans-
fers can result in substantial energy savings with improve-
ments in dead time and latency.

While our work was limited to the GSM/EDGE network, we can
extend this analysis to the more advanced 3G cellular network. 3G
networks have higher bandwidth but also higher energy consump-
tion rates. In our analyses, we have assumed that the user only
clicks on relevant documents. However, we have not considered
the effect of display constraints that limit the space available for
snippets, 1n turn lowering the accuracy of perceived relevance. In
such scenarios bundling based models can be useful. Seacch is of-
ten an entry point for browsing information on the web. A nat-
ural extension of our work 15 to analyze the energy consumption
of browsing behavior originating from search. In conclusion, our
work provides a starting point for the analysis of energy costs of
network based retrieval applications.
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