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ABSTRACT

Current search engines do not, in general, perform well with
longer, more verbose queries. One of the main issues in pro-
cessing these queries is identifying the key concepts that will
have the most impact on effectiveness. In this paper, we de-
velop and evaluate a technique that uses query-dependent,
corpus-dependent, and corpus-independent features for au-
tomatic extraction of key concepts from verbose queries. We
show that our method achieves higher accuracy in the iden-
tification of key concepts than standard weighting methods
such as inverse document frequency. Finally, we propose a
probabilistic model for integrating the weighted key concepts
identified by our method into a query, and demonstrate that
this integration significantly improves retrieval effectiveness
for a large set of natural language description queries derived
from TREC topics on several newswire and web collections.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms

Algorithms, Experimentation, Theory

Keywords

Information retrieval, verbose queries, key concepts extrac-
tion

1. INTRODUCTION
Automatic extraction of concepts of interest from a larger

body of text have proved to be useful for summarization
[16], keyword extraction [15], content-targeted advertising
[33], named entity recognition [4] and document clustering
[11]. In this paper, we describe an extension of automatic
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concept extraction methods for the task of extracting key
concepts from verbose natural language queries.

Information retrieval research is generally more focused
on keyword queries: terse queries that contain only a small
selection of key words from a more verbose description of
the actual information need underlying the query. TREC
topics illustrate the difference between a keyword query and
a description query. A TREC topic consists of several parts,
each of which corresponds to a certain aspect of the topic.
In the example at Figure 1, we consider the title (denoted
<title>) as a keyword query on the topic, and the descrip-
tion of the topic (denoted <desc>) as a natural language
description of the information request.

<num> Number 829

<title> Spanish Civil War support

<desc> Provide information on all kinds of material

international support provided to either side in the

Spanish Civil War.

Figure 1: An example of <title> and <desc> parts
of a TREC topic.

It might appear obvious to the reader that the key con-
cept of the topic in Figure 1 is Spanish Civil War, rather
than, say, material international support, which only serves
to complement the key concept. However, there is no ex-
plicit information in the description itself to indicate which
of these concepts is more important.

A simple experiment illustrates this point. When running
the <desc> query from Figure 1 on three commercial web
search engines, the first page of the results (top ten retrieved
documents) for each of the search engines contains six, four
and zero documents related to the Spanish Civil War, re-
spectively. Only one of the search engines returns docu-
ments mentioning international support during the war. In
contrast, running the <title> query from Figure 1 results,
for all three search engines, in all the documents returned
on the first page referring to some aspect of Spanish Civil
War, including international support during the war.

A verbose query could also potentially contain two or
more equally essential key concepts. For example, consider
a query What did Steve Jobs say about the iPod? 1, which
contains two key concepts, Steve Jobs and iPod, that must

1This example originally appeared on the Powerset blog:
http://blog.powerset.com/



ROBUST04 W10g GOV2

<title> 25.28 19.31 29.67
<desc> 24.50 18.62 25.27

Table 1: Retrieval effectiveness comparison (mean
average precision) for <title> and <desc> queries
on several TREC collections.

be somehow related in a retrieved document in order for it
to be relevant. When examining the top ten documents re-
trieved by three commercial web search engines in response
to this query, we note that some of them contain only infor-
mation about a single key concept (e.g., a magazine article
“What Did the Professor Say? Check Your iPod”), while
others contain both concepts, but with no explicit relation
between them (e.g., a blog entry “iPod Giveaway: Design a
Steve Jobs Movie Poster”). In contrast, when examining the
top ten documents retrieved in response to a keyword query
“steve jobs”+iPod, we note that most of them discuss Steve
Jobs in some relation to the iPod (e.g., a link to a video
documenting an iPod introduction by Steve Jobs, which did
not appear on the first page of results for the more verbose
query).

Our goal in this paper is to overcome the difficulty of
key concepts detection in verbose natural language queries.
We hypothesize that the identification of the key query con-
cepts will have a significant positive impact on the retrieval
performance for verbose queries (such as <desc> queries),
which often mix several key and complementary concepts,
as discussed in the above examples. Treating all query con-
cepts equally causes loss of focus on the main topics of the
query in the retrieval results, e.g., returning documents that
discuss material international support, but not the Spanish
Civil War.

This loss of focus causes a paradoxical situation in that
a keyword query that provides less information about the
topic than its more verbose natural language counterpart
attains better retrieval effectiveness. Indeed, when compar-
ing the effectiveness of the retrieval using either <title> or
<desc> query types, we note that <title> queries consis-
tently perform better on a variety of TREC collections (see
Table 1).

In this paper we: (i) present a general probabilistic model
for incorporating information about key concepts into the
base query, (ii) develop a supervised machine learning tech-
nique for key concept identification and weighting, and (iii)
empirically demonstrate that our technique can significantly
improve retrieval effectiveness for verbose queries.

2. MODEL
In this section we present our model of key concept selec-

tion for verbose queries. We start by developing a formal
probabilistic model for the utilization of key concepts for
information retrieval. We then proceed to detail the su-
pervised machine learning technique used for key concept
identification and weighting.

2.1 Ranking Principle
We start by ranking a document d in response to query

q by estimating the probability p(q|d), which is a standard
approach in the language modeling retrieval model [25, 10].
Next, we consider all possible implicit concepts ci (we defer

the treatment of concept identification to Section 2.2) that
could potentially generate the actual query q, and get that

p(q|d) =
X

i

p(q|d, ci)p(ci|d). (1)

A common way to estimate a joint conditional probability
is using a linear interpolation of the individual conditional
probabilities [20, 18, 30]. Accordingly, we use a linear inter-
polation of p(q|d) and p(q|ci) to estimate p(q|d, ci). Apply-
ing some probability algebra, we can rank a document d in
response to a query q using an estimate

rank(d) = λ
′
p(q|d) + (1 − λ

′)
X

i

p(q|ci)p(ci|d),

where λ′ is a free parameter in [0, 1]. Assuming a uniform
distribution for both p(q) and p(ci) (which is reasonable,
given no prior knowledge), the above is rank-equivalent to

rank(d) ∝ λp(q|d) + (1 − λ)
X

i

p(ci|q)p(ci|d), (2)

where λ is normalized such that λ = λ′

λ′+
p(q)
p(ci)

(1−λ′)
.

We note that Equation 2 takes a general form, where each
document is ranked according to the combination of its prob-
ability of generating the query itself, and a weighted sum of
its probabilities of generating each implicit concept ci. The
concept weights are determined by how well they“represent”
the query q. As using all possible implicit concepts for rank-
ing a document is infeasible, and moreover the probability
p(ci|q) will be close to zero for all but very few query-related
concepts, one may approximate the ranking above by using
only a fixed number of concepts with the highest weights.
Thus, Equation 2 may be interpreted as a query expansion
technique such as local and global document analysis [32],
latent concept expansion [23] or query expansion using ran-
dom walk models [9] among others.

Alternatively, we may only consider the explicit concepts,
i.e., the concepts that appear in the actual query q. This is
the approach we take in this paper, as we are interested in
discovering key concepts in verbose natural language queries.
Thus, Equation 2 at above reduces to

rank(d) ∝ λp(q|d) + (1 − λ)
X

ci∈q

p(ci|q)p(ci|d). (3)

We use Equation 3 for examining the benefits for retrieval
performance attained by our technique for concept identifi-
cation and weighting discussed in the following sections.

2.2 Concept identification
We note that the ranking principle presented in Section

2.1 is not committed to any particular definition of a con-
cept. A concept can be a single word, an idiom, a restricted
collocation or a free combination of words [3]. With this
in mind, we use noun phrases extracted from the queries
as concepts. Noun phrases have proven to be reliable for
key concept discovery in some past work on information re-
trieval [32, 7, 2] and natural language processing [15], and
are flexible enough to naturally distinguish between words,
collocations, entities and personal names among others. For
instance, the description query presented in Figure 1 can be
split into the following noun phrases: [information, kinds,
material international support, side, Spanish Civil War].



Feature Name Feature Description
is cap(ci) A Boolean indicator. Set to TRUE iff all the concept words are capitalized.
tf(ci) Concept term frequency in the corpus.
idf(ci) Concept inverted document frequency in the corpus.
ridf(ci) Concept residual inverted document frequency in the corpus.
wig(ci) Concept weighted information gain.
g tf(ci) Concept term frequency extracted from Google n-grams counts [5].
qp(ci) Number of times a concept was used as a part of a query, extracted from a large query log.
qe(ci) Number of times a concept was used as an exact query, extracted from a large query log.

Table 2: A summary of features used as an input for the concept classification task.

These phrases represent the different aspects present in the
actual query.

2.3 Concept weighting
This section focuses on concept weighting. Given Equa-

tion 3, we treat the probability p(ci|q) as a weight assigned
to each query concept that reflects how well concept ci rep-
resents the query at hand.

Instead of estimating p(ci|q) directly, we take a different
approach, which allows us to leverage some non-query spe-
cific information towards key concept detection. We make
the following assumptions:

Assumption A. Each concept ci can be assigned to one
of the mutually exclusive classes: KC (key concepts
class) or NKC (non-key concepts class)

Assumption B. A global function hk(ci) exists, such that
hk(ci) indicates the “confidence” that concept ci be-
longs to class KC2.

Following the assumptions at above, we use a normalized
variant of hk(ci), to derive an estimate

p̂(ci|q) =
hk(ci)

P

ci∈q
hk(ci)

. (4)

In other words, concepts for which we have the highest con-
fidence in membership in class KC are regarded as the best
“representations” for the query among other query concepts.

There are several well-known word weighting techniques
we could use for deducing hk(ci). However, instead of giving
a preference to any single technique, we choose a supervised
machine learning approach, and use different weightings as
input features for the weight assignment algorithm. Similar
approaches were shown to work well in some previous work
on keyphrase detection [12, 29, 15].

Formally, we consider a training set of labeled instances

(x1, l1), . . . , (xn, ln),

where xi is a feature vector representing the concept ci, and
li is a binary label, indicating whether ci ∈ KC. Given the
training set, we seek to learn a ranking function of the form
hk : X → R, such that hk(xi) > hk(xj) entails that con-
cept ci has a higher confidence in membership in class KC
than concept cj . Once the learning process completes, we
can proceed to directly use hk(xi) to calculate an estimate
p̂(ci|q), as shown in Equation 4.

2A possible interpretation for hk(ci) is a conditional proba-
bility p(KC|ci), but we do not require hk(ci) to be a proper
probability function.

What is left in order to complete the derivation of the
machine learning method is the feature generation process
for each instance xi. We use a mix of both novel weighting
features and weighting features used in previous work on
keyphrase detection [12, 29, 15] to represent each concept.
Table 2 presents the summary of the features used for con-
cept weighting. More detailed explanation of each feature is
given below.

Features.

is cap(ci) This feature is a Boolean indicator that is set
to TRUE iff all the concept words are capitalized (e.g.
International Criminal Court).

tf(ci) Concept term frequency in the corpus. We assume
that key concepts will tend to have a higher term fre-
quency than non-key concepts.

idf(ci) Concept inverse document frequency in the corpus.
Inverse document frequency is commonly used in in-
formation retrieval as a weighting function [27]. The
form of IDF used in this paper is

idf(ci) = log2

N

df(ci)
,

where N is the number of documents in the corpus and
df(ci) is concept document frequency.

ridf(ci) Residual IDF is the difference between the ob-
served IDF and the value predicted by a Poisson model
[8]:

ridf(ci) = idf(ci) − log2

1

1 − eθi
,

where (1 − eθi) is the probability of a document with
at least one occurrence of concept ci under a Pois-

son distribution, and θi = tf(ci)
N

(the average number
of occurrences of ci per document). Residual IDF is
based on the assumption that the Poisson distribution
only fits the distribution of non-content concepts [8].
Therefore, deviation from Poisson model is potentially
a good predictor of the key concepts.

wig(ci) Weighted Information Gain (WIG) [34] measures
the change in information about the quality of the re-
trieval (in response to concept ci) from a state where
only average document is retrieved to a state where the
actual results are observed. In our paper, a normalized
version of WIG is used

wig(ci) =

1
M

P

d∈TM (ci)
log p(ci|d) − log p(ci|C)

− log p(ci|C)
,



where TM (ci) is a set of top M documents3 retrieved
in response to ci from collection C, and p(ci|·) is calcu-
lated using a maximum likelihood estimate [25]. WIG
was found to have a positive correlation with the re-
trieval performance [34], and we hypothesize that it
serves as an indicator of key concepts, as using such
concepts as queries should provide a cohesive set of top
retrieved documents.

g tf(ci) We use the Google n-grams [5] (English word n-
grams frequency counts generated from approximately
1 trillion word tokens of text from publicly accessible
Web pages) to estimate the concept term frequency in
a large web collection. We expect these counts to pro-
vide a more accurate frequency estimator, especially
for smaller corpora, where some concept frequencies
may be underestimated due the collection size.

qp(ci), qe(ci) We use a large query log consisting of ap-
proximately 15 million queries4 to estimate the con-
cept query frequency. We extract two features for each
concept ci: qp(ci) indicates how many times a concept
ci was used as a part of some query in the log, and
qe(ci) indicates how many times an exact concept ci

was used as a query in the log. We assume that for

the key concepts the ratio qe(ci)
qp(ci)

will be higher than

for the non-key concepts.

3. RELATED WORK
Using supervised machine learning techniques for an au-

tomatic extraction of key concepts from documents was first
proposed by Turney [29], and later explored by several other
researchers [12, 15]. Similar machine learning techniques
have also proved beneficial for other tasks such as named
entity recognition [4], content-targeted advertising [33] and
summarization [16].

Key concept detection in verbose queries has been a sub-
ject of some previous work in information retrieval. Allan et
al. [2] use a set of linguistic and statistical methods and a
proximity operator to discover core terms in <desc> queries.
According to Allan et. al [2], a core term is a term that
must be present in a document for the document to be rel-
evant. Callan et al. [7] use noun phrases, named-entities
recognition, exclusionary constraints and proximity opera-
tors to convert <desc> queries into structured INQUERY
queries. Although similar to our work, the key concepts
extraction and weighting techniques discussed in these pa-
pers are focused on queries derived from TREC topics (e.g.,
removing “stop-phrases” common in TREC queries, or as-
signing higher weights to concepts that appear in the title
of the topic), while our key concept extraction method is
more general and is not biased towards any specific query
type.

Some previous work on query expansion [32, 6, 9] uses
expansion term groupings to balance the various aspects of
the original query in the expanded query. Single terms [6],
noun phrases [32] or n-grams [9] are used to determine query
aspects. These methods, however, do not assign explicit
weights to aspects.

Recent work by Kumaran and Allan [17] addresses the is-
sue of extracting the optimal (in terms of retrieval effective-

3In our experiments M = 50.
4Live Search 2006 search query log excerpt.

ness) sub-query from the original long query. Their approach
involves extracting a short list of candidate sub-queries us-
ing the mutual information measure and presenting this list
to the user, allowing her to replace the original query by
one of the candidates from the list. This approach resulted
in significant improvements over retrieval with the original
<desc> queries.

In most of the previous work on retrieval the differentia-
tion between key and non-key concepts is done via statisti-
cal methods such as term and document frequency weight-
ing [27] or term-specific smoothing [14, 21]. However, these
methods are usually based on single word collection statis-
tics, and do not always capture the key concepts, rather
than words. In contrast to previous work, we do not con-
strain ourselves to a specific weighting scheme to detect the
key query concepts. Instead, we adopt the supervised ma-
chine learning approach [29, 12, 15] for key query concept
extraction, and use a diverse mix of features as inputs for
the supervised machine learning algorithm.

4. EXPERIMENTAL RESULTS
In this section, we describe the experimental results of our

work. Section 4.1 focuses on the concept classification and
weighting experiments, Section 4.2 is dedicated to the anal-
ysis of the features used in the machine learning algorithm,
and Section 4.3 details the retrieval experiments based on
the weighted concepts.

We provide a summary of the corpora used for our exper-
iments in Table 3. We note that collections vary both by
type (ROBUST04 is a newswire collection, while W10g and
GOV2 are web collections), number of documents and num-
ber of available topics, thus providing a diverse experimen-
tal setup for assessing the robustness of our classification,
weighting and retrieval methods.

Name # Docs Topic Numbers
ROBUST04 528,155 301-450, 601-700
W10g 1,692,096 451-550
GOV2 25,205,179 701-850

Table 3: Summary of TREC collections and topics
used in Section 4

Noun phrases were extracted using MontyLingua natural
language processing tool [19]. All concept classification and
weighting experiments were performed using the algorithms
implemented in Weka [31], a collection of machine learning
algorithms for data mining tasks. Indexing and retrieval
was done using Indri [28], which is a part of the Lemur
Toolkit [24]. All indexes and topics were stopped using a
standard INQUERY stopwords list [1] and stemmed using a
Porter stemmer [26]. Either <desc> or <title> portions of
the TREC topics were used to construct the queries. In all
retrieval experiments, Dirichlet smoothing with µ = 1500 is
used.

4.1 Concept Classification Results
In order to assess the effectiveness of the supervised ma-

chine learning approach outlined in Section 2.3, we employ
the AdaBoost.M1 meta-classifier with C4.5 decision trees as
base learners [13]. AdaBoost.M1 “boosts” the repeated runs
1, . . . , T of the base learners on various distributions over
the training data into a single composite learner, which is



often more effective than using any of the individual base
learners. The AdaBoost.M1 method was selected for several
reasons. First, it consistently outperformed other classifi-
cation methods such as C4.5 decision tree or Naive Bayes
classifier in the preliminary experiments we have conducted.
Second, its output for a single input instance xi can be inter-
preted not only as a binary classification decision (ci ∈ KC
or ci ∈ NKC), but also as a weighted combination of base
hypotheses

P

j=1,...,T
wjhj(xi) [13]. This combination nat-

urally translates into a confidence function hk(ci), presented
in Section 2.3.

In the first suite of experiments, we examine how well
our proposed approach separates the key and the non-key
concepts. To this end, all the noun-phrases are extracted
from the <desc> queries, and a single noun phrase, which
is deemed to be the most suitable candidate, is selected as a
key concept for each query (e.g., for the example at Figure
1, Spanish Civil War is selected as a key concept).

The AdaBoost.M1 classifier is trained using a set of la-
beled instances. At the test phase, for each tested query,
the extracted noun phrases are ranked according to their
confidence level of belonging to class KC — hk(ci). The
highest ranked noun phrase is then selected as a key con-
cept for the query.

We note that although some queries might contain more
than one key concept, selecting a single key concept per
query has two important advantages. First, it potentially
simplifies the manual key concept selection task, as the as-
sessor is not required to determine the optimal number of
key concepts for each query. Second, it establishes a lower
bound on the accuracy of the key concept selection process
defined above, as it provides a minimal amount of training
data.

We use a cross-validation approach; for each of the col-
lections, queries are divided into subsets of 50 queries each.
Each subset, in turn, is used as a test set, while the rest of
the queries serve as a labeled training set. Experiments are
run separately for each collection, and average results over
all test sets are reported.

Our second experiment suite is designed to test whether
our key concept classification approach indeed outperforms
a simple non-supervised weighting approach where idf(ci)
weights are directly used to rank the extracted noun phrases,
and, as before, the highest ranked noun phrase is selected
as a key concept for the query.

Table 4 reports the accuracy and the mean reciprocal rank
(MRR) results when either AdaBoost.M1 or idf(ci) ranking
are used for key concept classification. Accuracy is sim-
ply the percentage of the correctly identified key concepts.
MRR is the mean of the reciprocal ranks at which the key
concepts were returned. A higher MRR score indicates a
higher confidence in membership in KC class for key con-
cepts, compared to other concepts in the query.

Table 4 shows that for all the tested collections AdaBoost.M1
outperforms idf(ci) ranking. We note that the difference in
the performance is inversely proportional to the collection
size, which confirms our hypothesis (see Section 2.3) that
for smaller corpora, features other than collection term and
document counts should be used in order to prevent concept
frequency underestimation.

Misclassification case analysis.
In a posterior analysis, we discovered that most of the

AdaBoost.M1 idf(ci)
Acc MRR Acc MRR

ROBUST04 73.20 83.68 56.40 74.22
W10g 81.00 85.33 66.00 78.58
GOV2 82.67 88.00 74.67 85.67

Table 4: Comparison of accuracy and MRR results
for ROBUST04, W10g and GOV2 collections, when
using either the AdaBoost.M1 algorithm with the
features detailed at Table 2, or a single idf(ci) feature
for concept classification.

classification errors were a result of an ambiguity in a key
concept selection process. E.g., for the description query
How are pets or animals used in therapy for humans and
what are the benefits? (topic 794), the therapy concept was
marked as a key concept, while the classification algorithm
assigned the highest rank to pets or animals concept, and
the therapy concept was ranked second. Clearly, neither
of the concepts describes the query in its entirety, and a
key concept is better expressed by a combination of the two
(which is reflected by the title of the topic pet therapy).

Multiple key concepts were more common in the RO-
BUST04 collection than in the other two collections, as its
topics tend to contain more verbose and grammatically com-
plex description queries (e.g., consider the description query
A relevant document would discuss how effective government
orders to better scrutinize passengers and luggage on inter-
national flights and to step up screening of all carry-on bag-
gage has been. (topic 341), for which the concept inter-
national flights was marked as a key concept for a lack of
a better choice). This might offer an explanation to the
fact that the classification accuracy is lower for ROBUST04,
compared to the GOV2 and W10g collections.

Another common issue is the case when a true key concept
is “masked” by a non-key concept exhibiting the traits of a
key concept. For example, in the description query What
violent activities have Kurds, or members of the Workers
Party of Kurdistan (PKK), carried out in Germany? (topic
611), a key concept Kurdistan PKK is masked by a strong
collocation violent activities.

In Section 4.3 we use the fact that although we do not at-
tain a perfect accuracy in our classification experiments, the
confidence levels assigned to each concept are generally re-
liable, and integrate the weighted concepts into the original
<desc> query to improve the retrieval performance.

4.2 Feature Analysis
In this section, we analyze the utility of the various fea-

tures used in the classification task described at above (refer
back to Table 2 for the summary of the features).

We repeat the key concept classification experiments us-
ing AdaBoost.M1, as described in the previous section, while
varying the features. In each iteration, we remove a single
feature from the full feature set. Assuming independence
between the different features, a decrease in accuracy indi-
cates how much does the removed feature contribute to the
overall accuracy reported in Table 4. Table 5 reports the
feature analysis experiments results.

We note that feature contribution to the overall accuracy
varies in different collections. For GOV2, a large web col-
lection, external features such as g tf(ci), qp(ci) and qe(ci)



is cap(ci) tf(ci) idf(ci) ridf(ci) wig(ci) g tf(ci) qp(ci) qe(ci)
ROBUST04 -6.00 -1.60 -2.40 +3.20 -7.60 -4.80 -6.40 -2.40
W10g -5.00 -6.00 -10.00 -8.00 -8.00 -4.00 -8.00 -7.00
GOV2 +1.32 -5.34 -1.34 +1.32 -1.34 -0.00 -3.34 -0.67

Table 5: Feature analysis. % of change in accuracy when a single feature is removed. Negative value for a
feature indicates that accuracy has decreased after feature removal and vice versa. Features that contribute
the most to classification performance are marked in bold.

AdaBoost.M1
Acc MRR

ROBUST04 76.40 84.54
W10g 81.00 85.33
GOV2 84.00 88.88

Table 6: Accuracy and MRR results for RO-
BUST04, W10g and GOV2 collections, when using
the AdaBoost.M1 algorithm with the subset of fea-
tures that attains the best classification accuracy ac-
cording to Table 5. Feature ridf(ci) is not used for
classification on collections ROBUST04 and GOV2.

have little or no impact on the overall accuracy, while ac-
curacy on ROBUST04 and W10g, which are smaller, de-
grades with the removal of these features. On the other
hand, collection-dependent features such as tf(ci), idf(ci)
and ridf(ci) have little positive (or negative, as in the case of
ridf(ci)) impact on the overall accuracy for the ROBUST04,
the smallest collection among the three. Surprisingly, both
is cap(ci) and ridf(ci) have a negative, albeit small, impact
on the overall accuracy for a GOV2 collection.

Following the analysis at Table 5 we remove the feature
ridf(ci) from the feature sets for collections ROBUST04 and
GOV2, and report the classification accuracy and MRR at-
tained by using an optimal combination of features for all
the collections in Table 6.

4.3 Retrieval Results
In this section, we explore the retrieval benefits of using

the concept classification and weighting technique discussed
in the previous sections. We treat the normalized concept
confidence function hk(ci) obtained by the concept ranking
by AdaBoost.M1 presented in Section 4.1 as an estimate for
the probability p̂(ci|q), and rank documents according to
Equation 3. (In this, and all the subsequent experiments,
the optimal feature combination as detailed in Table 6 is
used for concept classification and ranking.)

First, we calibrate the number of weighted concepts added
to the base <desc> query. The results are presented in Fig-
ure 2. We note that an addition of the single highest ranked
concept to the original query, i.e., the integration of a con-
cept identified as a key concept in Section 4.1, provides a
substantial performance boost (in terms of mean average
precision) on all the tested collections. In two out of three
collections, performance is further increased when a second-
highest ranked concept is also integrated into the base query.
We note that adding more than two concepts attains no fur-
ther retrieval performance gain. This can be interpreted as
the fact that, on average, the description queries used for
our experiments may be expressed by a combination of two
key concepts. This is evident from an example at Figure 1:
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Figure 2: Changes in MAP, when varying the num-
ber of concepts added to the original <desc> query.

description query can be rewritten as a combination of con-
cepts “Spanish Civil War”+“material international support”
without noticeable loss in query expressiveness. We note,
however, that although this observation holds for a large
portion of tested queries, there are cases in which relying
entirely on the extracted concepts and discarding the origi-
nal query causes a degradation in query expressiveness. (For
instance, consider the description for Topic 714: What re-
strictions are placed on older persons renewing their drivers’
licenses in the U.S.? for which the two highest ranking con-
cepts are older persons and drivers license. Clearly, these
two concepts do not fully express the entire query.)

Due to the above observations, we use the combination
of the base <desc> query and the two highest-ranked terms
weighted by p̂(ci|q), which results in optimal retrieval perfor-
mance for most collections (see Figure 2), for our next suite
of retrieval experiments. (We have also conducted experi-
ments with the unweighted variant of this combination, but
it yielded slightly inferior performance to that of the combi-
nation of the weighted concepts, and thus is not considered
in the remainder of this section.)

We compare the retrieval results (in terms of precision at
5 and mean average precision) obtained by this setting, de-
noted KeyConcept[2]<desc>, to the results obtained using
either title or description query alone (denoted <title> and
<desc>, respectively). In addition, we compare the effec-
tiveness of this method to retrieval using sequential depen-
dency model [22], denoted SeqDep<desc>, which integrates
the base <desc> query with sequential bi-grams derived
from query words, and uses ordered and un-ordered prox-
imity operators. We present examples of Indri structured
queries [28] representing each of these retrieval techniques



<title> #combine( Spanish Civil War support )

<desc> #combine( information kinds material international support provided side Spanish Civil War )

SeqDep<desc>

#weight(
0.85 #combine( information kinds material international support provided side Spanish Civil War )
0.10 #combine( #1(information kinds) #1(kinds material) #1(material international)

#1(international support) #1(support provided) #1(provided side)
#1(side Spanish) #1(Spanish Civil) #1(Civil War) )

0.05 #combine( #uw8(information kinds) #uw8(kinds material) #uw8(material international)
#uw8(international support) #uw8(support provided) #uw8(provided side)
#uw8(side Spanish) #uw8(Spanish Civil) #uw8(Civil War) ))

KeyConcept[2]<desc>

#weight(
0.8 #combine( information kinds material international support

provided side Spanish Civil War )
0.2 #weight( 0.99994 #combine ( Spanish Civil War )

0.00006 #combine ( material international support )))

Table 7: Examples of the Indri query types used for the retrieval experiments detailed in Table 8. Weights
for SeqDep<desc> were set according to the optimal setting reported in the original paper. λ for Key-
Concept[2]<desc> (see Equation 3) was set to 0.8 across all the collections. Concept weights were assigned
according to the AdaBoost.M1 algorithm output.

ROBUST04 W10g GOV2
prec@5 MAP prec@5 MAP prec@5 MAP

<title> 47.80 25.28 30.73d 19.31 56.75 29.67d

<desc> 47.26 24.50 39.20t 18.62 52.62 25.27t

SeqDep<desc> 49.11 25.69d 39.80t 19.28 56.88d 27.53t
d

KeyConcept[2]<desc> 48.54 26.20d 40.40t 20.46t
d 56.77d 27.27t

d

Table 8: Retrieval results for ROBUST04, W10g and GOV2 collections. Boldface indicates the best perform-
ing retrieval method per collection. Significant differences with <title> and <desc> are marked by t and d,
respectively (statistical significance was measured using the two-tailed Wilcoxon test with p < 0.05).

in Table 7. Comparison of the retrieval results obtained by
the different techniques is presented in Table 8.

We note that for all collections KeyConcept[2]<desc> out-
performs <desc> retrieval both in terms of MAP and prec@5,
often to a statistically significant degree. For ROBUST04
and W10g collections KeyConcept[2]<desc> also outper-
forms the <title> retrieval. We note, however, that for these
collections <title> queries are more verbose than the <ti-
tle> queries for the GOV2 collection.

Table 8 demonstrates that the retrieval performance (in
terms of MAP) of KeyConcept[2]<desc> method is slightly
inferior to the performance of SeqDep<desc> on GOV2 col-
lection, and is better than the performance of SeqDep<desc>
on ROBUST04 and W10g collections. No statistically sig-
nificant differences between the retrieval effectiveness of the
two methods were found.

In terms of retrieval efficiency, the queries produced by
our method are more succinct (see example at Table 7), es-
pecially in the case of the verbose <desc> queries discussed
here, than those produced by SeqDep<desc>. This indi-
cates that most of the retrieval performance gain can be
attributed to only a few highest ranked concepts. We also
note that, compared to the sequential dependency model, we
do not incorporate any proximity information in our queries,
and treat our concepts as “bag of words” queries. We leave
the exploration of the benefits of application of proximity
operators to our retrieval methods for future work.

5. CONCLUSIONS
In this paper we address the issue of retrieval using ver-

bose queries. We use several standard TREC collections
and corresponding topics to demonstrate that the current

retrieval methods perform better, on average, with keyword
title queries than with their longer description counterparts.

One of the main issues in processing verbose queries is the
difficulty of identifying the key concepts. This difficulty can
potentially lead to a lack of focus on the main topics of the
query in the retrieved document set. To this end, we propose
a supervised machine learning technique for discovering key
concepts in verbose queries. We detail the query-dependent,
corpus-dependent and corpus-independent features used as
inputs for our machine learning algorithm. We use our tech-
nique to identify and assign weights to key concepts in natu-
ral language description queries derived from TREC topics,
and show that using our identification method substantially
improves the average accuracy in key concept identification
over the standard inverse document frequency measure, even
if the size of the available training set is relatively small.

Next, we use the highest-ranked concepts for each query
to improve the retrieval effectiveness of the verbose queries
on several standard TREC newswire and web collections.
We propose a formal probabilistic model for incorporating
query and key concepts information into a single structured
query, and show that using these structured queries results
in a statistically significant improvement in retrieval per-
formance over using the original description queries on all
tested corpora. In some cases, our structured queries even
attain a better retrieval performance than the title queries
on the same topic.

The empirical results of this paper are encouraging, as us-
ing a simple query-concept combination model outperforms
the original query to a statistically significant degree, and
attains a comparable retrieval performance to that of using
a more elaborate (and computationally more demanding)



sequential dependency model.
We believe that further gains in retrieval performance

might be attained by employing additional syntactic and
semantic features of natural language verbose queries and
by exploring the utilization of different proximity operators
for query-concept combination.
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