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ABSTRACT

INTERACTIVE REFORMULATION OF LONG QUERIES

MAY 2008

GIRIDHAR KUMARAN

B.E., UNIVERSITY OF MADRAS

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

DOCTOR OF PHILOSOPHY, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

We present new ways of interacting with a user based on query analysis and

reformulation. Our goal is to not only improve retrieval performance but also help

the user understand the retrieval process and collection she is searching. We do this

by providing users information reflecting the potential impact their decisions will have

on the retrieval process. This way, users can make more informed choices from the

options presented to them by the retrieval system.

Unlike most previous work in user interaction where a one-procedure-fits-all strat-

egy was pursued, user interaction must be invoked only when there is potential for

improvement. This is important as tedious user interaction can have an unfavorable

impact on user experience. We present techniques for selective user interaction and

show their utility in the context of two interaction techniques we have developed. Our

viii



results show that user interaction can be avoided in a vast number of cases without

much deterioration in performance.

User interaction can be made more productive by providing users with an optimally-

sized set of high quality options. We present efficient techniques to determine such

a set. When faced with a decision to interact with a user given a particular query,

it is beneficial is determine the best interaction technique suited for that query. We

solve this problem by obtaining implicit feedback from the user. By utilizing all the

interaction-related techniques described in this thesis, we show through simulations

and user studies that users can obtain better performance with less effort.
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CHAPTER 1

INTRODUCTION

The dominant paradigm in ad hoc information retrieval (IR) is quite straightfor-

ward. A user with an information need enters terms in a text box, which the search

engine matches with indexed documents guided by some underlying retrieval model.

This retrieval paradigm makes a number of assumptions. These include considering

the terms the user entered as an accurate description of the information need, believ-

ing the terms will guide the search engine towards retrieving only relevant content,

and presuming that the retrieval model captures human notions of relevance. While

decades of research and application of this paradigm have proved its utility and ef-

fectiveness, there are still many failure points, and a lot of room for improvement.

Some failures can be attributed to the disconnect between what users enter as queries

and the ideal representation required to retrieve the documents they want (Nordlie,

1999). The quality of queries submitted to IR systems directly affects the quality

of search results generated by these systems (Croft and Thompson, 1987). In con-

veying complex information needs, users enter queries that would appear perfectly

legitimate and understandable to a human being. Unfortunately, in a large number

of cases such queries are not handled well by the search engine. While users generally

have a model of their information need, they have little or no knowledge about how

the underlying search engine works. This lack of knowledge is usually coupled with

another unknown - the contents of the collection being searched. All this can lead

to search failures as what lies under the hood of a search engine is not an intelligent

agent capable of human discourse, but an algorithm that works with the statistics of
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text. The current paradigm of search, wherein a user enters terms into a text box

to describe her information need and the search engine responds by simply returning

a list of documents based on some underlying statistical model is prone to failure.

This is true not only of specialized environments like medical text, legal information,

and enterprise search but also more ubiquitous ones like the web. Irrespective of ad-

vances in retrieval models and user interfaces, a critical gap exists between the user’s

own expression of information need and the best representation suited for retriev-

ing the exact information satisfying that need. Hence there is clearly a need for an

unobtrusive intermediary to help bridge the gap between the user and the system.

1.1 Motivation for User Interaction

A large number of automatic methods exist to directly or indirectly fulfill the

above-mentioned role. However these have their own particular limitations and are

mostly successful in improving retrieval in cases when performance is already satisfac-

tory (Kumaran and Allan, 2006a). This leads us to explore the option of involving the

user to a greater extent in the process, hoping that it will lead to more comprehensive

improvements in retrieval effectiveness.

There is a continuing and growing case for involving users to a greater degree in

the information retrieval process. In a recent study, Harman and Buckley (2004a)

investigated the reasons for retrieval failure, and identified a set of ten different com-

mon reasons for failure. Given current capabilities, most of these problems can be

overcome only by actively involving the user. The diverse nature of these problems

also means that there is no single interaction technique that can help tackle all these

problems. We define an interaction technique as a method for interacting with the

user. This includes the logic used to provide options to the user, the supplementary

information provided to help the user choose from the options in an implicit or ex-

plicit fashion, and the way information gleaned from the user is utilized by the IR
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system. Given the multiple reasons for retrieval failure, there is need for a suite of

interaction techniques to ensure good performance in all environments. Further, the

development of this suite of techniques must be done with the user’s ability, willing-

ness and cognitive load in mind. Requiring the user to expend unacceptable amounts

of participation can be detrimental to the overall user experience.

1.2 Scope of the thesis

This thesis deals with the exploration of interaction techniques for effectively and

efficiently bridging the gap between the expression of a user’s information need and

the search engine they utilize to satisfy that need. The quest is not the design of an

ultimate interface or creation of a software agent with artificial intelligence to play the

role of an intermediary. It is instead to devise methods to effectively and efficiently

involve users in not only translating their information needs into the best representa-

tion for input to a search engine but also obtaining feedback on retrieval performance

unobtrusively. Our research focuses on the crucial query creation and reformulation

step in information retrieval. By way of guiding the formulation of a query we hope to

help users issue queries that are best suited for retrieving the information they seek.

In addition, such guided query formulation with an appropriate interface can help

users understand the collection they are searching and the reasons why the search

engine returns the results they see. This way there is hope to involve the user further

in the search process, and gradually help them become search experts themselves.

1.3 Queries of Interest

As mentioned in the previous section, we are interested in user interaction for

query formulation. In this thesis we focus on user interaction for information re-

trieval with long queries. We define long queries as those with a length greater than

three terms, and short queries as those with a length less than or equal to three.
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Long queries are interesting as they provide a rich expression of a user’s informa-

tion need, and also provide context that can be leveraged to deliver improved search

performance. Long queries can be obtained in two ways.

• Users themselves enter long queries.

While it is well known that the users of web search engines enter queries that are

only two to four terms long (Spink et al., 2002), there are a number of domains

like health verticals and product help desks where users issue long queries.

• From short queries, when expanded with automatic techniques like local context

analysis (Xu and Croft, 2000) and pseudo-relevance feedback (PRF) (Lavrenko

and Croft, 2001).

Query expansion is a well-known technique in information retrieval that involves

including additional related terms to an original short query to improve retrieval

performance. The number of additional terms included can vary from a few to

even hundreds, resulting in the short queries being transformed into long ones.

However, handling queries with such a large number of terms is tricky. Users can

include terms in the query that end up confusing the search engine, or automatic query

expansion techniques can suggest terms that impair effective search. Our fundamental

approach to handling retrieval using long queries is to automatically or interactively

identify the crux of the query, i.e. a subset of terms from the long query that capture

the information need succinctly.

One approach to handling long queries of the first type would be to explore the use

of natural language processing (NLP) techniques to parse the query and reformulate

it based on grammatical analysis. We instead choose to avoid such complex analysis

and treat the terms in the query as independent of each other. As we will show in

Chapter 4, this simpler approach yields significant improvements in performance for

a wide range of queries.
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1.4 Contributions of the thesis

The goal of this thesis is to develop, test and evaluate a suite of very effective

interaction techniques that do not demand much effort, cognitive and physical, from

the user. In a sense, this involves devising a set of pointed questions to ask the

user in response to a query. The accent is on moving away from the traditional

feedback paradigm of asking an user to select relevant documents, passages or terms

and instead ask for information in a more intelligent fashion. The questions are also

meant to be answered in a simple way - usually yes/no decisions conveyed through

forms. A recent study (White and Ruthven, 2006) has shown that while users like to

have some amount of control over various aspects of the retrieval process, they still

prefer unobtrusive ways to communicate during the process.

The main contributions of the thesis are as follows:

1. Empirical validation of the potential of long queries. We bring to focus

the importance of developing techniques for handling long queries. Commercial

search engines, which are optimized for shorter queries, perform worse on long

queries compared to short ones. We show that performance can be improved

through reformulation of long queries. Such reformulation results in roughly

50% improvement over the baseline, as measured by mean average precision.

2. User interaction for long queries. We present a technique based on user

interaction to help reformulate long queries. We develop and evaluate a new

look-ahead interface designed for long queries. We report the results of user

studies using two variants of the reformulation technique, interactive query re-

duction (IQR) and interactive query expansion (IQE), that showed the utility

of the interface in not only rapidly directing users towards their information

needs, but also providing them a preview of the collection contents and a sense

of how the retrieval system works.

5



3. Selective user interaction. We show that user interaction in the form of

IQR and IQE for every query is not a guaranteed success. When the start-

ing point is weak, i.e. the original query issued by the user is of poor quality,

any amount of user interaction is futile. In situations like this, it’s appropri-

ate to detect failure in advance and avoid interaction. We present techniques

to identify queries for which user interaction is futile, and show that we can

avoid interaction for around 40% of queries in our test set without significantly

degrading improvements in performance.

4. Efficient user interaction. An often-neglected aspect of interactive informa-

tion retrieval is the background processes needed to analyze and present options

to users. We present techniques to convert the exponential-time processes for

IQR and IQE to polynomial. This way IQR and IQE can be deployed in oper-

ational environments.

5. Reduced user interaction. We develop and evaluate techniques to identify

and present a minimal set of high-quality options to users during IQR and IQE.

We will show that we can obtain the same levels of performance as the baseline

by showing 30% and 80% less options for IQR and IQE respectively.

6. Combining interactive techniques. We present implicit techniques to de-

termine the better interaction technique between IQR and IQE in response to

a query. The effect of doing so is a roughly 50% improvement in performance,

with an interface that requires showing users approximately 50% less options

than the baseline.

1.5 Organization of the thesis

In Chapter 2 we survey related work in user interaction that pertains to this the-

sis. We introduce the data sets we work with as well as the evaluation measures
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we report in this work in Chapter 3. Before describing our automatic techniques to

identify the important terms or concepts in a long query in Chapter 5, we provide

illustrative examples of the potential for improvement in retrieval performance by

using long queries in Chapter 4, and provide empirical validation for the performance

improvements that can be realized. The automatic techniques for long query refor-

mulation we explored had limited success. This motivated the investigation of user

interaction to overcome the shortcomings of automatic techniques in Chapter 6. In

Chapter 7 we present work related to selective user interaction: i.e., techniques to

identify the potential utility of user interaction. The interaction techniques IQR and

IQE that we present in this thesis require exponential-time background processes. In

Chapter 8 we show how we can convert these processes to polynomial, paving the

way for their potential use in real-time situations. Choosing the right interaction

technique in response to a query is important. In Chapter 9 we show that we can

implicitly obtain feedback from the user on the right interaction technique to be in-

voked, IQR or IQE, in response to a long query. Chapter 10 contains examples of

other interaction techniques we explored and evaluated. Conclusions and future work

are discussed in Chapter 11.
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CHAPTER 2

RELATED WORK

In this chapter we review related work that provides the foundation and motivation

for much of this thesis. In Section 2.1 we visit the need for interaction. While

automatic techniques for improving information retrieval are quite effective, they are

considerably narrow in scope when it comes to the range of queries they can improve

performance on. As a prerequisite before venturing to develop interaction techniques,

in Section 2.2 we survey past work on understanding user behavior and perceptions.

In Section 2.3 we show that there has been a large amount of past work that has

successfully made use of user interaction. Sections 2.5 and 2.6 provide an overview of

the techniques that previous researchers used to interact with users and obtain useful

information from them. Our work differs from work done by previous researchers in

the following way.

• We focus on a particular type of queries namely long queries.

• We tackle issues like predicting the utility of user interaction and the efficiency

of background processes for IQR and IQE.

• We explore techniques to reduce the amount of interaction keeping the potential

for improvement unaffected.

• We show how we can invoke the right interaction technique from a set available

in response to a query.
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2.1 The need for interaction

A slew of automatic techniques have been developed to improve IR. However,

motivating our interest in interactive IR is the Reliable Information Access (RIA)

workshop conducted by Harman and Buckley (2004a,b). The goal was to determine

the reasons behind the variability in performance across IR systems and queries on

a test collection. The workshop revealed that systems utilizing different retrieval

models performed non-uniformly on the same queries, and each system showed wide

variability across a set of queries. Further analysis showed that each IR system had

its strengths and weaknesses, and if the potential problems with a query could be

determined in advance, then an appropriate IR system could be used to significantly

improve effectiveness. The workshop also identified a number of common reasons for

failure (Buckley, 2004), and concluded that certain types of failure were beyond the

scope of current IR technology. Listed below are some of the reasons.

• Systems emphasize one aspect; missing another required term.

• Systems emphasize one aspect; missing another aspect.

• Some systems emphasize one aspect; some another; need both.

• All systems emphasize one irrelevant aspect; missing point of topic.

• Need QA query analysis and relationships.

• Systems missed difficult aspect that would need human help.

In the absence of automatic techniques to tackle these types of problems, manual

intervention through user interaction is a potential recourse.

With this in mind, we have explored interaction techniques with the goal of im-

proving retrieval performance with minimal participation from the user. We investi-

gated whether asking the user simple questions or requiring the user to make minor

modifications to the query will improve performance to an extent that justifies the
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little additional effort put in by the user. The variability in the types of failures as

reported by Harman and Buckley (2004a,b) makes us acknowledge that there might

not be one single interaction technique that improves performance across all queries;

we believe that a set of techniques will take us closer to that goal.

2.2 User behavior

Nordlie (1999) conducted a study to compare the behaviors of library users in-

teracting with a librarian on one hand, and a search engine providing automated

access to a library catalog on another. The motivation was to study the reasons for

the high rate of failure of on-line searches prevalent at that time, and translate this

knowledge into a creating a more effective information retrieval (IR) system. The

study revealed high similarity between the two types of interactions, in the types

of queries as well as the way users posed their queries. The added fact that users

did not use the advanced search engine features or actively reformulated their query

indicated that users expected search engines to be effective surrogates of humans.

Analysis of the types of errors users made while interacting with the system revealed

that semantic errors contributed to more than 50% of failures. The rest were due

to lexical or syntactic errors. With users unable or reluctant to convey their real

information needs to the search engine, the lack of interaction that created trust and

understanding, something the librarian provided, stood out. To this end, the study

suggested measures like providing context, highlighting different aspects of the topic,

development of a set of disambiguating questions, designing interfaces that stimulate

browsing and conveying information about the corpus to the user.

Belkin et al. (1982a,b) proposed the Anomalous States of Knowledge (ASK)

model, which emerged from the belief that the best-match principle followed in re-

trieval was fundamentally flawed. The best-match principle assumes that users can

precisely specify their information needs using a set of terms – the same informa-
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tion need that they have a gap in knowledge about. In addition to this, there is an

assumption of a functional equivalence between documents and information needs.

While the best-match principle has been reasonably successful, it is prone to failure.

The ASK model argues that the IR process is iterative and interactive, with channels

of communication between the user and system to not only collaborate in the process

but also allow for changes in the user’s perception of the original problem. The model

also contends that users can have different types of ASK, and the retrieval strategy

and model need to adapt to those requirements. Casting IR as an information-seeking

behavior, Belkin (1993) proposed that the central process was the users interaction

with text and the central component of the system was the user. This view was

shaped by the belief that IR is not a one-shot process but a series of interactions

between the user and system to satisfy an information need that can change during

the course of interaction.

Our development and analysis of interaction techniques is guided by the observa-

tions and suggestions from the studies and theories discussed above.

2.3 The utility of interaction

While much has been said about the need for user interaction, the question of

whether it helps in practice is important. We are encouraged by ample evidence from

past work on the utility of user interaction in improving search effectiveness. The

most common form of interaction is document-level and term-level relevance feed-

back. This involves presenting users with a list of documents or selected terms from

an initial search, and requesting them to mark those they believe are relevant to their

information need. Using this input from the user, the initial query is modified to

reflect the user’s choices (Rocchio, 1966; Salton and Buckley, 1997). This procedure

can also be done in an on-line fashion (Aalbersberg, 1992), i.e. the query is modified

each time a selection is made. Starting with this simple model there have been multi-
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ple extensions and novel schemes that have been explored, and shown to be effective.

Table 2.1 provides an overview of various explorations of interactive techniques in

the past. More so, it has also been demonstrated by Koenemann and Belkin (1996)

and Allan et al. (2001) that users prefer an interactive system to no interaction, and

appreciate the opportunity to have some control over the search process. White and

Ruthven (2006) provide empirical validation for this fact.

2.4 Predicting the utility of user interaction

Predicting when a query could potentially fail is a tough problem, and the focus

of many efforts. Cronen-Townsend et al. (2002) used the relative entropy between

the query language model and the collection language model to predict query diffi-

culty. Their prediction experiments showed a positive correlation with the MAP of

queries. He and Ounis (2004) extended this work to include a number of features in

addition to relative entropy to predict query performance. These features include

various metrics using inverse document frequencies (IDF) of the query terms, number

of documents containing the query terms and the clarity score. Their investigations

showed that different features were useful depending on the query length. Carmel

et al. (2006) tried to understand the relationship between queries, the relevant doc-

uments and the collection in an effort to predict query difficulty. They concluded

that the larger the (statistical) difference between the combination of the query and

relevant documents from the corpus, the better the query’s possibility of success.

More recent work by Vinay et al. (2006) and Zhou and Croft (2006) has focused on

measuring some or all of measures such as stability of the returned ranked list to

query and document perturbation, clustering tendency in the ranked list, and local

intrinsic dimensionality. In the context of this thesis, our goal is a bit different. We

will develop features to determine if user interaction has the potential to improve

performance on a query (Chapter 7), irrespective of its quality.
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Reference Summary

(Anick and Tipirneni, 1999)
Iterative query refinement though terminological feedback.
Lexical compounds in result lists were shown to be a source
of domain concepts that users can view and choose from easily.

(Cutting et al., 1992)
Users could browse by scattering documents into clusters or
groups then gather a subset of these groups and re-scatter
them to form new groups. Clusters were created based on
content similarity between documents.

(White et al., 2005) More effective search was facilitated by displaying top-ranked
(Tombros et al., 2003b) sentences from returned documents in comparison to displaying

lists of entire documents.

(Harman, 1988)
Selectively adding terms from an automatically created list
of terms was shown to improve performance by 160%. Reported
that background processes were very expensive.

(Hearst and Karadi, 1997)

Integrated search and browsing of very large category
hierarchies with their associated text collections.
Simultaneously displayed the representations of the categories
and the retrieved documents. Displayed multiple selected
categories simultaneously along with their hierarchical context.
Developed a three-dimensional graphical workspace.

(Chen et al., 1998)
Extension of Scatter/Gather to simultaneous browsing
and retrieval of web images and associated text

(Belkin et al., 1997)

Compared the performance and usability of a system offering
positive relevance feedback with one offering positive and
negative relevance feedback. Results were inconclusive about
utility of negative feedback, but showed that both feedback
systems were better than an automatic one.

Described a user interface that integrated the ranked list
with a clustering visualization. The visualization presented

(Leuski and Allan, 2000) documents as spheres floating in space and positioned
(Leouski and Allan, 1998) them in proportion to their inter-document similarity.

User studies showed that users were more successful
with the visualization than they were using a ranked list.

Table 2.1. Overview of some past work showing improvements in performance
through user interaction utilizing various types of interfaces
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2.5 Interaction strategies

Given the limitations of current automatic techniques, and the acknowledgment

that IR is a complex process requiring a dialog between the user and the system,

there is need for an intermediary (Borgman et al., 1988; Henninger and Belkin, 1996).

This intermediary should help users identify the information they need, acquire the

information, and formulate and direct search strategies. Abstracting away the actual

design of the interface, there is still a need (Henninger and Belkin, 1996) to determine

not only what information is required from the user but also the mode of interaction

to get that information (White and Ruthven, 2006). Users prefer systems that gather

information unobtrusively and wish to avoid actions like checking boxes as it distracts

them from their goal of searching. Users also prefer to retain control over query

creation, like having terms suggested to them, and appreciate the ability to verify the

correctness of decisions with respect to retrieval strategies. In other words, users want

to retain control over the strategic aspects of the IR process that directly influence

the quality of results.

A majority of previous investigations into user interaction involved showing users

textual information as evidence for feedback. The textual content varies from terms

for expansion (Anick and Tipirneni, 1999; Harman, 1988), sets of terms to represent

clusters (Cutting et al., 1992), top-ranked sentences (Tombros et al., 2003a,b; White

et al., 2005), passages, and entire documents (Aalbersberg, 1992). Unlike this past

work, in the main interaction techniques of query reduction and query expansion

we explore in Sections 4.1.1 and 4.1.2, we not only present users options to choose

from, but also provide them relevant information to understand the search space each

option will take them to.

Researchers also used graphical means of eliciting information from users. These

efforts were guided by the belief that graphical displays (Hearst, 1995; Hearst and

Karadi, 1997; Hendley et al., 1995; Kumar et al., 1997; Leouski and Allan, 1998;
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Swan and Allan, 2000, 1998) and images (Chen et al., 1998) were easier than text

for users to process and navigate, and provided a quick summary of large amounts

of information. Some work we propose on using images to summarize clusters of

documents in a ranked list (Chapter 11) is motivated by such work.

A study by Dumais et al. (2001) explored the utility of showing context in different

ways to guide users in judging relevance. The conclusion that category interfaces were

more useful than list interfaces will have important implications on the perceptual

and cognitive characteristics of the interfaces we design.

Croft and Thompson (1987) developed the I3R system with the goal of providing

a user support in the major phases of information retrieval namely query formulation

and refinement, search and evaluation. The I3R system was designed to act as an

intelligent intermediary that guided the user through the search process and obtained

feedback. Of particular interest to us is the availability of two retrieval strategies –

a term-based probabilistic one and a cluster-based one. When the former failed, the

latter was invoked. This is similar to our goal of invoking the right interaction strategy

based on the query, except that we plan to automate the decision process and not

expect the user to indicate that they were dissatisfied with a particular interactive

session. The I3R system also had a facility for user feedback that involved the user

going through the final results and indicating which documents were relevant. We will

not only automatically formulate search (interaction) strategies, but also provide the

user succinct information about the type of information their query and its variants

will retrieve. This is done during the query formulation stage itself.

The MERIT system developed by Belkin et al. (1995) views information retrieval

as a process of information seeking, and that information seeking can be modeled

as a dialog. These dialogs were characterized as a limited set of information seeking

strategies. Belkin et al. (1995) proposed developing specific strategies i.e. dialog

structures or scripts associated with each information seeking strategy to make the
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entire information retrieval process more efficient. However, their work falls short of

developing techniques to automatically select scripts in response to a query, though

it could be argued that the sort of information retrieval tasks they worked with were

unsuited for such treatment. We too are interested in making user interaction more

effective, and to that end are interested in developing strategies to select appropriate

interaction techniques in response to an ad-hoc query.

2.6 Eliciting Information

Spink et al. (1996) conducted a study of elicitations, both by the user and in-

termediary, during human-mediated IR. The elicitations were mainly used to request

information on search terms and strategies, selection of information sources, system

output and relevance of retrieved materials, and users’ background knowledge and

expertise. To start with, it was observed that 64% of the elicitations were by the

intermediary. The elicitations made by the intermediary occurred all through the

search process, right from query formulation to result judgment. This was in contrast

to elicitations from the user which were more during the online stage of the search

interaction. Users became more active once an initial set of documents was retrieved.

Their elicitations at this stage had to do with cleaning-up the results. Search inter-

mediaries too were active more during the online interaction than at the beginning.

This was because they had to create a good model of the user’s information need

using a set of terms.

The elicitation of information from the user can be done either through explicit

or implicit means. For example, Kumaran and Allan (2006a,b) provided users a

set of options with check boxes in their user interface. Users needed to explicitly

select options to convey their response to the system. In a departure from the usual

process of eliciting positive judgments from users Cool et al. (1996) asked users to

indicate terms they thought were not useful in the context of the query. Kraft
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et al. (2006) had a different take on user interaction. This allowed the user to enter

long queries like entire passages of text. This was a form of implicit feedback as the

user automatically provided context along with the information need. Kelly et al.

(2005) performed similar studies that showed that an interface that encouraged users

to enter more terms describing their information need could gather better terms for

use in a query. This was in comparison to automatic methods of query expansion.

Other approaches to unobtrusively gather information from the user include tracking

the time users spent viewing pieces of evidence like documents (Kelly and Belkin,

2004; Kelly and Teevan, 2003) and top-ranking sentences (White et al., 2005). The

hypothesis behind this form of implicit feedback was that users will spend more time

reading through relevant material than non-relevant material.
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CHAPTER 3

DATA SETS AND EVALUATION

Results from studies by Borlund (2000) and Borlund and Ingwersen (1997) show

that the practice of using ‘simulated work task situations’ to evaluate interactive IR

is as effective as requiring users to use their own information needs. The ‘simulated

work task situation’ involves the creation of an effective information-seeking scenario

simulating a real information need. A description of the context/scenario of a given

situation is used as a starting point for the participant’s information need. The goal

is to create a realistic setting where the participants understand the given description

and develop individual and subjective information need interpretations. Participants

are expected to then use the experimental system to assess relevance of the obtained

results in relation to their perceptions of the information need and the underlying

simulated work task situation. The user studies we will conduct using TREC1 data

sets are based on simulated work task situations.

3.1 Data Sets

As our data sets we used the TREC Robust 2004, Robust 2005 (Voorhees, 2006),

TREC 5 ad-hoc (Voorhees and Harman, 1996) and HARD 2003 (Allan, 2003) doc-

ument collections. The 2004 Robust collection contains around half a million doc-

uments from the Financial Times, the Federal Register, the LA Times, and FBIS.

The Robust 2005 collection is the one-million document AQUAINT collection. The

1http://trec.nist.gov/
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choice of Robust tracks was motivated by the fact that the associated queries were

known to be difficult, and conventional IR techniques were known to fail for a num-

ber of them. The TREC 5 ad-hoc collection consists of TREC disks 1 and 2, and

presented a standard ad-hoc retrieval setting. The HARD 2003 collection, a subset

of the AQUAINT corpus and US government corpus containing 372,219 documents

in all, was also selected since it was created for a track with focus on user interaction.

The fifty queries in the Robust 05 data set overlap with those in the Robust 04 data

set we used for training. However, since the collections are different, we limit the

risk of over-fitting. The HARD data set uses the same collection as the Robust 04

data set, but has a different set of fifty queries. Finally, the TREC 5 data set shares

neither the queries nor the collection with the Robust 04 data set. We believe that

this choice of test data sets will provide a comprehensive validation of our techniques.

249 queries from the TREC Robust 2004 track were used to study the impact of the

various techniques presented in this paper, and to learn parameters used for thresh-

olding. The remaining 150 queries, 50 each from the three remaining tracks, were

used to test the generality of our techniques.

All collections were stemmed using the Krovetz stemmer (Krovetz, 1993) provided

as part of the Indri search engine (Section 3.3). We used a manually-created stop list

of twenty terms (a, an, and, are, at, as, be, for, in, is, it, of, on, or, that, the, to,

was, with and what).

3.2 Evaluation

Al-Maskari et al. (2007) have shown that measures based on cumulative gain (Järvelin

and Kekäläinen, 2002) and precision correlate well with users’ satisfaction of the re-

sults. Most research in Interactive IR uses mean average precision (MAP), precision

at 5 documents (p@5), and precision at 10 documents (p@10) as the criterion to mea-

sure effectiveness. MAP is the most widely used measure in IR. While precision is
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the fraction of the retrieved documents that are relevant, average precision (AP) is a

single value obtained by averaging the precision values at each new relevant document

observed. MAP is the arithmetic mean of the average precisions of a set of queries.

Similarly, GMAP (Robertson, 2006) is the geometric mean of the average precisions

of a set of queries. The GMAP measure is more indicative of performance across an

entire set of queries. MAP can be skewed by the presence of a few well-performing

queries, and hence is not as good a measure as GMAP from the perspective of mea-

sure comprehensive performance. p@5 is the fraction of relevant documents in the

top five retrieved documents while p@10 is the fraction in the top ten.

The measures we have discussed until now, with the exception of MAP, are obliv-

ious to the position of the relevant documents in the ranked list. For example, a

retrieval system can attain a p@5 value of 0.2 by retrieving a single relevant doc-

ument anywhere in the top five in a ranked list. However, ranking the relevant

document first is better than ranking it fifth. A measure that can also reflect the po-

sitional distribution of relevant documents is normalized discounted cumulative gain

(NDCG).

NDCG was initially proposed by Järvelin and Kekäläinen (2002). The version we

used is a slight variation described by Vassilvitskii and Brill (2006).

NDCG = N
∑

i

2r(i) − 1

log(1 + i)

where the summation is over all the documents retrieved for a query from a collection,

r(i) is the relevance of document in rank position i and N is a normalizing constant.

The documents in the data sets we report results for have binary relevance judgments,

i.e. r(i) ∈ {0, 1}. The log term in the denominator serves as a discounting factor

that increases with the position of the result. Thus systems that return relevant

documents higher up the ranked list have higher NDCG scores. In this thesis we
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report NDCG@15 scores, i.e. NDCG calculated based on the top fifteen documents

returned by the retrieval system in response to a query.

However MAP, GMAP, p@5, p@10, and NDCG@15 do not provide a good mea-

sure of the amount of effort the user puts in during the interaction process. Kaki

(2005) compared search effectiveness between using a query-based Internet search, a

directory-based search and a phrase-based query reformulation assisted search. While

the primary measure for comparison was relevance rating, a measure of the quality

of the documents the subjects perused during search, cognitive load was also mea-

sured to determine the demands made on the user while interacting with the search

mechanism. Cognitive load was measured by creating a secondary task called a digit-

monitoring task. The task involved listening to a stream of digits and responding

when a digit was repeated. By measuring the reaction time and miss rate in the

secondary task, the amount of effort a subject employed was inferred based in the

hypothesis that effort applied to the primary task was inversely proportional to the

performance on the secondary task. Bruza et al. (1998) too used a secondary digit-

monitoring task to determine the cognitive load imposed on users by query refinement

mechanisms.

Further, Kaki (2004) proposed three proportional measures - search speed, qualified

search speed and immediate search accuracy. Search speed is the number of answers

found per minute of search time. Qualified search speed, while also measured in

terms of answers per minute, tries to address the shortcomings of search speed by

calculating the search speed on a per-relevance category basis. Thus, while search

speed takes into account only the number of answers, qualified search speed takes

into account the quality of the answers too. Thus we have

search speed =
answers found

minutes searched

and
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qualified search speedRCi =
answers foundRCi

minutes searched

where RCi stands for relevance category i. The typical categories are relevant and

non-relevant.

Immediate accuracy is used to capture the success of typical web search behavior.

In the web environment the typical goal for a search is to find just a few good enough

answers to a question. Immediate accuracy is expressed as a success rate. The success

rate is the proportion of cases where at least one relevant result is found by the nth

result inspected by the user. The selections for each task and user are gone through

in the order they were made, and the frequency of first relevant result finding is

calculated for each selection (first, second and so on). This sum is divided by the

total number of observations (number of participants × number of tasks) to get the

percentage of first relevant result found per selection. Formally,

immediate accuracyn =
number of first relevant resultsn

total number of observations

Time as a measure of search speed and effectiveness has also been used in a number

of studies (Dumais et al., 2001).

In this thesis, we evaluate the interactive techniques we explore by reporting MAP,

GMAP, p@5, p@10, NDCG@15 and the time taken by users to complete search tasks

when appropriate.
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3.3 Search Engine

As our search engine we used version 2.6 of the Indri search engine (Strohman

et al., 2005), developed as part of the Lemur2 project. Indri’s retrieval model (Met-

zler and Croft, 2004) combines the language modeling (Song and Croft, 1999) and

inference network (Turtle and Croft, 1991) approaches to information retrieval. While

the inference network-based retrieval framework of Indri permits the use of structured

queries, the use of language modeling techniques provides better estimates of proba-

bilities for query evaluation.

2http://www.lemurproject.org
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CHAPTER 4

LONG QUERIES

In this chapter we introduce long queries, and the performance that can be

achieved by using them in their original as well as modified forms. The modifica-

tion can involve (a) dropping terms from the original query, i.e. query reduction or

(b) adding appropriate terms to the original query, i.e. query expansion. We show

the tremendous potential for improved performance that can be achieved if the right

modifications are identified.

4.1 Long Queries

The Y!Q beta1 search engine allows users to select large portions of text from

documents and issue them as queries. The search engine is designed to encourage

users to submit long queries such as this example from the web site “I need to know the

gas mileage for my Audi A8 2004 model”. The motivation for encouraging this type of

querying is that longer queries provide more information in the form of context (Kraft

et al., 2006), and this additional information could be leveraged to provide a better

search experience. However, handling such long queries is a challenge. The use

of all the terms from the user’s input can rapidly narrow down the set of matching

documents, especially if a boolean retrieval model is adopted. While one would expect

the underlying retrieval model to appropriately assign weights to different terms in

the query and return only relevant content, it is widely acknowledged that models

1http://yq.search.yahoo.com/
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fail due to a variety of reasons (Harman and Buckley, 2004b), and are not suited to

tackle every possible query.

The queries used in the TREC ad-hoc tracks consist of title, description and

narrative sections, of progressively increasing length. The title, of length ranging

from a single term to four terms is considered a concise query, while the description

is considered a longer version of the title expressing the same information need. Most

research on the TREC ad-hoc retrieval track reports results using only the title portion

as the query, and a combination of the title and description as a separate query. Most

reported results show that the latter is more effective than the former, though in the

case of some hard collections the opposite is true. However, as we shall show later,

there is tremendous scope for improvement. Formulating a shorter query from the

description can lead to significant improvements in performance. We now introduce

the concepts of query reduction and query expansion as interpreted in this thesis.

4.1.1 Query Reduction

Consider the following query:

Define Argentine and British international relations.

When this query was issued to a search engine, the average precision (AP) of the

results was 0.424. When we selected subsets of terms (sub-queries) from the query,

and ran them as distinct queries, the performance was as shown in Table 4.1. It can be

observed that there are seven different ways of re-writing the original query to attain

better performance. The best query britain argentina, also among the shortest, did

not have a natural-language flavor to it, but had an effectiveness almost 50% more

than the original query. This immense potential for improvement motivates further

exploration of query reduction.
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Query AP
.... ....
international relate 0.000
define international relate 0.000
.... ....
define argentina 0.123
international relate argentina 0.130
define relate argentina 0.141
relate argentina 0.173
define britain international relate argentina 0.424
define britain international argentina 0.469
britain international relate argentina 0.490
define britain relate argentina 0.494
britain international argentina 0.528
define britain argentina 0.546
britain relate argentina 0.563
britain argentina 0.626

Table 4.1. The results of using all possible subsets (excluding singletons) of the
original query as queries, in increasing order of MAP. The query terms were stemmed
and stopped.

4.1.2 Query Expansion

Consider the following short (title) query for TREC Topic 370:

food drug law

When we expand this query with twenty-five terms obtained through pseudo-

relevance feedback (PRF) (Lavrenko and Croft, 2001), we obtain an AP of 0.145

compared to an AP of 0.110 when the original query alone was used2. PRF involves

building a language model of the vocabulary that is likely to occur in relevant docu-

ments. The initial query is used to rank documents and the top several documents are

assumed to be relevant. The vocabulary of those documents is analyzed to calculate

a probability distribution of words that are related to the query. The resulting prob-

2Expanding this short query makes it a long query.
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Query AP
.... ....
product section act information under 0.038
product section act information under administrate 0.046
.... ....
regulate product section food fda 0.395
regulate section food fda 0.399
regulate information under food fda 0.407
regulate product information under food fda 0.407
regulate product information food fda 0.415
regulate product under food fda 0.415
regulate product food fda 0.416
regulate information food fda 0.418
regulate under food fda 0.423
regulate food fda 0.430

Table 4.2. The results of using all possible subsets of the expansion terms suggested
by pseudo-relevance feedback. The results are sorted in ascending order by AP. The
original query food drug law was included with each expansion subset. The query
terms were stemmed and stopped.

ability distribution is used as an additional component of the query with expanded

vocabulary. PRF consistently improves retrieval performance over simpler language

modeling approaches, and meets or beats other techniques based on automatic query

expansion. However the choice of expansion terms selected by PRF is not always

optimal. Frequently, PRF includes terms in the query that serve to only reduce its

effectiveness. For example, if instead of just using all twenty-five terms for our ex-

ample query, we considered all subsets and ran them as distinct queries, we observed

that a large fraction of them performed much better than simple PRF. In Table 4.2

we can see that certain expansion subsets can lead to a 300% improvement in perfor-

mance for this query. This motivates an exploration of techniques to automatically

identify such expansion subsets.
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.472 0.397 0.379 0.240
PRF (Best) 0.514 0.442 0.423 0.288

Query Reduction
Upper Bound (UB) 0.799 0.671 0.626 0.366

Table 4.3. The upper bound performance that can be achieved by identifying the
best sub-query for 249 TREC 2004 Robust track description queries. Italicized values
indicate that the scores are significantly better than the baseline, while those in bold
are significantly better than PRF. Statistical significance was measured using a paired
t-test, with α set to 0.05

4.2 Upper Bound Experiments

Tables 4.3 and 4.4 shows the best performance that can be achieved through

query reduction for long queries and query expansion for short queries respectively.

All results are reported for queries from the TREC Robust 2004 track. We treated

the description portion of TREC queries as long queries for our experiments, and

the titles as short queries. Baseline refers to a query-likelihood (QL) run using the

Indri search engine, while PRF refers to automatic query expansion using pseudo-

relevance feedback3. “Upper Bound” refers to the situation when the best sub-query

and best expansion subset was used for query reduction and expansion respectively.

In other words, if we had access to an oracle that always provided us the best sub-

query and best expansion set for a query, we can obtain the indicated upper bound

on performance.

4.3 Summary

The P@5, P@10, NDCG@15, and MAP values in Tables 4.3 and 4.4 for query

reduction and expansion show the tremendous scope for improvement in the case of

3All performance metrics reported for PRF are upper bounds. We performed comprehensive
parameter sweeps for each collection reported in this paper to determine the best parameter set-
tings. The performance in practice will be lower as sub-optimal parameters will be learned for each
collection by training on other collections.
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System P@5 P@10 NDCG@15 MAP
Baseline (PRF) 0.462 0.420 0.433 0.284

Query Expansion
Upper Bound (UB) 0.696 0.600 0.570 0.352

Table 4.4. The upper bound performance that can be achieved by identifying the
best expansion subset for 249 TREC 2004 Robust track title queries. Values in bold
are significantly better than PRF, which was performed considering the top 25 doc-
uments and expanding by 20 terms. Statistical significance was measured using a
paired t-test, with α set to 0.05

information retrieval using long queries. The upper bounds can be viewed as targets

for any techniques we develop for query reduction and expansion. The degree of

improvement progressively increases for the MAP, NDCG@15, P@10 and P@5 mea-

sures, indicating that the techniques of query reduction and expansion are precision-

enhancing. The potential 70% and 50% improvements in P@5 through reduction

and expansion are unlike those that can be realized through contemporary automatic

techniques, and require the exploration of new automatic and interactive techniques

which are the focus of this thesis. In the next chapter we will describe techniques to

automatically reformulate long queries targeting the upper bounds we have identified

so far.
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CHAPTER 5

AUTOMATIC TECHNIQUES

In the previous chapter we showed that significant improvements in performance

can be obtained if we can identify the best sub-queries and expansion subsets. We can

also view this as the problem of identifying the key terms or concepts in long queries.

In this chapter we will describe the techniques we investigated to do so automatically.

After identifying the best sub-query and expansion subset for the set of 249 training

queries, we compared the terms retained in them with those in the original query. We

made the following observations that informed techniques to identify good sub-queries

and expansion subsets.

1. Terms in the original query that a human would consider vital to convey the type

of information desired were missing from the best sub-queries. For example, the

best sub-query for the example in Section 4.1.1 was britain argentina, omitting

any reference to international relations. This also reveals a mismatch between

the user’s query and the way terms occurred in the corpus, and suggests that

an approximate query could at times be a better starting point for search.

2. The sub-query would often contain only terms that a human would consider vital

to the query while the original query would also (naturally) contain them, albeit

weighted lower with respect to other terms. This is a common problem (Harman

and Buckley, 2004b), and the focus of efforts to isolate the key concept terms

in queries (Allan et al., 1996; Buckley et al., 2000).
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3. Good sub-queries were missing many of the noise terms found in the original

query. Ideally the retrieval model would weight them lower, but dropping them

completely from the query appeared to be more effective.

4. Sub-queries a human would consider as an incomplete expression of informa-

tion need sometimes performed better than the original query. Our example

illustrates this point.

5. Smaller-sized expansion subsets led to higher gains in performance. A few key

terms were enough to boost performance; more terms only reduced the quality

of the query.

6. Terms that would ordinarily be regarded as stop words sometimes proved more

useful than content words.

Given the above empirical observations, we now explore a variety of procedures

to automatically adapt the system to the user’s query. We expect that a good query

would have the following properties.

A. Minimal Cardinality: Any set that contains more than the minimum number

of terms to retrieve relevant documents could suffer from concept drift.

B. Coherency: The terms that constitute the sub-query should be coherent, i.e.

they should buttress each other in representing the information need. If need be, terms

that the user considered important but led to retrieval of non-relevant documents

should be dropped.

5.1 Automatic Selection Techniques

Our goal is to identify a subset of the original query (for query reduction) or ex-

panded set (for expansion). We hypothesize that such a subset needs to be statistically

cohesive, i.e. all the terms support the retrieval of only relevant material, and focus
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the query on a (single) relevant portion of the search space. To find such a subset we

scored the entire universe of subsets using a measure based on co-occurrence of terms

constituting each subset, and selected the one with the best score. Some of the earliest

work on the use of statistical co-occurrence of terms for improving search queries were

by Doyle (1959, 1975) and Maron and Kuhns (1960). Stiles (1961) and Rijsbergen

(1979) suggested the use of dependence trees, i.e. trees with terms as vertices and

edges weighted by a measure of association between the terms, to capture the most

significant dependencies between terms in a query. While Stiles (1961) explored the

use of the χ2 to measure association between query terms, Rijsbergen (1979) used the

expected mutual information measure. In this thesis we use the mutual information

measure (see below). Our choice was prompted by the large amount of evidence in

past work of the utility of this measure in text processing and retrieval tasks. We

acknowledge that other measures could potentially work as well as if not better than

mutual information, but leave that exploration for future work.

5.1.1 Mutual Information

Let X and Y be two random variables, with joint distribution P (x, y) and marginal

distributions P (x) and P (y) respectively. The mutual information is then defined as:

I(X; Y ) =
∑

x

∑

y

p(x, y)log
p(x, y)

p(x)p(y)

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) + H(Y )−H(X, Y ) (5.1)

H(X) and H(Y ) are marginal entropies, H(Y |X) and H(X|Y ) are conditional en-

tropies, and H(X, Y ) is the joint entropy. Intuitively, mutual information measures

the information about X that is shared by Y . If X and Y are independent, then X

contains no information about Y and vice versa and hence their mutual information
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is zero. Mutual Information is attractive because it is not only easy to compute,

but also takes into consideration corpus statistics and semantics. We calculated the

mutual information between two terms using Equation 5.2, described in Church and

Hanks (1990).

I(x, y) = log

n(x,y)
N

n(x)
N

n(y)
N

(5.2)

where n(x, y) is the number of times terms x and y occurred within a term window

of 100 terms across the corpus, while n(x) and n(y) are the frequencies of x and y in

the collection of size N terms.

To tackle the situation where we have an arbitrary number of variables (terms)

we extend the two-variable case to the multivariate case. The extension, called mul-

tivariate mutual information (MVMI) can be generalized from Equation 5.1 to:

I(X1; X2; X3; ...; XN) =
N

∑

i=1

(−1)i−1
∑

X⊂(X1,X2,X3,...,XN),|X|=k

H(X) (5.3)

The calculation of multivariate information using Equation 5.3 was very cumber-

some, and we instead worked with the approximation of Kern et al. (2003) given

below.

I(X1; X2; X3; ...; XN) =
∑

i,j={1,2,3,...,N ;i6=j}

I(Xi; Xj) (5.4)

For the case involving multiple terms, we calculated MVMI as the sum of the

pair-wise mutual information for all terms in the candidate sub-query. This can be

also viewed as the creation of a completely connected graph G = (V, E), where the

vertices V are the terms and the edges E are weighted using the mutual information

between the vertices they connect.

To select a score representative of the quality of a sub-query or expansion subset

we considered several options including the sum, average, median and minimum of the
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edge weights. We performed experiments on a set of candidate queries to determine

how well each of these measures tracked AP, and found that the average worked best.

We refer to the selection procedure using the average score as Average.

5.1.2 Maximum Spanning Tree

It is well-known that an average is easily skewed by outliers. In other words, the

existence of one or more terms that have low mutual information with every other

term could potentially distort results. This problem could be further compounded by

the fact that mutual information measured using Equation 5.2 could have a negative

value. Previous work by Rijsbergen (1979) showed that the Maximum Spanning

Tree (MaxST) over the fully connected graph G captured the most significant of the

dependencies between query terms. Based on this result, we used the weight of the

MaxST as a measure of the candidate query’s quality. We used Kruskal’s minimum

spanning tree algorithm (Cormen et al., 2001) after negating the edge weights to

obtain a MaxST. We refer to the selection procedure using the weight of the maximum

spanning tree as MaxST.

5.1.3 Named Entities

Named entities (names of persons, places, organizations, dates, etc.) are known

to play an important anchor role in many information retrieval applications. In our

example for query reduction, sub-queries without Britain or Argentina will not be

effective even though the mutual information score of the other two terms interna-

tional and relations might indicate otherwise. We experimented with another version

of sub-query selection that considered only sub-queries that retained at least one

of the named entities from the original query. We refer to the variants for query

reduction that retained named entities as NE Average and NE MaxST. For query

expansion, we did not pursue expansion by only named entities.
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.472 0.397 0.379 0.240
Upper Bound (UB) 0.799 0.671 0.626 0.366
Average 0.304 0.268 0.261 0.172
MaxST 0.300 0.264 0.259 0.171
NE Average 0.303 0.264 0.261 0.170
NE MaxST 0.315 0.274 0.273 0.180

Table 5.1. Performance when the highest ranked sub-query selected by various
techniques was used. Results are based on 249 description queries from TREC Robust
2004. Values in bold are significantly better than the baseline. Statistical significance
was measured using a paired t-test, with α set to 0.05

5.1.4 Experimental Setup

We used version 2.6 of the Indri search engine. The pseudo-relevance feedback

technique we used was based on relevance models (Lavrenko and Croft, 2001). More

details about the experimental setup are available in Section 3.1.

To extract named entities from the queries, we used BBN Identifinder (Bikel et al.,

1999). The named entities identified were of type Person, Location, Organization,

Date, and Time.

5.1.5 Results

To evaluate the automatic sub-query or expansion subset selection procedures

developed we performed retrieval experiments using the queries selected by them.

For query reduction (Table 5.1), the results of automatic selection were worse than

even the baseline, and there was no significant difference between using any of the

different sub-query selection procedures with the exception of NE MaxST.

Similar results were observed for query expansion (Table 5.2). While there was

an improvement in the P@5 values, the MAP and NDCG@15 measures dropped.

Clearly, the automatic techniques based on the features and techniques we selected

were not successful in identifying the best sub-queries and expansion subsets that

would lead to the performance presented in Tables 4.3 and 4.4.
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.462 0.420 0.433 0.284
Upper Bound (UB) 0.696 0.600 0.570 0.352
Average 0.481 0.423 0.396 0.259
MaxST 0.479 0.426 0.401 0.263

Table 5.2. Performance when the highest ranked expansion subset selected by vari-
ous techniques was used. Results are based on 249 title queries from TREC Robust
2004. Values in bold are significantly better than the baseline. Statistical significance
was measured using a paired t-test, with α set to 0.05

5.2 The Utility of Ranking Sub-queries and Expansion Sub-

sets

The limited utility of the automatic techniques could be attributed to the fact that

we were working with the assumption that a procedure designed to favor term co-

occurrence could be used to model a user’s information need. To see if there was any

general utility in using the procedures to select sub-queries, we viewed the procedures

not as a way to select the best sub-query or expansion subset but as a way to rank

all of them. Once we ranked all the sub-queries and expansion subsets, we selected

the best-performing one from the top ten ranked by each selection procedure. While

the effectiveness in each case for query reduction as measured by MAP was not close

to the best possible MAP, 0.366, they were all significantly better than the baseline

of 0.240 (Table 5.3,“Best Performance”). Similarly, in the case of query expansion

(Table 5.4,“Best Performance”) we notice improvements ranging from 22% in P@5 to

4% in MAP. However, if we select randomly from the top ten sub-queries in the case

of query reduction or expansion subsets in the case of query expansion, we notice

that on average (“Average Performance” in Tables 5.3 and 5.4) the performance

is significantly worse than “Best Performance”. Further, if we always select the

worst sub-query and expansion subset (“Worst Performance” in Tables 5.3 and 5.4),

performance plummets in the case of query reduction, and reduces significantly in the

case of query expansion.
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.472 0.397 0.379 0.240
Upper Bound (UB) 0.799 0.671 0.626 0.366
Best Performance
AverageTop10 0.625 0.515 0.490 0.294
MaxSTTop10 0.633 0.527 0.498 0.300
NE AverageTop10 0.610 0.510 0.482 0.291
NE MaxSTTop10 0.634 0.527 0.499 0.302
Average Performance
AverageTop10 0.268 0.244 0.259 0.161
MaxSTTop10 0.302 0.275 0.292 0.183
NE AverageTop10 0.281 0.255 0.270 0.169
NE MaxSTTop10 0.319 0.289 0.309 0.194
Worst Performance
AverageTop10 0.040 0.039 0.041 0.030
MaxSTTop10 0.027 0.023 0.027 0.014
NE AverageTop10 0.072 0.073 0.074 0.051
NE MaxSTTop10 0.040 0.047 0.051 0.031

Table 5.3. “Best Performance” refers to the performance when the highest ranked
sub-query selected by various techniques was used. “Average Performance” refers to
the situation when sub-queries are selected at random, while “Worst Performance” is
a lower bound where the worst sub-query is always selected. Statistical significance
was measured using a paired t-test, with α set to 0.05. We can notice that all sub-
query selection techniques deliver “Best Performance” results better than the baseline
with respect to all measures
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.462 0.420 0.433 0.284
Upper Bound (UB) 0.696 0.600 0.570 0.352
Best Performance
AverageTop10 0.564 0.499 0.457 0.298
MaxSTTop10 0.554 0.493 0.454 0.296
Average Performance
AverageTop10 0.418 0.379 0.390 0.258
MaxSTTop10 0.426 0.387 0.398 0.263
Worst Performance
AverageTop10 0.353 0.330 0.314 0.207
MaxSTTop10 0.345 0.315 0.306 0.195

Table 5.4. “Best Performance” refers to the performance when the highest ranked
expansion subset selected by various techniques was used. “Average Performance”
refers to the situation when expansion subsets are selected at random, while “Worst
Performance” is a lower bound where the worst expansion subset is always selected.
Values in bold are significantly better than the baseline. Statistical significance was
measured using a paired t-test, with α set to 0.05

Thus, if we can identify the best option from the top ten ranked by the various

techniques we have described in this chapter, then significant improvements in per-

formance are possible. The significant drop in performance in the average and worst

cases imply that identifying the best option is very difficult, and mistakes in doing so

can be very expensive.

From the upper bound or “best performance” results it appears that the automatic

techniques we have developed are successful in biasing the better query reformulations

higher up the ranked list. To confirm this hypothesis, we compared the distribution of

MAPs when sub-queries were randomly sampled from exponential number available,

and randomly sampled from the top ten ranked by the NE MaxST technique.

Query Reduction: Figure 5.1 provides the distribution of MAPs of samples

from the entire set of combinations of query terms and the set of top ten combinations

obtained by the NE MaxST ranking procedure for query reduction. The reason for

selecting the NE MaxST ranking procedure is provided in Section 6.1.1. A two-tailed
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Figure 5.1. Comparison of the distributions of MAPs of all subsets of query terms
and combinations selected by the NE MaxST ranking procedure. The highest achiev-
able MAP by always selecting the best from the top ten combinations is 0.302

paired t-test revealed that the distributions are significantly different (α = 0.05, p =

0).

Greater improvements over the baseline at P5 and P10 were observed for query

reduction (Table 5.3). While this is an indicator that the technique is precision-

enhancing, it doesn’t show whether these improvements were for already well-performing

queries or otherwise. Figure 5.2 shows the distribution of the number of relevant doc-

uments in the top ten in the ranked list after simulated query reduction, i.e. when

the best option from the top ten ranked by the NE MaxST technique is selected. The

distributions are for queries that had zero, one, and two relevant documents in the

top ten documents retrieved by the baseline system. We can observe that greater

numbers of relevant documents are present in the top ten documents in the ranked

list for the queries that exhibited poor baseline performance.

We also investigated whether the success of query reduction had a correlation

with the number of relevant documents for each query. The goal was to check if
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Figure 5.2. Distribution of number of relevant documents in the top ten in the
ranked list after query reduction. The queries chosen were those with baseline P10 =
0, 1, and 2.
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Figure 5.3. Scatter plot of number of relevant documents versus potential improve-
ment in MAP over the baseline due to query reduction. Potential MAP due to query
reduction refers to the case when the best sub-query from the top ten ranked by the
NE MaxST technique was selected for each query. Each query in our training set of
249 Robust 2004 queries had 66 relevant documents on average.

there was a positive correlation between success of query reduction and number of

relevant documents. A positive correlation would indicate that queries with more

relevant documents were better suited for query reduction. However, as Figure 5.3,

a scatter plot of the potential MAP improvement due to query reduction for our

training queries and the number of relevant documents for each query, shows there is

hardly any correlation between the two. The correlation coefficient of 0.003 conveyed

almost complete independence.

Query Expansion: Figure 5.4 illustrates the distribution of MAPs of samples

from the entire set of combinations of expansion terms and the set of top ten combi-

nations. A two-tailed paired t-test again shows that the distributions are significantly

different (α = 0.05, p = 0).
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Figure 5.4. Comparison of the distributions of MAPs of all combinations of query
expansion terms and combinations selected by the NE MaxST ranking procedure.
The highest achievable MAP by always selecting the best from the top ten combina-
tions is 0.294

5.3 Summary

We have described techniques for ranking sub-queries and expansion subsets in

such a way that better combinations are ranked higher. With these results are a

background, the next step is to identify the best sub-query or expansion subset from

a set of top-ranked combinations. Our approach is to involve the user in selecting the

best from the top ten ranked by the automatic techniques described in this chapter. In

the next chapter we will show how automatic techniques for ranking sub-queries and

expansion subsets in concert with user interaction can be used to improve retrieval

performance.
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CHAPTER 6

FEASIBILITY STUDY

The final results we presented in the last chapter hinted at a potential for user

interaction in the form of interactive query reduction (IQR) and interactive query

expansion (IQE). We envisioned providing users with a list of the top ten options

identified using a ranking procedure, and asking her to select the option she felt was

most appropriate. We will refer to sub-queries and expansion subsets collectively as

options. This additional round of human intervention could potentially compensate

for the inability of the selection techniques described in Chapter 5 to select the best

sub-query or expansion subset automatically. To this end we conducted a feasibility

study to determine if users can select an option better than the baseline give a set of

top ten options generated using the automatic techniques described in the previous

chapter.

In the next section we will discuss issues related to the design of the user interface

used for the feasibility study. In Section 6.2 we will present results of the feasibility

study we conducted for IQR and IQE, and show that users can

• Use the supporting information provided in the interface to select a better

reformulation of the original query.

• Use the same information to decide that none of the options presented were

useful for some queries.

• Obtain significant improvements in performance through IQR and IQE.

43



In Section 6.3 we report the profiles of the feasibility study participants, and

present the feedback on IQR and IQE obtained from them. We will present conclu-

sions in Section 6.4, and discuss the limitations of the feasibility study we conducted

in Section 6.5.

6.1 User Interface Design

The interface was designed keeping in mind the need for minimal interaction. Our

goal was to show not only the ten options to users, but also provide some information

on the result of selecting each of those options. Drawing from previous conclusions

in the literature (Dumais et al., 2001; White et al., 2005) we decided to show users a

snippet of text from the top-ranking document retrieved by each option in a tabbed

interface. Figure 6.1 is a screen shot of the interface we provided to users to guide

the system’s adaptation to queries.

For IQR, we displayed the description (the long query) portion of each TREC

query in the interface. The narrative was also included to help the user understand

the information need. The title was kept hidden to avoid influencing the participant’s

choice of the best sub-query. For IQE, the roles of title and description were inter-

changed. A list of options was displayed along with links that could be clicked on to

display a short section of text, or snippet, in a designated area. The intention was

to provide an example of what would potentially be retrieved with a high rank if an

option was selected. The user was expected to use this information to select the best

option from the list. In situations where users observed multiple options retrieving

the same snippet they were instructed to select the most general option. A facility to

indicate that none of the options were good was also included.
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Figure 6.1. Screenshot of the annotation interface. This particular example is for
query reduction.
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Percentage of candidates
better than baseline

Average 28.5%
MaxST 35.5%
NE Average 31.1%
NE MaxST 36.6%

Table 6.1. Number of candidates from top 10 that exceeded the baseline

6.1.1 User interface content issues

The two key issues we faced while determining the content of the user interface

were:

A. Deciding which sub-query selection procedure to use to get the top 10 candi-

date sub-queries: To determine this in the absence of any significant difference in

performance due to the top-ranked candidate selected by each procedure, we looked

at the number of candidates each procedure brought into the top 10 that were better

than the baseline query, as measured by MAP. This was guided by the belief that the

greater the number of better candidates in the top 10, the higher the probability that

the user would select a better sub-query. Table 6.1 shows how each of the selection

procedures compared. The NE MaxST ranking procedure had the most number of

better sub-queries in the top 10, and hence was chosen. For query expansion, we

choose MaxST.

B. Displaying context: Simply displaying a list of 10 candidates without any sup-

portive information would make the task of the user difficult. This was in contrast

to query expansion techniques (Anick and Tipirneni, 1999) where displaying a list of

terms sufficed as the task of the user was to disambiguate or expand a short query.

An experiment was performed in which a single user worked with a set of 30 queries

from Robust 2004, and an accompanying set of 10 candidate sub-queries each, twice

- once with passages providing context and one with snippets providing context. The

top-ranked passage was generated by modifying the candidate query into one that re-

trieved passages of fixed length instead of documents. Snippets, like those seen along
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MAP GMAP
Snippet as Context 0.348 0.170
Passage as Context 0.296 0.151

Table 6.2. Results showing the MAP over 19 of 30 queries that the user provided
selections for using each context type.

with links to top-ranked documents in the results from almost all popular search en-

gines, were generated after a document-level query was used to query the collection.

The order in which the two contexts were presented to the user was randomized to

prevent the user from assuming a quality order. We see that presenting the snippet

led to better MAP than presenting the passage (Table 6.2). The reason for this could

be that the top-ranking passage we displayed was from a document ranked lower by

the document-focused version of the query. Since measures like MAP and NDCG@15

are sensitive to the position of relevant documents, and the snippet was generated

from the top-ranked document, we hypothesize that this led to the snippet being a

better context to display.

6.2 Feasibility Study

We conducted an exploratory feasibility study with twelve participants that were

a mix of volunteers and paid annotators. The participants were tasked with selecting

the best option from a list of ten provided for query reduction and expansion. They

were asked to base their decision on the snippet of text that corresponded to each

option. To measure the time it took to complete the task for every query, we instructed

the participants to start a timer after they read and understood the query, and just

before they started inspecting the options. We used fifty queries from the Robust 2005

track (Voorhees, 2006) for this study. For query reduction, we used the description

portion of each query, and for expansion the title. The baseline for query expansion

was a PRF run with number of feedback documents and terms set to fifteen and

twenty respectively.
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6.2.1 Query Reduction

Table 6.3 shows that all participants were able to choose sub-queries that led to an

improvement in performance over the baseline (description query). This improvement

is not only in MAP but also in GMAP, indicating that user interaction helped improve

a wider set of queries. Most notable were the improvements in P@5 and P@10.

We believe that this was due to the fact that the information participants used for

guidance was a snippet from the top-ranked document for each sub-query. Selecting

an option implied that the participant automatically ensured a relevant document

was retrieved in the first position of the ranked list. The interaction technique we

developed was thus precision-enhancing. Another interesting result, from # sub-

queries selected was that participants were able to decide in a large number of cases

that re-writing was either not useful for a query, or that none of the options presented

to them were better. Showing context appears to have helped. The average time taken

by the participants to select an option was a minute and a half. It is important to

note that the values of various measures reported in Table 6.3 are not comparable

across users. This is because we have reported scores for each user based on the

queries for which the user selected an option. From Table 6.3, we can see that users

selected options for different numbers of queries.

6.2.2 Query Expansion

Table 6.4 summarizes the results of our study to evaluate the utility of IQE. Only

50% of participants achieved an improvement in either MAP or GMAP over the

baseline expanded title query. Almost all of them however achieved improvements in

P@5 and P@10, a trend noticed in the case of IQR too. This again attested to the

fact that the interaction technique we utilized was precision-enhancing. Given that

PRF already constitutes a very competitive baseline, and given the relatively little

room for improvement (see Upper Bound in each case), we believe it is encouraging
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# Sub-queries Selections Avg. Time
selected above baseline per Query MAP GMAP P@5 P@10

(seconds)

Baseline 0.176 0.108 0.463 0.422
1 32 17 125 With Interaction 0.191 0.103 0.444 0.419

Upper bound 0.239 0.150 0.538 0.519

Baseline 0.175 0.118 0.463 0.426
2 35 20 107 With Interaction 0.196 0.124 0.469 0.431

Upper bound 0.256 0.185 0.554 0.546

Baseline 0.175 0.107 0.443 0.417
3 42 19 9 With Interaction 0.179 0.104 0.476 0.431

Upper bound 0.251 0.173 0.529 0.517

Baseline 0.179 0.126 0.507 0.454
4 28 19 91 With Interaction 0.205 0.143 0.586 0.525

Upper bound 0.273 0.209 0.621 0.607

Baseline 0.173 0.105 0.445 0.418
5 44 20 53 With Interaction 0.186 0.000 0.414 0.398

Upper bound 0.234 0.127 0.491 0.491

Baseline 0.181 0.124 0.459 0.426
6 34 17 28 With Interaction 0.228 0.155 0.535 0.541

Upper bound 0.262 0.202 0.547 0.556

Baseline 0.185 0.123 0.471 0.439
7 31 18 75 With Interaction 0.209 0.135 0.516 0.471

Upper bound 0.268 0.198 0.587 0.574

Baseline 0.168 0.113 0.447 0.415
8 34 20 92 With Interaction 0.206 0.143 0.512 0.485

Upper bound 0.248 0.180 0.529 0.532

Baseline 0.191 0.134 0.478 0.450
9 36 20 131 With Interaction 0.196 0.117 0.500 0.458

Upper bound 0.278 0.206 0.600 0.594

Baseline 0.169 0.102 0.416 0.403
10 37 15 22 With Interaction 0.211 0.128 0.470 0.459

Upper bound 0.246 0.140 0.486 0.503

Baseline 0.168 0.113 0.464 0.439
11 28 12 50 With Interaction 0.189 0.114 0.400 0.418

Upper bound 0.216 0.148 0.514 0.511

Baseline 0.197 0.148 0.490 0.466
12 29 12 75 With Interaction 0.235 0.162 0.531 0.541

Upper bound 0.294 0.236 0.614 0.617

Table 6.3. IQR: All participants worked through a set of fifty queries. # Sub-
queries selected refers to the number of queries for which the participant chose an
option. Selections above baseline refers to the number of times the option selected by
the user was better than the baseline query. All scores, including upper bounds, were
calculated only considering the queries for which the participant selected a sub-query.
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that participants registered improved performance over the baseline. We noticed

from # sub-queries selected that participants decided in a larger number of cases that

expansion was either not useful for a query, or that none of the options presented

to them were better. The time taken by the participants to go through the options,

read through the snippets and select an option varied from approximately half to one

minute. This was much less that the times observed for IQR. The reason was that in

the case of IQE a large number of options retrieved the same snippet resulting in the

annotators having to read through less text before selecting an option. We will use

this observation to reduce the number of options presented to users in Chapter 8.

6.3 User Profiles and Feedback

Our user pool consisted of twelve individuals, of which nine were male and three

were female. The average age was 25.9 years, with eight of the users having Masters

degrees and four of them with Bachelors. The number of queries that each of them

issued to commercial search engines varied from ten to fifty each day.

Ten of the users considered the IQE task easier than the IQR task, and conveyed

that a large number of IQE options had the same associated snippet, reducing the

amount of text that had to be read. We will use this observation in Chapter 8 to

reduce the number of options shown to users. All users were unanimous in their

opinion that the interface was easy to use, but had mixed responses to the question

“Would you like a commercial search engine to use such an interface?”. Given below

are the responses of some of the users who agreed to provide a reason.

1. No. It is not very convenient for me to put a mouse upon the words and then

see the whole snippets.

2. YES, as it helps to clarify the query. However the quality of the extracted

passages should be improved
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# Expansion Selections Avg. Time
sub-sets above baseline per Query MAP GMAP P@5 P@10
selected (seconds)

Baseline 0.333 0.256 0.553 0.587
1 30 15 57 With Interaction 0.335 0.249 0.587 0.597

Upper bound 0.347 0.264 0.600 0.603

Baseline 0.367 0.312 0.675 0.683
2 24 16 54 With Interaction 0.363 0.298 0.708 0.675

Upper bound 0.371 0.306 0.700 0.679

Baseline 0.313 0.241 0.646 0.646
3 13 8 67 With Interaction 0.311 0.244 0.677 0.646

Upper bound 0.335 0.259 0.662 0.662

Baseline 0.348 0.293 0.645 0.677
4 22 14 53 With Interaction 0.362 0.315 0.682 0.714

Upper bound 0.351 0.299 0.636 0.682

Baseline 0.324 0.246 0.581 0.597
5 32 20 57 With Interaction 0.313 0.221 0.594 0.609

Upper bound 0.329 0.243 0.600 0.616

Baseline 0.314 0.246 0.560 0.573
6 30 17 30 With Interaction 0.305 0.220 0.567 0.583

Upper bound 0.322 0.241 0.593 0.597

Baseline 0.353 0.279 0.664 0.673
7 22 11 29 With Interaction 0.356 0.277 0.682 0.695

Upper bound 0.371 0.296 0.709 0.705

Baseline 0.357 0.267 0.673 0.705
8 22 13 26 With Interaction 0.374 0.323 0.745 0.773

Upper bound 0.379 0.291 0.709 0.745

Baseline 0.310 0.253 0.650 0.662
9 16 8 28 With Interaction 0.314 0.244 0.737 0.694

Upper bound 0.319 0.241 0.675 0.656

Baseline 0.383 0.329 0.717 0.729
10 24 13 20 With Interaction 0.406 0.349 0.767 0.779

Upper bound 0.403 0.350 0.750 0.762

Baseline 0.347 0.283 0.614 0.621
11 28 14 26 With Interaction 0.343 0.275 0.621 0.639

Upper bound 0.361 0.293 0.643 0.646

Baseline 0.308 0.229 0.523 0.551
12 39 22 49 With Interaction 0.304 0.221 0.523 0.551

Upper bound 0.317 0.234 0.538 0.564

Table 6.4. IQE: Participants worked through fifty queries again. # Expansion sub-
sets selected refers to the number of queries for which the participant chose an option.
Selections above baseline refers to the number of times the option selected by the
user was better than the baseline query. Upper Bound refers to the hypothetical
situation where the user always selects the option that leads to the highest MAP, and
chooses the baseline when none of the options are better than it. All scores, including
upper bounds, were calculated only considering the queries for which the participant
selected a sub-query.
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3. possibly. It can be helpful in identifying when and why a query is bad because

the corpus contains something other than what I’m expecting.

4. No: I prefer a ranked list of unique documents spanned over several pages (or

at least to a far rank depth).

5. yes and no, I like to see the article and the highlighted words that relates to the

query but too many of the same article sometimes shows up. I would like one

that shows itself once.

The second, third and fifth comments are consistent with the goals of the user

interface design, i.e. to provide users a preview of the different search spaces that

their query can take them too, as well as the corpus contents. The first and fourth

comments indicate that some users still prefer to use the popular ranked-list interface

which gives them more power to re-specify their queries.

6.4 Conclusions

Our results clearly show there is much to be gained though IQR and IQE. While

automatic techniques to perform query reduction and expansion are not successful,

involving the user in the process clearly helped. We hypothesize that such interaction

is useful for exploratory search where the user starts off with a more general infor-

mation need and a looser notion of relevance. Successive rounds of interaction and

query modifications are necessary to obtain the information desired. The interactive

technique we have presented served as a bridge between the users and the IR system,

helped adapt the users’ queries to the characteristics of the retrieval algorithm and

collection. By providing users a preview of the content retrieved by the options, a

sense of the users’ true information need was obtained to redirect the search towards

relevant content.
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6.5 Limitations to our study

The goal of the feasibility study was to determine if users could successfully select

in a reasonable amount of time, a good option from a set presented to them. While

we have shown that to be true, we acknowledge several limitations to our study.

For instance, the users of our system had to work with prespecified queries, and

not ones that reflected their personal information needs. This may have affected the

participant’s behavior and criteria used when assessing the options presented to them.

More naturalistic settings would have provided greater credence to our conclusions.

Our choice of queries, title and description portions of TREC topics, was motivated

by the fact that these were standard test collections with relevance judgments readily

available. However, these data sets were not developed with measurement of utility

of user interaction in mind. We have also assumed that users will agree to enter long

queries when asked to do so, and it is still an open question whether the long queries

users enter will be similar in structure, form, and quality to the queries extracted from

TREC topics. Further, since the topics are not categorized as fact finding, general,

question-answering, transactional, navigational and so on extended analysis is not

possible.

The demographics of our users included males and females between the age group

twenty to thirty. This restricted profile could potentially affect the generalizability

of our results and conclusions. The small number of users, twelve, further limits the

strength of the conclusions. The results and conclusions are also particular to the

interface we designed and presented: other interfaces could have led to worse or better

results.

The user interaction paradigm we have explored involves a single round of inter-

action. In situations where users did not find any of the options presented to them

useful, further rounds of interaction to reformulate or rephrase the query are called

for. Exploration of session-based user interaction is planned for future work.
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CHAPTER 7

SELECTIVE USER INTERACTION

We showed in the previous chapter that user interaction in the form of IQR and

IQE for long queries can lead to significant improvements in performance over au-

tomatic systems. We consider user interaction as a resource to be judiciously used,

preferably only when necessary. Invoking user interaction for every query is generally

unwarranted - we show examples where interaction has potential to help only in a

fraction of queries. Forcing the user to interact even when there is no potential for

improvement can be detrimental to the user experience. We investigate IQR and

IQE and develop procedures to detect the potential for improvement to help decide

if user interaction is warranted. We show that by using these procedures we can

avoid interaction for almost 40% of TREC queries without compromising significant

improvements over the baseline. We also develop procedures to rank queries by their

potential for improvement through user interaction. This enables systems to select

the most promising queries for interaction when interacting with users working under

time and cognitive load constraints.

7.1 Introduction

Our observations from the user study indicate that there were a large number of

queries for which users did not select any of the options presented to them. This was

because, frequently, none of the options (sub-queries or expansion subsets) selected by

the automatic techniques and presented to the user were any better than the original
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query. In other words, the techniques to determine the correct options to present to

the user are not perfect.

We believe that systems should be able to handle the situation discussed above,

that invoking user interaction should be done in a judicious manner. Forcing the user

to interact during every query session irrespective of whether there is utility in doing

so can degrade overall user experience, and lead to increased cognitive load (Bruza

et al., 1998).

Thus, there is clearly a need to develop a procedure to determine the utility

of user interaction. Using such a procedure to determine beforehand the potential

utility/futility of invoking user-interaction on a per-query basis will be useful in saving

the user time and effort. Determining beforehand if a particular interaction had no

potential would also provide a basis for attempting a different interaction mechanism,

if available.

We investigated approaches towards determining when to interact with the user.

We considered two settings - IQR and IQE. We based the decision to interact on the

potential for improved performance with user involvement. Our experiments (Sec-

tion 7.4) and results (Section 7.5) were simulations to enable abstracting away the

effects of interface design, experimental methodology, subject experience and ability

etc. We readily acknowledge that these factors might have important ramifications in

a deployed system, but believe that their exploration is a natural extension for future

work.

Our approach (Section 7.3) was to examine the properties of the set of options

presented to the user. We hypothesized that useful sets of options will have distin-

guishing features from non-useful ones. We also believed that such a method will

not be perfect, but users will be willing to trade a slight, but not significant drop in

performance in return for a better search experience.
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Figure 7.1. Query Reduction: The utility of interaction on a per-query basis. Values
less than zero (to the right) indicate that none of the sub-queries presented to the
user were better than the baseline query

7.2 User Interaction Potential

7.2.1 Query Reduction

Figure 7.1 sheds light on an interesting aspect of the potential improvements in

performance that can be achieved with IQR. It shows the distribution of the abso-

lute potential improvements in performance through user interaction across the 250

queries. If one were to consider a minimum improvement of 0.025 to be worth in-

teracting to achieve, then we can see that user interaction for close to 150 queries is

unnecessary. The overall improvements in MAP masked the minuscule improvements

contributed by these queries.

Given this background, we seek to address the question, Given a long query, is it

possible to infer the potential utility of invoking user interaction to select a reduced

version of the same query?
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Figure 7.2. Query Expansion: The utility of interaction on a per-query basis.

7.2.2 Query Expansion

Figure 7.2 provides a pictorial description of the potential utility of user interaction

with respect to IQE. Analogous to query reduction, we notice that user interaction

for approximately 150 queries is of little utility.

Thus, we seek to address the question, Given a short query, is it possible to infer

the potential utility of invoking user interaction to select a better set of expansion

terms?

We believe that while there is demonstrable gain to be had from involving the

user, it is equally important to determine when to bother a user with the request. In

the following sections we will present techniques we developed towards this goal. We

will present the results of simulated user studies.

7.3 Predicting Utility of Interaction

There is a large body of previous and related work on procedures to determine

the quality of queries (Carmel et al., 2006; Cronen-Townsend et al., 2002; Zhou and

Croft, 2006). The goal of that work was to predict in advance if a query will result in
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acceptable values of precision, and take appropriate steps if the query was predicted

to fail (have a low AP). The procedures were thus tuned to accurately predict AP. Our

goal is different. We wish to determine if the interaction techniques, IQR and IQE, will

lead to an improvement in MAP. From the perspective of a user, expending interaction

effort to improve precision from 0.1 to 0.11 is of the same utility as improving precision

from 0.8 to 0.81 i.e. little utility. Hence we tuned our procedure to target absolute

improvements in MAP, and not just MAP values themselves.

7.3.1 Qualities of good options

Our investigation of potential features for predicting improvement was guided by

the following hypotheses about potentially good options for interaction. By options,

we mean the set of top ten sub-queries or expansion subsets presented to the user.

1. When the original query is very long, a large number of extraneous terms are

present that hinder retrieval instead of supporting it1. Thus, options that have

low average length, or are derived from shorter queries, are potentially better

2. The average NE MaxST scores of the set of options will be high, indicating a

very focused set of queries

3. The scores of the sub-queries/expansion subsets in the options will be diverse,

indicating that they cover different aspects of the query.

7.3.2 Query Reduction

For each query, we started with the top ten sub-queries ranked by NE MaxST

(Section 5.1.3). We used the scores assigned to them by the selection procedure

to investigate several features based on measures of central tendency, measures of

dispersion, and measures involving query lengths.

1Identifying and selectively weighting such terms is a continuing challenge.
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Figure 7.3. Scatter plot of log coefficient of variation versus potential improvement
in AP due to user interaction

Table 7.1 provides a list of the features we experimented with, their correlation

coefficients (γ) with potential improvements in AP, and the standardized regression

coefficients obtained from multiple linear regression. While the correlation coefficients

provided individual correlation of the features with potential improvement in AP,

the standardized coefficients provided an overview of the relative importance of the

features. One drawback of the standardized coefficients is that they do not reveal the

dependence between variables (features). For example, Log Change Volatility (lcv),

Percentage Change Volatility (pcv), and Coefficient of Variation (cv) features have

an average correlation coefficient of 0.926 within themselves. Hence, we used both

coefficients to choose the best features: standardized regression coefficients to reject

some features and correlation coefficients to choose the best features. Features with

standardized regression coefficients equal to zero were dropped from consideration.

The feature with the highest correlation coefficient was a dimensionless quantity,

coefficient of variation (cv). cv can be considered as a measure of the scatter of a set
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Feature Formula γ Standardized
Regression
Coefficient

Original query length (ql) - -0.238 -0.000010

Mean score (x̄) x̄ = 1
n

∑n−1
i=0 xi -0.226 0.000011

Geometric mean (gm) gm = (
∏n−1

i=0 xi)
1

n -0.229 -0.000003

Harmonic mean (hm) hm = n
∑

n−1

i=0

1

xi

-0.232 0.000000

Interquartile mean (im) im = 2
n

∑

3n−4

4

i= n

4

xi -0.227 0.000000

Root mean square (rms) rms =
√

1
n

∑n−1
i=0 x2

i -0.223 -0.000004

Median - -0.226 0.000000

Variance (σ2) σ2 =

∑

n

i=0
(xi−x̄)2

n−1 0.084 0.000000

Standard Deviation (σ) σ =

∑

n

i=0
(xi−x̄)2

n−1 0.120 0.000000

Log Change Volatility (lcv) σ of the natural base logarithms of the
differences of successive ordered values
of a set X

0.221 -3.141603

lcv = σ(Y ); yi = log xi+1

xi

Percentage Change Volatility
(pcv)

σ of the percentage differences of suc-
cessive ordered values of a set X

0.263 0.000668

pcv = σ(Y ); yi = 100 ∗ xi+1−xi

xi

Coefficient of Variation
(cv)

cv = 100 ∗ σ
x̄

0.314 0.000047

Table 7.1. Features with the highest correlation coefficient with respect to potential
improvement in AP for IQR
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Figure 7.4. Scatter plot of original query size versus potential improvement in AP
due to user interaction

of values. The positive correlation indicates that options that have high dispersal are

more likely to contain sub-queries that lead to improvements in AP. This is consistent

with our hypothesis that varied options were more likely to cover concepts the user

is interested in.

The feature with the second highest correlation was Percentage Change Volatility

(pcv). Since the correlation of pcv with cv was very high (0.934), we dropped that

feature from consideration because of its redundancy with respect to cv. Further,

the feature with the highest standardized regression coefficient, Log Change Volatil-

ity (lcv), too had a high correlation with cv (0.8874), leading to using only cv as a

predictive feature. The original query length (ql) was the feature with next highest

correlation with potential improvement in AP. It has a correlation coefficient of -0.512

with cv. The negative correlation with potential improvement in AP indicates that

high values of initial query length translate to low-quality sub-queries, while lower

values of initial query length are predictive of high-quality sub-queries. This is intu-
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itive as identifying all the concepts in longer queries is more difficult. Longer queries

also tend to induce more errors into the sub-query ranking procedure. Figure 7.4

is a scatter plot of original query size versus potential improvements in AP for the

training queries. We can observe a gradual decrease in potential effectiveness as the

length of the original query increases. He and Ounis (2004) too utilized query length

as a feature in their attempts to predict query performance.

Figure 7.3 is a scatter plot of log of coefficient of variation versus potential im-

provements in AP for all the training queries. We can notice that higher improvements

in AP are observed at the higher end of the cv scale.

7.3.3 Query Expansion

For each query we considered the top ten expanded queries ranked by NE MaxST.

Table 7.2 lists the features that correlated best with potential improvements in MAP.

cv was the feature that correlated most with the potential improvement in AP,

while pcv came second. lcv and pcv had standardized regression coefficients of

-587909.722 and 63.578 respectively. Since they both had very high correlation with cv

(0.898 and 0.899 respectively), and to maintain consistency with the feature selected

for IQR, we chose to use only cv as a predictive feature for IQE.

Figure 7.5 presents a scatter plot of cv versus potential improvement in AP. We

notice trends similar to that observed in query reduction.

7.4 Usage Scenarios

We use predictive features in two different interaction scenarios. The first one is

system-centric: i.e., the system learns and uses a technique to decide on user interac-

tion each time a user issues a query. The second is user-centric: i.e., a user approaches

a system with a set of queries, along with constraints on how much interactive effort

she is willing to put in.
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Feature Formula γ Standardized
Regression
Coefficient

Mean score (x̄) x̄ = 1
n

∑n−1
i=0 xi 0.243 0.000000

Geometric mean (gm) gm = (
∏n−1

i=0 xi)
1

n 0.243 0.000000

Harmonic mean (hm) hm = n
∑

n−1

i=0

1

xi

0.241 0.000000

Interquartile mean (im) im = 2
n

∑

3n−4

4

i= n

4

xi 0.242 -80.396663

Root mean square (rms) rms =
√

1
n

∑n−1
i=0 x2

i 0.243 0.000000

Median - 0.243 23.962995

Variance (σ2) σ2 =

∑

n

i=0
(xi−x̄)2

n−1 0.243 -442.25526

Standard Deviation (σ) σ =

∑

n

i=0
(xi−x̄)2

n−1 0.242 -44.740637

Log Change Volatility (lcv) σ of the natural base logarithms of the
differences of successive ordered values
of a set X

0.247 -587909.722

lcv = σ(Y ); yi = log xi+1

xi

Percentage Change Volatility
(pcv)

σ of the percentage differences of suc-
cessive ordered values of a set X

0.248 63.57823

pcv = σ(Y ); yi = 100 ∗ xi+1−xi

xi

Coefficient of Variation
(cv)

cv = 100 ∗ σ
x̄

0.267 -0.010412

Table 7.2. Features with the highest correlation coefficient with respect to potential
improvement in AP for IQE
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Figure 7.5. Scatter plot of coefficient of variation (cv) versus potential improvement
in AP due to user interaction

7.4.1 System-Centric

Using training instances we learned a decision function to determine when to

interact with a user. The high dispersion observed in Figures 7.4, 7.3, and 7.5 made

the use of machine learning techniques like support vector machines (SVMs) to learn

classifiers difficult. We observed that the classifier learned using SVMs used almost

every training instance as a support vector - i.e., over fitting occurred. With this in

view, we decided to apply thresholds to the feature values, and build a simple decision

tree.

Query Reduction

Table 7.3 reports the change in potentially achievable MAP as well as the percent-

age of queries requiring user interaction when simultaneous threshold sweeps on both

features, ql and cv, were performed. Every MAP value in the table is a statistically

significant improvement over the baseline of 0.235. Statistical significance tests were

performed using the paired t-test, with α set to 0.05.

64



Coefficient of Variation Threshold

1 2 3 4 5 6 7 8

15 0.261, 57 0.260, 56 0.259, 53 0.258, 50 0.258, 46 0.257, 43 0.256, 40 0.254, 37

Query 16 0.262, 64 0.262, 61 0.260, 57 0.259, 53 0.258, 49 0.257, 45 0.256, 42 0.254, 38

Length 17 0.263, 68 0.262, 65 0.260, 59 0.259, 55 0.259, 50 0.257, 45 0.256, 42 0.254, 38
Threshold 18 0.264, 73 0.263, 69 0.261, 63 0.260, 57 0.259, 50 0.257, 45 0.256, 42 0.255, 38

19 0.265, 77 0.263, 71 0.261, 64 0.260, 58 0.259, 51 0.257, 45 0.256, 42 0.255, 38
20 0.265, 79 0.264, 72 0.261, 64 0.260, 58 0.259, 51 0.257, 45 0.256, 42 0.255, 38

Table 7.3. Query Reduction: Effect on potential improvement in MAP due to simultaneously varying ql and cv thresholds.
The numbers provided are <MAP,%queries requiring interaction> tuples. For example, to potentially achieve a MAP of 0.265
(last row, first column), we need to interact with the user for 79% of the test queries. The baseline was 0.235
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Coefficient of Variation Threshold

1 2 3 4 5 6 7 8 9 10

0.289, 100 0.289, 100 0.289, 100 0.289, 98 0.288, 93 0.286, 81 0.282, 61 0.269, 14 0.266, 6 0.263, 2

Table 7.4. Query Expansion: Effect on potential improvement in MAP at various cv thresholds. The numbers provided are
<MAP,%queries requiring interaction> tuples. An italicized score implies that it was not a statistically significant improvement
over the baseline MAP of 0.261
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It is apparent from the table that a wide selection is available for determining

appropriate thresholds for the two features. We chose values of 16 for ql, and 2

for cv (see box in Table 7.3). For the training set, it meant obviating interaction

for 97 = ((1.0 − 0.61)*249) queries for a 2% reduction in potential MAP improve-

ment . Function 7.4.1 presents the technique we adopted to determine the utility of

interacting with the user in IQR.

Function 7.4.1: QRPREDICT(ql, cv, qi)

t1 ← 16

t2 ← 2

if ql[qi] ≤ t1 and cv[qi] ≥ t2

then decision← Interact

else decision← Do not interact

return (decision)

Query Expansion

Table 7.4 reports the change in potentially achievable MAP and the number of

queries requiring user interaction as a threshold-sweep is performed on cv. The tran-

sition to non-significant improvements over the baseline as the threshold is increased

shows the limit to which we can avoid user interaction without impacting performance

seriously.

Function 7.4.2 presents the technique we developed to determine the utility of

interacting with the user in IQE.
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Function 7.4.2: QEPREDICT(cv, qi)

t1 ← 6

if cv[qi] ≥ t1

then decision← Interact

else decision← Do not interact

return (decision)

7.4.2 User-Centric

Consider the scenario where a user presents the system with a set of queries along

with a condition that she is willing to only interact for x% of the queries. We imagine

such a scenario could occur when a time-constrained user is performing exploratory

search, for example searching for vacations in Italy, and hence would submit a series

of queries to get all the information required. To maximize the benefit from user

interaction, it is appropriate for the system to determine the x% of queries that

would have most potential for improvement. We now present some experiments that

use the cv values to make those decisions, and study its utility.

Query Reduction

We utilized the general trend observed in Figure 7.3 to guide the choice of queries

to present for interaction. Higher values of potential improvements in AP generally

imply higher values of cv. Our approach was to sort the options in the descending

order of cv values, and present them to the user in that order.

Figure 7.6 shows the utility of the approach when the user accedes to interact for

10%, 20%, 30% and so on of the query set. The lowest curve shows the gradual im-

provements with increased user interaction when query subsets are chosen at random

for interaction. The highest curve tracks the improvement when the system makes

the best choice (highest potential improvement in MAP) on queries for interaction
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Figure 7.6. Query Reduction: Utility of various query ordering procedures when
the user places constraints on the number of interactions

each time. In between the two is the curve that conveys the effect of presenting the

options in descending order of cv. While the potential for improvement does not rise

as rapidly as in the upper bound case, it clearly is much better than presenting the

user with queries in random order, and definitely better than no interaction at all.

Query Expansion

We noticed trends similar to Figure 7.3 for query expansion too, and followed the

exact same procedure we adopted in the query reduction case. Figure 7.7 depicts

similar exploration of the utility of ranking the options by cv before presenting them

to the user.

7.5 Results of Selective Interaction

In this section we present results of using our techniques on different sets of queries

and collections in the context of IQR and IQE.
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Figure 7.7. Query Expansion: Utility of various query ordering procedures when
the user places constraints on the number of interactions

7.5.1 Query Reduction

In Table 7.5 we provide an overview of results when the system makes a decision

to either interact with the user or go with the baseline query. We can see that when

selective interaction was performed there was an average drop of 40% in the number

of queries the user had to interact with, leading to an average drop in performance

of 4.6%. In spite of the reduction, the final MAP was significantly better than the

baseline (paired t-test text,α=0.05). However, in the case of Robust 2005 and HARD

2003, there was a significant drop in performance from what would have been achieved

if the user interacted with all the queries (‘User Select’). For a user with only enough

time to interact for 60% (or not interact with 40%) of the queries the significant

improvement over the baseline is still worth it.

Figure 7.8 provides an overview of the performance impact on Robust 2005 as the

percentage of interactions is increased. The discrepancy in correspondence between

the MAP at 60% interaction in the graph and the value reported in the table is
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because the latter’s ordering of queries involves the second feature ql too. Using the

cv values to rank queries for interaction is significant better at the lower end of the

X scale than going with a random selection. For the same user with time to spare for

60% of the queries, we can observe that using cv-based selection helps obtain better

performance with the same effort, when compared to randomly selecting queries.

7.5.2 Query Expansion

The results for our experiments with query expansion are given in Table 7.6.

Again, we observed statistically significant improvements over the baseline for all three

collections. The greatest reduction in the number of queries requiring interaction was

for HARD 2003. As expected, the MAP achieved by our system was numerically less

than that potentially achieved by interacting with all queries.

Figure 7.9 shows the potential gains obtained by increased user interaction on the

Robust 2005 corpus. We notice that in the ideal case upper bound performance can

be achievable by interacting with only 50% of the queries. In other words there was no

utility in interaction for 50% of the queries. This explains the occasional ‘flattening’

of the cv-based selection and Random selection curves. The lower portion of the cv-

based selection curve has a higher slope than the upper portion. This indicates that

the selection process had done a good job of presenting queries with higher potential

ahead of those with less.

7.5.3 Summary

For both query reduction and query expansion for all data sets we can notice

small degradations in potential improvements in performance as we avoid interacting

with the user for some (percentage of) queries. Thus, there exists a tradeoff that the

designer of a system making use of our predictive techniques will need to consider.

This tradeoff is between the amount of interaction and the degradation in potential

71



Robust 2005 TREC 5 HARD 2003
Baseline 0.160 0.142 0.227
Upper Bound 0.283 0.217 0.351
Auto Select 0.162 0.122 0.223
User Select 0.190 0.158 0.267
Thresholded Select 0.180 0.153 0.253
% drop in MAP 5.5 3.1 5.2
% queries dropped 42 40 44
Table 7.5. Final MAP value results for query reduction.

Robust 2005 TREC 5 HARD 2003
Baseline 0.239 0.159 0.315
Upper Bound 0.305 0.210 0.371
Auto Select 0.244 0.162 0.319
User Select 0.266 0.170 0.333
Thresholded Select 0.260 0.165 0.325
% drop in MAP 2.2 2.9 2.4
% queries dropped 22 32 52
Table 7.6. Final MAP value results for query expansion.

improvements in performance, something that the designer needs to tune for based

on values of the latter that she considers acceptable.

7.6 Related Work

Shen and Zhai (2005) presented work that also dealt with the efficiency of user in-

teraction. They performed simulated user studies for interaction involving document-

level feedback, with the goal of developing procedures that chose the best documents

from a pool to present to the user for feedback. The procedures they developed for

and results from such active feedback showed that showing users a diverse set of doc-

uments was most effective. However unlike our work on query reformulation, they

did not extend theirs to determine when to interact with the user, or how to handle

a user with time and cognitive load constraints.
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Figure 7.8. Trajectories of potential improvements in MAP using various question-
selection techniques for Robust 2005 in IQR
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selection techniques for Robust 2005 in IQE
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7.7 Conclusions

We have discussed an important problem concerning adaptive information re-

trieval systems. While user interaction is a promising way to improve retrieval ef-

fectiveness, its efficiency needs to be considered too. Inefficient interactive systems

that force a user to interact on every instance can cause disenchantment. We have

shown that it is possible to predict the utility of interaction with reasonable accu-

racy, and use it without compromising much on effectiveness. The use of a single

feature measuring scatter for both interaction mechanisms implies that interaction

mechanisms that provide a wide range of choices have more utility. In other words,

showing the user the different parts of the search space her query could lead her to is

advantageous.
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CHAPTER 8

EFFICIENCY

We have shown in previous chapters that richer expressions of information need by

users can be leveraged to improve search performance. While the richer expressions we

dealt with are of a particular type namely TREC description queries and expanded

title queries, other expressions can take the form of inclusion of additional terms

the user believes are related to the query (Kelly et al., 2005), identifying documents

containing similar information (Smucker and Allan, 2006), identifying topics the query

is related to (Kumaran and Allan, 2006a) and so on. We continue our focus on

interactive handling of long queries through IQR and IQE.

The IQR and IQE techniques we have developed involve asking a user to select

from ten options for each and every query. This can be detrimental to the user

experience as user interaction requires cognitive and physical effort from the user.

Developing techniques to identify and present a minimal set of options to users is

thus important. One way to identify a minimal set of options is to identify redundant

options and drop them. In the context of information retrieval, redundant options

are those that lead the user to the same search space. We demonstrate the similarity

of the problem of identifying redundant options with Set Cover, an NP-Complete op-

timization problem. We utilize a known greedy algorithm to provide an approximate

solution (Section 8.2), and show that we can successfully remove redundant options

and retain useful ones..

Generating options for the IQR and IQE interfaces involved analyzing all possible

combinations of the terms in the long query (sub-queries) or set of terms suggested
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by PRF (expansion subsets) to determine the set of top options to present to users.

Such a technique is difficult to realize in practice due to the exponential number of

options that need to be analyzed. In Section 8.3 we present a technique based on

analyzing the properties of ideal queries, and using those observations to prune the

option search space.

Since we are improving on the interaction techniques presented in the previous

chapter, in this chapter we will confine ourselves to reporting performance on simu-

lated user studies. We hypothesize that improvements such as more efficient back-

ground processes, fewer options presented to users, and better quality of options will

naturally extend to improving the interaction experience and performance.

8.1 Motivation

To identify top-ranking options we represented each of the 2n options as a graph

constructed with the constituent terms as vertices, and the mutual information (Church

and Hanks, 1990) between the terms as edge weights. n is the length of the original

TREC description query in the case of IQR, and the number of expansion terms in

IQE. Following Rijsbergen (1979) the maximum spanning tree (Cormen et al., 2001)

was identified on each graph, and its weight used to represent the quality of the op-

tion. After ranking the entire set of options by the weight of their corresponding

maximum spanning trees, the top ten were selected.

Table 8.1 shows the best performance that can be achieved under various condi-

tions. All results are reported for 249 TREC description queries from the Robust

2004 track. We will treat the description portion of TREC queries as long queries for

our experiments. Baseline refers to a query-likelihood (QL) run using the Indri search

engine (Strohman et al., 2005), while PRF refers to automatic query expansion using

PRF. “Interaction Upper Bound” refers to the upper bound on the performance that

can be obtained from user interaction, i.e. the user always selects the best option
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.472 0.397 0.379 0.240
PRF (Best) 0.514 0.442 0.423 0.288

Query Reduction
Interaction Upper Bound 0.634 0.528 0.498 0.300

Query Expansion
Interaction Upper Bound 0.571 0.480 0.447 0.292

Table 8.1. The utility of IQR and IQE. Italicized values indicate that the scores are
significantly better than the baseline, while those in bold are significantly better than
PRF. Statistical significance was measured using a paired t-test, with α set to 0.05

from the ten presented. This is the baseline for the experiments we conduct in this

chapter. It represents the situation where an exponential search has been performed

to identify the top ten options to show to a user, and the user selects one from the

top ten shown.

As mentioned before, the current interaction paradigm involves always presenting

users with ten options for all queries. There is clearly scope for reducing the number

of options presented to users, especially when on average only three out of ten of them

are better than the baseline. Figure 8.1 is a histogram of the number of options better

than the baseline for each of the 249 queries we used for training. Clearly, a large

fraction of the options presented to users have no utility, and can potentially degrade

the user experience. In Section 8.3 we present techniques that enable us to reduce the

number of options we present to users significantly, without degrading performance.

8.2 Minimal Option Sets

The technique to analyze the options makes use of co-occurrence information of

the constituent terms. While this provides a good sense of the cohesiveness of the

option, it does not inform the user of the relative utility of an option with respect to

the other ones shown. Given that some options differ by just a single term, it is quite

likely that they might all direct the user to the same search space. In such cases it is
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Figure 8.1. Distribution of the number of options better than the baseline query for
a set of 249 training queries

wasteful to show similar options, and instead displaying a minimal subset of options

that covers the original search space(s) might be better. This intuition forms the

basis for our technique to prune the original set of options shown to the user. We

introduce the Set Cover problem before going into the details of our technique.

The set covering problem (Cormen et al., 2001) is a NP-complete optimization

problem. An instance (X,F) of the set covering problem consists of a finite set X

and a family F of subsets of X, such that every element of X belongs to at least one

subset in F . Mathematically,

X =
⋃

S∈F

S (8.1)

The family F is said to cover the elements in X. The goal is to find a minimum-size

subset C, C ⊆ F , whose members cover all of X i.e.

X =
⋃

S∈C

S (8.2)
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Since finding the exact solution is NP-Complete, we used a greedy set cover algo-

rithm (Cormen et al., 2001) that works by selecting the subset that covers the most

elements in X in an iterative fashion. The advantage of using the greedy algorithm is

that it not only runs in time polynomial in |X| and |F| but also returns a (ln(|X|)+1)

approximation to the solution.

The greedy approximation algorithm for the set cover problem is provided below.

GREEDY-SET-COVER(X,F)

1. U ← X

2. C ← ∅

3. while U 6= ∅

4. do select an S ∈ F that maximizes |S ∩ U |

5. U ← U − S

6. C ← C ∪ {S}

7. return C

8.2.1 Overlapping Search Results

We now show how the problem of finding minimal option sets can be cast as a set

cover problem. Each option is used as a query to retrieve a set of ten documents. Let

X be the union of sets of documents retrieved. The sets of documents correspond to

the family F of subsets whose union is X. Our goal is to identify a minimal set of

subsets C from F that cover X.

Table 8.2 shows the impact on performance metrics as well as the number of

options presented to users due to the various techniques. We can observe in the case

of “Set-Cover-based Pruning” for IQR that for an average decrease of two options

per query, there is no (statistically) significant drop in performance. In the case of

IQE, it is drastic: an average reduction of six options per query without significant
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System P@5 P@10 NDCG@15 MAP Avg. # options

Baseline (QL) 0.472 0.397 0.379 0.240 -

Interactive Query Reduction (IQR)
Interaction Upper Bound 0.634 0.528 0.498 0.300 9.7
Set Cover-based Pruning 0.619 0.523 0.488 0.293 7.5
Snippet-based Pruning 0.610 0.510 0.483 0.290 6.7

Interactive Query Expansion (IQE)
Interaction Upper Bound 0.571 0.480 0.435 0.292 10.0
Set Cover-based Pruning 0.560 0.479 0.437 0.294 3.8
Snippet-based Pruning 0.535 0.454 0.421 0.285 2.1

Table 8.2. Effect of option-pruning strategies on performance metrics, and number
of options presented to users

performance loss. This result for IQE can be understood by considering the fact

that query expansion results in a much longer query than the original, and the subtle

differences between options (usually by a term or two) do not lead to radically different

sets of documents being retrieved. In summary, judging by the insignificant drops in

performance, we successfully retained the useful options and removed the redundant

ones.

8.2.2 Identical Snippets

The user is guided in making a decision on which option to select using a snippet

of text. This snippet is extracted from the top-ranking document that is retrieved

when the option is used as a query. Frequently, the snippets returned by different

options are the same, making the task of selecting an option difficult. Retaining a

single option from the set that retrieves the same snippet can further decrease the

number of options presented to users. The results for “Snippet-based Pruning” in

Table 8.2 show the impact of this pruning strategy. With the exception of P@5 for

IQE, this strategy results in an average reduction of approximately one option without

significantly impacting performance.
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Figure 8.2. Distribution of lengths of original and best reduced queries

8.3 Option Analysis

A good query is long enough to describe key concepts but also short enough to

avoid containing unnecessary terms. To determine the appropriate length of sub-

queries, we plotted the distribution of the query lengths of the best performing sub-

query for each query in our training set. Figure 8.2 shows the distribution, and

compares it with the distribution of the lengths of the original queries. We can

observe that the best sub-queries are never more than ten terms in length, with most

having six or fewer. This observation informed the decision to restrict analysis of sub-

queries to those of length less than or equal to six. Table 8.3 shows the impact on

“Interaction Upper Bound” performance due to this restriction. We notice that the

restriction not only results in a reduced number of sub-queries analyzed (Figure 8.3)

but also maintains the potential for improvement through IQR.

In a similar fashion, we analyzed the size of the best expansion subset for our

training queries (Figure 8.4). We can observe that the best expansion subsets are

frequently between eight to twelve terms in length. This observation again informed
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Figure 8.3. Growth of number of sub-queries analyzed with original query size

System P@5 P@10 NDCG@15 MAP

Interactive Query Reduction (IQR)

Interaction UB 0.634 0.528 0.498 0.300
Interaction UB

0.634 0.528 0.498 0.300
with Size Threshold

Interactive Query Expansion (IQE)

Interaction UB 0.571 0.480 0.447 0.292
Interaction UB

0.578 0.485 0.450 0.303
with Size Threshold

Table 8.3. Effect of thresholding the lengths of options analyzed. UB refers to Upper
Bound.
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% Reduction Average Size of
MAP

in MAP Expansion Subset
1 8.57 0.367
2 7.99 0.365
3 7.63 0.363
4 7.41 0.361
5 7.26 0.360
6 7.15 0.359
7 7.06 0.358
8 7.02 0.358
9 6.95 0.357
10 6.89 0.357

Table 8.4. The tradeoff between reduction in achievable MAP and the average length
of expansion subsets.

the decision to restrict analysis of expansion subsets to those of length less than

or equal to twelve. The section for IQE in Table 8.3 conveys that this restriction

actually helped avoid some bad options, and raised the potential for improvement

through IQE.

While we are considering the size of the best performing IQE queries, there is

also a possibility that there are queries exhibiting similar performance, but of shorter

length. The distribution of query lengths when we consider the shortest of IQE

options that perform just 1% worse then the best is included in Figure 8.4. We can

observe that the distribution shifts to the left indicating that we can restrict analysis

to smaller sized subsets if we are willing to accept a 1% drop in potential MAP

improvement. Agreeing to take a 10% drop results in further reduction of the subset

sizes we need to consider. Table 8.4 summarizes the tradeoff between the percentage

drop in potentially achievable MAP through IQE and the average size of subsets

that need to be analyzed. The table shows the possibility of further reduction in the

number of options analyzed, but with a corresponding reduction in the potentially

achievable MAP though user interaction.
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8.4 Conclusions

We have presented techniques to improve the efficiency of user interaction for

information retrieval using long queries. Presenting users with the right number of

options is an often-ignored aspect of interactive information retrieval. We have de-

veloped an approach for identifying a minimal set of options, and demonstrated that

this technique retains good options and removes the redundant ones. In the case of

IQE, we could drop 80% of the options without a decrease in performance, i.e. we

can get the same performance by showing the user just two options. We hypothe-

size that this pruning technique, which can be adapted for use with any interaction

technique, will enhance effectiveness by reducing the cognitive load on users. The

exponential-sized analysis of options has been shown to be unnecessary, and reduced

to polynomial-sized analysis without degrading performance. The ease with which

the analysis process can be parallelized (different machines can analyze options of dif-
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ferent lengths and follow up with a merge) and the reduction in complexity can pave

the way for live deployment of the effective interaction techniques we have presented

in this thesis.
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CHAPTER 9

SELECTIVE INTERACTIVE REDUCTION AND

EXPANSION

Our techniques to handle long queries involves either pruning the query to retain

only the important terms (reduction), or expanding the query to incorporate related

concepts (expansion). We have shown that roughly 25% performance improvements

in terms of MAP can be realized through IQR and IQE alone. Most research in

interactive information retrieval has over the years adopted a one approach-fits all

strategy. In other words, irrespective of the query, the interaction is based on a

fixed strategy. Since it is well known that queries fail for different reasons (Harman

and Buckley, 2004a), it is important to explore query-specific interaction. This is

particularly useful when the goal is to minimize user interaction. Asking users to

answer only questions that have the most potential for improving the retrieval process

can lead to better user experience. Guided by the philosophy that users must get the

maximum benefit (effectiveness) for their investment of time and effort, we explore

ways to make user interaction for long queries more effective in this chapter. We

will show that selectively reducing or expanding a long query leads to an average

improvement of 51% in MAP over the baseline for standard TREC test collections,

and demonstrate how user interaction can be used to achieve this improvement. We

finally present an analysis of long queries that continue to exhibit poor performance

in spite of the improved techniques.
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.472 0.397 0.379 0.240
PRF (Best) 0.514 0.442 0.423 0.288

Query Reduction
Upper Bound (UB) 0.799 0.671 0.626 0.366
Interaction UB 0.634 0.528 0.498 0.300

Query Expansion
Upper Bound (UB) 0.738 0.643 0.587 0.368
Interaction UB 0.571 0.480 0.447 0.292

Table 9.1. The utility of IQR and IQE. Italicized values indicate that the scores are
significantly better than the baseline, while those in bold are significantly better than
PRF. Statistical significance was measured using a paired t-test, with α set to 0.05

9.1 Motivation

Table 9.1 (a reproduction of Table 8.1) shows the best performance that can be

achieved under various conditions for 249 TREC description queries from the Robust

2004 track.

The results in Table 9.1 for query reduction and expansion show that user inter-

action can lead to significant improvements in performance for long queries. Further

improvements can be obtained if we selectively invoke IQR or IQE. Figure 9.1 shows

the ordered distribution of the difference between the potential gains due to IQR and

IQE. Some queries are better suited for IQR, while others can be better improved

through IQE. If we can selectively invoke IQR or IQE for each query we can potentially

obtain a 51% (from 0.240 to 0.363, compared to 0.300 and 0.292 for only IQR and

only IQE respectively) improvement in MAP over the baseline. Determining when to

reduce and when to expand is similar in flavor to the problems of determining when to

perform PRF (Cronen-Townsend et al., 2004) or when to perform stemming (Harman,

1991): correct answers to either can lead to significant improvements in performance.

The tremendous scope for improvement makes the reduce/expand problem worthy

of further investigation. In the next section we present a technique referred to as
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Figure 9.1. Difference in MAP due to Selective IQR and IQE

Selective Interactive Reduction and Expansion (SIRE), a hybrid of the IQR and IQE

techniques.

9.2 Selective Interactive Reduction and Expansion (SIRE)

Tremendous gains in performance can be obtained by selectively expanding or

reducing long queries. For each long query, our approach involved selecting the top

five sub-queries and top five expansion sets and providing the user a merged list for

interaction. The downside of this technique was that we risked losing potentially

useful options ranked between six and ten. However, as Table 9.2 shows, this risk

was insignificant when compared to the potential for improvement through SIRE. By

viewing this mix of expansion and reduction options, along with a snippet of text
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to guide selection, the user can implicitly guide the system towards expansion or

reduction of the query.

Table 9.2 summarizes the improvements in performance that can achieved using

the SIRE technique. Consider the “Best Performance” section of the table, which

describes the situation when the best option from among the ones presented is always

selected. When IQR and IQE are used with five options, the performance is as de-

tailed. However, when the options are combined (SIREcomb), the user can potentially

achieve better performance than could be achieved with either IQR or IQE with not

only five, but also ten options. Another interesting aspect of the result is that MAP

is significantly improved. IQR is primarily a precision enhancing technique, while

IQE is both precision as well as recall enhancing. The advantages of each technique

have thus been carried over to the hybrid SIREcomb technique in the form of improved

MAP. “Average Performance” reflects the situation when the user randomly selects an

option from the top ten. We can see that randomly choosing from SIREcomb options

is significantly better than choosing from those of IQR5, IQE5, and IQR10. The only

exception is IQE10, but as we will show in Figure 9.2 SIREcomb improves performance

for more queries than IQE10.

9.3 Efficient SIRE

In Chapter 8 we presented strategies to prune the number of options presented

to users for interaction. Table 9.3 shows the effects of applying the Set Cover and

Snippet-based pruning strategies to the SIRE technique. Consider the section titled

“Best Performance”. In this hypothetical case which provides an upper bound on the

performance achievable through user interaction, the results show that the pruning

strategy works, and performance comparable to IQR10 is attained by showing 50% less

options. In the situation when the user selects randomly from the options presented

i.e. “Average Performance”, pruning results in a reduction in potential improvement
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System P@5 P@10 NDCG@15 MAP Avg. num.
options

Baseline 0.472 0.397 0.379 0.240 -

Best Performance

IQR5 0.554 0.469 0.448 0.274 4.9
IQE5 0.555 0.466 0.435 0.292 5

SIREcomb 0.654 0.552 0.521 0.347 9.9

IQR10 0.634 0.528 0.498 0.300 9.7
IQE10 0.571 0.480 0.450 0.292 10.0

Average Performance

IQR5 0.305 0.279 0.296 0.18 4.9
IQE5 0.448 0.386 0.361 0.246 5

SIREcomb 0.366 0.327 0.347 0.228 9.9

IQR10 0.323 0.290 0.301 0.189 9.7
IQE10 0.426 0.377 0.398 0.269 10.0

Worst Performance

IQR5 0.145 0.133 0.138 0.096 4.9
IQE5 0.427 0.376 0.398 0.269 5

SIREcomb 0.129 0.118 0.121 0.080 9.9

IQR10 0.122 0.118 0.122 0.088 9.7
IQE10 0.425 0.366 0.348 0.235 10.0

Table 9.2. The subscript in the system name indicates the number of options pre-
sented to users. The SIREcomb technique involves merging IQR5 and IQE5. For
comparison, performance of IQR and IQE with ten options is also provided
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System P@5 P@10 NDCG@15 MAP Avg. # options

Baseline (QL) 0.472 0.397 0.379 0.240 -

Selective Interactive Reduction and Expansion (SIRE)

Best Performance
Interaction Upper Bound 0.654 0.552 0.521 0.347 9.9
Set Cover-based Pruning 0.643 0.544 0.512 0.340 6.7
Snippet-based Pruning 0.629 0.53 0.505 0.335 5.5

Average Performance
Interaction Upper Bound 0.366 0.327 0.347 0.228 9.9
Set Cover-based Pruning 0.333 0.301 0.320 0.206 6.7
Snippet-based Pruning 0.321 0.290 0.307 0.199 5.5

Worst Performance
Interaction Upper Bound 0.129 0.118 0.121 0.080 9.9
Set Cover-based Pruning 0.137 0.121 0.124 0.081 6.7
Snippet-based Pruning 0.139 0.124 0.127 0.082 5.5

Table 9.3. Effect of option-pruning strategies on performance metrics, and number of
options presented to users. “Best Performance” refers to the situation when the user
always selects the best option from those presented to her. “Average Performance”
refers to the situation when the user selects options randomly

with a corresponding decrease in number of options presented. Finally, in the “Worst

Performance” situation where the user always selects the worst option, performance

increases as pruning is applied to the options. This means that the pruning strategies

discarded lower-quality options. Since “Average Performance” decreases while “Worst

Performance” increases, it means that a mix of good as well as bad options are being

discarded by the pruning strategies. However, the higher quality options are retained

as is evident from the “Best Performance” numbers.

9.4 Results and Analysis

In this section we analyze the effect of using our techniques on different data sets,

the results of which are presented in Table 9.4.

For all collections we notice trends similar to that observed for the Robust 2004

data set namely the higher performance of the SIRE system over IQR and IQE with

not only five options but also ten. SIRE remains competitive or better even after
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Corpus System P@5 P@10 NDCG@15 MAP Avg. #
options

Robust 05

Baseline 0.412 0.386 0.270 0.156 -
IQR with 5 options 0.488 0.450 0.333 0.194 5.0
IQE with 5 options 0.512 0.490 0.351 0.229 5.0
SIRE with combined options 0.612 0.564 0.417 0.262 10.0
SIRE with set cover-based pruning 0.604 0.556 0.415 0.257 7.2
SIRE with snippet-based pruning 0.500 0.484 0.405 0.221 2.5
IQR with 10 options 0.572 0.510 0.396 0.218 10.0
IQE with 10 options 0.540 0.510 0.364 0.237 10.0

HARD 2003

Baseline 0.544 0.478 0.441 0.228 -
IQR with 5 options 0.644 0.57 0.515 0.283 4.9
IQE with 5 options 0.628 0.544 0.476 0.298 5.0
SIRE with combined options 0.720 0.646 0.572 0.346 9.9
SIRE with set cover-based pruning 0.720 0.636 0.570 0.343 6.8
SIRE with snippet-based pruning 0.632 0.544 0.568 0.300 2.5
IQR with 10 options 0.712 0.618 0.560 0.301 9.8
IQE with 10 options 0.636 0.580 0.496 0.305 10.0

TREC 5

Baseline 0.384 0.322 0.305 0.163 -
IQR with 5 options 0.372 0.308 0.327 0.154 4.9
IQE with 5 options 0.352 0.302 0.312 0.166 5.0
SIRE with combined options 0.444 0.370 0.389 0.202 9.9
SIRE with set cover-based pruning 0.440 0.358 0.382 0.19 6.9
SIRE with snippet-based pruning 0.348 0.298 0.378 0.161 2.3
IQR with 10 options 0.468 0.374 0.386 0.171 9.7
IQE with 10 options 0.368 0.312 0.320 0.168 10.0

Table 9.4. Summary of the results of using the SIRE and option-pruning techniques
on test data sets
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option pruning: with an average of six options it meets or beats 10-option IQR and

IQE.
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(c) Baseline versus SIRE

Figure 9.2. Scatter plots of baseline performance (MAP) and performance due to
IQR, IQE, and SIRE. IQR and IQE used ten options, while SIRE used a combination
of five options from each of IQR and IQE

We now analyze the performance of IQR, IQE, and SIRE with respect to the

baseline (automatic) system. Figure 9.2 shows the scatter plots of the MAP values

of the baseline system with respect to each of the interactive techniques, for 249

Robust 04 queries. The line y = x is included to identify the queries that were
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improved or hurt by each technique. A point above the y = x line means that

performance was improved through interaction, while a point below the line means

that interactive retrieval hurt the query. We can observe that a larger fraction of

queries was improved by IQR (Figure 9.2(a)) in comparison to IQE (Figure 9.2(b)).

The plot for IQE (Figure 9.2(b)) has greater spread, and higher density in the upper

left hand corner compared to IQR. This means that when IQE helps, it helps to a

greater extent than IQR. However overall improvements are mitigated by the fact

that IQE performs worse on already poorly performing queries. The SIRE system

combines the best of IQR and IQE. Not only are there fewer queries below the y = x

line, but the density in the upper left hand corner is greater. These observations

mean that SIRE provides a more comprehensive improvement over a set of queries.

We now turn our attention to the lower left hand corner of Figure 9.2(c) - the area

containing the set of queries that were not only poorly-performing to start with, but

also were unaffected by IQR, IQE, and SIRE. We define poorly-performing queries as

those that had a baseline, IQR, IQE, and SIRE MAP of less than or equal to 0.1. We

analyzed each of the 45 such queries, and also the corresponding best reduced and

expanded versions that were used to generate the “Upper Bound” scores in Table 9.1.

For situations when the best reduced and expanded queries were themselves low-

performing, it was clear that the user would have to enter a completely new query.

Table 9.5 summarizes the failure categories we identified and suggests directions for

future work. “System failure in identifying sub-query” (or “expansion set”) refers to

the situation when a better option was available, but the technique we used to rank

the options failed to place it in the top 10. Of these, 3 of the options were of the

type that a user with a similar information need could be expected to issue. Another

14 (10+4) of them would have been difficult for a human to come up with without a

complete understanding of how the underlying search engine works. For the 4 queries
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for which Natural Language Processing (NLP) techniques would have worked, we

expect that identifying noun phrases in the original query would have helped.
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Analysis Number of Example Query Best Sub-query/
Queries Expansion Subset

Term mismatch: new query required 24 Identify instances in which weather was a
main or contributing factor in the loss of
a ship at sea.

System failure in identifying sub-query

• Best sub-query incomprehensible to human 10 Identify a country or a city where there is
evidence of human slavery being practiced
in the eighties or nineties.

country city evi-
dence slavery

• Human could have identified it 3 Isolate instances of fraud or embezzlement
in the international art trade.

fraud art

• NLP techniques could have helped 4 Fiber optic link around the globe (Flag)
will be the world’s longest undersea fiber
optic cable. Who’s involved and how ex-
tensive is the technology on this system.
What problems exist?

link globe flag
world’s longest un-

dersea fiber cable
involve technology

System failure in identifying expansion set 4

Table 9.5. Breakdown of the analysis of low-performing queries. By NLP techniques, we refer to identification of phrases in
the query and treating them as a unit.
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9.5 Conclusions

We have presented techniques to improve the effectiveness and efficiency of user

interaction for information retrieval using long queries. The SIRE technique, a hybrid

of IQR and IQE, has been shown to be an extremely effective way to capitalize on

the strengths of the two. By showing an optimal number of a mix of IQR and IQE

options we can implicitly ask the user to decide whether query reduction or query

expansion is better suited for each query. This leads to a roughly 50% improvement in

performance, reaching the individual upper bounds of IQR and IQE that we targeted

in the beginning of this thesis. Through pruning techniques we have also reduced the

number of options to roughly five from ten on average, maintaining the 50% improve-

ment in performance. In other words, we have developed techniques to identify five

options from the exponential number available that contain at least one option that is

on average 50% better than the baseline. Development of techniques to further prune

the number of options, or to combine them in some fashion that retains the high po-

tential for improvement suggests the possibility of shifting the reformulation process

for long queries from interactive to completely automatic. Given the techniques we

have described, development of automatic techniques for long query reformulation is

thus a promising avenue for future work. We further identified the queries in our

training set that were not improved by all of IQR, IQE and SIRE, and analyzed them

to motivate future directions for research.
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CHAPTER 10

OTHER INTERACTION TECHNIQUES

In past chapters we introduced, evaluated, and optimized the IQR and IQE user

interaction techniques. In this chapter we present other novel interaction techniques

we explored. The techniques include topic selection, phrase identification, pattern

extraction and negative feedback on named entities. The goal of these techniques

is similar to that of IQR and IQE, i.e. collecting feedback from users in the form

of responses to simple questions to improve a wider range of queries compared to

automatic techniques. The experiments presented in this chapter are meant to be ex-

ploratory in nature and provide direction for future work. More rigorous experiments

and user studies are required to completely validate the described techniques.

10.1 Topic Selection

Figure 10.1 provides a pictorial description of the effect (difference) on average

precision for a set of 50 queries before and after using PRF. Clearly, the effect of PRF

is lopsided. We believe the assumption that the top n documents from the initial

retrieval is relevant and provide a good model of the targeted topic failed for some

topics. To tackle this problem we considered expanding our search to an external

corpus, i.e. a corpus different from the one we were currently searching. We hoped

that the external corpus would have a greater number of documents relevant (and

retrievable) to the query so that a better relevance model could be created. By doing

so, we hoped to prevent the lopsided of effect of PRF, and obtain more uniform

improvements. Previous work by Diaz and Metzler (2006) demonstrated the utility
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Effect on Average Precision by use of PRF

Figure 10.1. The difference in performance due to query expansion using PRF over
the baseline query. Queries to the left experienced improvements in performance
while those to the right ended up being worse than baseline.

of using a large external corpus to automatically improve the PRF language model,

and showed that a 10% improvement in MAP stable across more topics was possible.

However, the improvements in performance were dependent on the quality of the

external corpus used for expansion. Our work is different as we involve the user in

building a better language model through topic selection. The advantage of doing so

is that the user can select or reject candidates for expansion leading to more stable

improvements in performance across queries.

There has also been past work (Anick and Tipirneni, 1999; Cutting et al., 1992) in

providing users a set of terms/phrases to describe the different clusters or aspects in a
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result set or query. The terms/phrases were used to present to users a quick summary

of groups of documents, or provide options to refine queries. Our approach (Kumaran

and Allan, 2006a) was to utilize a human-generated list of topics - the names of

USENET NewsGroups, and ask the user to select group(s) they would expect to find

their query discussed in. Since USENET newsgroups are human-maintained, and

focused on particular topics, they had the potential to act as rich models of topics

relevant to a user’s query. We refer to this technique as Topic Selection.

10.1.1 Experimental Setup

We used the same set of topics and collections we used for IQR and IQE experi-

ments: TREC Robust 2004 and Robust 2005. The only difference was that we used a

randomly selected subset of 50 queries from the 250 queries in the Robust 2004 track.

Our baseline queries consisted of terms from the title and description portions of the

queries. As our retrieval system, we used version 2.2 of the open-source Indri system.

We used the 418 stop words included in the stop list used by the InQuery system,

and the K-stem stemming algorithm implementation provided as part of Indri.

Our baseline system (QL) is a query-likelihood variant of statistical language

modeling. The pseudo-relevance feedback technique is based on relevance mod-

els (Lavrenko and Croft, 2001). We used the top 25 documents for feedback, and

appended 25 terms to the original query.

In response to each query, we used the Indri search engine to search through a

USENET archive spanning twenty years, and returned the titles of the newsgroups

occurring in the top two hundred results. There was considerable overlap between

the newsgroups the results belonged to. We ordered the newgroups by the number of

results associated with each of them, and selected at most twenty to present to the

user. Users were instructed to select the newsgroup(s) they believed would discuss

their query using the titles as a guide. Once the user selected the titles, we restricted
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QL PRF Topic Selection

MAP 0.2278 0.2750 0.3027
Robust05 GMAP 0.1533 0.1541 0.1777

Queries Improved – 54% 68%
MAP 0.3418 0.3622 0.3695

Robust04 GMAP 0.2155 0.2079 0.2451
Queries Improved – 29% 33%

Table 10.1. Performance of the different systems in terms of MAP, GMAP, and
percentage of queries improved. Entries in bold face are statistically significant im-
provements (paired t-test,α = 0.05) . The Topic Selection system was compared with
PRF for statistical significance, while PRF was compared with QL.

the query to the particular group(s), and used the results as a topic model for the

query. Using this topic model, as well as the collection model, we performed PRF.

10.1.2 Results

An overview of the experimental results is provided in Table 10.1. We notice

that PRF improves over QL in both cases, but the improvement across queries is not

uniform. The results for the Robust04 queries are even more lopsided: a gain in MAP

was achieved by improving less than a third of the queries, and even showing a drop in

GMAP. We can observe that using USENET group information improves over PRF

in both collections. The improvement in GMAP indicates that the Topic Selection

system succeeded in bringing about an improvement across many more queries than

PRF. Figure 10.2 provides a pictorial description of the changes in AP across queries

due to Topic Selection. For comparison with PRF, Figure 10.1 is overlaid. The effect

of using Topic Selection is less lopsided than using PRF.

10.1.3 Conclusions

Simple inputs from the user, in this case topic selection, can help improve perfor-

mance beyond the state-of-the-art. The use of external sources of information helped

build better topic models for selecting expansion terms. This way, improvement was
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Figure 10.2. Comparison of the difference in performance due to query expansion
using PRF and Topic Selection, over the baseline query.

obtained by not just doing better on easier queries, but by doing better on a larger

set.

10.2 Phrase Identification

The use of phrases (Croft et al., 1991; Fagan, 1987) in queries is known to enhance

precision in a number of Information Retrieval tasks. Consider the case of the query

What efforts have been made to stabilize the Leaning Tower of Pisa?. When used as

a simple query, there is possibility that a number of documents with references to

leaning, the more common of the two terms, will be retrieved even though the term

Pisa might not exist. If we instead search with the phrase “Leaning Tower of Pisa”,

we can ensure that only documents about the tower are retrieved, omitting spurious

matches and improving precision. Consider the following examples.

Topic 320: Fiber optic link around the globe (Flag) will be the world’s

longest undersea fiber optic cable. Who’s involved and how extensive is

the technology on this system. What problems exist?
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Topic 339: What drugs are being used in the treatment of Alzheimer’s

Disease and how successful are they?

In the two examples above the apostrophe is used to form possessives of nouns. In

such situations we can expect the two terms to occur as a phrase in the relevant

documents too.

Topic 344: What steps have been taken world-wide by those bearing the

cost of E-mail to prevent excesses?

Topic 443: What is the extent of U.S. (government and private) invest-

ment in sub-Saharan Africa?

In these two examples hyphens are used in different contexts to indicate compound

words. Again, we can expect to see these terms appear either as phrases or mentioned

as one word in relevant documents.

Topic 443: Find documents that discuss issues associated with so-called

orphan drugs, that is, drugs that treat diseases affecting relatively few

people.

The use of quotation marks also implies that the enclosed terms form a phrase.

In many IR systems punctuation is discarded while parsing. Interestingly, as in

the examples above show, there is utility in pre-processing. We can make use of

punctuation to identify useful phrases in the query automatically.

With a view to improving precision, and believing that users might have some previous

knowledge about the topic they are interested in, we asked the user to identify the

phrases in the query (Kumaran and Allan, 2006a)1. This system is referred to as

Phrases.

1Only around 40% of the test queries had identifiable phrases in them.
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QL Phrases

MAP 0.2278 0.2307
Robust05 GMAP 0.1533 0.1552

Queries Improved – 14%
MAP 0.3418 0.3508

Robust04 GMAP 0.2155 0.2192
Queries Improved – 11%

Table 10.2. Performance of the Phrases system in terms of MAP, GMAP, and
percentage of queries improved.

For these experiments, we asked a user to edit his query to specify phrases in the Indri

query language. We did not perform automatic analysis of the queries to generate

options the user could choose from. Once automatic analysis is incorporated too, we

hypothesize that an actual interaction with the user could involve questions such as

those given below.

Query: Find documents that discuss the impact Prime Minister Margaret

Thatchers’ resignation may have on U.S. and U.K. relations.

Simple question: Is it correct that you see Margaret Thatchers’ resignation

as a useful phrase?

10.2.1 Experimental Setup

The experimental setup for this interaction technique was the same as that for

Topic Selection.

10.2.2 Results

The improvement due to use of phrases (Table 10.2) was not statistically sig-

nificant. This could in part be due to the fact that less than 40% of queries had

identifiable phrases in them. The numerical improvements we observed were in spite

of the fact that the improvements due to this technique are averaged across all the

queries - even those that did not have phrases in them.
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10.2.3 Conclusions

The use of phrases contributed to improvements in retrieval performance, and is

a promising avenue for interaction with the user. We expect the interaction to be

light-weight, as the questions involve terms familiar to the user. Providing the user

with some context (in a fashion similar to IQR and IQE) will potentially help make

the decision of choosing appropriate phrases easier.

10.3 Pattern Extraction

Certain term patterns occur frequently in particular topics. For example, in news

reports on bomb attacks, a discerning reader can observe that the terms killed and

injured occur frequently within a window of around eight terms.

We can view this technique, referred to as Patterns, as an extension to Phrases.

Consider the query given below.

Query: Identify hydroelectric projects proposed or under construction by

country and location. Detailed description of nature, extent, purpose,

problems, and consequences is desirable.

We could parse the top-ranked documents and request the user to provide an answer

to a question like

Simple question: Would you expect to see three and dam nearby, with

terms such as gorges between them?

Our preliminary experiments involved processing the top-ranked documents from the

USENET groups chosen by the user (Section 10.1) for each query and identifying

the top ten most frequently appearing bigrams. These bigrams, along with the aver-

age distance between constituent terms interpreted as term window constraints, were

appended to the original query. The resulting system was referred to as Patterns (Ku-

maran and Allan, 2006a).
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QL Patterns

MAP 0.2278 0.2563
Robust05 GMAP 0.1533 0.1633

Queries Improved – 56%
MAP 0.3418 0.3508

Robust04 GMAP 0.2155 0.3375
Queries Improved – 21%

Table 10.3. Performance of the Patterns system in terms of MAP, GMAP, and
percentage of queries improved.

10.3.1 Experimental Setup

The experimental setup for this interaction technique was the same as that for

Topic Selection.

10.3.2 Results

The expansion of the query with bigram patterns resulted in statistically signif-

icant improvements over the baseline system on one of the collections (Table 10.3).

Improvements in both MAP and GMAP were recorded.

10.3.3 Conclusions

We hypothesize that user interaction using this technique will be more difficult

than previous techniques. This is because the user will have to provide feedback on

terms they are possibly not familiar with. For example, to answer the question in

the example given in this section, the user will have to know that the Three Gorges

Project is a hydroelectric project in China. While providing some context might help

to an extent, we do not have experimental results as yet proving this hypothesis.

10.4 Negative Feedback on Named Entities

Queries in template form are a new paradigm in the way users can convey complex

information needs to search engines. Templated queries find most use when the same
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type of information is repeatedly queried about. The following templated query from

the TREC 2006 complex Interactive Question Answering (ciQA) (Dang et al., 2006)

track is one such example. It consists of two parts, the template itself and a narrative.

Template: What evidence is there for transport of [drugs] from [Bonaire]

to [the United States]?

Narrative: The analyst would like to know of efforts made to discourage

narco traffickers from using Bonaire as a transit point for drugs to the

United States. Specifically, the analyst would like to know of any efforts

by local authorities as well as the international community.

A user interested in the general topic of transfer of certain goods from one location to

another can use this template by simply instantiating the free slots with the goods and

locations she is interested in. To further expatiate upon the information need, the user

can also include free-form text in the narrative section. Once the user has instantiated

a template, the next task is to convert this templated query into one understandable

by a search engine. Using the entire query in its original form can result in poor

effectiveness due to the presence of extraneous terms like analyst, specifically, and

international community. Hence there is need for an intermediary system, or a query

processor, to convert this complex information need into an effective query in the

search engine’s query language. In creating this effective query, additional information

about the template itself can be leveraged. For example, for the template given

above, we can create a query that specifies that the locations Bonaire and United

States should co-occur in a document, and that the term drugs should be expanded

with a list of drugs. The possibility of incorporating template-specific features sets

templated querying apart from the domain of free-form searching. Also, unlike ad

hoc retrieval, the output is not a list of ranked documents, but a set of snippets of

text extracted from documents, in decreasing order of relevance.
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There has recently been great interest in utilizing annotations in data provided

by the Information Extraction community for Information Retrieval. We took a step

towards that direction by making use of named entities identified using BBN Identi-

finder (Bikel et al., 1999). To also move away from the usual procedure of identifying

named entities and folding them into the query, we decided (Kumaran and Allan,

2006b) to instead use them for post-retrieval snippet processing. This was motivated

by the observation in training data that often unrelated people, organizations and lo-

cations were present in the results. Since it was not possible to predict which named

entities were unrelated, we decided to involve the user in making that decision. We

believed that such information could be used to clean up the final results. To this

end, we provided the user with separate lists of people, locations, and organizations

identified in the final output from our baseline run. Along with each named entity,

we displayed a sentence in which it occurred to provide some context to help the user

make a decision whether the named entity was not relevant to the information need.

We hoped that this kind of negative feedback (Cool et al., 1996) would favorably

impact the precision of our results.

Figure 10.3 is a screen shot of a section of the interface requesting information

from the user. The query template was Is there evidence to support the involvement

of [Charles Taylor] in [diamond smuggling]?.

10.4.1 Experimental Setup

The test collection was the one-million document AQUAINT collection. We used

version 2.3.2 of the open source Indri retrieval system. Since we had to return snippets

as results instead of documents, we created a pipelined system consisting of an Indri

document retrieval system, sentence segmenters and named-entity identifiers. Further

details on the system are available in Kumaran and Allan (2006b).
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Figure 10.3. A section of the interface requesting user feedback on location entities
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MAP
Baseline 0.061

Interactive 0.081 (0.067)
Table 10.4. Comparison of the MAP scores for each run. The value in brackets is
the p-value from a two-tailed paired t-test comparing the run with the baseline

10.4.2 Results

Table 10.4 compares the MAP scores of the baseline and interactive runs. The

baseline results are quite poor, exposing the limitations of adapting an IR system

to perform question answering. However, of interest is the fact that precision of

the interactive run is higher. Though we deployed multiple interaction techniques,

after analyzing the results from different interactive runs, we believe that this is the

effect of using the negative feedback provided by the users in the form of non-relevant

named-entity identification. The problems caused by the observed failure of other

interaction techniques appears to have dampened the positive effect of named-entity

feedback.

10.4.3 Conclusions

It would have been more informative to compare measures like p@5 and p@10.

Unfortunately, since the evaluation was performed by an external agency, National

Institute of Standards and Technology, we were unable to perform further analysis.

However, the numbers still show the utility of feedback on named entities.

10.5 Summary

In summary, there is sufficient evidence to suggest that the sort of simple user

interaction user strategies we have described in this chapter are worth pursuing,

and are an important research goal to facilitate better performance in information

retrieval tasks. The Topic Selection and Phrase Extraction techniques resulted in

significant improvements over the baseline in terms of MAP and GMAP, indicating

110



that these techniques achieve the original goal of improving performance for a wider

range of queries. Further exploration is required to determine if the same set of

queries are improved by both techniques. If that is not the case, then techniques

to similar to SIRE need to be developed to selectively invoke Topic Selection and

Phrase Extraction. This way greater improvements in performance can possibly be

achieved.
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CHAPTER 11

CONCLUSIONS AND FUTURE WORK

11.1 Conclusions

We began this thesis by demonstrating the vast potential for improved information

retrieval through user interaction for long queries. The long queries (Chapter 4) could

be in the form of either a large amount of text entered by a user or the automatically

expanded version of a short query. In successive chapters we designed an interface for

effective user interaction and demonstrated its efficacy (Chapter 6), and developed

procedures for selective (Chapter 7), efficient (Chapter 8), and reduced (Chapter 9)

user interaction. Our contribution to the field of information retrieval through the

development and analysis of these and related ideas include:

1. Bringing to focus long queries. With most queries issued to web search

engines being two to four terms in length, most research focus has been on

handling short queries. We have demonstrated the potential of long queries,

and developed techniques to realize them.

2. A new look-ahead user interface. We have developed a user interface well-

suited for rapid analysis and selection of query reformulations. Feasibility stud-

ies revealed the utility of the interface in not only rapidly directing users towards

their information needs, but also providing them a preview of the collection con-

tents and a sense of how the retrieval system works.

3. Selective user interaction. The same problems that plague automatic tech-

niques are prevalent in interactive techniques too: i.e., user interaction has
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the potential to lead to improvements only for a subset of queries. We have

presented techniques to identify situations where user interaction has no util-

ity. These techniques will potentially have a bearing on the adoption of user

interaction in mainstream information retrieval systems.

4. Efficient user interaction. The often-ignored aspect of interactive retrieval

relates to the processes that are used to analyze and generate options to present

to users. To the best of our knowledge, the technique of observing the properties

of ideal options and using them to inform the search for options is unique to

our work, and can be easily extended to the generation processes for interactive

techniques.

5. Optimal user interaction. Another important contribution to the field is

tackling the problem of determining the optimal number of options to present

to users. The easily-generalizable techniques we have developed not only reduce

the number of options shown to users but also retain the important, showing

that users can obtain the same improvements in performance by interacting less

with an IR system.

6. Combining interactive techniques. The need to invoke the right interactive

technique for the right information need is well known. We have shown that we

can get the user to implicitly guide selection of the right interactive technique,

and demonstrated the high performance gains of doing so.

11.2 Future Work

The motivation for continued work is best summed up by Table 11.1. It shows the

extent to which the techniques we have described in this thesis have taken us (from

a MAP of 0.240 to 0.302), and the remaining improvement (from a MAP of 0.302 to

0.366) that still is open for further research to achieve.
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System P@5 P@10 NDCG@15 MAP
Baseline (QL) 0.472 0.397 0.379 0.240
Techniques in this thesis 0.634 0.527 0.499 0.302
Upper Bound 0.799 0.671 0.626 0.366

Table 11.1. Comparison of performance for 249 TREC 2004 Robust track description
queries. Values in bold are significantly better than PRF. Statistical significance was
measured using a paired t-test, with α set to 0.05

11.2.1 Improved IQE and IQE

11.2.1.1 Techniques to generate options

A number of avenues exist within the framework of the IQE and IQR techniques

that can potentially lead to improved performance. With regard to improving the

quality of options presented to user, parsing long queries using NLP techniques is a

promising direction.

Figure 11.1 provides the potential for improvement in AQE using two variants

of automatic selection techniques described in Section 5.1. While the first one, To-

tal, selects sub-queries to present to the user based on the weight of the maximum

spanning tree, the second, Average, uses the same score but divided by the number

of terms in the sub-query. We notice that using Total results in at least one of the

top ten sub-queries shown to the user being better than or equivalent to the baseline.

Using Average has the benefit of higher potential for improvement on a fraction of

queries, without ensuring at least one sub-query choice equivalent to or better than

the baseline for all queries1. Developing hybridized versions of selection techniques is

thus useful.

11.2.1.2 Option pruning techniques

While the option analysis procedure described in Section 8.3 doesn’t involve any

querying of the index, the option-pruning procedure (Section 8.2) requires querying

1The curves have been generated by ordering the potential improvements in descending order.
Comparison on a per-query basis is not possible with Figure 11.1
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Figure 11.1. The utility of two automatic options selection techniques

the index to obtain top-ranked documents. A better technique to approximate the

top-ranking documents will make the process more efficient.

11.2.1.3 IQR + AQE

IQR results in a concise version of the long query that is potentially better. In

future work we plan to explore using the query identified thorough IQR as a starting

point for either automatic or interactive query expansion. This two-stage interaction

could potentially improve effectiveness even further.

11.2.2 More interaction techniques

IQE and IQR are not exclusive techniques to handle long queries. Interaction with

the user can occur at various stages of the retrieval process. In the query formulation

stage, the user’s query can be analyzed to suggest modifications. Knowledge of the

collection content can also be leveraged to provide the user with evidence to either

expand or relax a query. We propose the following interaction techniques to further

handle long queries.
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Figure 11.2. A hypothetical interface for query disambiguation using images.

• Query disambiguation using images For example, for a query piracy, a potential

way to interact would be as shown in Figure 11.2.

• Query cohesiveness Quite often queries contain terms that hamper effective

search. Removing these terms or down weighting them results in considerable

improvement in performance. Previous research (Kumaran and Allan, 2007)

can be extended to perform a better job of guiding the user in selecting the

right terms for use from their query.

• Query quality Providing the user with pictorial feedback in the form of an on

line pie chart showing the percentage of the corpus affected by addition or

removal of query terms could potentially guide the user in determining the best

set of terms to use as a query.

• Targeting named entities To find the best Best Retirement Country, if a user

specifies from a list of named entities that she is interested in location named

entities, off-topic results like those on retirement funding can be potentially

avoided.
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Opportunities for interaction also exist during the retrieval process. In response

to a query the system can interact with the user to guide the search. To this end, we

plan to explore involving the user to provide guidance in the following aspects.

• Entity context Terms and entities can carry different meanings in different con-

texts. A free-form query ignores this fact, depending on other terms in a query

to provide context. Since term-weighting can be inaccurate and is the cause

for many retrieval failures, it is useful to have a mechanism to further clarify

the context a term or entity is used in. For example, the term Bonaire could

appear in a document as

– part of an address, as in Bonaire, Netherlands Antilles

– a location, as in Bonaire

– or an organization, as in Bonaire Democratic Party

Feedback from the user about the context can potentially focus the query better.

• Person named entities Knowing that Michael Gorbachev was the President of

the USSR during the Soviet Union’s withdrawal from Afghanistan boosts the

quality of the results for the TREC query Soviet withdrawal Afghanistan. This

opens an opportunity for a quick round of interaction that involves displaying

the person named entities found in the top results from an initial run and asking

the user to choose the persons she believes could be related to the query. A

very short biography from a source like Wikipedia could help the user make the

decision.

• Selecting patterns found in the top-ranked documents. The patterns can be

found using motif-finding algorithms adapted from bioinformatics research.

• Top-ranked sentences The user can provide feedback on the results returned by

the system. While earlier work (Cool et al., 1996) in negative feedback involved
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simply assigning negative weights to candidate terms, our research (Kumaran

and Allan, 2006b) suggests that negative feedback involving named entities

might be useful in improving the precision of the results. Displaying top-ranked

sentences has been found to be an effective way of summarizing results. We

could take this further and ask the user to select non-relevant sentences. The

negative feedback could then be user to clear the results list or reformulate the

query.
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