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Abstract

Information is a combination of structured data and unstructured data. Traditionally, relational
database management systems (RDBMS) have been designed to handle structured data. IR
systems can handle text (unstructured data) very well but are not designed to handle structured
data. With present day information being a combination of structured and unstructured data,
there is an increasing demand for an IR-DBMYS system that incorporates features of both IR and
DBMSs. We discuss a framework that incorporates powerful text retrieval in relational database
management systems. An extended SQL with probabilistic operators for text retrieval is defined.
This paper also discusses an implementation of the probabilistic operators in SQL.

1 Introduction

The state of the art is that much information, especially multi-media, is represented as a combination of
both structured and unstructured data. Structured data comprises data types like integer, real, fixed-
length string; unstructured data comprises text, images, audio etc. Structured data has been efficiently
stored and retrieved using relational database management systems (RDBMS). Text, an unstructured
component of information, has been traditionally stored and retrieved using Information Retrieval (IR)
systems. RDBMSs use exact matching to retrieve data. while IR systems use approximate matching.
IR systems are not suitable for structured data and RDBMSs are not suitable for unstructured data.
RDBMSs have the additional advantage of addressing the issues of concurrency, recovery, security and
integrity, while most IR systems don’t. The gap between structured and unstructured components in
data has been recently narrowed (e.g., medical information systems, pharmaceutical systems) and has
demanded a system that incorporates the features of both RDB and IR systems.

Our goal is to add powerful texzt retrieval capabilities to an RDBMS using the relational framework
and SQL. Regular boolean operators are used on the non-text attributes and probabilistic operators
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are used on the text attributes. The probabilistic answers are converted into boolean values and later
combined with the results of the non-text component of the query. The final result set is ranked on
the probability (belief) that a record is relevant to the text query.

We have an existing information retrieval system INQUERY [2]. We are experimenting on imple-
menting the same retrieval strategy in a relational database management system, DEC Rdb. Such an
implementation will add powerful text retrieval capabilities to an RDBMS, facilitating the construction
of IR systems that have all the features we get from an RDBMS (concurrency, recovery, etc. ) [1]. This
paper discusses the issues, our experiences and status.

2 Integrating IR and RDBM Systems

Integrating IR and RDBMS could be viewed at different levels:
e a loosely-coupled IR/RDBMS system, and

e a tightly-coupled IR/RDBMS system.

2.1 Loosely-coupled IR/RDBM system
A loosely-coupled TR/RDBMS system can be viewed in different ways:

e IR system as an application of RDBMS,

e A Hybrid of IR and RDBM systems, and

e Using RDBMS for storing IR data structures.

2.1.1 IR System as an Application of RDBMS

We could build an IR system as a RDB application without any major modification to the existing
RDBMS [6]. These applications are based on “exact matching”, and query evaluation is “boolean” in
nature. Probabilistic evaluation of queries is very effective for teat retrieval. Blair [1] uses the concept
of probability for ranking the records. The inability of such systems to handle fuzzy queries results in
an IR system with poor retrieval performance (low precision and recall). Also, IR data structures tend
to vary in size greatly, and thus the application would be inefficient.

2.1.2 A Hybrid Approach

A hybrid IR/DB system utilizes both an IR and DB system. An embedded full integration is proposed
by Gu et al. [5]. This approach proposes the use of two distinct systems, an IR system (INQUERY) and
RDBMS (Sybase). The inverted lists for the text fields in the RDBMS tables are stored in INQUERY.
An extended SQL (ESQL) is proposed which has both boolean and IR operations. A form-based IR
interface is provided for the end users and the user’s intention is interpreted into a program described
by a query language called ESQL which is an extension of SQL. The ESQL program is then translated
to a standard SQL program and an INQUERY query by a parser and interpreter. The INQUERY
query is sent to ProcINQUFRY - an INQUERY version which can be invoked as a procedure, and
output the information about ranked textual data into Sybase. The SQL query is then sent to Sybase
which searches the corresponding data based on the outputs of the ProcINQUERY. The disadvantages
of such an approach are that we use two different systems, and we lack flexibility in combining IR and
boolean parts of the query. This motivates us to develop an RDBMS system which does not make use
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of any IR system, but instead, stores all the IR data structures in the RDBMS and implements all the
IR operators in SQL itself. Section 3 explains our approach to achieve the above mentioned goal.

2.1.3 Using RDBMS for storing IR data structures

Information retrieval systems index unstructured text into an inverted index or inverted file [8]. For
each term a separate index is constructed that stores the record identifiers, or document identifiers,
for all the records containing that term. With an inverted index, the record set corresponding to a
given query formulation is easily determined. The identifiers for all retrieved items can be obtained
by extracting from the inverted index the list of record identifiers corresponding to each query term
and combining these record identifiers appropriately. For supporting probabilistic retrieval the term
statistics are also stored along with record identifiers. In order to support complex query operators like
phrase or proxzimity, the locations of each occurrence of the term in a record are also stored (prozimity
information). The number of tuples of an inverted file is huge when compared to the number of
documents or records they represent. Thus the number of tuples in an inverted file will be the number
of unique terms in the documents times the average number of terms in a document. As stated by
Blair [1], any discussion of database management system implementation must address the controversial
issue of processing speed. Traditional beliefs tend to hold that relational systems trade flexibility of
query and database structuring for reduced processing speeds. In order to overcome this bottleneck,
we sacrificed some flexibility and reduced the number of tuples to the number of unique terms in the
collection or documents database. The term statistics and the proximity information are stored in a
binary object or blob. We used the INQUERY information retrieval system and DEC Rdb RDBMS for
this experiment. The following paragraphs discuss the lessons learned from this implementation.

Rdb was used to store all of INQUERY’s file-based data structures (inverted file, db file, and term
dictionary). The inverted list file contained term ids and their inverted lists. The db file contained
document indices necessary for providing user interface functions in the API. In this implementation,
Rdb did not know the internal structure of the inverted list and the db file. The encoded inverted
list and db file information was stored in Rdb as blobs. An SQL-based interface was used between
INQUERY and Rdb. There was an overhead in this implementation for INQUERY to decode the
blob and extract the required information. Other than the query language, all the other features like
concurrency control, recovery, etc. , (refer Section 1) of an RDBMS were exploited without sacrificing
performance during document indexing and query evaluation.

2.1.4 Results of Blob Implementation

The results from the blob implementation are compared with the keyfile implementation of INQUERY
in Table 2. Keyfile is a B-tree package which is used in INQUERY to store all its data structures.
The experiments were done on a DEC Alpha running OpenVMS with 80 Mbytes of main memory.
DEC Rdb V 6.0 was used. Several test databases with different characteristics were used to analyze
the performance of the keyfile and Rdb versions of INQUERY. Table 1 shows the characteristics of the
test databases used. Table 2 shows that the elapsed time of the Rdb version is in the same order of
magnitude as that of the keyfile version and we get all the advantages of using an RDBMS.

2.2 Tightly-coupled IR/RDBM system

Different approaches have been proposed for a tighter integration of IR and RDBM systems [4, 7, 1, 9].
All these methods suggest implementing a new system incorporating the proposed theories. Schek et
al. [9] propose an extension to the relational model allowing Non First Normal Form (NF?) relations.
They propose extensions to relational algebra with emphasis on new “nest” and “unnest” operations,
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Table 1: Characteristics of test databases

Attribute Database

cacm arman ws)89Y
Raw data 3 Mbytes | 10 Mbytes | 39 Mbytes
Number of documents 3204 628 12380
Number of unique words 5942 31838 68058
Total number of words 383182 907668 5451898
Number of transactions 112599 388066 2606670
Number of queries 50 50 50
Average number of words per query 7 94 94

Table 2: Resources used by INQUERY v1.6 on different test collections

Collection

Performance Metric cacm arman ws)89Y

Keyfile Rdb || Keyfile Rdb || Keyfile Rdb
Buffered 1/0O count 98 154 124 226 125 233
Peak working set size 4896 | 31072 6496 | 32120 17616 | 40960
Direct 1/0O count 345 406 1813 937 || 12595 3544
Peak page file size 19040 | 81760 || 20656 | 85072 || 329286 | 106496
Page faults 314 | 3174 424 1 4239 1193 | 21704
Charge CPU time (seconds) 9 12 20 66 111 163
Elapsed time (seconds) 15 22 40 85 221 246

which transform between first normal form relations and NF? ones. This allows the attribute domains
to be sets and sets of sets, suitable for IR (e.g., list of words as a single attribute).

Fuhr [4] proposes a probabilistic relational model which combines relational algebra with proba-
bilistic retrieval. He proposes a special join operator implementing probabilistic retrieval. This model
retrieves not only documents but also any kind of objects. Further, probabilistic retrieval provides im-
plicit ranking of these objects. Fuhr argues that with independence assumptions, the relational model
is a special case of this probabilistic relational model.

The above approaches demand a new design of the DBMS. This is expensive and would satisfy only
IR requirements. Instead we propose a method in which the probabilistic retrieval can be done in the
existing relational framework and also suggest ways to implement special join operations using SQL.
Section 3 explains how IR data structures can be stored in an RDBMS so that SQL can be used on
them to support probabilistic operators and special joins.

3 Adding Retrieval Capabilities to RDBMS

The two main issues that must be addressed in order to add IR capabilities to an RDBMS are the storage
of IR data structures and query language support for IR operators. We observe from Section 2.1.3 that
the blob implementation to store IR data structures in RDBMS is quite effective. Since our framework
proposes to implement IR operators using SQL, we have a requirement that the data structures be
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accessible through SQL, obviously a table. If IR data structures are stored as regular tables, then it
leads to poor data storage and retrieval performance.. To solve this problem, Cooperative indexing
[3] can be used for efficient storage and retrieval. In this approach, the IR components of the system
define what is extracted from documents (text attributes) along with the related index structure, and
the database system provides efficient access to the index. The cooperative index can be accessed, like
any regular table, through SQL. Our main focus here is to provide support for IR operators in the
query language and a method to evaluate such complex queries.

3.1 Retrieval Model

Our text retrieval framework is based upon a type of Bayes net called a document retrieval inference
network [10, 2] (which is used in INQUERY). The inference net has two components i.e., the document
network and the query network. The document network represents the content of the text and the
query network represents the need for information. This framework creates a document network for the
text attributes, creates a query network for the text component of the query, and uses the network to
retrieve records that satisfy the text query. The result from the text and the non-text query components
are combined to obtain the final result.

The document network is created automatically by mapping text attribute onto content represen-
tation nodes, and storing the nodes in an inverted file for efficient retrieval. For each term a separate
index is constructed that stores the record identifiers, term statistics and term position information for
all the records identified by the term. This information is stored in a relational table, say INV_LIST
(TERM, DOC_D, TF, MAX_TF, PROX), where TF is the term frequency, MAX_TF is the maximum
term frequency and PROX is the position information.

3.2 Extending SQL to Support IR Operators

Text retrieval is based on partial matching and inference and thus returns scores (beliefs) as answers.
These beliefs represent the relevance of a particular document (record) to the query. The traditional
SQL operators are not suitable for handling beliefs since SQL operators are boolean in nature. Thus,
additional text handling operators need to be added to SQL, as well as methods to combine the results
from such operators with the traditional boolean operators. An extended SQL (ESQL) is defined as
follows to support text retrieval. The ESQL will have a non-text component and a text component.
The non-text component uses the regular WHFERF conditions and operators of SQL. The following
probabilistic operators [10, 2] are supported in the text component:

PAND: Probabilistic (“fuzzy”) and of the terms in the scope of the operator.
POR: Probabilistic or of the terms in the scope of the operator.

PNOT: Probabilistic negation of the term in the scope of the operator.
PSUM: Value is the mean of the beliefs in the arguments.

PWSUM: Value is the mean of the weighted beliefs in the arguments.

Here it is assumed that all the probabilistic operators are localized to a subtree of an ESQL query. An
example ESQL query on a table DOCUMENTS (DOC_D, DATE_PUBLISHED, AUTHOR, TEXT)
to get records about “operating system design” and published after “04/30/90” will be:

Example 1:
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Figure 1: (a) Text query tree (b) Belief lists at different nodes

SELECT DOC_ID
FROM DOCUMENTS
WHERE DATE_PUBLISHED > ’04/30/1990°
AND TEXT_QUERY( TEXT CONTAINS ’operating’
PAND ( TEXT CONTAINS ’systems’
POR TEXT CONTAINS ’design’) );

The query tree for the text component of the query in Example 1 is shown in Figure 1(a).

3.3 Query Evaluation

An ESQL parser is used to divide the query into text and non-text components. The non-text compo-
nent is evaluated using regular SQL statements. The text component is evaluated using SQL statements
with external functions. External functions are used to support IR operators. The result set from such
an evaluation has record identifiers and belief scores. The result set is sorted in the descending order
of belief scores. A threshold is applied to the result set for the text component. The threshold can be
either the top n records or records greater than a specific threshold (say 0.4). Finally, the result set
from the non-text component is used as a filter to generate the final result set.

A query network is created from the text component of the user query. In this section we show how
the text component of the query can be evaluated using SQL and later combined with the non-text
component. The query evaluation can be term-at-a-time or record-at-a-time.

3.4 Term-at-a-Time Processing

In term-at-a-time processing, each node in the query tree is evaluated for all documents or records. We
evaluate the tree bottom up, as follows.
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Figure 2: Special Join operation

3.4.1 Generating belief lists at the leaf nodes

Belief lists are generated for each leaf node. A belief list is a list of record identifiers and associated
belief values at a given node, as well as default beliefs and weights. Node belief scores are calculated
[10, 2] and normalized using the statistics stored in the inverted list (INV_LIST table). Belief lists can
easily be generated from INV_LIST in SQL. External functions [12] are used to calculate the belief
scores. The belief lists at the leaf nodes for Example 1 are shown in Figure 1(b).

3.4.2 Evaluating probabilistic operators

The probabilistic operators in the query tree are evaluated with a bottom-up strategy. Each operator
is evaluated by executing a special join operation (different for different operators) on the belief lists
of its children. A special join is achieved in two steps:

e A full outer join [12] of the two belief lists of the children is done, replacing all the NULLs with
a default belief value, such as 0.4.

e Combine the two belief values for each record using the formula for each operator [10]:

1. POR: 1= (1 = by)(1 — by)
2. PAND: by # by

3. PNOT: 1 — b,

4. PSUM: (g2

5. PWSUM: (M) where wy and wy are weight associated with the child nodes.

w1 +wz
This is also implemented using external functions.

The output of the special join is again another belief list. By evaluating all the nodes, bottom-up,
we will finally have a belief list at the root, which is a list of record identifiers and belief values. The
special join operation for POR node in Example 1 is shown in Figure 2.
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3.4.3 Generating the final result set

The non-text component of the ESQL query is later applied as a filter on the result set of the previous
step to obtain the final result set. The belief values in the belief list are used to rank order the result
set. The ORDER BY clause in SQL can be used to rank order the records. The number of records in
the result set is restricted by either using a threshold on the belief value or by using the top n records.
If threshold is used, then a WHERE clause like BEL > 0.3 can be used, where BEL is the belief for this
document. If the top n strategy is used, then a condition like LIMIT TO n ROWS can be used.

The SQL statement for evaluating the text component of the ESQL query of Example 1 is as follows:

SELECT DOC_ID, (1 - (COALESCE(T1.B1, 0.4) * COALESCE(T2.B2, 0.4)))
FROM ((SELECT DOC_ID, BEL(TF, MAX_TF, DOC_FREQ)
FROM INV_LIST
WHERE TERM = ’system’ ) AS T1 (DOC_ID, B1)
FULL OUTER JOIN
(SELECT DOC_ID, BEL(TF, MAX_TF, DOC_FREQ)
FROM INV_LIST
WHERE TERM = ’design’ ) AS T2 (DOC_ID, B2)
) AS T4 (DOC_ID, B4);

Here BEL() is an external function which calculates the belief score for a record.

3.5 Record-at-a-Time Processing

In contrast to term-at-a-time processing, where each query node is evaluated for all the records, in this
method the entire query tree is evaluated for each record. This can be better because it avoids the
expensive special joins. The non-text query is used as a filter to obtain the record set on which the
text query is evaluated. For each record in the filtered record set, we do the following;:

Step 1: Calculate the belief value for all the leaf nodes (query terms) for this record. The belief value
is calculated from the inverted list (INV_LIST) as discussed in Section 3.4.

Step 2: Evaluate the entire query tree for this record. All the probabilistic query operators are
implemented as external functions [12]. These external functions take two belief values as their
arguments and return another belief value. Thus these external functions can be nested. Since
nesting can be done, the entire query is easily implemented. If b1, b2 and b3 are the belief scores
for a specific record (say DOC_ID = ID_1) at the leaf nodes for Example 1, the text component is
evaluated as shown in the SQL statement below. Here PAND and POR are external functions. It
should be noted that b1, b2, and b3 are themselves SQL statements which calculate belief scores
from the term statistics stored in INV_LIST.

Step 3: A threshold is applied on the final belief b (e.g., b > 0.5) to convert the probability into a
boolean result similar to the method of Gu et al. [5].

SELECT DOC_ID FROM DOCUMENTS
WHERE DOC_ID = ID_1
AND PAND (b1, POR (b2, b3)) > 0.5
AND DATE_PUBLISHED > ’04/30/1990°;

The result set is ranked in the descending order of belief using the ORDER BY SQL clause to obtain the
final result. The SQL statement for the entire ESQL query is:
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SELECT DOCUMENTS.DOC_ID,
PAND ((SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)
FROM INV_LIST
WHERE TERM = ’operating’
AND DOCUMENTS.DOCID = INV_LIST.DOCID
), POR ((SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)
FROM INV_LIST
WHERE TERM = ’system’
AND DOCUMENTS.DOCID = INV_LIST.DOCID
), (SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)
FROM INV_LIST
WHERE TERM = ’design’
AND DOCUMENTS.DOCID = INV_LIST.DOCID
))) AS BEL
FROM DOCUMENTS;

This SQL statement would generate a table of DOC_ID and BEL for all the documents in the DOCU-
MENTS table. It should also be noted here that the DOC_FREQ in the above SQL statement is again an
SQL statement like

SELECT COUNT(*) FROM INV_LIST WHERE TERM = ’operating’;

Even though both the term-at-a-time and record-at-a-time approaches return the same result set,
the latter has an advantage in speed since there are no JOIN operations, which tend to be expensive.
More optimization can be added in Step 2, by choosing a small set of records to evaluate the query on,
depending on the operators in the query.

3.6 Evaluating PROXIMITY Operators

PROXIMITY operators are those which rely on the the relative positions of the terms in a document.
Some examples of PROXIMITY operators [2] are

P#n: A match occurs whenever all of the arguments are found, in order, with fewer than n words
separating adjacent arguments. For example A P#3 B matches “A B”, “A ¢ B” and “A c ¢ B”.

PHRASE: Value is a function of the beliefs returned by the P#3 and PSUM operators. The intent
is to rely upon full phrase occurrences when they are present, and to rely upon individual words
when full phrases are rare or absent.

Evaluating proximity operators is much more complicated than evaluating the simple operators ex-
plained in earlier sections. These operators require prozimity lists for evaluation. A proximity list
contains statistical and proximity (term position) information by document for a particular term. The
proximity lists should be instantiated at the term nodes of the proximity operator nodes and propa-
gated upwards. The proximity lists are converted into belief lists before being propogated to simple
operators. Proximity lists are transformed into belief values using the information in the list, and are
combined using weighting or scoring functions. Belief lists may be computed from proximity lists but
the reverse derivation is not possible. Creating, merging, and transforming proximity lists can all be
implemented partly as external functions and partly in SQL.
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4 Conclusion

An RDBMS can handle text more efficiently by storing inverted lists of the text fields in cooperative in-
dexes, and SQL can be used to support IR operators. An extended SQL can be defined with additional
IR operators. A pre-processor can be designed to transform the ESQL query into the corresponding
SQL query. Performance completely depends on how efficiently cooperative indexing is implemented.
More efficient implementations can be done by modifying the SQL engine to support the probabilistic
operators. In this paper, we have assumed that there exists only one text field, but there can be any
number of text fields, with one cooperative index for each text field. The corresponding cooperative
index should be selected during ESQL processing. With such a system, both structured and unstruc-
tured data can be handled efficiently and effectively without designing a totally new system. We are
presently looking at allowing probabilistic operators anywhere in the query without the restrictions
that they occur together, and the impact of such a design on precision and recall.
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