
EFFICIENT PROCESSING OF COMPLEX FEATURES

FOR INFORMATION RETRIEVAL

A Dissertation Presented

by

TREVOR STROHMAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 16, 2007

Computer Science

c© Copyright by Trevor Strohman 2007

All Rights Reserved

EFFICIENT PROCESSING OF COMPLEX FEATURES

FOR INFORMATION RETRIEVAL

A Dissertation Presented

by

TREVOR STROHMAN

Approved as to style and content by:

W. Bruce Croft, Chair

James Allan, Member

Emery Berger, Member

Csaba Andras Moritz, Member

Andrew Barto, Department Chair
Computer Science

To Rollin Strohman.

ACKNOWLEDGMENTS

Writing acknowledgments is just a little bit absurd. Acknowledgments read like a

disclaimer, as if except for the few people mentioned here I deserve complete credit

for finishing this work. Unfortunately there is no way to give credit to everyone who

deserves it. Even thanking my teachers individually is impossible; I estimate that I

have had more than a hundred of them in my academic career. To be honest, I would

need to add all of the unofficial teachers: my friends, classmates, and authors of

books and articles I have read. An attempt to be too exhaustive would only succeed

in leaving out some important influential person who is all too deserving. Therefore, I

have chosen to to aim for brevity with the disclaimer that literally hundreds of people

deserve mention here.

My advisor, W. Bruce Croft, takes the kind of calculated risks that I assume

one must take to have the kind of academic success that he has had. He took one of

those risks on me, a practically-minded applicant who wanted to study databases at a

school with no database program. In just four years, he has guided me from complete

ignorance of Information Retrieval, through conference publications, a dissertation,

and now a new textbook. I have never forgotten that Bruce took a chance in accepting

me, and I have worked hard to make his bet pay off.

My dissertation committee members have been gracious enough to take time out

of their busy schedules to read, comment on, and watch me defend this dissertation.

I appreciate their time and greatly respect their contributions to science.

A large part of my first two years in graduate school was spent writing code for the

Indri retrieval system. While the code writing was generally a solitary activity, Indri

v

is part of the Lemur project, which is controlled by the Lemur steering committee. My

experience with that committee and the feedback of many of its members, especially

including Howard Turtle, Jamie Callan, David Fisher, Kevyn Collins-Thompson and

Paul Ogilvie, gave me a much needed additional perspective on Information Retrieval.

Implementing a retrieval system with the help of these people kept me excited in those

first years while the students around me researched theoretical issues that I struggled

to comprehend. I appreciate Bruce for giving me this experience and the committee

members for their incredible support.

It still amazes me that doctoral education in the sciences can be free. Of course

it isn’t actually free: my education and living expenses were funded by agencies and

people who believe that advancing scientific knowledge is a good investment. The

family of J.L. Moore offered me a fellowship for three years that made these years

far more bearable for me and my family. The NSF (grant CNS-045018) and ARDA

(grant CCF-0205575) provided direct funding for my research, although the opinions,

findings and recommendations in this work are mine and not necessarily those of these

sponsors. I thank the people at those agencies and I hope my research is somewhere

near what they had hoped for. Finally, two companies, Monster and Lexalytics,

decided to hire me as a consultant in my final year. Consulting helped me immensely,

not just for the financial benefits, but for the transition experience into the industrial

world.

The faculty, students and staff in the Computer Science department, and especially

the CIIR, have been a welcome benefit to being a student here. I found none of the

kind of competitiveness and tension here that can be a part of academic communities,

which I credit to everyone in the department. While all the members of the lab have

been extremely helpful to me, I want to single out André Gauthier, Fernando Diaz and

Mark Smucker especially for their helpful conversations and insights. Don Metzler

deserves his own distinguished mention for how helpful he has been as a co-researcher,

vi

both on the Indri project, TREC, and joint work on binning. His talents have been

an excellent fit for mine, and I will count myself lucky if I find a research partner

again with whom I can work so well.

My parents, sister and in-laws have been so supportive of my graduate progress,

even though it meant constant cross-country trips to see their new grandchildren. I

hope that those grandchildren will soon live a little closer. My father in particular has

been patient with my meandering academic plan, while instrumental in demonstrating

the kind of work ethic it takes to succeed. My mother spent plenty of hours in my

childhood making sure I had the kind of opportunities that would help me succeed

academically. Soon our family reunions will contain five Dr. Strohmans. I blame my

parents for causing this name confusion.

Finally, my wife Anne-Marie and children Evan and Natalie have put in their own

efforts to see this dissertation to completion. They have patiently waited for me as I

was away at conferences or spending late nights at work. Evan always has the kind

of excitement that gives me extra energy even when work hasn’t gone well. Natalie

is a new joy and I hope that this degree will indirectly give her opportunities she

wouldn’t have had otherwise. And finally, to Anne-Marie: thanks for taking this

graduate school adventure with me. You have supported me and encouraged me

through constant self-doubt, and we have worked together to understand this odd

place. Two kids and almost five years later, we are both almost finished and I am

ready for the next adventure with you.

vii

ABSTRACT

EFFICIENT PROCESSING OF COMPLEX FEATURES

FOR INFORMATION RETRIEVAL

December 16, 2007

TREVOR STROHMAN

B.S., CALIFORNIA POLYTECHNIC STATE UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Text search systems research has primarily focused on simple occurrences of query

terms within documents to compute document relevance scores. However, recent

research shows that additional document features are crucial for improving retrieval

effectiveness.

We develop a series of techniques for efficiently processing queries with feature-

based models. Our TupleFlow framework, an extension of MapReduce, provides a

basis for custom binned indexes, which efficiently store feature data. Our work in

binning probabilities shows how to effectively map language model probabilities into

the space of small positive integers, which helps improve speeds without reducing

query effectiveness. We also show new efficient query processing results for both

document-sorted and score-sorted indexes. All of our work is evaluated using the

largest available research dataset.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT .viii

LIST OF TABLES .xiv

LIST OF FIGURES .xvi

CHAPTER

1. INTRODUCTION . 1

1.1 Overview . 1
1.2 Our Approach. 3
1.3 Contributions . 5
1.4 Layout . 6

2. BACKGROUND . 8

2.1 The inverted index . 8
2.2 Ranking documents . 10

2.2.1 Ranking with Impacts . 14

2.3 Search Tasks . 15
2.4 Using Additional Features . 16

2.4.1 Indri query language . 17
2.4.2 Query examples . 19
2.4.3 Probabilistic Interpretation . 20
2.4.4 Bag of words . 21
2.4.5 Adding Term Proximity . 22
2.4.6 Document Mixture Models . 23
2.4.7 Additional Document Features . 24
2.4.8 The UMass 2005 Navigational Formulation 26

ix

2.4.9 Query Expansion . 27

2.4.9.1 Stemming . 27
2.4.9.2 Synonyms . 29
2.4.9.3 Pseudo-relevance feedback . 30

2.5 Evaluating Effectiveness and Efficiency . 31

2.5.1 Test Collections . 31
2.5.2 Effectiveness . 32

2.5.2.1 Precision . 32
2.5.2.2 Success . 33
2.5.2.3 Recall . 33
2.5.2.4 Average Precision . 34
2.5.2.5 Normalized Discounted Cumulative Gain 36

2.5.3 Efficiency . 38

2.5.3.1 Experiments . 41

2.6 Basic query evaluation . 44

2.6.1 Score-ordered evaluation . 45
2.6.2 Precomputed Phrase Lists . 48

2.7 Optimization Types . 49

3. TUPLEFLOW . 51

3.1 Introduction . 51
3.2 Example . 52

3.2.1 A Traditional Approach . 52
3.2.2 Using TupleFlow . 54

3.3 Related Work . 64
3.4 Model of Computation . 67
3.5 Step Implementation . 69
3.6 Execution . 70
3.7 Code Generation . 72

3.7.1 Hash functions . 72
3.7.2 Comparators . 74
3.7.3 Order Compatibility . 75
3.7.4 Compression . 76

x

3.8 Built-in Steps . 78
3.9 Storing Streams . 79
3.10 Checkpointing. 80
3.11 Sample Tasks . 82

3.11.1 Building an Index . 82

3.12 Rapid Experimentation . 82
3.13 Experiments . 84

3.13.1 Word Count . 84

3.13.1.1 Balance . 85
3.13.1.2 Compression . 87

3.13.2 Anchor Text Combination . 88
3.13.3 Indexing . 91

3.14 Weaknesses . 91
3.15 Summary . 92

4. BINNED PROBABILITIES . 94

4.1 Introduction . 94
4.2 Method . 95
4.3 Exploration . 97
4.4 Evaluation . 99
4.5 Results . 101
4.6 Summary . 101

5. SCORE-SORTED INDEX OPTIMIZATION . 103

5.1 Algorithm . 105

5.1.1 AND Processing . 108
5.1.2 Trimming Accumulators . 109
5.1.3 Ignoring Postings. 110

5.2 Implementation . 112

5.2.1 Indexing . 112

5.3 Choosing Skip Lengths . 113
5.4 Evaluation . 116

5.4.1 Analysis . 121

xi

5.4.1.1 Multiple Cores . 122

5.5 Related Work . 123
5.6 Summary . 125

6. DOCUMENT-SORTED INDEX OPTIMIZATION 127

6.1 Introduction . 127
6.2 Algorithm . 128

6.2.1 Traditional . 128
6.2.2 Max-Score . 130
6.2.3 Score Skipping . 134

6.3 Index Construction . 136

6.3.1 Inverted lists . 136
6.3.2 Other structures . 138
6.3.3 Construction with TupleFlow . 139

6.4 Evaluation . 139

6.4.1 Effectiveness . 140
6.4.2 Efficiency . 143

6.5 Related Work . 144
6.6 Conclusion . 147

7. NAVIGATIONAL SEARCH WITH COMPLEX

FEATURES . 149

7.1 Introduction . 149
7.2 Model . 150

7.2.1 Conversion . 150
7.2.2 Feature Combinations . 154
7.2.3 Index Construction . 154

7.3 Evaluation . 156

7.3.1 Effectiveness . 156
7.3.2 Efficiency . 158

7.4 Conclusion . 161

xii

8. EXTENSIONS . 163

8.1 Introduction . 163
8.2 Update . 163

8.2.1 Update background . 163
8.2.2 Application Notes . 167

8.3 Distribution . 169

8.3.1 Background . 169
8.3.2 Application Notes . 170
8.3.3 Improvements . 171

8.4 Query caching. 172

9. CONCLUSION . 174

9.1 The Broad View . 174
9.2 Contributions . 176

BIBLIOGRAPHY . 178

xiii

LIST OF TABLES

Table Page

2.1 Definitions of some important efficiency metrics . 38

4.1 Mean Average Precision over varying number of integer bins. 100

4.2 Mean Average Precision over varying saturation parameter values.
Bold values are significant improvements over s = 1.0 (t-test,
p < 0.05). 100

4.3 Fraction of postings that are over the saturation probability for many
saturation levels. 100

4.4 WT10G index sizes for various numbers of bins . 101

5.1 Effectiveness on TREC Ad Hoc Queries . 117

5.2 TREC 2005 Efficiency Queries, average query execution times, in
milliseconds. Throughput is measured in queries per second. 118

5.3 TREC 2006 Efficiency Queries, average query execution times, in
milliseconds. Throughput is measured in queries per second. 119

5.4 Speedup when using multiple cores. Throughput is measured in
queries per second, while speedup is measured relative to each
algorithm’s performance on a single processor. 120

5.5 Efficiency at varying skip lengths, TREC 2005 Efficiency Queries. 121

6.1 Effectiveness results from the GOV2 collection. 140

6.2 TREC 2005 Efficiency Queries, average query execution times, in
milliseconds. Throughput is measured in queries per second. 141

6.3 TREC 2006 Efficiency Queries, average query execution times, in
milliseconds. Throughput is measured in queries per second. 142

xiv

7.1 Parameter settings used in the UMass TREC 2005 experiments. 151

7.2 Parameter settings for features in our experiments. 153

7.3 GOV Collection, 2002 Navigational Queries . 156

7.4 GOV Collection, 2003 Navigational Queries . 156

7.5 GOV2 Collection, 2005 Named Page Queries . 157

7.6 GOV2 Collection, 2006 Named Page Queries . 157

7.7 Throughput results for 2005 TREC Efficiency queries. 159

7.8 Throughput results for 2006 TREC Efficiency queries. 159

xv

LIST OF FIGURES

Figure Page

2.1 Complex query operators from Indri . 18

2.2 Discounting factors used in NDCG. Note that the influence of a
document at rank 20 is 1/8th of that of the first document. 36

2.3 A simple document-at-a-time retrieval algorithm. 43

2.4 A simple term-at-a-time retrieval algorithm. 44

3.1 A simple Python word count program. 53

3.2 The command line for building the WordCount type. The arguments
shown here are: file name of the generated code, package name of
the resulting class, class name of the result, word specification,
count specification, and two order specifications. 54

3.3 Source code of CountsMaker.java . 56

3.4 Some WordCount tuples, after processing by WordCounter. Notice
that there are two lines for the. 56

3.5 WordCount tuples, after sorting in +word order. 56

3.6 Source code of CountsReducer.java. 58

3.7 Stage description for counting. 59

3.8 Stage description for reduce. 61

3.9 Stage description for filenames. 62

3.10 Description of connections between the filenames, counting and
reduce stages. 62

3.11 A simple TupleFlow execution graph.. 67

xvi

3.12 A TupleFlow execution graph with a replicated stage. 68

3.13 The on-disk representation of a stream with 4 inputs and 2
outputs. 79

3.14 On-disk representation of a pass-through stream with 3 inputs and 3
outputs. 79

3.15 A TupleFlow computation graph for building a traditional,
positions-based text index. Small boxes are steps, large boxes are
stages, and gray boxes indicate stages that can be replicated. 81

3.16 A short Pig script to find all unique queries in a query log that
appear more than ten times. 82

3.17 Total time and parsing time to count the words in the GOV
collection for many levels of parallelism. 83

3.18 Processes running over time for many levels of parallelism. 84

3.19 An example of the tuples emitted by the WordCount parsing
stage. 87

3.20 A stage diagram of the TupleFlow anchor text combination
process. 88

3.21 DocumentURL tuples parsed from the GOV collection. 89

3.22 ExtractedLink tuples parsed from the GOV collection. 89

3.23 Speed of anchor text combination on the GOV collection for many
levels of parallelism. 90

4.1 Distribution of binned values for four different terms. This data
comes from the TREC45 collection, using 64 bins and saturation
= 0.001. 98

5.1 Relative number of accumulators used during the query evaluation
process. The gray filled area represents the usage pattern in Anh
and Moffat. The thick solid line represents the decreased
accumulator usage of our approach. 105

xvii

5.2 The expected cost of processing bins of varying lengths with varying
skip sizes. The expected cost is expressed as a fraction of the cost
of processing the data without skipping. Expectations are based
on the 50,000 TREC 2005 Efficiency Track query set. 115

5.3 Distribution of query lengths (before removing stopwords) across
collections. 117

6.1 A picture of the TupleFlow execution graph that builds
document-sorted indexes. 137

7.1 A sample query formed using the UMass TREC 2005 Named Page
formulation. 151

7.2 Simplified diagram of the TupleFlow job for constructing navigational
indexes. 155

xviii

CHAPTER 1

INTRODUCTION

1.1 Overview

Nine years ago, Brin and Page published “The anatomy of a large-scale hypertex-

tual Web search engine” [17]. Since then, it has been cited more than 3500 times.

We would expect this paper to be popular, since it was the basis of an extremely

successful and popular company. However, it is also interesting because it presents

a fresh look at how to build a text search engine for web text. The paper includes

contributions in web crawling, indexing, distribution and retrieval, and shows how

all of these pieces have to work together to create a search engine for the web. The

paper is interesting because of how all of these contributions work in concert.

The world has changed in the intervening nine years. The web has exploded in

size, and web search has moved from a curiosity to a tool that common people rely

on every day. The field of information retrieval has grown in response, and with

both academics and industry employees working to make sense of the huge amount

of information that we now face. We have noticed two important trends that we will

focus on in this dissertation.

First, the scale of text search, both in terms of the quantity of text indexed and in

the query load experienced, has grown at an amazing rate. Fifteen years ago, some of

the largest text search systems were pay-for-use legal and news databases. The pay-

for-use model, and the limited connectivity of most end-users, created a natural limit

to the number of queries issued in a day. These databases were also domain-specific,

which created a limit on the amount of data in a particular system. Contrast this

1

with web search, which is freely delivered to general users. These users have come to

the Internet in droves, and have brought along massive quantities of user-generated

content. It is this Internet reality that sets the new benchmark for search engine

scale.

Second, this change in the user base of search has changed the search problem.

Instead of legal experts typing long, precise queries, the new breed of user types

short, vague queries, often just two or three words long. Their information needs

are different too. A paralegal or intelligence analyst is recall-focused, meaning that

they care about finding as many interesting documents as possible. The new search

environment has brought about a kind of need: the navigational search. Users use

the search engine to find specific new web pages, and are often only interested in a

single page. Increasingly, users just want to re-find pages they have already seen [95],

as the search engine starts to supplant the web browser’s bookmark functionality.

We see evidence of this change in popular web search interfaces, which have very few

buttons or tools, small text boxes, and display just the top 10 results to each query.

These two trends have caused a shift in approach, especially among commercial

vendors. Because of the massive scale of the problem, all major search engines use a

distributed architecture for indexing and retrieval [17, 15]. In particular, the problem

of indexing has spawned specialized distributed computing frameworks, like MapRe-

duce and Dryad [42, 51]. The huge number of queries and the seek time gulf between

memory and disk has made memory an attractive way to store indexes [89].

The huge increase in data and the changing needs of users has also caused a change

in the algorithms for ranking pages. The number of results that users are willing to

consider has dropped, so that now users do not even bother to scroll to see results [53,

3]. By contrast, the web now contains well over 10 billion pages [50]. This means

that the fraction of the collection that users are willing to consider has decreased

2

dramatically. Metzler notes that this shift calls for additional discriminating power

in ranking functions [66].

One way to improve document ranking is to extract more information from each

document. Typical standard ranking methods rely on counts of individual terms

in each document and in the document collection to determine document rankings.

More complex rankings are possible, for instance, by treating word occurrences in a

document title differently than the body text, or by detecting phrase occurrences.

Previous systems have used these more complex formulations in the past, but often

in an ad hoc manner. Recent trends focus on finding document relevance predictors,

called features, and combining them into a ranking function using statistical ma-

chine learning methods [24]. Advances in feature combination methods are leading

to ranking functions that use ever-increasing numbers of document features in more

complicated combinations than ever before.

Because of this shift in the problem of search, we hypothesized that a holistic view

of search systems, like Brin and Page a decade ago, might yield interesting results.

As we will show in the rest of this dissertation, our hypothesis was correct. This

work responds to the new search environment with a set of research contributions

that are tightly interdependent. Our goal was to create an efficient search system for

shorter queries that could make use of new detailed feature representations. Chap-

ter 7 addresses this problem directly, but to do this it builds on contributions in

distributed systems, efficient query processing, and feature binning. While this dis-

sertation contains a set of contributions that can be used individually, we believe it

is most interesting when viewed as a whole system.

1.2 Our Approach

Previous systems, including our Indri system [93], performed feature-based rank-

ing by using complicated query processing code. In this dissertation, we transfer as

3

much ranking logic as possible to the indexer. Instead of storing individual document

features like term counts or document lengths in the index, we store partial document

scores. It is the job of the indexer to calculate these partial scores and store them in

the index. This approach was taken in the SMART system, although it has fallen out

of vogue recently [21]. While this approach reduces some flexibility at query time, it

opens up a large number of opportunities for query optimization, as we will see in

Chapters 5 and 6. Unlike most previous systems, our systems store partial scores as

small positive integers. This allows us to compress indexes very tightly and improves

retrieval speed.

As we mentioned before, trends in information retrieval are for ranking functions

with ever increasing complexity. Therefore, storing partial scores in an inverted list

requires a flexible indexing system that can take advantage of new feature extraction

advances quickly, while also distributing load across an arbitrary number of comput-

ers. In this dissertation, we present TupleFlow, the basis of our indexing system,

which helps us achieve flexibility and scalability.

Another issue is how to combine features together into small positive integers. In

particular, statistical language models generate very small probability values that are

much smaller than one. These language models also incorporate smoothing, which as

we will see is difficult to integrate into an integer-based retrieval system. Our work on

binning probabilities shows how language model features can be integrated effectively

into the index.

We also show how these indexes can be used to retrieve documents very efficiently,

using new query optimization techniques. At the end of this dissertation, we present

a case study of using a previously developed feature-based ranking function with

our indexing and retrieval system, and showing how it achieves high efficiency and

effectiveness.

4

All experiments in this dissertation were performed using the Galago retrieval

system1, which is being made available as an open source toolkit.

1.3 Contributions

• Score-ordered query optimization. We add skipping and trimming to the

best known algorithm for score-ordered query evaluation, and show a query

throughput increase of almost 70%. This algorithm is the fastest rank-safe

query evaluation method known to us for ad hoc queries.

• Document-ordered query optimization. We show how score skipping can

give some of the speed advantages of score-ordered indexes to document-ordered

indexes. Score skipping improves throughput by over 80% on a set of web

queries, with almost a 400% throughput increase for two word queries.

• TupleFlow. We present TupleFlow, a system for distributed computation on

a grid of machines. TupleFlow extends MapReduce with comparators, com-

pression, graph-based scheduling and arbitrary data flow, allowing for complex

distributed task execution, but while still allowing for single-threaded tasks.

TupleFlow is particularly suited for index building and text processing.

• Binning Probabilities. We show language model binning, which allows lan-

guage model probabilities to be used in retrieval systems that require positive

integers. We show how to solve the problem of smoothing, and how a saturation

parameter can improve overall effectiveness.

• Case study of named page retrieval. We show how features used in a

real web ranking function can be stored as integers to produce an effective and

efficient search engine.

1http://www.galagosearch.org

5

1.4 Layout

This dissertation begins with a discussion of background material in Chapter 2.

This background material includes information about the basic principles of proba-

bilistic information retrieval, including how to rank documents effectively in response

to a query. We discuss methods for evaluating the efficiency and effectiveness of an

information retrieval system, and also discuss how traditional inverted indexes are

built. Those who are already familiar with information retrieval can safely skip this

chapter.

Chapter 3 presents TupleFlow, a framework for distributed computation. Tuple-

Flow is primarily inspired by MapReduce, but combines aspects of many parallel and

distributed computing frameworks. We highlight some of the major features of Tu-

pleFlow, including job graph scheduling, checkpointing, sorting, hashing, and tuple

compression.

We use TupleFlow to build the indexes in Chapter 5, which presents an improve-

ment to the score-sorted indexes presented by Anh and Moffat. Using a slight modi-

fication on their impact-ordered indexes, we are able to modify the query evaluation

algorithm to achieve a substantial improvement in throughput.

The score-sorted optimization chapter motivates a look at what other kinds of

weights, other than document-centric impacts, might be stored in binned indexes.

We investigate binned probabilities in Chapter 4, and show how language modeling

probabilities can be translated into positive integers. In particular, we show how to

deal with the problem of translating term smoothing into the integer domain.

We present document-ordered query optimization in Chapter 6, this time using

the binned probabilities from Chapter 4. As in Chapter 5, we use TupleFlow to build

these indexes. Our optimization is called score skipping, and we show how it improves

substantially on Turtle and Flood’s max-score algorithm [100].

6

We combine all of our contributions in Chapter 7, which is an exploration of query

processing for named page finding on the Web. Doing named page finding effectively

requires a combination of many features, and we use the flexibility of TupleFlow to

create these feature-based indexes. We generate probabilities which are binned using

our work in Chapter 4, and then stored in both score-sorted and document-sorted

indexes, as in Chapters 5 and 6. We evaluate our results based on both efficiency and

effectiveness.

There are some important problems in indexing and retrieval that this disser-

tation does not address experimentally. However, we discuss how our work might

be extended or integrated with other work in Chapter 8. In particular, we discuss

snippet generation, crawling, query caching and index update.

We conclude in Chapter 9 with a discussion of how all of these contributions fit

together.

7

CHAPTER 2

BACKGROUND

This chapter reviews some of the foundations of information retrieval necessary

to understand the rest of the dissertation work. The chapter begins with a discussion

of index structures, then moves to basic query evaluation techniques. After that, we

discuss ranking functions with a special focus on the language modeling approach.

This brings us into a discussion of how document features can be combined in effec-

tive query formulations, with a special focus on how this is done in the Indri query

language. Finally, we discuss the basics of information retrieval evaluation in both

efficiency and effectiveness.

2.1 The inverted index

The standard data structure for searching text document collections is the inverted

index [108]. Other data structures, most notably signature files, have been proposed

in the past. However, in the last decade, compressed inverted indexes have been

shown to be superior to all other indexing methods in terms of efficient retrieval

speed [109]. In this section, we describe the basic structure of an inverted index, and

basic query processing strategies for evaluating queries using this data structure.

An inverted list, in its simplest form, is a mapping from a single word to a set of

documents that contain that word. An inverted index is formed from a set of inverted

lists. Usually the inverted index contains one inverted list for each unique word in

the collection of documents indexed, although sometimes certain very frequent terms

(called stopwords) are not indexed.

8

Consider the following four “documents”:

1. Cats, dogs, dogs.

2. Dogs, cats, sheep.

3. Whales, sheep, goats.

4. Fish, whales, whales.

The inverted index for this document collection looks like this:

cats dogs fish goats sheep whales

1 1 4 3 2 3

2 2 3 4

Using these lists, it is simple to find the documents that contain the word ‘dogs’;

the inverted list for ‘dogs’ tells us that documents 1 and 2 contain this word. To

find the documents that contain both ‘sheep’ and ‘dogs’, we look at the lists for both

words and take the intersection, to find that document 2 contains both words.

If we want to find documents about dogs, it seems likely that a document that

contains the word ‘dogs’ twice is more likely to have the information we want than a

document that contains ‘dogs’ only once; therefore we would prefer the first document

over the second one. The simple inverted list structure cannot make this kind of

distinction. Therefore, it is very common to include term counts in the lists:

cats dogs fish goats sheep whales

(1,1) (1,2) (4,1) (3,1) (2,1) (3,1)

(2,1) (2,1) (3,1) (4,2)

In this example, each inverted list entry contains a document number and a count

of the times that term appears in the document. We see that ‘dogs’ appears twice in

the first document, and ‘whales’ appears twice in the last document.

In a further refinement, we can add position information to the inverted lists:

9

cats dogs fish goats sheep whales

(1,1) : 1 (1,2) : 2, 3 (4,1) : 1 (3,1) : 2 (2,1) : 3 (3,1) : 1

(2,1) : 2 (2,1) : 1 (3,1) : 2 (4,2) : 2, 3

Now, we know that the word ‘dogs’ appears twice in the first document, and that

it occurs at the second and third word positions in that document. This organization

allows us to search for phrases in the corpus, such as “dogs cats” (which appears only

the second document).

In practice, inverted indexes without word counts are rarely used. With com-

pression, an inverted index with just word counts can be stored in approximately 5%

of the total text collection size, while counts and positions can be stored in 20% of

the text collection size [105]. This difference in space also translates into a perfor-

mance gain; indexes without word positions can be built faster and can be queried

faster than those without positions. However, recent work shows that word location

information is essential for achieving high effectiveness, even in queries that do not

explicitly request phrases [68].

Since the inverted index is the core of all modern retrieval systems, efficient con-

struction techniques have been the subject of a significant amount of research. For

more information about construction techniques, Witten, Moffat and Bell [105] distill

the best of research up until the mid 1990s.

2.2 Ranking documents

Information retrieval systems return a ranked list of documents based on a query.

A perfect ranking would rank documents in order of relevance; the most documents

would come first, and the irrelevant documents would be last. However, perfect

document ranking appears to require detailed models of human cognition that are

simply not tractable at this time. Instead, retrieval systems compute the probability

that a document is relevant based on features correlated with relevance.

10

The language modeling approach assumes that queries and documents are gen-

erated from some probability distribution of text [81]. Under this assumption, the

probability P (RQ|D) that a document D is relevant to a query Q is rank-equivalent

to the probability P (Q|D) that the query Q was generated by the same distribution

as the document D. The problem of ranking documents then becomes the problem

of estimating P (Q|D).

Under the traditional bag of words assumption, we assume that there is no need

to model term dependence. Of course, dependence does matter, and this will be

revisited later in this thesis. However, for the time being, ignoring dependence gives

us a simple approximation for P (Q|D) as a product of probabilities:

P (Q|D) =
Y

w∈Q

P (w|D) (2.1)

Here, the term P (w|Q) is estimated for each term w in the query Q. A simple estimate

for this quantity is the number of times the word w appears in the document D,

divided by its length:

P (w|D) =
c(w; D)

|D|
(2.2)

Here, c(w; D) is the count of the number of times w appears in D, and |D| is the

length of document D. Intuitively, we can think of this as the probability of choosing

w when picking words randomly from D.

This estimate is unappealing for two reasons. First, if a word w appears in the

query Q but not in the document D, P (Q|D) = 0. According to the model, then,

a document that does not contain all of the query terms cannot ever be relevant to

the query. Furthermore, a document that contains some of the query terms is not

any more likely to be relevant than a document that contains no query terms. This

is too drastic an assumption. Second, all words are treated identically—in a query

like ‘maltese falcon’, a document that contains the word ‘maltese’ once and the word

11

‘falcon’ twice is ranked the same as a document of similar length that contains ‘falcon’

once and ‘maltese’ twice. It seems like the word ‘maltese’ is more informative in this

query, so the latter document should be preferred.

Both of these problems are solved by smoothing. We suppose that the document

D is just a sample from some larger text distribution. We don’t know anything about

this larger text distribution other than that it is natural language text. Our best

sample of natural language text is the entire text of our document collection, giving

us a collection probability of:

P (w|C) =
c(w; C)

|C|
(2.3)

We can then generate a smoothed estimate for P (w|D) using this additional model

of text. The simplest way to combine these models is to use a linear combination of

both, with parameter 0 ≤ λ ≤ 1:

P (w|D) = (1 − λ)
c(w; D)

|D|
+ λ

c(w; C)

|C|
(2.4)

Another possibility is to assume that the document model for D might be any-

thing, but that document models are generated by a model of natural language text.

Since the model we are using for text is the multinomial, the natural generating dis-

tribution is the Dirichlet distribution. If we take the maximum likelihood estimate

of P (w|D) given that D is generated by a Dirichlet distribution with a parameter

vector set to the collection distribution, we get:

P (w|D) =
c(w; D) + µc(w; C)/|C|

|D| + µ
(2.5)

An intuitive way to look at this equation is that D is modeled by the |D| words we

see in the document, plus µ additional words drawn at random from the collection.

In practice, these probabilities can be quite small, so we take the log of each term

in order to avoid loss of precision:

12

log P (Q|D) =
X

w∈Q

log P (w|D) (2.6)

Other models exist other than language models, but all models in common use

today can be decomposed into similar parts. Each document is given a score based

on its probability of relevance. The document score is a sum of term scores, one for

each term in the query. The term score incorporates the count of the term in the

document, some statistics about that term from the collection, and the length of the

document.

From the point of view of a retrieval system, the score for a document is a sum of

term scores:

f(Q,C)(D) =
X

w∈D

f(Q,C,w)(c(w; D), |D|) (2.7)

As can be seen, the only document-dependent data necessary to compute the score

is the count of w in D (c(w; D)), and the length of D. The first quantity is readily

available in the inverted index described previously. Typically the document lengths

can be stored in an array.

In many cases, this equation can be separated into parts dependent on term counts

and a term dependent on document length:

f(Q,C)(D) = d(Q,C)(|D|)
X

w∈D

f(Q,C,w)(c(w; D)) (2.8)

It should be noted that so far, we have made the assumption that the position

of each term in the document is not important. Later in this dissertation we will

consider scoring documents based in part on the distance between query terms in the

document.

13

2.2.1 Ranking with Impacts

It is important to realize that while these expressions are complex, the input data

is noisy and imprecise.

For instance, suppose our query is “dog”. Suppose we use a collection that contains

the word “dog” exactly twice: once in document A, which is 100 words long, and

once in a document B, which is 101 words long. Every popular retrieval model will

consider document A more likely to be relevant than document B, since both contain

the same number of occurrences of “dog,” but B is longer than A. In fact, Fang et

al. [47] consider this property to be an axiom of useful retrieval models.

Just because retrieval models make a distinction between A and B doesn’t mean

that there is much evidence for this distinction. With just one word difference in

document length, just one word as a query, and no information about the remaining

contents of A and B, it would be foolish to claim that A is a much better document

than B. We do not have enough evidence to make that kind of statement.

A more honest way to represent our knowledge about relevance might be to assign

documents a single number representing our belief that “dog” is an important concept

in the document. Retrieval models like the RPI model [48] and the Multiple-Bernoulli

model [69] have taken this approach. Anh and Moffat use integers, called impacts,

to represent belief levels [7, 8, 9, 10]. In their work, they find that just eight integer

values are necessary to achieve retrieval effectiveness levels that are indistinguishable

from high precision floating point probabilities for document ranking.

From a human perspective, perhaps this is not a very surprising result. If a user

types just the word “dog” as a query, and we are using just the document length

and term frequency in documents in order to rank them, it is unreasonable to think

we can do much relevance distinction among the documents. But from a modeling

perspective, this raises important issues—can we really deploy systems that rank

documents using just eight impact levels? Can that really be enough to give us high

14

performance when ranking billions of documents? We claim that it isn’t enough, but

that Anh and Moffat have shown that term counts and document lengths do not

contain enough information to rank documents effectively. In the next few pages, we

will discuss ways that we can infuse the retrieval process with additional information

in order to increase our belief confidence.

Using these integer impact values is important for two other reasons. First, using

integer score values leads to a particularly elegant and efficient retrieval system ar-

chitecture which we will adopt for this dissertation work. Second, since impacts are

generated at index time, they can be created from any information we choose. This

allows us to infuse extra document information, over and above term counts, into

these document impacts in order to improve retrieval effectiveness.

While Anh and Moffat use the term impact to describe integer term weights,

the term document-centric impact refers to a particular kind of weight that they have

developed [10]. Because of this potential confusion, we use different terminology to be

clear about meaning. We use the word binning to descrbe the process of transforming

a real-valued weight into an integer value. We also present indexes that are sorted by

these binned values, which we call score-sorted.

2.3 Search Tasks

In the Introduction, we mentioned that information retrieval has undergone a shift

in the needs of its primary users. Two decades ago, search tasks were often highly

recall-focused, and this was encouraged by the Text REtrieval Conference (TREC)

tasks at the time. The TREC task corresponding to recall-focused retrieval is known

as ad hoc search. This task involves retrieving the top thousand documents for each

query, and evaluating quality using Mean Average Precision (MAP).

More recently, the web has brought about a different kind of search task. Broadly,

this is called navigational search, although it has a number of subcomponents, like

15

named page search and home page search. Navigational search involves finding a

particular document or web page instead of many results on a particular topic. In

named page search, the focus is a particular page that we assume the user has seen

before. In home page search, the user is looking for the primary web page for some

entity, like a company or a person.

We focus on both ad hoc and navigational search in this dissertation, although

there are many more kinds of text search, including blog search, expert finding, and

question and answer search. While these are not the focus of this dissertation, some

of the evidence combination techniques used in our work could be applicable to these

other areas.

2.4 Using Additional Features

So far, our discussion of ranking has dealt only with counting word occurrences,

which is a simple but effective ranking strategy. However, higher quality rankings are

possible by using additional document features in the ranking process.

Many different kinds of features are possible. Some deal with the whole document,

like the number of hypertext links that point to the document, or the number of

misspelled words in the document. Others deal with where particular words appear, as

we might expect that words that appear in a document’s title are more representative

of the true document content.

While the core of information retrieval research has focused on rather simple fea-

ture sets, more complicated formulations have been tried. For years, researchers have

tried to use noun phrases or word proximity to improve retrieval effectiveness [4, 23],

although it seems that larger collections were necessary to see consistent gains [68].

Weighting different parts of a document differently has also been tried. The advent

of both large web collections and new machine learning techniques has added interest

in massive feature combinations for ranking [24].

16

In the next few pages, we will discuss some methods for combining document

features. Since we will describe feature combination with the Indri query language,

our discussion starts by explaining how the Indri query language works. We then

move on to discussion of two specific feature combination methods: one for combining

evidence from document fields, and another for using word proximity information.

Both of these methods have been shown to be useful for navigational search, which

we will consider in Chapter 7.

2.4.1 Indri query language

The Indri query language, while relatively new, is based on over a decade of

experience with the successful Inquery retrieval system [30]. The operators were

carefully designed to handle the widest possible range of textual features that might

be useful in the retrieval process. For those features that cannot be computed within

the system, the #prior operator allows for external sources of feature information to

be used during ranking (e.g. PageRank, inlink count).

Both Indri and Inquery are based on the inference network model, originally de-

veloped by Turtle and Croft [99]. This model is based on the intuition that there

may be many features of a document that indicate it is relevant—documents about

‘dogs’ may contain words like ‘beagle’ or ‘puppy,’ or phrases like ‘basset hound’. A

word like ‘ringworm’ may support the hypothesis that a document is relevant, but

is probably not enough to indicate relevance by itself. The inference network model

gives a strong theoretical basis for combining these different sources of evidence about

relevance.

Indri expands on the operator set of Inquery by including an array of new oper-

ations based on document fields. Research has shown that certain sections of docu-

ments (such as the title field of a web page) are known to be more important than

others in determine the relevance of the document.

17

Construct Name Description
#odN (q1, ..., qn) Ordered

window
A match occurs if the qi’s
appear in order with no
more than N words between
adjacent terms

#uwN (q1, ..., qn) Unordered
window

A match occurs the qi’s ap-
pear in any order within a
window of N words

#any (field) Any A match occurs if any field
called field is found

#syn (q1, ..., qn) Synonym A match occurs if any of the
qi’s appear.

#wsyn (w1q1, ..., wnqn) Weighted
synonym

Similar to #syn, but occur-
rences of certain words can
be weighted more highly
than others.

term.field Field
restriction

A match occurs if term is
found in a field named field

#combine (q1, ..., qn) Combine Combines inference from
the qi’s; similar to #and

from [67]
#weight (w1q1, ..., wnqn) Weight Combines inference from

the qi’s, using the wi’s as
weights; similar to #wand

from [67].
#greater (field n) Greater Evaluates to true if the

document contains a field
field with a numeric value
greater than n

#less (field n) Less Evaluates to true if the doc-
ument contains a field field
with a numeric value less
than n

#equal (field n) Equal Evaluates to true if the doc-
ument contains a field field
with a numeric value equal
to n

#prior (name) Document
prior

Assigns a user-specified
prior probability of rele-
vance to each document

Figure 2.1. Complex query operators from Indri

18

2.4.2 Query examples

The following query is a translation of “david fisher lemur” into the Indri query

language, using the proximity and field weighting methods we will discuss later:

#weight(0.8 #combine(#wsum(1.0 david.(inlink)

1.0 david.(title)

3.0 david.(mainbody)

1.0 david.(heading))

#wsum(1.0 fisher.(inlink)

1.0 fisher.(title)

3.0 fisher.(mainbody)

1.0 fisher.(heading))

#wsum(1.0 lemur.(inlink)

1.0 lemur.(title)

3.0 lemur.(mainbody)

1.0 lemur.(heading))

0.1 #combine(#wsum(1.0 #1(david fisher).(inlink)

1.0 #1(david fisher).(title)

3.0 #1(david fisher).(mainbody)

1.0 #1(david fisher).(heading))

#wsum(1.0 #1(david fisher lemur).(inlink)

1.0 #1(david fisher lemur).(title)

3.0 #1(david fisher lemur).(mainbody)

1.0 #1(david fisher lemur).(heading))

#wsum(1.0 #1(fisher lemur).(inlink)

1.0 #1(fisher lemur).(title)

3.0 #1(fisher lemur).(mainbody)

1.0 #1(fisher lemur).(heading))

0.1 #combine(#wsum(1.0 #uw8(david fisher).(inlink)

1.0 #uw8(david fisher).(title)

3.0 #uw8(david fisher).(mainbody)

1.0 #uw8(david fisher).(heading))

#wsum(1.0 #uw12(david fisher lemur).(inlink)

1.0 #uw12(david fisher lemur).(title)

3.0 #uw12(david fisher lemur).(mainbody)

1.0 #uw12(david fisher lemur).(heading))

#wsum(1.0 #uw8(fisher lemur).(inlink)

1.0 #uw8(fisher lemur).(title)

3.0 #uw8(fisher lemur).(mainbody)

1.0 #uw8(fisher lemur).(heading))

The query terms appear by themselves at the top of the query, but occurrences of

each term are weighted differently depending on where the term occurs in the doc-

ument. Notice that the inlink text (that is, text used to describe the document in

19

links to this page) is treated separately, as well as the title of the document, heading

text (from tags like h1 or h4) and the main body of the document. Proximity expres-

sions occur later in the query, first in exact phrases, such as #1(david fisher),

which matches only the words David and Fisher occurring in order. This restriction

is relaxed at the bottom of the query with expressions like #uw8(david fisher),

which matches the words David and Fisher occurring within 8 words of each other,

in any order.

In a different example, suppose that an extraction system is trying to verify that

George W. Bush is the 43rd President of the United States. This Indri query searches

for sentences that contain a number, the phrase “george w bush”, and the word

“president” within 10 words of each other:

#combine[sentence](#uw10(#3(george w bush)

#any:number

president))

Finally, suppose that the user is looking for documents in a desktop search appli-

cation. The user has issued the query “income taxes”. Since many documents might

match this query, the desktop search implicitly prefers documents that were modified

recently, or that have been accessed frequently:

#combine(income taxes

#1(income taxes)

#prior(modificationtime)

#prior(accessfrequency))

2.4.3 Probabilistic Interpretation

In Indri, each query operator has a probabilistic interpretation, and corresponds

directly to a mathematical function. Therefore, an Indri query represents not the

20

user’s information need, but instead defines a function which acts on documents and

produces document scores.

A single word, appearing by itself, is scored using the Dirichlet smoothed language

model described earlier:

log P (w|D) = log
c(w; D) + µc(w; C)/|C|

|D| + µ
(2.9)

Phrase occurrences or field occurrences use this same formula. Just as with a

single term, we can calculate c(p; D) and c(p; C) for a phrase p.

Probabilities can be combined together using a combination operator. The sim-

plest combination operator is called #combine, which has this interpretation:

#combine(Q) =
1

|Q|

X

w∈Q

log P (w|D) (2.10)

More complicated combinations are possible. The #weight operator extends the

#combine operator by allowing some operands to be weighted more than others:

#weight(λ1w1...λnwn) =
1

Pn

1 λi

n
X

1

λi log P (wi|D) (2.11)

The weighted sum operator (#wsum) allows for a linear probability mixture instead:

#wsum(λ1w1...λnwn) = log
n

X

1

λi
Pn

1 λi

log P (wi|D) (2.12)

2.4.4 Bag of words

Even though plenty of research has shown that additional document features are

necessary for effective retrieval, it is still popular to ignore all information except single

term occurrences. As we have discussed, this is called the bag of words approach, and

corresponds to the unigram language model.

In Indri, this approach can be achieved by simply typing the query terms, like

this: white house.

21

2.4.5 Adding Term Proximity

To illustrate term proximity features, we consider Metzler and Croft’s Markov

Random Field experiments. Metzler and Croft [68] achieved significant effectiveness

gains by adding term proximity features to their query formulation. They noticed that

queries were often composed of multiword phrases, or words that would need to appear

close together in order to indicate relevance. In our example query, white house, it

is clear that finding the exact phrase “white house” is a much stronger indicator of

relevance than just finding “white” and “house” scattered within a document.

While the Markov Random Field model that the authors propose is capable of

integrating any arbitrary feature set, the authors consider three types of features:

• Single term features – these are the standard unigram language model features

we have used so far

• Exact phrase features – these features involve a set of words appearing in se-

quence in candidate documents

• Unordered window features – these features require words to be close together,

but not necessarily in an exact sequence order.

For the query white house, the authors recommend the following Indri query:

#weight(0.8 #combine(white house)

0.1 #1(white house)

0.1 #uw8(white house))

This query not only includes the single words as indicators of relevance (in the

first #combine), but also the exact phrase (in the #1 operator), and occurrences of

both words within 8 words of each other (#uw8).

22

2.4.6 Document Mixture Models

Traditional retrieval models consider each word in a document as an equal, inde-

pendent source of topical evidence. However, we know from experience that certain

sections of a document are better summaries of a document’s subject matter than

others. For instance, the title of a document can be seen as a very short summary of

the document’s contents.

Suppose we have two possible results for our query “white house.” Based on all of

the models we have seen so far, document A and document B seem equally likely to

be relevant. However, suppose that “white house” appears in the title of document

A, but just in the body text of document B. Since “white house” appears in the title

of document A, we may assume that the content of document A has something to do

with the White House. However, document B may merely mention “white house” in

passing, so it may not actually be central to the topic of the document. This evidence

would lead us to prefer document A over document B.

While not all documents have explicit titles, web pages almost always do. Web

pages also have other important tags that point us to important document informa-

tion. These include heading tags like h1 or h2, alternate font style tags like strong

or em, image alternate text, incoming link text, and META keywords. All of these

tags may indicate topical content that is less likely to contain words that are used in

passing. A highly effective model should take into account these additional sources

of evidence.

Many approaches have been published on this problem. Two popular works on

this subject include Robertson’s BM25F [84] and Ogilvie’s work on mixing document

representations [77]. We focus on the Ogilvie approach since it incorporates the same

language modeling probabilities used in the rest of this work.

Ogilvie et al. consider a HTML document to be a set of different representations of

the same document. The title is one representation of the document, while the inlink

23

text is another, and the body text is another. To create a single representation of the

document, sub-document models are constructed for each of these representations,

then the representations are mixed into a single larger document model. Documents

are then ranked by using this mixed document model, as shown below:

P (w|D) = λtitleP (w|Dtitle) +

λbodyP (w|Dbody) +

λinlinkP (w|Dinlink) +

λmetaP (w|Dmeta) +

λheadingP (w|Dheading)

The mixing parameters in this model (the λ terms) allow the more effective docu-

ment representations to be emphasized during ranking. These parameters, also called

weights, can be trained using existing queries, documents, and relevance judgments.

This mixing approach has been shown to outperform simple, single document

representations. Chapter 7 uses this model, but without META text.

2.4.7 Additional Document Features

The features we have discussed so far are all query-dependent in some way, in

that at least one of the query terms is a part of computing the feature. While these

query-dependent features are important, many structured document retrieval systems

can be improved by the use of query-independent evidence. This is especially true in

web search.

The most studied query-independent ranking evidence comes from link structure.

The basic assumption behind these methods is that a hypertext link represents an

implicit vote for the relevance of the page that is linked to. Links are generally

added to pages by people, and presumably people would not waste time linking to

24

non-informative pages. Therefore, a simple way to incorporate this information is to

prefer pages with more incoming links. Many, many more complicated formulations

exist. The most popular two are Page et al.’s PageRank, and Kleinberg’s HITS

algorithm [78, 54].

Another important feature is URL depth. Each web page has a unique address,

called a uniform resource locator, or URL. Web sites are generally structured so that

the main entry point has a very short URL, like http://www.umass.edu. From that

page, more specific information can be found, like http://www.cs.umass.edu. In

general, shorter URLs point to general pages, while longer URLs point to specific

pages. Therefore, for all pages that are a good match for a query, if we prefer shorter

URLs we will find more general pages. For instance, a search for “ibm” finds 719

million matches, with over 7 million of those from the ibm.com domain. Using URL

depth as a feature helps us prefer the main http://www.ibm.com page as the best

answer over the millions of other possible matches.

More recent work from Joachims [53] and Agichtein [3] focus on implicit user-

supplied evidence. The simplest of these forms of evidence comes from user clicks—

presumably if a user clicks on a query search result, the user thinks the result may be

relevant. As Joachims found, this evidence source is quite noisy, for many reasons—

first, the user is preconditioned to believe the search engine, and is therefore likely to

click on the first result whether it looks relevant or not. Second, the user may click

on a result that looks relevant based on its title or summary, but later find that the

result is not relevant at all. Still, Agichtein finds that proper use of this data can

improve query results.

In addition, Agichtein [3] studies more subtle user features, such as dwell time

(the amount of time the user spends looking at a document), or domain deviation

(the deviation from the mean amount of time spent looking at documents from any

25

particular domain). While some of Agichtein’s features are query-dependent, many

are query independent.

Finally, authors have developed document quality models, such as the one de-

veloped by Zhou et al. [107]. The authors note that since natural language follows

certain grammatical rules and structures, a document with an unusual term distribu-

tion is likely ungrammatical, and therefore a poor retrieval candidate. By using this

feature along with another, simpler feature (information-to-noise ratio), they find it

possible to achieve small improvements in query effectiveness.

In combination, these query-independent features can be seen as indicators of

the quality or usefulness of a particular document. These features can be used in

combination with query-dependent features for high-quality ranking.

2.4.8 The UMass 2005 Navigational Formulation

We have already discussed Metzler’s Markov Random Field term dependence

model and Ogilvie’s method of combining document representations. These two mod-

els can be combined with the query-independent features from the previous section

into one web query model which is highly effective for navigational web search. We

call this the UMass 2005 formulation, since it was used by Metzler, Strohman and

Croft for their UMass TREC 2005 submission [72].

We repeat a query example used earlier, with slight alterations, to show the UMass

2005 formulation to the query “david fisher lemur”:

#combine(

0.1 #weight(0.4 #prior(pagerank) 0.6 #prior(inlinks))

1.0 #weight(0.8 #combine(#wsum(1.0 david.(inlink)

1.0 david.(title)

3.0 david.(mainbody)

1.0 david.(heading))

#wsum(1.0 fisher.(inlink)

1.0 fisher.(title)

3.0 fisher.(mainbody)

1.0 fisher.(heading))

#wsum(1.0 lemur.(inlink)

26

1.0 lemur.(title)

3.0 lemur.(mainbody)

1.0 lemur.(heading))

0.1 #combine(#wsum(1.0 #1(david fisher).(inlink)

1.0 #1(david fisher).(title)

3.0 #1(david fisher).(mainbody)

1.0 #1(david fisher).(heading))

#wsum(1.0 #1(david fisher lemur).(inlink)

1.0 #1(david fisher lemur).(title)

3.0 #1(david fisher lemur).(mainbody)

1.0 #1(david fisher lemur).(heading))

#wsum(1.0 #1(fisher lemur).(inlink)

1.0 #1(fisher lemur).(title)

3.0 #1(fisher lemur).(mainbody)

1.0 #1(fisher lemur).(heading))

))

This query includes the Ogilvie et al. approach of mixing language models (ti-

tle, mainbody, heading and inlink) as well as Metzler’s use of phrase and proximity

operators from the Markov Random Field dependence model. The #prior operators

incorporate some of the query-independent features discussed in the previous section.

The UMass 2005 Navigational Formulation is highly effective, and produced the

best navigational results at TREC in 2006.

2.4.9 Query Expansion

So far, we have restricted our attention to either query-independent features, or

occurrences of query terms in documents. By contrast, query expansion techniques

attempt to improve the query processing results by using words related to those in

the query. Documents that contain these related terms should be considered more

likely to be relevant than those that do not.

2.4.9.1 Stemming

The simplest form of query expansion is called stemming. This method comes from

the observation that many related words have the same prefix stem; for example,

documents about running may contain words like ‘run’, ‘ran’, ‘running’, or ‘runs’.

27

These words are all related, and all describe the action of running, but are used

in different contexts. If a query contains the word ‘run’, it makes sense to also

look for documents that contain ‘ran’, ‘running’ and ‘runs.’ Stemming is performed

automatically using an algorithm called a stemmer. Such an algorithm assigns natural

language words to stem classes, which are groups of words that are presumed to

represent the same concept. A stemmer can make two kinds of errors—it can fail to

group two related words, or it can group two words together that should not have been

grouped. An aggressive stemmer makes a small number of stem classes, and therefore

risks making the latter type of error. A conservative stemmer (or no stemmer at all)

makes a large number of stem classes, and risks making the former type of error.

The simplest kind of English stemming is provided by a suffix-s stemmer. This

stemmer only conflates plural words with their singular versions—for instance, ‘plates’

and ‘plate’ would be considered the same word. This type of stemming is very con-

servative, and therefore works well in practice. The Krovetz and Porter stemmers

are less conservative [82, 56]. These stemmers also consider more complicated word

endings, like -ing or -ed. The Porter stemmer is an algorithmic stemmer, so it deter-

mines classes of similar words just on the basis of suffix patterns. This leads to a very

simple algorithm, but one that can be fooled by special cases; for instance, the Porter

stemmer conflates ‘marine’ and ‘marinate,’ although these words have very different

meanings. The Krovetz attempts to solve this problem by using a supplemental dic-

tionary that can catch these special cases. This makes the Krovetz stemmer more

conservative and less likely to make errors.

The stemmers shown so far must be hand-crafted by an expert with extensive

linguistic knowledge, and this process can be time consuming. Another option is sta-

tistical stemming, which uses word co-occurrence data to determine if two terms are

related. For instance, even though ‘marine’ and ‘marinate’ have common prefixes,

they are unlikely to appear in the same document. However, ‘marinate’ and ‘mari-

28

nated’ are likely to occur in the same document. A statistical stemmer can use this

kind of data to determine stem classes without expert intervention [5].

In our experiments, we use the Porter2 stemmer, which is based on the original

Porter stemmer [82]. It is an algorithmic stemmer without an additional dictionary.

2.4.9.2 Synonyms

Even the most aggressive stemmers only conflate words with similar prefixes.

However, many similar words have no obvious letter pattern in common. A sim-

ple example is the relation between words in different languages—‘white’ in English

expresses the same concept as ‘blanco’ in Spanish. Other pairs are open to interpreta-

tion, or may be query independent. For instance, “president” is the same concept as

“commander-in-chief” with reference to the President of the United States, but not

when considering the president of a company. Also, “president” and “prime minister”

express the same “head of state” concept, but are certainly not interchangeable when

talking about a particular person.

This makes expansion by synonyms a very difficult process. A very aggressive

system that uses a long synonym list is likely to improve some queries impressively,

but may hurt the performance of other queries. A system that uses a small list will

rarely hurt query performance, but will rarely help either.

There are two possibilities that can help here. One is to include synonyms in

a query, but to prefer matches from the actual user query term. The Indri #wsyn

operator has this property. By taking this approach, an excellent match to the original

query will almost certainly be ranked first, but if no good match exists, synonym

matches can appear later. A second option is to use the context provided by the

whole query to determine which words to use. For instance, we know that expanding

with “prime minister” is a good idea for the query “president of canada”, but not a

good idea for “prime minister tony blair”. Doing this perfectly requires a system that

29

has excellent conceptual language understanding, but in the next section, we consider

an approximation that works well in practice.

2.4.9.3 Pseudo-relevance feedback

Instead of trying to make an information retrieval system that can think like a

human, perhaps a better idea would be to encourage users to interact with the system

to improve query results. Interactive retrieval systems use user feedback to find high

quality documents. Generally, the user chooses a few documents from the collection

that seem relevant to the query, and the system attempts to find documents that are

both similar to the query and the documents that were marked relevant. Typically,

words are extracted from the known relevant documents and added to the query

in order to bias the query results to look like the known relevant documents. This

process is called relevance feedback.

A simple extension of this process is to remove the user entirely. We can assume

that the results of the original query are fairly good, and so the top n documents are

likely to be relevant. We can then use these documents as a source of excellent words

to feed into the query.

As an example, suppose the user types the query “band-aid.” We assume that the

user is actually interested in adhesive bandages in general, not just those made by

Johnson and Johnson under the trade name Band-Aid. If we run the query “band-aid”

with a good information retrieval system, we will find the Band-Aid web page, which

contains the text “adhesive bandages.” If we run the query again, this time using the

words “adhesive bandages” too, we may find products by other manufacturers too.

Pseudo-relevance feedback is generally not be as precise as synonym expansion.

Pseudo-relevance feedback may add popular phrases like “privacy policy” or “con-

tact us” to the query, which aren’t likely to help query effectiveness, while synonym

methods aren’t likely to make this kind of error. However, pseudo-relevance feedback

30

has the major advantage that it is context-sensitive. The added words come from

actual documents that match the original query well. This additional context helps

pseudo-relevance feedback systems avoid the problems we saw with synonyms and

lack of context.

In this thesis, we will focus on query expansion techniques that do not involve

pseudo-relevance feedback. Pseudo-relevance feedback is a powerful technique, but

one that is fairly expensive. Because the added words depend on the whole query,

feedback terms are difficult to cache well. Additionally, traditional pseudo-relevance

feedback techniques require two retrievals, which can more than double query evalu-

ation time. This is changing, since efficient pseudo-relevance feedback is the subject

of some recent research [57, 97].

2.5 Evaluating Effectiveness and Efficiency

The information retrieval community has developed a set of standard means for

evaluating the effectiveness and efficiency of information retrieval systems. We outline

here some of the effectiveness measures and efficiency tests we will use, including

descriptions of the test collections we will use for evaluation. More information on

evaluation procedures can be found in an information retrieval textbook, such as [64].

2.5.1 Test Collections

Our primary test collection for efficiency and effectiveness will be the TREC GOV2

collection. The GOV2 collection is a snapshot of the .gov Internet domain crawled

in early 2004. There are 25 million pages in this collection, and its uncompressed

size is 426GB of text. This collection is four times larger than any other public test

collection, which makes it appropriate for us to use in testing system scalability.

This collection of documents has been used for three years in TREC, and in that

time a large query set has been developed for evaluating effectiveness and efficiency

31

with this collection. For efficiency testing, approximately 100,000 government-related

queries are available. There are also 453 judged navigational topics and 150 judged

ad hoc topics. This collection is used in Chapters 5, 6 and 7.

For additional tests, we make use of the TREC GOV collection. The GOV col-

lection contains 1.2 million pages from the .gov domain, and consists of about 20GB

of text. This collection has 450 judged navigational topics for additional testing, and

its size is convenient for smaller experiments. This collection is used in Chapters 3

and 7.

In our effectiveness experiments in Chapter 4, we use the TREC12, TREC45 and

WT10G collections. The TREC12 and TREC45 collections are small 2GB collections

of newswire text, while WT10G is 10GB of web text, not restricted to any particu-

lar domain. The newswire collections in particular have extensive ad hoc relevance

judgments and are the standard for ad hoc effectiveness testing.

2.5.2 Effectiveness

We will consider five search effectiveness measures in our evaluation. We briefly

describe them here, although more detail on the first four can be found in an infor-

mation retrieval textbook.

Our focus in evaluation will be on the top of the ranked list, which is best measured

by the precision, success and NDCG measures. However, we will also measure mean

average precision because of its ubiquity in the information retrieval literature.

2.5.2.1 Precision

The precision metric measures the amount of relevant results found in a ranked

list, as a percentage of the total number of results found. For instance, in a list of

ten results that contains six relevant documents, the precision is 0.6.

The length of the ranked list is an important factor in precision calculations, since

precision values after ten results are almost always higher than at twenty results.

32

This is a natural consequence of the way information retrieval systems work: good

systems rank relevant documents at the top of the ranked list. Therefore, precision

is always reported along with the length of the list considered. In common language,

our example result is a “precision at 10” value, which is abbreviated P@10.

Note that if a ranked list of ten results contains a single relevant document, its

P@10 is 0.1. This is true whether the relevant document is at the first rank or the

tenth rank, even though humans prefer that the relevant documents appear at the

very top of the list. Therefore, while precision is a simple measure, other measures

may be more useful.

2.5.2.2 Success

Success is a synonym for P@1: it is equal to 1 if the first document returned is

relevant, or zero otherwise. The measure is not very interesting for a single query,

but is an intuitive measure of performance when averaged over a large set of queries.

It is primarily used when there is a single relevant document. For instance, the

query “google” is one for which there is one obvious correct answer (the Google

homepage1). The TREC conference also defines a Success@k measure, which is 1 if

a relevant document has been found by rank k and 0 otherwise.

2.5.2.3 Recall

Topical queries may have many important correct answers. For example, a par-

alegal may need to find all federal legal decisions that dealt with antitrust law. In

this query, precision is important, but it is more important to measure how well the

system performed at finding all correct answers. Recall measures this property—the

recall is the number of relevant documents found out of the total number of relevant

documents that exist.

1http://www.google.com

33

Like precision, we always state the number of documents retrieved, such as “recall

at 10.” Generally in recall experiments, we consider ranked lists that are much longer

than precision experiments, so “recall at 100” or “recall at 1000” is not uncommon.

While recall is a useful measure for research tasks, it also measures a system’s

document finding capability. For instance, suppose that a system has found 60% of

the relevant documents for a query by rank 1000. This may indicate that the other

40% of documents simply cannot be found by the current system, since simple tweaks

to the ranking algorithm are not likely to find these other documents.

2.5.2.4 Average Precision

Average precision is an attempt to combine recall and precision into one measure.

Unlike recall or precision, the order of results in the list does matter. It is typically

measured at 1000 documents, and this depth is assumed unless reported otherwise.

The measure is abbreviated as MAP (mean average precision, an average of average

precision values from many different queries).

To compute average precision, we take the average of the precision value at the

point each relevant document was retrieved. For example, suppose we have the fol-

lowing ranked list:

Here, a shaded box represents a relevant document, and a white box represents a

non-relevant document. The list’s highest rank is on the left, and its lowest rank is

on the right.

We consider the precision at each shaded box:

34

Rank Precision

1 1 / 1 = 1.00

5 2 / 5 = 0.20

7 3 / 7 = 0.43

8 4 / 8 = 0.5

10 5 / 10 = 0.5

The average precision is the arithmetic mean of these precision values:

(1.0 + 0.2 + 0.43 + 0.5 + 0.5)/5 = 0.53

Note that this assumes that all relevant documents were retrieved. If there were

other relevant documents that were not retrieved, we assume that they were retrieved

at an infinite rank where precision is equal to zero. So, if there were 6 relevant

documents in total, we have:

(1.0 + 0.2 + 0.43 + 0.5 + 0.5 + 0.0)/6 = 0.44

This measure is convenient for many reasons. First, it combines recall and preci-

sion into a single measure. Second, the order of the results matters—note that if all

the relevant documents in the example had occurred at the end of the list, the P@10

value still would have been 0.5, but the average precision would drop to 0.354.

However, mean average precision is not ideal for measuring web retrieval. Con-

sider the following three rankings of web documents, and their corresponding average

precision values:

5 10 15 20

1.00

0.51

0.33

35

Power Rank Discount (1/ log(1 + i))

e0 1 1
e1 2.7 0.5
e2 7.4 0.25
e3 20.1 0.125

Figure 2.2. Discounting factors used in NDCG. Note that the influence of a docu-
ment at rank 20 is 1/8th of that of the first document.

The first result is excellent, since it retrieves all the relevant results first. The

second result is not great, but it does manage to put two good results at the top of

the list. The third result finds all the relevant documents last.

Notice that in a traditional web search engine, only ten results display on the first

page, and often only seven of those will show in a user’s browser without scrolling.

To the user, the first result is excellent and the second result is still good, since both

have good results right at the top of the list. However, the third result is awful. Even

though there are excellent results at ranks 11 to 20, the user will never see them,

since they are on the second page. After seeing a full first page of horrible results,

the user is not likely to check the next page to see if the ranking improves. It is more

likely that the user will modify her query, or perhaps give up.

Even though the first result is great, the second result is pretty good, and the

third result is terrible, we find that average precision rates the second result closer

to the third result than the first result. This does not match user behavior in web

search. To more closely match this behavior, we consider a final metric.

2.5.2.5 Normalized Discounted Cumulative Gain

The Normalized Discounted Cumulative Gain (NDCG) measure has two different

definitions. The original measure, defined in Järvelin and Kekäläinen [52], is:

36

N
X

i

r(i)/ log(i)

An alternate version, used in this thesis and in many recent papers (like [101]) is:

N
X

i

(2r(i) − 1)/ log(1 + i)

This is a sum over result ranks, where i represents the rank, and r(i) represents the

relevance value at that rank. For the metrics we have considered so far, we have only

considered two classes of relevance: relevant and non-relevant. However, NDCG can

use more than two levels of relevance, with four levels of relevance being common. In

the two-class case, non-relevant documents have a relevance value of 0, while relevant

documents have a relevance value of 1. In the multiclass case, relevance values start

at 0 for non-relevant documents, but continue up through various different shades of

relevance.

The value of N is chosen for each query such that the highest possible value of

NDCG is 1. The lowest possible value is always 0.

Notice that the influence of documents that are low in the ranked list is curtailed

by the log factor in the denominator. See Table 2.2 for a sampling of the discount

factors at different ranks of the ranked list.

Returning to our previous example, we compute the NDCG value of three different

ranked lists:

5 10 15 20

1.00

0.79

0.55

The first ranking is still perfect. The second ranking is recognized for having two

relevant documents at the top of the ranking, and is now closer to the perfect ranking

(0.21 difference) than the poor third ranking (0.24 difference).

37

Metric name Description
Elapsed indexing time Measures the amount of time necessary to

build a document index on a particular
system.

Indexing processor time Measures the CPU seconds used in build-
ing a document index. This is similar
to elapsed time, but does not count time
waiting for I/O or speed gains from par-
allelism.

Query throughput Number of queries processed per second.
Query latency The amount of time a user must wait af-

ter issuing a query before receiving a re-
sponse, measured in milliseconds. This
can be measured using the mean, but is
often more instructive when used with the
median or a percentile bound.

Indexing temporary space Amount of temporary disk space used
while creating an index.

Index size Amount of storage necessary to store the
index files.

Table 2.1. Definitions of some important efficiency metrics

2.5.3 Efficiency

Compared to effectiveness, the efficiency of a search system seems like it should

be easier to quantify. Most of what we care about can be measured automatically

with a timer instead of with costly relevance judgments. However, like effectiveness,

it is important to determine exactly what aspects of efficiency we want to measure.

The most commonly quoted efficiency metric is query throughput, measured in

queries processed per second. Throughput numbers are only comparable for the same

collection and queries processed on the same hardware, although rough comparisons

can be made between runs on similar hardware. As a single-number metric of effi-

ciency, throughput is good because it is intuitive, and mirrors the common problems

we want to solve with efficiency numbers. A real system user will want to use through-

put numbers for capacity planning, to help determine if more hardware is necessary

to handle a particular query load. Since it is simple to measure the number of queries

38

per second currently being issued to a service, it is easy to determine if a system’s

query throughput is adequate to handle the needs of an existing service.

The trouble with using throughput alone is that it does not capture latency. La-

tency measures the elapsed time the system takes between when the user issues a

query and when the system delivers its response. Previous work suggests that users

consider any operation that takes less than about 150 milliseconds to be instanta-

neous [40]. Above that level, users react very negatively to the delay they perceive.

Mayer [65] reports that Google experimented with as many as 30 results on the first

page of results instead of the standard 10, but found that users hated waiting for

the extra results. Mayer remarks that in terms of user satisfaction, this is “actually

the worst experiment we’ve done to date.” The lesson here is that latency is a very

important predictor of user satisfaction.

This brings us back to throughput, because latency and throughput are not or-

thogonal: generally we can improve throughput by increasing latency, and reducing

latency leads to poorer throughput. To see why this is so, think of the difference

between having a personal chef and ordering food at a restaurant. The personal chef

prepares your food with the lowest possible latency, since she has no other demands

on her time and focuses completely on preparing your food. Unfortunately, the per-

sonal chef is low throughput, since her focus only on you leads to idle time when

she is not completely occupied. The restaurant is a high throughput operation with

lots of chefs working on many different orders simultaneously. Having many orders

and many chefs leads to certain economies of scale, for instance when a single chef

prepares many identical orders at the same time. Note that the chef is able to process

these orders simultaneously precisely because some latency has been added to some

orders: instead of starting to cook immediately upon receiving an order, the chef may

decide to wait a few minutes to see if anyone else orders the same thing. The result is

that the chefs are able to cook food with high throughput but at some cost in latency.

39

Query processing works the same way. It is possible to build a system that han-

dles just one query at a time, devoting all resources to the current query, just like

the personal chef devotes all her time to a single customer. This kind of system is

low throughput, because only one query is processed at a time, which leads to idle

resources. The radical opposite approach is to process queries in large batches. The

system can then reorder the incoming queries so that queries that use common subex-

pressions are evaluated at the same time, saving valuable execution time. However,

interactive users will hate waiting for their query batch to complete.

Like recall and precision in effectiveness, low latency and high throughput are both

desirable properties of a retrieval system, but they are in conflict with each other, since

the highest throughput levels come at the expense of high latency. One approach is to

hold one metric fixed while optimizing the other. For instance, DeCandia et al. [43]

note that Amazon has a strong focus on latency. Their goal is to achieve maximum

throughput while bounding on maximum latency (or, more accurately, the latency

required by all but the worst 0.1% of operations), as they find this correlates better

with user experience than a bound on median latency.

Query throughput and latency are the most visible system efficiency metrics, but

we should also consider the costs of indexing. For instance, given enough time and

space, it is possible to cache every possible query of a particular length. A system

that did this would have excellent query throughput and query latency, but with

enormous storage and indexing costs. Therefore, we also need to measure the size of

the index structures and the time necessary to create them. Because indexing is often

a distributed process, we need to know both the total amount of processor time used

during indexing and the elapsed time. Since the process of inversion often requires

temporary storage, it is interesting to measure the amount of temporary storage used.

40

2.5.3.1 Experiments

There are two classes of experiments for measuring efficiency. We will call one

class direct experimentation, which means that the experimenter attempts to create

a real-world system, then directly measures its attributes using a clock or filesystem

statistics. The other alternative is simulation, where the operation of the system is

simulated in software.

The primary advantage of simulation is repeatability. It is unlikely that two ex-

perimenters will have access to the same hardware, but it is likely that they can use

the same simulation tools. If all experimentation happens in the same simulation

framework, results are directly comparable across experiments. In addition, simula-

tion can model how a system would perform on very expensive hardware, even if the

experimenter does not have much money.

There are also problems with simulations. First, a simulation experiment runs on

a model of reality, and as such is only as good as its model, and modern computer

systems are notoriously difficult to model. Considering processors alone, a faithful

model needs to consider all the ways that execution can stall, from pipeline conflicts

to cache misses (at two or three levels, while also considering associativity). Accurate

models are difficult to create, and extreme accuracy comes with an execution speed

penalty. Therefore, experimenters are forced to consider tradeoffs between accuracy

and the cost of building and running simulators.

By contrast, direct experimentation is straightforward. The experimenter can run

software directly on a particular kind of hardware and simply time the results. Unlike

simulation results, we can be assured that the timings generated by the experiment

are realistic for at least one hardware configuration and environment. Unfortunately,

it is not necessarily easy to describe the environment that was used. Webber and

Moffat [102] detail many ways that repeatability can be elusive in direct experiments,

41

including mysteriously slow disks and performance problems that come from unpre-

dictable disk block allocation.

One way to increase the generality of both simulation and direct experiments is

to publish operation counts (like the total number of disk accesses or CPU additions)

in addition to actual runtime. Seltzer et al. [88] use this kind of benchmarking for

hardware, and show how it allows for easier inference about a new software package

might perform on a piece of tested hardware. This technique can be just as reliable

in making inferences about how an algorithm might perform on a new hardware

configuration.

Disks tend to be the worst offenders when it comes to repeatability. Since disk

reads are transparently cached by the operating system, a disk read can be slow one

minute and fast the next. File fragmentation, general block placement, and bad block

reallocation make it difficult to make predictions about how file accesses will behave.

When running experiments on disk-based algorithms, it is best to use a long test, to

reduce the noise from disk caching and placement effects. The standard TPC database

benchmark [83] includes an unmeasured warmup period to allow the system to set

up caches and internal structures appropriately before steady-state throughput is

measured. In search engine evaluation, warmup periods are not typically mentioned,

but long query logs are used to reduce the effect of the experiment start state on

execution time. In this dissertation, we test with long query logs for this purpose,

but we also focus on memory-based execution which tends to have more repeatable

performance.

The goal of our efficiency tests is to establish the speed of the system under a

difficult sustained workload. To do this, we turn to the GOV2 dataset, including the

150,000 queries in the TREC 2005 and TREC 2006 efficiency query logs.

The TPC benchmarks, while designed for different application areas (databases

and web services), still provide a useful outline for performing throughput evalua-

42

procedure DocumentAtATimeRetrieval(Q)
L ← Array()
R ← PriorityQueue()
for all terms wi in Q do

li ← InvertedList(wi)
L.add(li)

end for

for all documents D in the collection do

for all inverted lists li in L do

sD ← sD + f(Q,C,wi)(c(wi; D)) ⊲ Update the document score
end for

sD ← sD · d(Q,C)(|D|) ⊲ Multiply by a document-dependent factor
R.add(sD, D)

end for

return the top n results from R
end procedure

Figure 2.3. A simple document-at-a-time retrieval algorithm.

tion [83]. The traditional evaluation strategy is to measure system throughput over

a one hour period under a specified workload. Measuring an hour of activity should

ensure that outliers are not found. However, in order to represent the typical perfor-

mance of systems, a warm-up period is allowed before measurement starts. Systems

typically get faster after the initial seconds of operation, as the operating system

caches appropriate files, code is loaded into memory, and the branch predictor and

caches of the processor adjust to the typical code execution paths of the system. While

measuring start-up performance may be important for certain end-user systems, we

focus on the scenario where the system is presumed to run as a server process for at

least hours at a time.

For repeatability, it is customary in the information retrieval literature to report

average throughput over a predefined set of queries instead of over an interval of time.

In this dissertation we will follow this convention.

43

procedure TermAtATimeRetrieval(Q)
A ← HashTable()
for all terms wi in Q do

li ← InvertedList(wi)
for all documents D in li do

swi,D ← A[D] + f(Q,C,wi)(c(wi; D))
end for

end for

R ← PriorityQueue()
for all accumulators A[D] in A do

sD ← A[D] · d(Q,C)(|D|) ⊲ Normalize the accumulator value
R.add(sD, D)

end for

return the top n results from R
end procedure

Figure 2.4. A simple term-at-a-time retrieval algorithm.

2.6 Basic query evaluation

There are two basic ways to evaluate a query given an inverted index: document-

at-a-time and term-at-a-time (see pseudocode implementations of each in Figures 2.3

and 2.4). Clearly to evaluate the retrieval function f(Q,C) over all documents, the

retrieval system must loop over a set of documents, and loop over the terms of the

query. In document-at-a-time evaluation, the outer loop iterates through documents,

while the inner loop iterates over terms. In term-at-a-time evaluation, these loops are

reversed—the inner loop iterates over documents, while the outer loop iterates over

terms.

The document-at-a-time has a few advantages over the term-at-a-time method.

First, the document-at-a-time method produces complete document scores early in its

execution. This allows the algorithm to quickly display partial results, if desired. As

we will see later, these complete document scores can be important tools in improving

query efficiency. Second, although the basic algorithm fetches all inverted lists first,

the document-at-a-time method can incrementally fetch inverted list data from disk.

44

When this is done, the document-at-a-time has a memory advantage, since it does

not have to maintain an accumulator table.

However, the term-at-a-time algorithm is often preferred for efficient systems im-

plementation. It does not need to jump between inverted lists during evaluation—this

may save branch prediction misses as well as expensive disk seeks. The inner loop

iterates over documents, which means this tight inner loop is executed for a long

time. This makes this inner loop code simpler and easier to optimize, both for the

programmer and the compiler/processor. Finally, some very efficient query processing

strategies have been developed for term-at-a-time evaluation that allow some inverted

list information to be skipped.

2.6.1 Score-ordered evaluation

The term-at-a-time and document-at-a-time evaluation both assume a document-

ordered index. However, Anh and Moffat claim that an score-sorted index lends itself

to an even faster evaluation strategy [7].

Suppose we have an index that contains impacts instead of term counts. In a

document-ordered index, we might have an inverted list that looks like this:

(1,1) (2,3) (3,2) (7,1) (8,1) (10,4)

In these pairs, the document is the first element of the pair and the impact level is

the second element. Notice that the pairs are ordered by document number. Another

possible ordering would be:

(10,4) (2,3), (3,2) (1,1) (7,1) (8,1)

This list contains the same pairs as the last list, but they are now ordered by

impact. Since many documents may share the same impact level, we order by doc-

ument number within each impact level. We can make this index smaller in general

by storing the impacts before the documents, like this:

45

[4,1] (10) [3,1] (2) [2,1] (3) [1,3] (1, 7, 8)

The pairs in brackets represent impact levels and a count of the number of docu-

ments to come. After each impact pair, a list of document numbers follows in paren-

theses. In this example, the list is not actually smaller than the previous impact-sorted

representation, but in practice this organization offers substantial space savings.

This organization also allows new scoring possibilities. Even though the tradi-

tional term-at-a-time evaluation strategy is still possible in this organization, notice

that these new inverted lists store the best documents at the beginning. In the case of

a query that contains just one term, the inverted list is already in order—no extensive

query processing is necessary to rank the documents. For queries with more than one

term, some processing is required, but reading the entire list may not be necessary.

Anh and Moffat’s recent work presents the current best refinement of score-ordered

query evaluation procedure [11]. Their query evaluation approach has four stages,

called OR, AND, REFINE and IGNORE.

In the OR stage, evaluation begins by processing all of the data in the inverted

lists, starting with the largest impact values of the inverted lists and moving toward

smaller values. Each time a new document is seen in one of the inverted lists, a new

accumulator is created. At some point during evaluation, it may be possible to prove

that accumulators exist for every document that could possibly enter the top n. At

this point, evaluation switches to AND mode.

Here we briefly explain how such a proof could be carried out. We suppose that

the impact values for a document for each of the query terms are simply added to

obtain a final document score. Suppose there are 2 terms in the query, and there

are already n accumulators that contain values larger than 2. We then know that it

would be impossible for a document that had an impact value of 1 for both query

terms to enter the top n of the ranked list (since we already know of n documents

that are better). Since we score documents by impact level, we can stop generating

46

new accumulators at this point, since we can be sure we have already seen all the

good documents. However, just because we have n accumulators with values larger

than 2 does not mean that these accumulators contain final document scores. We

still need to complete query processing for the documents that have accumulators,

however, we can skip all of the other documents. This gives us a substantial speed

savings.

The next step is AND processing mode, where query processing continues, but we

ignore all information about documents that do not currently have an accumulator.

As this process continues, we will continue to gain information about the maximum

possible score for each accumulator. At some point, we hope to gain enough informa-

tion such that we know exactly what the top n documents are, but we do not know

their order. We do this using the same logic as used in the AND mode transition.

REFINE mode proceeds very quickly, because we can ignore all but a handful of

documents. However, we can further optimize this process. At some point, we may

determine that the rank order of the documents has been fixed (as in Buckley [22])

and query processing can complete. This final stage is called IGNORE, because all

remaining inverted list information can be ignored.

While this processing strategy contains many of the elements of Turtle and Flood’s

max-score optimization [100], It is able to prune more efficiently because the docu-

ments are stored in order by impact. This ensures that the best documents are seen

first.

Long and Suel explore query processing with a document-ordered system where

documents are ordered by PageRank value [61], and also separated in two pieces,

as in Strohman et al [94]. The evaluation is non-traditional by information retrieval

standards in that it does not use any of the traditional information metrics. However,

this appears to be the closest approximation to the work we show in Chapter 7.

47

2.6.2 Precomputed Phrase Lists

As we have seen in Metzler’s Markov Random Field dependence model, term prox-

imity information can have a significant impact on retrieval effectiveness. However,

these phrases can be expensive to compute at query time. A simple alternative is to

precompute these phrases instead.

The most comprehensive work on precomputed lists comes from a series of papers

by Bahle, Williams and Zobel, summarized by a journal article by Williams et al. [104].

They find that it is possible to precompute all two-word phrases in space roughly twice

the size of the original index (with positions). Furthermore, they suggest a structure

called a nextword index. In a nextword list, each term posting contains information

about not just the location of a word, but the identity of the next word. For example,

a list for the word ’white’ would contain all occurrences of the word ‘white’ in the

collection, and for each occurrence of ‘white,’ the word that follows it. This list alone

would be enough to evaluate the phrase ‘white house’; simply scan the list looking

for all the occurrences of ‘white’ that are followed by ‘house’.

The authors found that the nextword index was particularly useful for frequent

words like ‘the’. In their recommended configuration, nextword indexes are created

only on very common words, so to evaluate a query like “walk the dog,” we look up

the list for ‘walk’ and the nextword list for ‘the’. The nextword index allows efficient

processing of “the dog,” which can then be combined quickly with results for “walk.”

The authors find that only rarely do phrase queries end with a very common word

like ‘the,’ so rarely does an entire common word list need to be scanned to evaluate

a phrase query.

The authors find that indexing every possible two-word phrase leads to highly

efficient processing of phrase queries (over 95% faster than the baseline). They also

find that a combination of nextword indexes and popular phrase indexing leads to a

small index that processes phrase queries 75% faster than without them.

48

In Chapter 7, some experiments include two-word phrase indexes. No position-

based or nextword indexes are used in this dissertation.

2.7 Optimization Types

In this dissertation, we refer to a variety of types of query optimizations. We can

classify these optimizations into categories based on how they effect the top k results

returned to the user.

Unoptimized retrieval systems compare the user’s query to every document in

the collection as dictated by the retrieval model, and the score of each document is

computed as accurately as possible. The documents are then sorted by retrieval score

and the top k highest-scoring documents are returned to the user, in order.

Note that two documents may have the same score, so document scoring does

not induce a total order on the set of documents. The relative ordering of a pair of

documents with the same score is undefined. This means that the precise set of k

documents to return is also not completely defined. Suppose that the kth document

in the ranked list shares the same score as the (k + 1)th document; either document

could legitimately be considered in the top k. The extreme case occurs when all

documents share the same score; in this case, the top k could legitimately consist of

any size k subset of the collection documents in any order.

Therefore, for any query Q, collection C, and retrieval model M , the model induces

a set of scored documents R = M(C,Q, k). From R, we can derive Rk, which is the

set of equivalent, ordered result sets of size k. We consider that the retrieval system

has given us a perfect ranked list rk as long as rk ∈ Rk.

Unsafe algorithms produce a set of documents with no guaranteed set of prop-

erties. Specifically, the documents returned have no provable resemblance to any

document set in Rk. However, most unsafe algorithms in common use today have

been shown to produce results that, on average, produce results that are close to

49

the effectiveness of unoptimized systems when evaluated with standard information

retrieval metrics. Most of the information retrieval optimizations known today are

unsafe.

Set safe algorithms produce a set of documents that is guaranteed to be in Rk.

However, the ordering of the documents within that set is not guaranteed to be

correct. Buckley [22] described an optimization of this type.

Rank safe algorithms produce an ordered set of documents that is guaranteed

to be in Rk. However, the document scores produced by this type of algorithm are

not guaranteed to be identical to those produced by an unoptimized system. The

algorithm recently proposed by Anh and Moffat [11] is rank safe.

Score safe algorithms produce an ordered set of documents that is guaranteed

to be in Rk, with document scores identical to those produced by an unoptimized

system. The algorithm proposed by Strohman et al. [94] is score safe.

Note that score safe systems are both rank safe and set safe, while rank safe

systems are also set safe (but not necessarily score safe).

Algorithms with guaranteed safety levels are inherently attractive, since they de-

couple optimization research from retrieval model research. The guarantees listed at

varying levels of safety allow us to make certain guarantees about system performance

under common information retrieval metrics. For instance, all set safe systems are

guaranteed to equal some retrieval in Rk in Precision and Recall at k. All rank safe

systems are guaranteed to equal the retrieval performance of an unoptimized sys-

tem under most common metrics we are aware of, including Mean Average Precision

(MAP) and Normalized Discounted Cumulative Gain (NDCG).

All optimizations presented in this dissertation are at least rank safe, and almost

all are also score safe.

50

CHAPTER 3

TUPLEFLOW

3.1 Introduction

The focus of this dissertation is on fast and effective document retrieval, but

efficient retrieval starts with a carefully designed index. Existing indexing systems

are already carefully crafted for speed and scale, but our work goes further. In later

chapters, we will be developing new kinds of index structures that are custom tuned

for particular query types. This kind of custom tuning requires a level of flexibility

in the indexing system that we have not seen before in the literature.

In this chapter we present TupleFlow1, a distributed computing framework which

performs all of the indexing results in this dissertation. TupleFlow achieves the fol-

lowing goals:

Flexibility: TupleFlow allows users to describe complex computations in pa-

rameter files that can be changed at runtime without modifying code. Users

assemble computations from reusable building blocks that can be easily shared

between users.

Scalability: TupleFlow understands the dependencies between parts of a com-

putation, and uses this information to schedule parts of the computation on

many processors. TupleFlow can use multiple processors on a single machine or

multiple machines that share a filesystem. We will later show how TupleFlow

1The author pronounces TupleFlow as “too-pul flow,” although “tuh-pul flow” is a reasonable
alternative.

51

can efficiently scale a computation when more processing resources are applied

to a problem.

Disk Abstraction: TupleFlow hides all disk and network accesses from the

programmer by using a streaming data model. The more difficult tasks of disk-

based sorting and data distribution are either handled by included building

blocks or hidden in the mechanics of the system.

Low Abstraction Penalty: TupleFlow automatically generates glue code, in-

cluding custom hashing, sorting and serialization functions for each data type

used in a computation. We show how this code generation, combined with

TupleFlow’s detailed knowledge of the data used in a computation, allows Tu-

pleFlow to automatically compress data to a level similar to a manually tuned

file format.

3.2 Example

3.2.1 A Traditional Approach

Before diving into the specifics of the system, we will start with a simple example

computation.

Many kinds of text computation systems are based on an accurate statistical model

of word occurrence in text. In information retrieval systems, we use word occurrence

data to build features like IDF (Inverse Document Frequency) which help balance the

importance of query terms. In statistical machine translation, word occurrence data

is used as a smoothing tool to help the system prefer translations that are more like

real natural language.

Typically we create a word occurrence model by counting the number of times

each unique word appears in a set of documents. The following Python program

shows a very simple approach to solving this problem:

52

words = {}

for filename in files:

for line in file(filename):

for word in line.split():

words[word] = 1 + words.get(word, 0)

print words

Figure 3.1. A simple Python word count program.

This small program begins by creating a hash table called words. We assume that

there is a list of filenames stored in an array called files. The outer loop processes

one filename at a time. The next loop processes each line of the file filename. The

inner loop splits a line into words. For each execution of the inner loop, the program

looks up word in the hash table, and adds one to its word count. The last line of the

program prints the contents of the hash table, which contains a list of unique words

in the set of documents and the number of times each word occurs.

The brevity of this program should indicate that this is a fairly simple problem, as

many text processing tasks are. The trouble is that this program is not particularly

flexible, and it is not scalable.

This program currently makes the assumption that there are only a few files to

process. If there are millions, perhaps it makes sense to process files using a pool

of threads. Moving to the multithreaded model then requires that we place a lock

around the words hash table, which would lead to high lock contention among the

threads. Another option would be to keep one hash table in each thread, and then

merge the tables when execution ends. This approach would allows us to scale to

multiple machines.

Another scalability problem is that it assumes the words hash table fits in mem-

ory. Unfortunately real text files contain a limitless number of unique words, including

53

misspellings, part numbers, URLs, and names of all kinds (people, products and com-

panies). Given enough data to process, the hash table will not fit in memory. Fixing

this problem requires changing the entire computational approach of the program.

Finally, the program is not particularly flexible. What if the document data came

from a database instead of a list of text files? What if we want to use a more advanced

parser to split the document into word tokens? What if we would like to remove very

frequent words like “the” or “and” to speed up the program? Each one of these

requires a code change.

Next, we show how to write this word counting program using TupleFlow. The

resulting program is certainly more complicated, but the scale and flexibility problems

are solved.

3.2.2 Using TupleFlow

TupleFlow works by connecting computational building blocks, called Steps, to-

gether. The name TupleFlow is fitting because data tuples flow between these steps.

To define our TupleFlow computation, we will first define a tuple type, then create

some Steps, and then specify how the steps should be connected together.

java -cp galago.jar galago.tupleflow.TemplateTypeBuilder \

src/mytype/WordCount.java \

mytype \

WordCount \

String:word \

long:count \

order:+word \

order:

Figure 3.2. The command line for building the WordCount type. The arguments
shown here are: file name of the generated code, package name of the resulting
class, class name of the result, word specification, count specification, and two order

specifications.

54

First, we define a tuple datatype for this computation. Since we are interested

in word counts, we will call this type WordCount. A WordCount has two elements:

A word, which is a String type, and a count, which is a long type. We will be

interested in sorting tuples of this type in ascending order by word. In TupleFlow,

we represent that order like this: +word.

We use the TemplateTypeBuilder to create a type from this specification. The

full command line is shown in Figure 3.2. This command processes the specification

of the tuple we give it and generates a Java source code file that represents this type.

This particular tuple specification generates a 649 line source file, which includes

code for sorting WordCounts, computing hash functions on them, reading them from

disk, and writing them to disk. As we will see later, the read and write methods

change depending on the order the tuples are in, since the order of the tuples makes

a difference in how the data is compressed.

Next, we need to write some steps that actually perform the word counting pro-

cess. We split this particular computation into two steps, one called CountsMaker

(Figure 3.3), and one called CountsReducer (Figure 3.6)2.

The first step is a class called CountsMaker, which is shown in Figure 3.3. Counts-

Maker has a single method, called process, which takes a Document object as a pa-

rameter. The Document class contains an array called terms which contains all of the

word tokens in the document. For each word in the terms array, a new WordCount

object is made containing word and the number 1 as a count.

An example of how this works on actual text is shown in Figure 3.4. The text

“the cat in the hat” has been processed through a CountsMaker object. The result

is a list of words and counts. Notice that the word the appears twice in the text.

2In a MapReduce system, CountsMaker would be considered a Map step, while CountsMaker

would be a Reduce step. As we will see later, TupleFlow is not restricted to just these two kinds of
steps.

55

public void class CountsMaker

extends StandardStage<Document, WordCount> {

public void process(Document document) {

for(String word : document.terms) {

processor.process(new WordCount(word, 1));

}

}

}

Figure 3.3. Source code of CountsMaker.java

Word Count

the 1
cat 1
in 1
the 1
hat 1

Figure 3.4. Some WordCount tuples, after processing by WordCounter. Notice that
there are two lines for the.

Word Count

cat 1
hat 1
in 1
the 1
the 1

Figure 3.5. WordCount tuples, after sorting in +word order.

56

Instead of a single tuple of output with a count of 2, there are two rows containing

the in the output, each with a count of 1. To create the output we actually want,

which contains one tuple for each unique word and its count in the text, we need to

add up all of the output tuples that contain the same word.

The CountsReducer class (Figure 3.6) performs the tuple addition. Like Counts-

Maker, this class contains a process method, but it accepts a WordCount tuple as

a parameter. At the top of the class, notice the order="+word" declaration. This

declaration tells TupleFlow that the WordCount tuples are expected in ascending

order by word, as in Figure 3.5. If the input is sorted this way, all of the tuples for a

particular word appear next to each other in the list, as in the case of the word the.

The process method detects any duplicate lines and uses the count variable to make

a complete tally of word occurrences. The flush method creates a single WordCount

tuple for each unique word, and the close method ensures that flush is called one

last time once the input data is complete.

Our strategy is now clear. We convert documents into a stream of WordCount

tuples, then we sort those tuples by word, then we sum up the adjacent tuples to

form final word counts.

We use TupleFlow parameter files to connect these pieces together. TupleFlow

parameter files are similar to Makefiles or Ant build files used to specify how source

code projects are built. The TupleFlow parameter file specifies a set of stages, which

are like Makefile targets, and dependencies between those stages. It is the job of

TupleFlow to schedule these stages so that no dependence orders are violated, but

also so that the maximum amount of parallel computation is achieved.

The first stage description we will consider is for the initial word counting stage,

and it is specified in Figure 3.7. The connections block at the top of the stage de-

scription tells us that this stage processes FileName tuples, and outputs WordCount

tuples in +word order. The actual computation is described in the steps section.

57

@InputClass(className="galago.types.WordCount", order="+word")

@OutputClass(className="galago.types.WordCount", order="+word")

public void class CountsReducer

extends StandardStage<WordCount, WordCount> {

WordCount last = null;

long count = 0;

public void process(WordCount wc) {

if (last != null && last.word.equals(wc.word)) {

count += wc.count;

} else {

flush();

last = wc;

count = wc.count;

}

}

public void flush() {

if (last != null) {

WordCount wc = new WordCount(last.word, count);

processor.process(wc);

}

last = null;

count = 0;

}

public void close() {

flush();

}

}

Figure 3.6. Source code of CountsReducer.java

58

<stage id="counting">

<connections>

<input class="galago.types.FileName"

order="+filename"

id="filenames" />

<output class="galago.types.WordCount"

order="+word"

id="counts" />

</connections>

<steps>

<input id="filenames" />

<step class="galago.parse.UniversalParser" />

<step class="galago.parse.TagTokenizer" />

<step class="CountsMaker" />

<step class="galago.tupleflow.Sorter">

<class>galago.types.WordCount</class>

<order>+word</order>

</step>

<step class="CountsReducer"/>

<output id="counts"/>

</steps>

</stage>

Figure 3.7. Stage description for counting.

59

Input starts with a list of filenames. These filenames are passed to the Universal-

Parser, which opens the files and extracts the text. These documents are passed to

the TagTokenizer, which splits the text into word tokens. The next step is the class

we built in Figure 3.3, called CountsMaker. This object generates a list of Word-

Count tuples, each with a count of 1. Those tuples are passed to a Sorter, which

sorts the tuples in ascending order by word. A CountsReducer class is then used to

remove duplicate words and add the counts together. Finally, the list of word counts

is written to a stream called counts.

Ignoring for the moment that we have not described how the filenames are gen-

erated, this stage description already shows how we have solved the problem of the

hash table that is too large for memory. Our CountsMaker and CountsReducer use

only a fixed amount of memory which does not depend on the number of documents

processed or the size of the vocabulary. For large collections of documents, the sort-

ing stage will need to use disk files to sort the counts list, but this functionality is

included in the library so we do not need to write it. The result is a program that

can handle large collection sizes without running out of memory, assuming enough

temporary disk space is available.

We also have solved the problem of flexibility. The logic for counting words has

been split apart from the logic of parsing and word manipulation. If we want to extract

a stream of words in a different way, we can just change the UniversalParser line

in the parameter file to some other word source.

What we have not solved yet is the problem of parallelism. This stage, by itself,

describes how to convert a series of files into a list of counts using a single processor.

We would like to be able to do this on many processors at once. This is where two

other stages come in.

First, we will look at the more interesting stage, reduce (Figure 3.8). The re-

duce stage takes a list of WordCount tuples, processes them through CountReducer,

60

<stage id="reduce">

<connections>

<input class="galago.types.WordCount"

order="+word"

id="counts"/>

<output class="galago.types.WordCount"

order="+word"

id="reducedCounts"/>

</connections>

<steps>

<input id="counts" />

<step class="CountReducer" />

<output id="reducedCounts" />

</steps>

</stage>

Figure 3.8. Stage description for reduce.

then writes them to a reducedCounts stream. This stage seems redundant until we

consider running many of the counting stages in parallel. Each one of the counting

stages will produce a list of sorted WordCount tuples. TupleFlow can combine all of

those sorted lists together into a single sorted list, which will have duplicate words

in it. This stage reads that combined list, adds word count tuples as necessary, and

writes out the final output as a reducedCounts stream.

The filenames needed by the counting stage are provided by the filenames stage

(Figure 3.9). This stage uses the FileSource class to create one FileName tuple

for each file found in the /work/corpus directory. If we had wanted just a single

thread of execution, the FileSource step could have been inserted directly into the

counting stage. However, by putting the filename generation in a different stage, we

allow TupleFlow to transparently distribute filenames to many different copies of the

counting stage.

The connections block completes the TupleFlow computation specification (Fig-

ure 3.10). Each connection describes a dependency between two or more TupleFlow

61

<stage id="filenames" >

<connections>

<output class="galago.types.FileName"

order="+filename"

id="filenames" />

</connections>

<steps>

<step class="galago.tupleflow.FileSource" >

<directory>/work/corpus</file>

</step>

<output id="filenames"/>

</steps>

</stage>

Figure 3.9. Stage description for filenames.

<connections>

<connection class="galago.types.FileName"

order="+filename"

hash="+filename">

<input stage="filenames"

endpoint="filenames" />

<output stage="counting"

endpoint="filenames"

assignment="each" />

</connection>

<connection class="galago.types.WordCount"

order="+word">

<input stage="counting"

endpoint="counts" />

<output stage="reduce"

endpoint="counts"

assignment="combined" />

</connection>

</connections>

Figure 3.10. Description of connections between the filenames, counting and reduce
stages.

62

stages. More importantly, in TupleFlow each dependency is a data dependency, be-

cause it means that one stage is generating data that is used by another stage. That

is why these are called connections, because they specify data transfer points between

stages. In our implementation of TupleFlow, these actually correspond to files in a

filesystem, but there is nothing about the job specification that requires that to be

true.

In the first connection, we see that the filenames stage generates a named stream

of FileName tuples called filenames. These tuples need to be passed to the counting

stage, to the input endpoint also called filenames. Notice the attribute assignment

which is set to each. This means that if there are multiple copies of the count-

ing stage, the filenames should be partitioned out evenly among them. The text

hash="+filename" tells TupleFlow to use a hash function based on the filename

field to perform the distribution.

In the second connection, we see that WordCount tuples need to be transported

from the counts stream in the counting stage into the counts stream in the reduce

stage. This time the assignment attribute is set to combined, which means that even

if there are many different counts streams coming from many copies of the counting

stage, TupleFlow should combine those streams into a single sorted stream, then pass

that single stream to the reduce stage. TupleFlow can also do a partial reduction in

the counting stage, although that has been omitted for this example.

Based on the assignment attribute in the connection descriptions, TupleFlow can

decide when it is safe to make copies of a stage, and when only one copy can be used.

The connection dependencies also tell TupleFlow when different kinds of stages can

be scheduled concurrently.

Now we have solved the flexibility problem and both of the scalability problems

of the initial program. While it is true that this second solution is considerably

longer than the original solution, the TupleFlow solution did not require a huge

63

amount of code. More importantly, if we were to try this exercise without TupleFlow,

our resulting program would have used more advanced programming techniques like

threads, mutual exclusion and out-of-memory processing. Instead, we wrote relatively

simple configuration logic which is then typechecked for correctness by TupleFlow.

3.3 Related Work

Distributed computation is one of the oldest problems in computer science, and

the literature of proposed solutions to the distributed computing problem is huge.

MapReduce [42] is the closest ancestor to TupleFlow, and was the primary inspi-

ration for its development. Like TupleFlow, MapReduce distributes computation of

data-driven tasks across clusters of machines. Each task has two parts; a map stage

which pre-processes incoming data and splits it into key/value pairs, and a reduce

stage, which combines the key/value pair data into some final output representation.

MapReduce uses hashing on the keys of each key/value pair to distribute pairs across

reduce instances. The framework includes automatic fault tolerance and load bal-

ancing tools that are essential for very large scale use. The result has been in use

at Google since 2003 and has been effective at distributing computation across thou-

sands of processors. The Hadoop project [39] contains a conceptual copy of Google’s

MapReduce implementation.

MapReduce can be thought of as a subset of TupleFlow where each computation

graph is composed of only two steps, tuples have only two elements, and there is only

one tuple stream. TupleFlow extends this framework by allowing arbitrary execution

graphs with an unlimited number of steps and tuples with unlimited cardinality.

Dryad [51] is a refinement of MapReduce which was developed concurrently and

independent of TupleFlow. Dryad also extends the MapReduce idea to support a

directed acyclic graph of computation steps. However, unlike TupleFlow, it does not

support automatic tuple type generation, sorting, hashing and compression. In ad-

64

dition, it shares with MapReduce the idea that computational stages are monolithic,

and each runs in its own thread, although some communicate using shared memory.

The TupleFlow step and stage model encourages the development of very small inter-

changeable components, since all elements of a stage communicate within a process

boundary. TupleFlow further encourages reconfiguration through its use of parameter

files to assemble computation graphs.

TupleFlow relies on a shared filesystem to transport data between execution

stages, but does not supply one. However, many suitable shared filesystems exist

in the literature. The Network File System (NFS) [85] is the de facto standard for

shared filesystems, but is not scalable enough to handle the kind of load that Tuple-

Flow can produce. Distributed filesystems, like Lustre [87], Google File System [49],

and Hadoop DFS [39], store a single filesystem across many different nodes, allowing

the bandwidth and capacity of the filesystem to scale with the number of nodes used.

We used both NFS and Lustre in our experiments.

The concurrent programming language Erlang [12] is based on lightweight pro-

cesses that communicate with messages. Its model is similar to the TupleFlow model

where single-threaded steps communicate through tuple messages. Also like Tuple-

Flow, Erlang processes can communicate even if they are placed on different nodes.

However, the communication model of Erlang allows any process to communicate

with any other, meaning that all processes must exist simultaneously. By contrast,

by forcing computations to use a dependencies in a directed acyclic graph, TupleFlow

can execute an entire computation with only one process running at a time. This can

be particularly important because of the large amount of memory text processing can

require.

The idea of using a cluster of machines to solve large scale problems was pio-

neered by the Berkeley NOW project [13, 6]. These original explorations included a

65

special focus on high speed sorting and data distribution, which TupleFlow, Dryad

and MapReduce build on.

Scientific computing applications on large scale multiprocessors and clusters typ-

ically use a message passing framework for communication like MPI [1]. These pro-

grams are often spatial simulations where the state of a particular space is mapped to

a number of different nodes. The model is updated in time steps by passing messages

quickly between the nodes. This kind of task requires high-bandwidth, low latency

messaging. By contrast, messaging in TupleFlow can be equally high-bandwidth, but

with huge amounts of latency. As mentioned above, the TupleFlow model also only

parts of the execution graph to be active at one time, while MPI tasks generally run

simultaneously.

The name TupleFlow comes from dataflow, as in dataflow architecture micro-

processors. The TRIPS project [86] is a modern example of a hardware dataflow

architecture. Instructions are presented to the processor as miniature dependency

graphs, which allows the processor to schedule functional units more efficiently. Tu-

pleFlow uses this computational model but at a massive scale and with more datatype

complexity.

Splitting tasks into computational steps can also improve the ease of developing

scalable servers. Welsh et al. [103] demonstrated the Staged Event Driven Archi-

tecture (SEDA) which achieved high server performance by performing batches of

similar tasks simultaneously. This tends to improve overall cache performance and

reduce total call overhead. More recently, Burns et al. [25] demonstrated the Flux

language for generating high performance servers. Like TupleFlow, Flux encourages

developers to write simple, small blocks of code that can be glued together using a

domain-specific language. The more difficult tricks of server progarmming, including

asynchronous I/O and error handling, are handled by the library. The result is that

66

The streams of data that connect steps are typed and ordered, meaning that a

TupleFlow graph can be typechecked for not just the type of tuples used, but the

order that they flow through the streams. Our implementation does both kinds of

typechecks.

In order to handle stage replication, TupleFlow requires both data distribution

and combination. TupleFlow uses hashing to distribute tuples across replicas. A hash

function computes a hash value from each data tuple. The stage is chosen by the hash

value modulo n. Since distribution is done by hash function, any tuples that are equal

under the hash function will be sent to the same replica. For example, suppose we

have a stream of word count tuples, and a hash function that is computed only over

the text of the word. All word count tuples corresponding to a particular word will

be sent to the same replica. This property is frequently exploited in practice, and

TupleFlow allows for many different hash functions to be specified for the same tuple

type in order to change the distribution patterns to fit the particular computation.

Streams of tuples in TupleFlow are usually sorted in some order, and that order

is preserved during stream combination.

3.5 Step Implementation

TupleFlow includes only a few general purpose step classes for things like sorting

and building lists of filenames. The remaining computational steps must be supplied

by the developer.

A typical step class is a subclass of StandardStep. A StandardStep is a simple

pipeline step which takes one stream of tuples as input, and produces another stream

of tuples as output. Subclasses need to implement just one method, process. The

process method is called by TupleFlow once for each tuple in the input stream. The

developer can choose to emit any number of output tuples for each input tuple. This

is done by calling the process method of the processor member variable.

69

The CountsMaker example from the example section shows how this is done (Fig-

ure 3.3). The process method is called once for each document object. The process

method then generates one WordCount tuple for each term in the document, and sends

those tuples on to the next processor object. The processor variable is set at runtime

by TupleFlow based on the computation graph it is given.

As extensions, a step can implement a close method to handle the event when

no more input remains. It can also supply a constructor that takes a TupleFlowPa-

rameters object to allow users to configure its execution.

In particular, some steps will pull data from more than one data stream. Often

this is done to perform a data join between two types of data. For instance, suppose

we have two streams of data. The first is a query log, where each tuple contains a

query, a timestamp, and an IP address. The second stream contains location data,

where each tuple contains an IP address, latitude, and longitude. Suppose both of

these streams are sorted by IP address. A step can perform a merge by matching

tuples from both streams by IP address, and emitting query tuples with location

information.

To read from multiple lists simultaneously, we need to leave the event driven model

behind. Instead, the step class uses a TupleFlowParameters object to retrieve Type-

Readers, which are like iterators over streams of tuples. The step class implements a

run method instead of process. The run method takes care of reading tuples from

the streams and producing output. This kind of step (known as an ExNihiloSource)

must be the first referenced in any stage.

3.6 Execution

TupleFlow executes execution graphs specified in a parameter file, using syntax

we have already seen in the word count example. The first job of TupleFlow is to

typecheck this graph specification to be sure that it can be executed. Since classes

70

are loaded dynamically, TupleFlow must check to be sure that all of the classes (both

steps and tuple types) exist and that all data stream connections are type safe.

Stage replication is so effective at extracting parallelism that our implementation

uses a single thread per stage instead of a single thread per step. The steps pass data

between each other via method call, so there is no queueing or other communication

overhead between steps. However, queues can be explicitly added if doing so might

improve performance.

Stages communicate exclusively through files. A stage reads some set of files

and produces another set of files as a result. Stages are scheduled so that no two

processes are reading or writing to the same file at once. Although the computational

model presumes that data is flowing immediately between stages, in fact it is buffered

completely, so that one stage will not see any input until all of its input stages have

finished running. This buffering is not strictly necessary for the system to function,

but it made implementation simpler.

After the graph is deemed safe, TupleFlow detects which stages can be replicated

and which stages cannot. It also generates a dependence graph which is sent to a

stage scheduler. The scheduler sends out batches of stage replicas for execution, and

as they complete, it consults the dependence graph to see what other stages can be

executed next. Many different stages can be running simultaneously if there are no

dependencies between them.

A variety of executors can be plugged into the stage scheduler. The most basic is a

single-threaded executor used for debugging. There are also multi-threaded executors

for parallel execution on a local machine, as well as a distributed executor that uses

job execution engines like Condor [96] to schedule computation on other machines.

71

3.7 Code Generation

TupleFlow requires that computational steps exchange data, not just within a

process, but across process and machine boundaries. To do that, we need to be able

to serialize tuple data structures into binary streams. We also want to be able to sort

and hash these tuples on arbitrary column sets.

The Java virtual machine, like many modern virtual machine architectures, allows

for runtime object introspection. From an object pointer, it is possible to determine

the methods it supports and the member variables it contains. Technically this is

all we need to support our goals of serialization, sorting and hashing. In reality,

introspection tends to be slow. Given the amount of data that TupleFlow is designed

to use, serialization speed is a critical performance point of the code.

Instead, we generate Java code for every type we want to use in the TupleFlow sys-

tem. As shown in the example, TupleFlow contains a program called TemplateType-

Builder which converts a tuple specification into a TupleFlow Type class, complete

with serialization, sorting functions and hash functions.

3.7.1 Hash functions

A hash function is a function h : T → Z, where T is the type of some object and

Z is the set of integers. The specific integer value produced is not important, so long

as for some relation R=:

1. R=(a, b) → h(a) = h(b)

2. ¬R=(a, b) → h(a) 6= h(b) with high probability

3. ¬R=(a, b) → h(a) 6= h(b)(modn) with probability approaching 1
n

We often think of R= as the equality relation, so R=(a, b) can usually be replaced

by a = b, while ¬R=(a, b) can be replaced by a 6= b.

72

The equality property (1) must always hold. A hash collision occurs when either

(2) or (3) occurs. In practice, (2) is a special case of (3) for some fixed large value

of n, since h typically returns a bounded integer datatype. It is impossible to prove

the probability of a hash collision without a description of the distribution of object

values, so we generally need to rely on heuristics to make reasonable hash functions.

Notice that all of the properties of the hash function depend on the definition of

the relation R=. It is easy to think of equality as an obvious property of an object, but

in practice it can be a subtle and changing thing. For instance, when using floating

point numbers, we often want to say that two numbers a and b are equal when they

are less than some ≤ distance away from each other. Notice that this relation is not

transitive, which is a standard property of an equality relation. In this case equality

is then actually parameterized based on some value of ≤, which creates an infinite

space of possible equality relations, each with its own set of properties that a hash

function must satisfy.

What does ≤ really mean, anyway? The factor ≤ creates an equality relation that,

instead of “exactly the same thing,” means “essentially the same thing.” In TupleFlow

we extend this idea to hash functions that mean “the same kind of thing,” or “belongs

to the same group,” where the definition of “group” depends on the application.

For example, consider a tuple WebLink that represents a hypertext link between

two web pages. The link has two parts, source and destination, where source is

the URL of the web page that contains the link, and destination is the URL pointed

to by the link. What makes two WebLinks the same?

Consider three possible equality relations:

1. R(a, b) ↔ a.source = b.source ∧ a.destination = b.destination

2. R(a, b) ↔ a.source = b.source

3. R(a, b) ↔ a.destination = b.destination

73

Relation (1) might be called the strict equality relation. We say that a and b are

equal only if their sources and destinations match. Relation (2) is not so strict; it says

that two tuples are equal if their sources match. Relation (3) says that two tuples

are equal if their destinations match.

Why would we ever use relations (2) or (3)? Suppose we group all the links in a

corpus based on equality relation (2); each group corresponds to the outgoing links

for a particular web page. If we use relation (3) instead, each group corresponds to

the incoming links for a particular web page. We typically extract links from web

pages in an order that corresponds to relation (2). If the data is transformed into

groups based on relation (3), we can easily count the number of links coming into a

web page. This kind of operation is the basis of many static ranking functions, like

PageRank or HostRank [78, 44].

Because of this, TupleFlow lets users specify equality relations based field names.

In TupleFlow, relation (1) is called +source +destination, relation (2) is called

+source, and relation (3) is called +destination. The hash functions are not inter-

preted. Instead, the hash function specification is sent to a factory which instanti-

ates the appropriate hash function, which was already generated by TemplateType-

Builder.

3.7.2 Comparators

As in hashing, sorting is based on a binary relation. In particular, we say that a

list of objects L is sorted under relation R if, for all objects a and b in L:

R(a, b) ← a comes before b in L

Under this definition, the relation R does not need to specify a total order on

objects. In the degenerate case R is an empty relation, so we say that every list L is

74

sorted. In TupleFlow, we say that if ¬R(a, b) and ¬R(b, a), then a = b. The equals

sign has appeared again, so the previous discussion of equality is relevant here too.

Just like with hash functions, TupleFlow specifies comparison relations with or-

der specifications, like +source or +destination. However, -source or +source

-destination are possible. This last order specification means that WebLink tuples

should be sorted in ascending order by source URL, with ties broken in descending

order by destination URL. Each of these specifications corresponds to a compari-

son function generated by TemplateTypeBuilder. At runtime, a Sorter object will

instantiate the appropriate comparison function to use for sorting.

Sorting is used for three primary reasons in TupleFlow. The first is to group like

objects together. While a hash function does a good job of grouping like objects, its

grouping is not guaranteed to be perfect because of hash collisions. The definition

of an ordered list contains no talk of probabilities that could lead to imperfect re-

sults. The cost is that hashing tuples into bins is an O(n) operation while sorting

is O(nlogn). The second reason to sort is for compression, which we will discuss

later. The final reason is to enable efficient sorted merges and joins between different

streams.

3.7.3 Order Compatibility

Notice that certain orders are compatible with others. For example, objects or-

dered by +source +destination are also ordered by +source, although the reverse

is not true, as shown in the following theorem. This theorem is used to typecheck

streams in TupleFlow.

Theorem 1. Given a list of objects LA sorted by order specification A, LA is guar-

anteed to be sorted by order specification B iff B is a prefix of A (that is, |A| ≥ |B|

and the first |B| elements of A are B).

Proof. We first prove sufficiency, then prove necessity.

75

Sufficiency. Suppose there exists some pair of elements x and y such that x comes

before y in LA, but B implies that x should come after y. However, since B is a prefix

of A, any pair of elements that B orders are ordered identically under A (although A

may order more elements than B). This is a contradiction, so x and y cannot exist.

Necessity. Suppose B is not a prefix of A. Let C be the common prefix of A

and B, let A0 be the suffix of A (not including C), and let B0 be the suffix of B (not

including C).

In the case where A = C, |A0| = 0 and |B| > 0, meaning that B is orders strictly

more objects than A. Then LA may contain such a pair of objects x and y such that

x and y are ordered by B0 but declared equal by C.

In the case where |A| > |C|, LA may contain a pair of objects x and y which are

considered equal under C, but where x < y under A0 and x > y under B0.

In either case, a pair of objects x and y may exist in LA that violate the order

specification of B.

3.7.4 Compression

The data streams used by a TupleFlow computation can cause enormous strain on

a cluster of machines. If disks are shared, as they are in a NFS environment, many

processors are competing for a small amount of disk bandwidth. In a distributed

filesystem, the disks themselves are may not be the bottleneck, but the network

switch could be, especially when data must pass through multiple switches to reach

its destination. Even if neither the switch nor the disk are an impediment, the kinds

of work that TupleFlow does tend to make poor use of L2 cache, causing the CPU to

constantly wait on memory. Compressing the data in the data streams helps alleviate

all of these problems.

Because the order of objects in each stream is known to TupleFlow, it can use

that order information to aggressively compress data. Three compression schemes are

76

used in combination: run length encoding, delta encoding, and variable byte (vbyte)

encoding [105].

Suppose we have ordered a list of WebLink tuples by destination URL. Intu-

itively we know that there are some web pages with huge numbers of incoming links.

If our list contains 2832 links to the UMass web page, there will be 2832 consecutive

tuples with www.umass.edu in the destination field. We can save on storage space

by writing the number 2832 to the data stream, then writing www.umass.edu, the

2832 unique source URLs. For the cost of an integer, we are able to save the storage

space of www.umass.edu repeated 2831 times. This is called run length encoding,

because we encode a run (a set of tuples with a similar destination) with its length.

TupleFlow automatically employs run length encoding for any tuple element which

is a String, and in some cases of integer values.

For integer tuple elements we have more compression choices. Suppose we have a

list of WordCount tuples ordered in ascending order by count. Since we know that

each count field is at least as large as the last, we can store just the difference between

each count value. A list with counts 1, 5, 7, 8, 10, 15, 21 can then be encoded as 4,

3, 1, 2, 5, 6. There are still six numbers in this list, but the maximum number in the

second list is 6, versus 21 in the first list. This process is called delta encoding, and

by itself it produces no compression gains.

However, if we use a numeric compression scheme that favors small numbers,

delta encoding does pay off. TupleFlow uses variable byte (vbyte) compression for

all numeric values. Using vbyte, all numbers smaller than 128 use just one byte.

Numbers smaller than 16384 use two bytes. In the general case, for a number x such

that 27n ≤ x < 27n+1, x requires n bytes to encode using vbyte. Vbyte does this by

using just the low 7 bits of each byte to encode numeric information, while the high

bit, when set, signals the end of a numeric code.

77

By itself, variable byte encoding does a good job of compressing numbers since

most numbers are small. Think of the word count case; most unique strings appear

just once in a corpus, while a few might occur millions of times. When combined

with delta encoding, the space savings is even larger.

We will review some space saving experiments using TupleFlow at the end of the

chapter.

3.8 Built-in Steps

The two most important steps in TupleFlow are sorting and hashing. The Sorter

is explicitly instantiated by users, but hashing is done implicitly using the hash and

assignment attributes in the computation parameter file.

The Sorter is a typical TupleFlow step, in that it has a process method which

responds to incoming tuples, and it sends output to the process method of another

step. Unlike most steps, however, Sorter emits no output tuples until all of the

input has been seen. For small streams of tuples, the data is completely buffered

in memory, sorted using a library sort function, then output to the next stream.

Typically the input stream is larger than memory. In this case, the Sorter fills its

internal buffer with tuples until the buffer is full. The buffer is then sorted and

written to a temporary file using the compressed writing routines in the tuple class.

This process continues until all of the tuples have been read from the input. At this

time, the Sorter performs a merge operation on the temporary files in order to create

a sorted output stream.

In the case where there are a large number of temporary files, Sorter merges

batches of 20 temporary files at a time into larger temporary files, until less than 20

temporary files remain. While this may improve performance, the primary purpose

of this is to reduce the number of files open at once, since some operating systems

are very restrictive in the number of file handles allowed per process.

78

stream/

0/

0

1

2

3

1/

0

1

2

3

Figure 3.13. The on-disk representation of a stream with 4 inputs and 2 outputs.

stream/

0/

0

1/

1

2/

2

Figure 3.14. On-disk representation of a pass-through stream with 3 inputs and 3
outputs.

The Splitter handles hashing tuples, which is the only means of distributing com-

putation in TupleFlow. The Splitter has one input stream and n output streams.

Typically each of these n output streams is connected to a Sorter, which is then

connected to an output file. The Sorter makes sure that the tuples are written to

disk in sorted order, allowing the use of order-sensitive compression.

3.9 Storing Streams

Conceptually a TupleFlow stream is a tuple pipe that connects m inputs to n

outputs. In practice this means that a TupleFlow stream can be composed of as

many as mn files.

The files for a stream are stored in a directory hierarchy. The top level directory

named after the stream. Under that directory is a set of numbered directories from

79

0 to m − 1. Within each directory, there can be as many as n files, numbered from

0 to n − 1. Figure 3.13 shows the directory structure for a stream with 4 inputs and

two outputs.

For the case where m > 1 and n > 1, each of the m inputs hashes its output into n

files. Input k stores its output in files 0/k, 1/k, 2/k, ..., n−1/k. To read from output

j, TupleFlow opens all files in directory j and performs an ordered merge operation.

In one common case, m = n, and the data is not hashed. This is known as a

pass-through connection, since it directly connects one stage replica to another. The

directory structure for this is shown in 3.14. As an optimization, there is only one

file in each output directory instead of n, since the other n− 1 files would be empty.

3.10 Checkpointing

TupleFlow requires that users define data dependencies explicitly between tasks,

and also requires that users split their tasks into small pieces for distribution. While

these requirements are useful for distribution, they also make it possible to add au-

tomatic failure recovery. The latest version of TupleFlow supports a semi-automatic

failure recovery mode.

A try/catch block surrounds all TupleFlow stage executions. If the stage instance

completes without throwing an exception, a checkpoint file for that stage is written

to disk. If an exception is caught, an error file is written to disk instead. No attempt

is currently made to stop other stages after an exception is caught, but an exception

thrown in one stage typically causes exceptions to be thrown in all subsequent stages,

since their input data is likely to be incomplete or corrupted.

Many exceptions are caused by simple code bugs or improper parameter settings.

After fixing one of these kinds of errors, the TupleFlow job can be manually restarted.

The TupleFlow execution code makes note of all stages that have already completed

and does not try to run those stages again; instead, it only runs stages that have

80

a = LOAD ’/tmp/queries’ AS (time, query, resultCount);

b = GROUP a by query;

c = FOREACH b GENERATE group as query, COUNT(a) as count;

d = FILTER c by count > ’10’;

Figure 3.16. A short Pig script to find all unique queries in a query log that appear
more than ten times.

3.11 Sample Tasks

3.11.1 Building an Index

Figure 3.15 shows a TupleFlow computation graph for building a traditional

document-sorted index.

3.12 Rapid Experimentation

TupleFlow is meant to be as general-purpose as possible, and like any flexible

system it is more complicated to use than a simpler or less efficient one could be.

However, TupleFlow can serve as the basis for a simpler system.

Pike et al. [80] built the Sawzall language for simpler MapReduce computation.

The Dryad team [51] mention a language called Nebula which simplifies computation

in their system. Following in their footsteps, we ported the Pig language3 to Tuple-

Flow. Pig is a language developed at Yahoo! Research for rapid experimentation on

top of the Hadoop system [39].

Figure 3.16 shows an example Pig script. This script reads tab-delimited query

log data from a text file called /tmp/queries. Each line in the log file contains a

timestamp, query text, a session identifier and a count of results. The variable b

contains groups of log lines, with one group for each unique query. The variable

c measures the size of each group to form a count for each unique query. Finally,

variable d contains all queries that occur at least 10 times in the log.

3http://research.yahoo.com/projects/pig

82

●

●

●

●

●

●

5 10 15 20 25 30 35 40

0
2
0
0

4
0
0

6
0
0

8
0
0

Total processes

T
im

e
 (

s
e
c
o
n
d
s
)

● Total time
Parsing time

Figure 3.17. Total time and parsing time to count the words in the GOV collection
for many levels of parallelism.

By implementing this language on top of a TupleFlow, this script is actually

parallel. Each processor reads a small portion of the query log, groups by query, and

counts the number of entries for each query. All of this data is merged together into

one master list, which is then filtered so that only queries with at least ten results

appear.

Using a query log with 15 million queries in it and 40 processors, this script

takes less than 2 minutes to run. A hand-tuned TupleFlow job would probably be

faster, but this script takes very little time to write. Using a scripting language like

this allows users to rapidly experiment with large datasets using large clusters of

processors without thinking about data processing details.

83

●
●

●
●

0 200 400 600

0
1
0

2
0

3
0

4
0

5
0

Time (seconds)

J
o
b
s
 r

u
n
n
in

g

●
●
●

●
●

●

●
●

●
●

●
●
●
●

●

●

●

4
6
8

10
20
40

Figure 3.18. Processes running over time for many levels of parallelism.

3.13 Experiments

3.13.1 Word Count

To test the usefulness of TupleFlow, we ran our example word count program on

the TREC GOV collection. This is a partial crawl of the .gov domain, containing

20GB of text in 1.2 million web documents. The input text was compressed with gzip

so that it occupied 4.3GB on disk. The data was split into 46 files, most of which

were about 100MB each (the final one was 13MB).

The execution graph followed the model shown in Figure 3.12. The filenames

stage created a TupleFlow stream of 46 filename tuples. These were hashed to split

them into many different streams. Each stream was then routed to a parsing process,

which parsed the files sent to it and emitted word count tuples. Each word count

tuple was a triple: word, document count and term count, where document count is

the number of unique documents this word occurs in, and term count is the number

of word occurrences regardless of document boundaries. A word count reducer object

84

was used within each parsing stage to reduce the number of objects written to disk.

After all parsing stages completed, a single reducer stage merged all counts streams

into one final word count list.

All jobs were run on a cluster of 32 machines, containing 70 cores in all, with core

clock speeds between 3.0 and 3.2GHz. TupleFlow used a dedicated Lustre filesystem

for all experiments.

Timing results are shown in Figure 3.17. The x-axis represents the number of

parsing processes used. Adding processes gives a near-linear speedup until about

10 processes are used. At this point, workload imbalance starts to affect runtimes,

as discussed further in the next paragraph. Notice that as the number of processes

increases, the difference between total time and parsing time increases, reflecting the

additional effort necessary to merge the results when many parsing processes are used.

3.13.1.1 Balance

TupleFlow uses hashing to distribute tuples evenly among stages. This strategy

works well when there are many more stage instances than tuples, or many more tuples

than stage instances. When there are more instances than tuples, the probability that

any instance must process more than one tuple is

n
k

n

k − 1

n
'

k2

n

where k is the number of tuples and n is the number of processes. So, when k2 << n,

most instances will receive no tuple, and the rest will receive no more than one

tuple with high probability. Assuming each tuple takes approximately equal effort to

process, we expect all of the processes that were assigned tuple to finish at roughly

the same time.

Alternately, suppose we have more tuples k than instance n. Note that Cheby-

chev’s equality is:

85

P [|X − E[X]| > t] =
V ar(X)

t2

We can apply this inequality to our problem. Let X be the number of tuples

assigned to a stage. We expect each stage instance to receive k/n tuples, so E[X] =

k/n. The variance of X is np(1 − p), where p = 1/n.

P [|X − E[X]| > t] =
np(1 − p)

t2

=
1 − 1/n

t2

'
1

t2

Note that the result here does not depend on k. In particular, suppose we want

to know the probability that some instance gets a factor of c more tuples than the

expected k/n:

P [|X − E[X]| > (c − 1)k/n] =
np(1 − p)

((c − 1)k/n)2

=
1 − 1/n

((c − 1)k/n)2

'
n2

ck − c

This probability is nearly inversely proportional to k. This result shows that as k

grows relative to n, we expect that the tuples will be distributed more evenly among

the processes.

The problem area comes when k is close to n, as we saw in our previous experi-

ment. When the number of instances (40) approached the number of files (46), some

instances received two files to parse while others received just one, causing the reduce

86

congresslink,3,1

congresslink,3,1

congresslink,6,2

congressm,1,1

congressm,1,1

congressman,28,1

congressman,3,3

congressman,3,3

congressman,2,1

Figure 3.19. An example of the tuples emitted by the WordCount parsing stage.

step to have to wait for those slower processes to finish and making inefficient use of

the processors. As the analysis above shows, either increasing the number of instances

or increasing the number of files would improve this situation.

3.13.1.2 Compression

As explained before, all data sent between stages in TupleFlow is stored in a

compressed binary format that depends on the order of the tuples. We illustrate this

with a compression size example.

Figure 3.19 shows an example of some of the tuples emitted by a word count

parsing stage. These are slightly different than the WordCount tuple defined in

earlier examples, since these count both the total number of term occurrences, and

the number of documents the term occurs in. Notice that the tuples are partially

reduced already, because some of the tuples show multiple document counts (like

congressman,3,3, which indicates the word “congressman” appearing 3 times in 3

documents). However, the tuples are not fully reduced, because the same term can

appear many times in a row.

TupleFlow compresses this data in two ways. First, since this data is sorted in

word order, it stores each word in the list just once by using run length encoding.

87

G09-02-4188263,http://firstgov.gov/us_gov/doc.html

G01-71-2025464,http://fishclub.gsfc.nasa.gov

G01-81-1240304,http://fishclub.gsfc.nasa.gov/2000review.html

G01-12-2496787,http://fishclub.gsfc.nasa.gov/workshop.html

G01-83-2038485,http://fitness.gov/aboutpcpfs/aboutpcpfs.html

G09-85-2321207,http://fitness.gov/news/news.html

G12-18-2747694,http://fitness.gov/sports/sportsaward.pdf

G12-57-1635810,http://fitness.gov/video/getoffit/getoffit.html

Figure 3.21. DocumentURL tuples parsed from the GOV collection.

http://www.savingsbonds.gov/mar/mar01win.htm,

ftp://208.131.225.4:21/mar01ny.jpg,,false

http://www.savingsbonds.gov/mar/mar01win.htm,

ftp://208.131.225.4:21/mar01ny.jpg,jpeg format,false

http://www.treasurydirect.gov/mar/mar98wn1.htm,

ftp://208.131.225.4:21/mar98ak.gif,see merellas poster,false

http://www.treasurydirect.gov/mar/mar98wn1.htm,

ftp://208.131.225.4:21/mar98ca.gif,see laurences poster,false

http://www.treasurydirect.gov/mar/mar98wn1.htm,

ftp://208.131.225.4:21/mar98fl.gif,see jordans poster,false

http://www.treasurydirect.gov/mar/mar98wn1.htm,

ftp://208.131.225.4:21/mar98ga.gif,see miriams poster,false

Figure 3.22. ExtractedLink tuples parsed from the GOV collection.

89

●

●

●

●

●

●

5 10 15 20 25 30 35 40

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Processes

T
im

e
 (

s
e
c
o
n
d
s
)

Figure 3.23. Speed of anchor text combination on the GOV collection for many
levels of parallelism.

examples of extracted links from the GOV collection are shown in Figure 3.22. The

source of the link is in the first column, followed by the destination of the link, fol-

lowed by the anchor text, followed by a boolean value that is true if the link has a

nofollow attribute set.

Notice that the data in Figure 3.21 is sorted by URL, and the data in Figure 3.22

is sorted by destination URL. In fact, the parsing stage hashes both of these data

streams based on URL and destination URL respectively. This means that the Docu-

mentURL and ExtractedLink tuples for the same pages arrive on the same machines

during the combination stage. Since these lists are in the appropriate sorted order,

they can be joined efficiently, which then can associate a TREC document identifier

with anchor text that points to it. The key to making this work is the two streams of

data that are simultaneously hashed to the combination stage instances. MapReduce

does not have this capability.

90

Figure 3.23 shows a picture that is very similar to the word count picture. Between

4 and 10 processors, the speed increases roughly linearly. After that, the speed of the

system levels off, primarily because of imbalance issues.

3.13.3 Indexing

TupleFlow is used to build every index used in this dissertation. The large variety

of indexes built in this dissertation supports our assertion that TupleFlow is a flexible

platform for distributed text processing.

Our focus for the rest of this thesis is on query effectiveness and efficiency, so

our index timings are not precise. However, TupleFlow manages to index the 426GB

GOV2 collection in an acceptable amount of time. In Section 5.2.1, we report that

indexing score-sorted indexes requires 60 hours of CPU time, but 4 hours of wall-

clock time, when using 20 processors. Anh and Moffat [11] report that their highly

optimized C implementation takes 6.5 hours to build a very similar index on a single

machine. Clearly our parser, which takes 42 hours of the indexing time, is not efficient.

However, TupleFlow is able to use this slow parser in parallel, and therefore builds

the index faster than the optimized single-machine implementation.

3.14 Weaknesses

The current implementation of TupleFlow has some weaknesses. One basic weak-

ness is its reliance on a common filesystem available to all of the nodes, which means

that the performance of the system depends critically on the performance of the shared

filesystem. For early experiments, our computational cluster used NFS to access a

particularly slow disk subsystem, and this was frequently a bottleneck for TupleFlow

jobs. Recently we have been using the Lustre distributed filesystem instead, which

has completely eliminated the storage bottleneck for our tasks.

91

Another problem with our current system is the number of files generated. It is

not uncommon in our computations to have 100 tasks generate 100 files each, for a

total of 10,000 files. Those 10,000 files are then accessed simultaneously by the next

group of 100 stage instances. While Lustre has handled this admirably, the problem

of file handle exhaustion remains. In order to scale to larger clusters (in the thousands

of processors), we will need to better at merging small files together in intermediate

stages. Currently the system knows how to insert some anonymous intermediate

stages for file merging, but performance would improve with more sophisticated merge

logic.

Most TupleFlow jobs spend the majority of runtime just sorting the tuples. This

has caused us to consider a number of different ways to sort tuples more efficiently,

often with frustrating results. One of the more promising developments is a multi-

pivot quicksort implementation which appears to improve sort times by about 30%

by exploiting the processor cache better than traditional sort methods.

Although it seems that this model of computation could be used for interactive

tasks, the TupleFlow implementation is designed for batch-mode computation, which

means there is some overhead in launching a job or a stage. This implementation

is probably not appropriate for computations that require less than 15 seconds of

processing time.

3.15 Summary

We have presented a distributed execution framework capable of processing using

a graph of dataflows between execution stages. We call our system TupleFlow because

of its explicit focus on the tuples that pass between stages. Our system has been used

to support all of the remaining work in this dissertation, and allows us to quickly

assemble distributed tasks from computational building blocks. TupleFlow is used

92

to build every index used in this dissertation, from the small collections in the next

chapter to the large indexes in Chapters 5, 6, and 7.

TupleFlow is the first of three pieces necessary to build the navigational search

indexes in 7. TupleFlow provides the flexibility and scalability to process the data.

The next chapter introduces mathematical tools that can store language modeling

probabilities in integers, so that we can translate structured query formulations into

term weights. After that, Chapters 5 and 6 introduce the index structures and query

processing techniques necessary for efficient search.

93

CHAPTER 4

BINNED PROBABILITIES

4.1 Introduction

In Section 2.2.1 we introduced the idea of storing integer values in inverted lists. In

particular, we cited the work of Anh and Moffat [10], who developed document-centric

impacts explicitly to be stored in indexes that require integer values. However, most

query evaluation strategies rely on floating point term weights. In particular, language

modeling probabilities are floating point, and are not necessarily 0 when the term does

not appear in the document because of smoothing. Later, in Chapter 7, we will show

how to use binned indexes to evaluate named page queries using detailed feature

representations, and to do that, we need a way to store those feature representations

in binned indexes.

In this chapter, we assume a generic query processing system which contains

binned integer values Bw,D in its inverted lists, where w is a word, and D is a doc-

ument. The encoding and order of these values is unimportant. We assume that

queries are evaluated by calculating the sum of these binned integer values for each

candidate document:

BD =
X

w∈Q

Bw,D

Previous work has shown how to produce integer values from pivoted TF-IDF

values or from a document-centric weighting process [7, 10]. In this work, we consider

computing these weights based on language model probabilities.

94

4.2 Method

Typical query likelihood ranking is based on a set of term probabilities combined

by multiplication:

P (Q|D) =
Y

w∈Q

P (w|D)

This can be extended to more complicated formulations, but typically the docu-

ment is ranked based on a probability which is a product of other probabilities, like

P (w|D).

There are some important problems when adapting this equation to an impact-

scored model. First, typically impact-sorted retrieval systems add values, while lan-

guage modeling is based on multiplication. Second, impact-sorted evaluation rests

on the idea that if a word doesn’t appear in the document, the document-word score

is 0. In language modeling, that score is a smoothed estimate for P (w|D) which is

small but non-zero. Finally, these sorted indexes rely on small integer values for good

compression, while language models are defined as real values between 0 and 1.

We can trade multiplication for addition by taking the log of both sides:

log P (Q|D) =
X

w∈Q

log P (w|D)

Now we are computing a quantity that is rank-equivalent to P (Q|D), but instead of

a product we use a sum, as required. However, the log P (w|D) values are negative,

instead of the positive integers we are looking for.

For each word w, we can compute the minimum value of P (w|D) over the docu-

ment collection:

Cw = min
D

log P (w|D)

If we subtract this constant from the query for each query word, we maintain rank

equivalence:

log P (Q|D) −
X

w∈Q

Cw =
X

w∈Q

(log P (w|D) − Cw)

95

Moreover, logP (w|D) − Cw is guaranteed to be positive, since Cw is defined as the

smallest value of log P (w|D) over the collection.

When Jelinek-Mercer smoothing is used, Cw = log λP (w|C). When Dirichlet prior

smoothing is used instead, P (w|D) depends on the length of D, even when w 6∈ D.

In this case, Cw = log P (w|D0), where D0 is the longest document in the collection

that does not contain w. Even in this case, Cw provides a decent approximation of

log P (w|D) when w 6∈ D. Note that log P (w|D)−Cw will equal 0 when logP (w|D) =

Cw. This is also a desirable property, since Bw,D will be implicitly zero when w 6∈ D.

Now, we define M , the negative minimum of logP (w|D):

M = −min
w,D

log P (w|D)

Note that P (w|D) ≤ 1, meaning that logP (w|D) ≤ 0. By the definition of M ,

we have:

∀w log P (w|D) ≤ 0

∀w log P (w|D) − Cw ≤ M

Now, we can compute term weights by binning the result:

B(w,D) = b
n

M
(log P (w|D) − Cw)c

where n is the number of integers we can use in the binning process. Note that while

this formula could technically evaluate to 0 when w ∈ D, in practice we make sure

that B(w,D) is at least 1 whenever w ∈ D. Because of the definition of M , B(w,D) will

never have a value greater than n.

However, most probabilities from language models do not even approach 1. This

means that many of the bin values [0, n] will never be used by the previous formula,

and therefore some of the resolution provided by n bins will be wasted.

96

Instead, we provide a saturation parameter, s. The saturation s is a probability

value, less than one. We assert that all probabilities P (w|D) > s should be treated as

if they are equal. We saturate those probabilities to make more room in the integer

space to resolve differences between important terms.

The final formula is:

B(w,D) = b
n

M + log s
(log P (w|D) − Cw)c

4.3 Exploration

In this section, we will look at some examples of the data this procedure produces

in order to explain how it works.

Looking at the Dirichlet-smoothed probability estimate for P (w|D), we have:

P (w|D) =
c(w; D) + µc(w; C)/|C|

|D| + µ

For documents that do not contain the term w, this simplifies to:

P (w|D) =
µc(w; C)/|C|

|D| + µ

The second term in the numerator, µc(w; C)/|C|, is typically much smaller than

1. For instance, the common word “congress” occurs 43,778 times in the TREC45

collection out of a total of 252,109,637 total term occurrences. For a typical µ setting

of 1500, this second term equals 0.26. For less frequent terms, this value is even

smaller. Therefore, when c(w; D) ≥ 1, P (w|D) can be loosely approximated by:

P (w|D) =
c(w; D)

|D| + µ

Notice that this value does not depend on c(w; D).

97

aardvark

Binned value

F
re

q
u
e
n
c
y

0 10 20 30 40 50 60

0
1

2
3

4
5

python

Binned value

F
re

q
u
e
n
c
y

0 10 20 30 40 50 60

0
1
0

2
0

3
0

4
0

5
0

6
0

fish

Binned value

F
re

q
u
e
n
c
y

0 10 20 30 40 50 60

0
5
0
0

1
5
0
0

2
5
0
0

3
5
0
0

congress

Binned value

F
re

q
u
e
n
c
y

0 10 20 30 40 50 60

0
1
0
0
0

3
0
0
0

5
0
0
0

Figure 4.1. Distribution of binned values for four different terms. This data comes
from the TREC45 collection, using 64 bins and saturation = 0.001.

98

For our purposes, this means that we expect the minimum value Cw to depend

on the collection frequency c(w; C)/|C|, but the distribution of P (w|D) values when

w ∈ D should follow c(w; D)/|D| closely. Therefore, we expect the resulting B(w,D)

distribution to have a similar shape across different terms, but we expect that Cw

will cause this distribution to shift based on word popularity.

Figure 4.1 shows the kind of data generated from this procedure. The term “aard-

vark” occurs just 5 times in the TREC45 collection, and therefore instances of that

term have very high bin values. In contrast, the word “congress” is very frequent,

occurring over 23,590 times. Its occurrences have very low bin values. Most of the

values lie between 7 and 9, with 26% (6,084) of the documents at bin value 8. As ex-

pected, the words share a common Gaussian-like look to the binned values, although

the less common terms are shifted strongly to the right.

4.4 Evaluation

We evaluate this process using three TREC document collections. TREC12 is

TREC disks 1 and 2, evaluated on TREC topics 51-150. TREC45 is TREC disks

4 and 5 minus the Congressional Record, evaluated on TREC topics 301-450 and

601-700. 10G is the TREC WT10G collection and topics 451-550. In all collections,

only the title portion of each topic was used.

In all experiments, we use Dirichlet prior smoothing with µ = 1500 and the

Porter2 stemmer. All indexes were built with the Galago retrieval system. All satu-

ration experiments use 32 integer bins, while all binning experiments use a saturation

parameter s = 0.001. For all collections, 0.001 was greater than the smoothed proba-

bility estimate for any word in any document (Table 4.3). The baseline experiments

are results from using traditional query likelihood ranking with no integer binning.

For simplicity, we approximate Cw as P (w|D) for a document of length 1500 that

does not contain w.

99

Bins 10G TREC45 TREC12
2 0.0492 0.1127 0.0808
4 0.1261 0.1432 0.0937
8 0.1833 0.2094 0.1778
16 0.1964 0.2393 0.2119
32 0.2027 0.2446 0.2206
64 0.2062 0.2475 0.2226
Base 0.2047 0.2469 0.2239

Table 4.1. Mean Average Precision over varying number of integer bins

Saturation 10G TREC45 TREC12
1 0.1987 0.2434 0.2159
0.1 0.2006 0.2449 0.2177

0.01 0.1996 0.2444 0.2176

0.001 0.2027 0.2446 0.2208

0.0001 0.1982 0.2470 0.2211

0.00001 0.1970 0.2467 0.2225

Table 4.2. Mean Average Precision over varying saturation parameter values. Bold
values are significant improvements over s = 1.0 (t-test, p < 0.05).

Saturation TREC12 TREC45 10G
0.001 0.000 0.000 0.000
0.0005 0.001 0.001 0.002
0.0001 0.005 0.006 0.010
0.00005 0.007 0.009 0.015
0.00001 0.016 0.020 0.030

Table 4.3. Fraction of postings that are over the saturation probability for many
saturation levels.

100

Size Bins Saturation Increase
475M 1 0.001 0
475M 2 0.001 0
480M 4 0.001 5M
494M 8 0.001 14M
522M 16 0.001 28M
556M 32 0.001 34M
597M 64 0.001 41M
643M 128 0.001 46M
707M 256 0.001 64M
767M 512 0.001 60M

Table 4.4. WT10G index sizes for various numbers of bins

4.5 Results

Results for binning are shown in Table 4.1. Across the three collections, using

32 integer bins results in a drop of about 1% in search effectiveness, while using

16 bins results in a 5% drop. Note that in previous work, others have found peak

effectiveness using just 8 bins. Typically in these systems, the weights stored in the

inverted list is multiplied by an IDF-like constant during scoring. In this model, the

weights from the inverted lists are added together without any additional weighting.

This allows for arbitrary probabilities to be stored, including those that do not have

an IDF component that is easy to factor out.

Results for saturation are shown in Table 4.2. In two of the three collections,

changing the saturation parameter results in small but significant effectiveness gains.

Table 4.3 shows that in all three collections, there exists no w and D such that

P (w|D) > 0.001. The saturation parameter allows us to allocate the small number

of bins we have more effectively by ignoring the probability space greater than s.

4.6 Summary

We have shown an algorithm for converting language modeling probabilities into

small integer term weights with little loss in retrieval effectiveness.

101

Storing ad hoc weights in integers is not an important contribution, as there are

already reasonable ways of doing that. This work is more important because it shows

a generic way of translating language model probabilities into integers, including

dealing with the problem of smoothing and background probabilities. This makes

it possible to consider using more complicated query formulations than the ad hoc

models we have seen so far.

We have now discussed two of the three pieces necessary to create the navigational

indexes coming in Chapter 7. TupleFlow manages the data processing, and this work

in binning probabilities shows how to translate query formulations into indexes. The

final step, covered in the next two chapters, is to create the index structures and

query processing algorithms to process queries efficiently.

102

CHAPTER 5

SCORE-SORTED INDEX OPTIMIZATION

This chapter is the first of two on efficient query processing strategies. This

chapter describes a query processing strategy based on the same kind of score-sorted

indexes previously described by Anh and Moffat. In order to compare directly with

their work, the evaluation in this chapter stores their document-centric impacts in

the inverted lists, although a novel query processing strategy is used to improve query

throughput.

We provide the following research contributions in this chapter:

• We present a new method for continuous accumulator pruning in score-sorted

indexes. Our method increases query throughput by 15% over the method

proposed by Anh and Moffat [11] while still remaining rank safe results (i.e.

documents are returned in the same order that they would be in an unoptimized

evaluation)

• We show how our accumulator pruning technique can be combined with inverted

list skipping to achieve a 69% total increase in throughput while maintaining

the rank safe property.

• We provide a technique for optimizing the appropriate skipping distance to use

during index based on simulation. Unlike all previous work we are aware of,

we consider different skipping distances for different list lengths. We show that

using list-length-dependent skip lengths can improve query throughput slightly.

103

• We add to results from Büttcher and Clarke [27] that indicate that storing

inverted lists in memory can significantly improve performance. We show that

the algorithm presented by Anh and Moffat [11] can evaluate queries 7 times

faster on our system than the speed quoted in their paper.

104

Number of postings processed
S

iz
e
 o

f
a
c
c
u
m

u
la

to
r

ta
b
le

OR AND REFINE IGNORE

Figure 5.1. Relative number of accumulators used during the query evaluation
process. The gray filled area represents the usage pattern in Anh and Moffat. The
thick solid line represents the decreased accumulator usage of our approach.

5.1 Algorithm

Over the past six years, impact-sorted indexes have been shown to be an effective

and efficient data structure for processing text queries [7, 10]. These indexes store

term weights directly in the index, like the SMART system [21]. However, impact-

sorted indexes use a very small number of distinct term weights; in this chapter we use

just 8 different values. The small number of values used allows these indexes to store

documents in impact order while still allowing for very high level of compression [7].

To generate effective retrieval results, care must be taken in selecting the impact

values assigned to each term. Many different approaches are possible for this task.

Anh and Moffat suggest a method for truncating BM25 values into integers, and

also more recently have introduced a document-centric model. We presented another

option in Chapter 4.

We use the Anh and Moffat document-centric impact model of for query evalua-

tion [10]. The details of this model can be found in the references. For the purposes

of this chapter, the important aspects of this model are that each term in a document

receives a integer weight, based primarily on document statistics. This is roughly

analogous to TF in a TF-IDF formulation. At query time, a query weight is com-

105

puted which is analogous to IDF. We call the document weight wt,d and the query

weight wt,q.

The retrieval score Sd for a document d, evaluated with a query Q is defined as:

Sd =
X

q∈Q

wt,qwt,d (5.1)

The index contains an inverted list for each term t. In impact-sorted indexes,

the list is separated into segments, one for each distinct value of wt,d. Each segment

contains a list of documents that share the same wt,d value.

The accumulator tuple we consider for this work is the same as used by Anh and

Moffat. Each accumulator is a triple hT, s, di, composed of a term set T , a score s,

and a document number d. The document number d and score s are traditional: the

score s records the partial score for the document d based on query processing so far.

The term set T records all terms that have been scored for this document so far. For

our experiments in this chapter, we packed this triple into a 64-bit integer, using 8

bits for the term set, 24 bits for score, and 32 bits for document identifier.

In the code shown in this section, an accumulator for a particular document d is

denoted Ad. In the system, each accumulator stores both a partial score and the set

of terms that contributed to that partial score. Therefore, we overload the Ad symbol

in this discussion so that it can be used as a score or as a set of terms. The particular

meaning should be clear based on context.

Figure 5.1 describes the different phases of the Anh and Moffat algorithm we refer

to in this section, as well as our new algorithm. The reduced accumulator usage of

our algorithm is shown by the dark black line.

All of the query evaluation methods we consider in this chapter follow the pseu-

docode shown below, although with different implementations of ProcessSegment,

TrimAccumulatorList, and CanQuit.

procedure ProcessQuery(Q)

106

A ← {} ⊲ The accumulator table

S ← {} ⊲ List of accumulator segments

for all query terms t ∈ Q do

It ← inverted list for term t

wt,q ← weight for term t

for all segments It,s ∈ It do

add ht, wt,q · s, It,si to S

end for

end for

sort S in descending order by segment score

for all segments ht, w, It,si in S do

ProcessSegment(A, t, w, It,s)

TrimAccumulatorList(A, S)

if CanQuit(A, S) then

break

end if

end for

sort A by score, return top k results

end procedure

The simplest form of evaluation evaluates every posting in every segment. We

define ProcessSegment below. TrimAccumulatorList is set to an empty function,

and CanQuit is set to a function that returns false on all inputs. In unoptimized

evaluation, the system is always in OR mode.

procedure ProcessSegment(A, q, w, Iq,s)

for all documents d in segment Iq,s do

if Ad 6∈ A and OrMode = true then

Ad ← 0

107

end if

if Ad ∈ A then

Ad ← Ad + w

end if

end for

end procedure

5.1.1 AND Processing

If we know that all documents that could possibly be in the top k are already in

A, we can update only accumulators that already exist. This is called AND mode, as

opposed to the unoptimized OR mode. When in AND mode, ProcessSegment never

adds new accumulators to the accumulator table. This is beneficial both because

we do not incur the costs of building new accumulators, and because A stays small,

leaving fewer accumulators to update and sort later.

The Anh and Moffat algorithm automatically detects when AND processing can

be used safely by monitoring two quantities: a threshold value τ and a remainder

function ρ. We describe these next.

The threshold value τ is a lower bound on the score of the last document that will

be displayed to the user. Here, we assume that k represents the number of documents

requested. We can compute a reasonable τ value by using the kth largest score in

the accumulator table A. Since the score in any given accumulator is monotonically

increasing, τ represents a lower bound on the score of the kth retrieved document at

the end of an unoptimized retrieval. If k accumulators do not exist yet, τ = 0.

For example, suppose at some point during the retrieval process, the kth largest

score found in any accumulator was 50. Therefore, τ = 50. Since none of the scores in

the accumulator table can go down, we know that every document in the k returned

to the user will have a score of at least 50.

108

The second monitored quantity is the score remainder function, ρ. This function

computes an upper bound on the total additional amount of score that an accumulator

could possibly gain through further processing of the inverted lists.

As an example, suppose we know the accumulator for some document d currently

contains a score of 15, and that we are processing a four term query: t1 t2 t3 t4. The

accumulator also records that we have already seen postings for document 15 in the

inverted lists for t1 and t3. Any remaining score for document d must come from the

inverted lists for t2 and t4. If we know that all remaining postings for t2 have scores

less than 5, and all remaining postings for t4 have scores less than 6, we know that

this accumulator can only increase by 11. Therefore, ρ({t2, t4}) = 11.

We define the function ρ as follows:

• ρ({ti}) = the largest score remaining in the inverted list for term ti

• ρ(T) =
P

t∈T ρ({t})

Remember that Q is the set all terms in the query. When τ > ρ(Q), we know that

no more accumulators need to be created. This is true because no new accumulator

will ever achieve a score greater than ρ(Q), but a score of τ is necessary to enter the

ranked list shown to the user.

With τ and ρ defined, we can now define a pruned processing algorithm:

procedure ProcessSegmentPruned(A, q, w, Iq,s)

OrMode ← τ < ρ(Q)

ProcessSegment(A, q, w, Iq,s)

end procedure

5.1.2 Trimming Accumulators

Computing τ and ρ allows us to stop adding accumulators to A, but they can also

help us identify accumulators that can be safely removed from the table.

109

As query evaluation continues, τ grows and ρ falls. If there comes a time when an

accumulator Ad contains a score low enough that no additional postings could cause

its value to rise above τ , we know it can never enter the final ranked list. Therefore,

we can prune it from consideration.

procedure TrimAccumulatorList(A,S)

for all accumulators Ad in A do

if Ad + ρ(Ad) < τ then

remove Ad from A

end if

end for

end procedure

The Anh and Moffat algorithm trims the accumulator table just once; only when

the top k results have been determined. Instead, our algorithm trims accumulators

constantly, after each inverted list segment is processed. This difference is highlighted

in Figure 5.1 by the dark black line.

Having a smaller accumulator list improves speed because there are fewer accu-

mulators to update. However, when the inverted list segments become much longer

than the table of accumulators, inverted list skipping becomes possible. Since the

inverted list is stored in document order, if we also store the accumulator table in

document order we can identify when large sections of the inverted list are not worth

decoding. By using skipping information, discussed in more detail later, we can skip

over those regions without decompressing them.

5.1.3 Ignoring Postings

At some later point during query processing, it may be possible to determine the

final order of the top k results without continuing to process postings. For this to

happen, two conditions must be satisfied:

110

• The top k documents must be fixed (that is, the identity of the top k documents

is not in question)

• No additional postings may be able to change the ordering of the top k docu-

ments.

We can check the first condition by checking all existing accumulators. All accu-

mulators Ad containing scores less than τ must satisfy the condition Ad + ρ(Ad) < τ .

Essentially this means that if the accumulator is not in the top k now, it never will

be, no matter how many additional postings we process.

We check the second condition by reviewing all accumulators with values of at least

τ . If the accumulator of the document currently in rank i could surpass the document

in rank i − 1 after processing additional postings, we cannot stop processing.

These checks lead to the following algorithm, which is used in both our algorithm

and Anh and Moffat:

procedure CanQuit(A,S)

for all accumulators Ad in A do

if Ad < τ and Ad + ρ(Ad) ≥ τ then return False

end if

end for

A0 ← all accumulators Ai in A such that Ai + ρ(Ai) > τ

sort A0 in ascending order by score

for all accumulators Ai in A do

if Ai = Ai+1 and ρ(A0
i) > 0 then return False

else if ρ(Ai) > Ai+1 − Ai then return False

end if

end for

end procedure

111

5.2 Implementation

Our system follows the impact-ordered index design proposed by Anh and Mof-

fat [7]. Inverted lists are stored in order of impact value. The bin value is encoded

first, followed by a length value. After that, the document numbers that share the

same impact value are delta encoded. This method produces indexes that are size-

competitive with other space-efficient methods, typically around 7GB for the GOV2

collection.

The inverted file is compressed using standard variable byte encoding [105]. The

vocabulary is compressed using 15-of-16 encoding, plus additional prefix encoding.

The inverted file is segmented into blocks of approximately 32K in size, although no

term spans multiple blocks. Any term with more than 32K of inverted list data gets

its own block. An abbreviated vocabulary table is used to look up the appropriate

block for a given term. A block contains a sub-vocabulary that can be efficiently

searched to find the appropriate inverted list. This blocking technique efficiently

packs infrequent terms together, so that the abbreviated vocabulary table can be

very small. In our experiments, the vocabulary table required just 2MB of space. A

similar technique has been used previously by Büettcher and Clarke [27].

We take advantage of the 64-bit address space of new commodity machines to

memory map the inverted list file into the virtual address space of the process. This

allows multiple retrieval processes to run simultaneously while sharing the same mem-

ory pages.

5.2.1 Indexing

All indexes in this chapter were created with TupleFlow. The first stage of the

TupleFlow job processes text documents, converting them into compressed lists of

(document, word, count) tuples. The next phase combines these tuples in order to

determine the inverse document frequency for each term. In parallel, another process

112

combines the list of document names into a single table. The binning stage follows,

where the IDF table is combined with the parsed word count tuples to generate binned

term weights (in this case, document centric impacts). The final stage merges the

binned lists together.

Our indexing system was written in Java, and is not optimized for speed. Indexing

the compressed GOV2 collection requires 60 hours of CPU time, with 42 hours devoted

to parsing, 16 for binning (impact generation), and the remaining 2 hours for merging.

However, the parsing and binning stages are massively parallel. In practice, we can

build a a GOV2 index in 4 hours using roughly 20 processors (this quantity varies, as

the grid of processors is shared for other research tasks). The skipping information

in the inverted lists is written in the final merge stage, so the skipping parameter can

be changed with only two hours of additional work once an index has been built.

The relatively long indexing time required by our system should not be a reflection

of the optimized indexing time for this task. Previous work in this area indicate that

impact-sorted GOV2 indexes can be built in under 7 hours on a typical desktop

computer using optimized implementations [11]. While our indexing process would

take some additional time to build inverted list skipping information, we do not expect

this would affect indexing time significantly.

5.3 Choosing Skip Lengths

Section 5.1.2 introduced the accumulator trimming process. Just trimming accu-

mulators is enough to improve retrieval speed, but performance improves much more

when trimming is used in conjunction with list skipping. When adding skip informa-

tion to an index, it makes sense to ask how long the skip distance should be. Moffat

and Zobel [74] suggest a method for determining this parameter. We use a slightly

different formulation in this chapter which remains in the same spirit. We suppose

that an inverted list segment is b bytes long and k entries exist in the accumulator

113

table. We also suppose that there are b1 skip pointers, each of which can be encoded

in 4 bytes, and that each skip pointer skips db bytes. Therefore, the expected total

number of bytes processed is:

4b1 +
kdb

2

The second term estimates the number of bytes decompressed in the inverted list.

In reality, we will never decompress a byte of the inverted list more than once, so this

has a natural upper bound of b:

4b1 + min(
kdb

2
, b)

If the number of accumulators k is longer than the length of the inverted list

segment, the system can quickly acknowledge this situation and ignore the skip in-

formation. This gives us the final revised time estimate:

T (b, k, db) =

b if k > b

4b1 + b if k ≤ b andkdb

2
> b

4b1 + kdb

2
otherwise

(5.2)

We can estimate a reasonable value of db by using data collected from the sys-

tem. We ran the 50,000 TREC 2005 Efficiency Track queries. For each inverted list

segment the system processed while in AND mode, the system recorded the length

of the segment b and number of accumulators k that the system had stored in the

accumulator table at that time. This provided us with over 500,000 data points to

use in simulation.

Note that b and k have an important relationship; if b is large, that indicates that

the inverted list is perhaps also large. If so, it is likely to be processed at the very end

of the query, when the accumulator table is almost empty. If b is smaller, we expect

114

●

●
● ● ● ● ● ● ● ● ● ●

20 50 100 200 500 1000 2000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Skip distance (bytes)

E
x
p
e
c
te

d
 p

ro
c
e
s
s
in

g
 c

o
s
t

●

 Bin lengths

10^3
10^4
10^5
10^6
10^7

Figure 5.2. The expected cost of processing bins of varying lengths with varying
skip sizes. The expected cost is expressed as a fraction of the cost of processing the
data without skipping. Expectations are based on the 50,000 TREC 2005 Efficiency
Track query set.

larger values of k. This suggests that perhaps different values of db should be used

for different inverted list segment lengths.

Figure 5.2 shows this effect. For small bin lengths (about 1000 bytes long), skip-

ping data helps very little, even at very small skip lengths. For moderate lengths (104

to 105 bytes long), very short skip distances give the largest expected performance

increase. For long lengths (over 106 bytes long), short skip distances help, but longer

skip distances are even better.

The relative frequency of encountering list segments of these different lengths is

not shown in the graph. Analysis of our logs indicate that 95% of all inverted list

bytes processed in AND mode are in segments larger than 100K. This leads us to

consider skip lengths between 50 and 200 bytes.

The analysis in this section rests on the approximation that all byte accesses cost

a similar amount. Of course, this is not the case. Reading a single byte from an

address that is not currently in cache is expensive, but the process of fetching that

115

byte will cause L1 and L2 cache lines to fill. After a single miss, nearby byte accesses

are inexpensive.

Previous work [105] indicates that skip information should be interleaved with

inverted list data, but note that this leads to inefficient cache usage; reading a single

skip entry of 3 bytes results in reading an additional 29 bytes of unwanted inverted

list data. By storing skip information densely and separately from inverted list data,

we avoid this problem.

5.4 Evaluation

We used the TREC GOV2 collection along with the TREC Terabyte Ad Hoc and

Efficiency topics for evaluation. We processed the GOV2 collection using the Porter2

English stemmer,1 and used a common list of 600 stopwords.2

In order to ensure that our system was producing reasonable results, we used

the TREC Terabyte Track ad hoc queries to evaluate its effectiveness. The system

returned 1000 results for each query. We computed mean average precision and

precision at 20 figures for each set of ad hoc queries. The results here are close

to, although slightly below, efficient systems participating in TREC. We suspect that

these results will improve as we improve our document parser. Since all optimizations

considered in this chapter are rank safe, these numbers represent the effectiveness of

the system in all optimization modes, and any improvement in baseline effectiveness

would be reflected in the optimized modes.

We used the same computer for all retrieval experiments. Our test machine is

worth approximately US$3000 in 2006. It contains two dual-core Intel Xeon 5050

“Dempsey” processors, for a total of four compute cores. Each core runs at 3GHz,

1http://snowball.tartarus.org/algorithms/english/stemmer.html

2http://goanna.cs.rmit.edu.au/˜jz/resources/stopping.zip

116

Query set MAP P@20

Topics 701-750 (2004) 0.2460 0.4949
Topics 751-800 (2005) 0.3004 0.5290
Topics 801-850 (2006) 0.2592 0.4590

Table 5.1. Effectiveness on TREC Ad Hoc Queries

●

●

●

●

●

●
●

● ● ●

2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Query length

F
ra

c
ti
o
n
 o

f
to

ta
l
q
u
e
ri
e
s

● MSN
TREC 2005
TREC 2006

Figure 5.3. Distribution of query lengths (before removing stopwords) across col-
lections.

and has a dedicated 2MB L2 cache. The cores share 8GB of RAM over a 667MHz

bus. All experiments were done in 64-bit mode, in order to permit the inverted file

to fit in the virtual address space.

Before timed runs, we ran a simple tool that memory mapped the inverted file

and read it from start to finish, in order to ensure the inverted file was completely

loaded into memory.

The results of our optimization experiments are shown in Tables 5.2 and 5.3. We

compiled a separate version of the retrieval system for each optimization method in

order to measure the highest possible speed. The mean query time for each method

(except the unoptimized method) was measured by running each query set three times

in immediate succession, then computing the mean query time for the batch. In all

cases, total variation between runs of the same method was less than 2%. Because

117

All queries Query length (terms)
Method Mean Throughput 1 2 3 4 5 6 7 8 9 10

Query count 47,543 47,543 10,899 17,347 10,888 5,489 1,965 683 233 32 6 1
Unoptimized 317.2 3.2 22 144 410 724 1149 1535 1972 3499 3197 1181
Anh/Moffat 19.0 57.8 0.2 5.5 21 44 79 119 178 366 376 89
Trimming 15.0 66.7 0.1 5.6 18 37 67 105 166 397 362 44
Trimming+Skips 10.3 97.5 0.2 2.9 10 24 49 84 145 360 342 35

Table 5.2. TREC 2005 Efficiency Queries, average query execution times, in milliseconds. Throughput is measured in queries
per second.

118

All queries Query length (terms)
Method Mean Throughput 1 2 3 4 5 6 7 8 9 10+

Query count 99,650 99,650 3,926 23,430 33,122 23,488 10,283 3,515 1,151 407 167 161
Unoptimized 1006 1.0 50.4 212.8 679 1364 2128 2855 3788 4751 5000 9644
Anh/Moffat 60.0 16.7 0.4 5.7 29 73 137 218 319 440 558 3014
Trimming 49.1 20.4 0.4 6.2 24 58 110 180 268 395 586 3180
Trimming+Skips 39.0 25.7 0.4 3.5 14 40 86 150 232 355 544 3122

Table 5.3. TREC 2006 Efficiency Queries, average query execution times, in milliseconds. Throughput is measured in queries
per second.

119

Method 1 core 2 cores 4 cores

Anh/Moffat 57.8 108.3 (1.87x) 181.6 (3.14x)
Trimming 66.7 121.1 (1.81x) 178.2 (2.67x)
Trimming+Skips 97.5 161.2 (1.65x) 228.8 (2.35x)

Table 5.4. Speedup when using multiple cores. Throughput is measured in queries
per second, while speedup is measured relative to each algorithm’s performance on a
single processor.

of the wide gulf in processing time between unoptimized and optimized methods, the

unoptimized version was run just once, with logging turned on.

In the TREC 2005 log, we found 2457 queries that did not match any documents

in the collection. In the TREC 2006 log, we found 350 queries like this. Although the

full query log was processed in each test run, we averaged query performance only

over the count of queries with at least some results returned.

To measure the average query speed for each query length, we compiled an ex-

ecutable for each method with logging turned on. The logging messages add ap-

proximately 10% to total runtime, and measure many aspects of query processing.

Each log message contains a timestamp, which we used to measure the speed of each

individual query; the mean times shown here are a result of aggregating that data.

Because of the overhead of logging, the timings for various query lengths should be

considered somewhat less reliable than the overall average speed figures.

In all of the tables except those about skipping lengths, the index was built with

a fixed skip length of 128 bytes.

To measure performance on multiple processor cores, we ran multiple processes of

the retrieval system simultaneously on the TREC 2005 query set. To avoid possible

interaction between processes, we shuffled the query order so that each process exe-

cuted the 50,000 queries in a different order. We measured the elapsed time between

starting the first query process until the slowest query process completed. The num-

ber of queries executed was divided by total elapsed time to produce a throughput

120

Throughput
Skip Length Mean Low High

64 98.94 98.80 99.20
96 94.73 93.99 95.45

128 97.95 97.60 98.18
256 97.05 96.68 97.36

Model 99.21 98.44 99.83
Model (Large) 99.14 99.05 99.27
Model (Small) 98.69 98.40 98.96

Table 5.5. Efficiency at varying skip lengths, TREC 2005 Efficiency Queries

number. We did not compute a mean query time in this case, since such a number

would be misleading: adding multiple processors does not decrease individual query

latency, but it does improve overall throughput.

5.4.1 Analysis

Figure 5.3 compares the distribution of query lengths in three different query logs.

Note that the lengths reported here are measured as the number of whitespace breaks

in the query plus 1; it therefore counts stopwords and words that do not appear in the

collection. The query lengths reported in other tables refer to the number of inverted

lists successfully fetched from the index. The TREC 2005 and TREC 2006 Efficiency

queries are used for performance analysis, while the MSN query log data is provided

for comparison purposes. 3 The TREC 2005 queries are a reasonable match for the

actual distribution of query lengths on the web.

The gulf between all of the optimizations tested here and a full evaluation is strik-

ing, especially in the case of particularly short queries. Notice how all optimizations

here complete single term queries in under a millisecond. With no disk seek overhead,

the system can jump immediately to the necessary inverted list. After twenty results

3http://research.microsoft.com/ur/us/
fundingopps/RFPs/Search 2006 RFP Awards.aspx

121

are read, query processing halts. The unoptimized system is forced to read the entire

inverted list and create an accumulator for every document in it, which takes much

more time. The percentage difference in query time falls as the queries grow longer,

but the Anh and Moffat approach completes queries in half the time of the unopti-

mized case in all cases, while our method completes them in less than a quarter of

the unoptimized time.

Our experiments with different skip lengths show surprisingly similar performance.

We ran each query set three times in succession, with the mean throughput shown,

as well as the lowest and highest throughput recorded. The differences between

many of these settings are well within the range of variability of our tests. The

small differences here are reasonable given the results in Figure 5.2; note that the

performance predicted for the largest inverted list segments (the most costly ones) are

remarkably flat across differing skip lengths. However, we note that using the results

suggested by our model (varying skip lengths based on inverted list segment length)

results in a slight increase in performance. The large model came from manually

slightly increasing the skip lengths suggested by the model, while the small model

came from manually slightly reducing the skip lengths suggested by the model. These

results seem to indicate that the predicted best setting matches the real best setting,

but again, variability in measurement does not allow us to say this with confidence.

5.4.1.1 Multiple Cores

Our multiple process experiments show the limitations of shared memory band-

width. We used a machine that is known to be bandwidth starved, and this shows

in this experiment. Using four processors simultaneously, the Anh and Moffat al-

gorithm is able to process 3.14 times as many queries as when just one processor

is used. This speedup is much higher than the 2.35 speedup of our best algorithm.

122

When four cores are used, the Anh and Moffat algorithm equals the performance of

the Trimming version of our algorithm.

We leave a detailed explanation of these numbers for future work, but it is clear

that linear scalability is not assured with multiple processors, even when no disks

are involved. However, notice that the Anh and Moffat algorithm and the Trimming

algorithm access approximately the same amount of memory during evaluation, while

the Trimming+Skips algorithm accesses less memory. We believe that the reduced

memory access allows Trimming+Skips to maintain its edge over the other algorithms,

even when memory bandwidth is scarce.

5.5 Related Work

Impact-sorted indexes are described in a series of papers by Anh and Moffat [7,

10, 11]. These indexes are a natural next step following the frequency-sorted indexes

of Persin et al. [79]. The frequency-sorted indexes suggested by Persin et al. stored

term counts instead of discretized document scores, and so these indexes still required

query-time length normalization. Additionally, this meant that inverted list entries

were not necessarily in score order. However, sorting lists by frequency allowed for a

compact and compressible index representation that was amenable to early termina-

tion, and formed a basis for the impact-sorted work.

Roughly at the same time as the first impact-sorted work, Fagin et al. proposed a

class of algorithms known as threshold algorithms [45]. These algorithms, like the ones

shown in this chapter, provide a method for efficiently computing aggregate functions

over multiple sorted lists by maintaining statistics about the data that remains to be

read. This work also considers the added possibility of random access to elements

in a list, which is somewhat similar to the skipping process we propose here. From

an information retrieval perspective, this work can be seen as a combination of the

max score work of Turtle and Flood [100] combined with the frequency and impact

123

sorted work of Persin et al. and Anh and Moffat [7, 79]. Both Brown and Strohman

et al. considered supplemental lists of top scoring documents during query evaluation

which can also be considered part of this tradition. [19, 94].

It is possible to have some of the benefits of impact-sorted lists while still sorting

by document. Lester et al. [58] show how the memory footprint of accumulators can

be significantly reduced without loss of effectiveness. Their algorithm scans inverted

lists in document order, but processes only postings with term counts larger than some

threshold. As in this work, smaller accumulator sets lead to faster query processing.

In our work, we process less index data by organizing the index for easy skipping

and query termination. Another way to process less data is to store less data in the

index. Static pruning methods remove information from the index that is unlikely to

affect query effectiveness. Carmel et al. considered this process [32]. More recently,

Büttcher and Clarke considered index pruning specifically so that the resulting index

would fit in memory, although supplemental disk indexes are sometimes used for

additional information. Query performance improves in part because of memory speed

and in part because of the smaller amount of data, although these different factors

were not analyzed in detail. More recent results from the TREC 2006 Terabyte Track

shows that other researchers have considered static pruning [29].

While the actual process of storing precomputed scores in lists is not the subject

of this chapter, there are many examples in the literature of researchers doing this.

Cleverdon remarks how, in early experiments, human indexers were asked to choose

integer term weights for documents for later use in automatic retrieval [35]. The

SMART retrieval system, at least in the 1980s and beyond, used floating point weights

stored directly in inverted lists for fast and flexible document scoring possibilities at

query time [21]. More recently, Anh and Moffat have proposed two separate schemes

for generating term weights; one involving assigning ranges of BM25 scores to integer

values, and another using a document-centric approach. [7, 10] In more recent work,

124

researchers have attempted to create a unified theoretical framework for generating

these weights [71].

Bast et al. extend the threshold algorithm ideas of Fagin et al. with an enhanced

disk IO cost model [16]. Their system contains a score-ordered index as well as a

document-ordered index (or, more accurately, an index of values accessible by docu-

ment identifier). The system processes information in score order until the cost model

indicates that it is more efficient to refine remaining accumulators by random access

to score information using the document-keyed index. By contrast, our algorithm al-

ways accesses data in score order, but additional skip information allows us to jump

rapidly to required information when the number of active accumulators drops, with-

out requiring a separate index copy. Like us, the authors use a machine with 8GB of

RAM to test their system, but data duplication causes their indexes to be too large

to fit in system RAM.

While memory-optimized processing is a relatively new field for information re-

trieval research, it is well studied in the database community. The MonetDB system

is the traditional example of a main-memory database system [111]. Along with the

more recent C-Store system [90], these database systems store relational data by col-

umn instead of by row, which significantly increases the speed of certain classes of

data warehousing database transactions. If these database systems are any indica-

tion, information retrieval data systems will continue to change as they are optimized

for main memory access.

5.6 Summary

We have presented a study of efficient query processing techniques using score-

sorted indexes. Our best technique improves query throughput by 69% over a strong

baseline. In the process of developing this method, we have shown how log data can

125

be used to determine optimal skip lengths in inverted lists based on an estimation of

total bytes read.

The combination of fast random access in memory and skip information in inverted

lists allows us to achieve performance similar to previous heavily statically pruned

systems, but without the potential loss in effectiveness [27]. Essentially the skipping

information allows us to prune the index dynamically at query time, resulting in

similarly efficient retrieval performance.

Although this chapter evaluated trimming and skipping based on an ad hoc query

formulation, the results from Chapter 4 allow us to consider evaluating more compli-

cated models, which will come in Chapter 7. The next chapter, Chapter 6, introduces

another kind of index with its own efficient query evaluation technique.

126

CHAPTER 6

DOCUMENT-SORTED INDEX OPTIMIZATION

6.1 Introduction

In Chapter 5, we presented an efficient method for evaluating queries on score-

sorted indexes. These score-sorted indexes are compelling for short queries, but have

some disadvantages for longer queries. In the worst case, suppose we process a query

like “cheese trees,” which contains two very common terms that are not likely to

occur in the same documents. The top scoring documents for “cheese” and “trees”

are likely to be very different, which could cause a score-sorted algorithm to use a

very large accumulator table. In the worst case, a score-sorted algorithm could create

an accumulator for every document in the collection, which is a substantial memory

cost.

By contrast, document-at-a-time retrieval on document-sorted indexes requires

very little memory, and has some benefits when two lists have little in common. As

we will consider in more detail in a moment, document-at-a-time retrieval computes

full document scores in one step, which eliminates the need for an accumulator table

to store partial results. This allows a document-at-a-time system to contain only the

top k results seen so far. In addition, since these are full document scores and not

partial scores, there may be some queries where document-at-a-time retrieval is able

to compute a threshold τ more quickly than retrieval on a score-sorted index.

In this chapter, we investigate retrieval with document-ordered indexes using the

binned probabilities we developed in Chapter 4. In the process, we develop a new

127

variant of Turtle and Flood’s max-score algorithm, called score skipping, which can

increase the throughput of short queries by as much as a factor of 5.

6.2 Algorithm

6.2.1 Traditional

We will use a canonical decomposition for all document-at-a-time retrieval algo-

rithms discussed here, which looks like this:

procedure Retrieval(Q, k)

R ← new PriorityQueue

L ← InvertedLists(Q)

D ← undefined

loop

D ← FindNextDocument(D, L)

if D is undefined then

break

end if

s ← ScoreDocument(D, L)

Push(R, D, s)

if |R| > k then Pop(R)

end if

MovePastDocument(D, L)

end loop

return R

end procedure

For a basic, non-optimized implementation, we use these versions of the functions.

Here we assume that we can retrieve document-ordered inverted lists from the index

128

using the function InvertedLists, and that functions CurrentDocument, CurrentScore,

and NextDocument exist, and operate on a single iterator.

The FindNextDocument function determines the next document to score. This

implementation considers the value of CurrentDocument for each list, and returns

the lowest value, or returns undefined if CurrentDocument is undefined for each list

(this is the end of list condition).

procedure FindNextDocument(L)

D ← undefined

for all lists Li in L do

if CurrentDocument(Li) is undefined then

continue

end if

if D is undefined or CurrentDocument(Li) < D then

D ← CurrentDocument(Li)

end if

end for

return D

end procedure

The ScoreDocument function computes a score for a document D. For each list

Li, this implementation considers whether Li is currently pointing to D, and if so,

adds its score contribution to S.

procedure ScoreDocument(D, L)

S ← 0

for all lists Li in L do

if CurrentDocument(Li) = D then

S ← S+ CurrentScore(Li)

end if

129

end for

return S

end procedure

Finally, the MovePastDocument procedure scans considers each inverted list, and

moves any list currently pointing to D to the next document in the list.

procedure MovePastDocument(D, L)

for all lists Li in L do

if CurrentDocument(Li) = D then

NextDocument(Li)

end if

end for

end procedure

This algorithm as shown will score every document that occurs in any of the lists

in the set L. The result queue R, at the end of the process, contains only the top k

scoring documents. At no time during the process does R contain more than k + 1

documents.

6.2.2 Max-Score

As we saw in the score-sorted index discussion, scoring every document in the lists

is a very slow way to determine the top k documents for a query. Most documents

in our set of lists L will be poor matches. We would like to quickly focus on just

the best possible matches for our query, and ignore the rest of the documents. The

max-score algorithm, proposed by Turtle and Flood [100], is a very effective way of

doing this.

In the max-score algorithm, we introduce a threshold score, τ , which is a lower

bound on the score of a document that could appear in the final ranked list when

evaluation is done. Remember that R contains a set of document scores that we have

130

seen so far during evaluation. We set τ = 0 when |R| < k. Once |R| ≥ k, we set τ to

the lowest score in R.

For max-score to work, we require a bound βi on each list Li. The value βi

represents the largest possible score we will see in list Li.

The key insight in max-score is that when βi < τ , no document that contains only

term ti will be in the final ranked list. Remember that the scores from list Li (which

represents term ti), are bounded above by βi. Therefore, any document that contains

only term ti can have a score no larger than βi. Since τ is a lower bound on the top-k

scores in the ranked list, we know that no document that contains only ti will be in

the top-k matching documents. We can extend this to sets of multiple terms, too.

Suppose we have a set of terms Q0 ⊂ Q such that:

τ >
X

ti∈Q0

βi

Then, any document in the top k results must contain one term in Q that is not in

Q0.

To use this insight, we sort the set of lists L in decreasing order by βi, so that the

highest scoring terms are first. We define a bound Θi as follows:

Θi =
X

j≥i

βj

Intuitively, Θi is the largest possible score that a document can achieve when it

contains only terms from the set Qi = {tj|j ≥ i}.

We then define two new procedures, FindNextDocument and ScoreDocument. We

start with a new FindNextDocument procedure:

1: procedure FindNextDocument(L)

2: D ← undefined

3: for all i < |L| do

131

4: if τ > Θi then break

5: end if

6: if CurrentDocument(Li) is undefined then

7: continue

8: end if

9: if D is undefined or CurrentDocument(Li) < D then

10: D ← CurrentDocument(Li)

11: end if

12: end for

13: return D

14: end procedure

This is the same as the previous implementation, except for the if block at line 3.

By adding this block, we ignore all documents D that contain only terms in Qi. As

we have seen, the condition τ > Θi allows us to safely ignore those documents.

We also define a new MovePastDocument procedure:

procedure MovePastDocument(D, L)

for all i < |L| do

if τ > Θi then break

end if

if CurrentDocument(Li) = D then

NextDocument(Li)

end if

end for

end procedure

Just as before, we have added an if block at line 2. With this change, we only

move forward in lists that might actually affect how FindNextDocument operates.

We also define a new ScoreDocument procedure:

132

1: procedure ScoreDocument(D, L)

2: S ← 0

3: for all i < |L| do

4: if τ > S + Θi then

5: break

6: end if

7: MoveToDocument(D, Li)

8: if CurrentDocument(Li) = D then

9: S ← S+ CurrentScore(Li)

10: end if

11: end for

12: return S

13: end procedure

The major change to this procedure comes at line 3. The if condition is τ > S+Θi.

Notice that at this point, S is the partial score for this document based only on lists

{Lj|j < i}, and Θi is the upper bound of the score contribution from the remaining

lists. Therefore, if τ > S+Θi, we can stop scoring this document and move to another

one.

Notice that we have added a call to the MoveToDocument procedure at line 6.

We have do to this because MovePastDocument no longer moves every list forward.

The key to the efficiency of max-score is in the MoveToDocument function. As

with our skipping optimizations in score-sorted indexes, max-score allows us to skip

over large segments of some inverted lists. By adding skip pointers into the inverted

lists, we can efficiently skip forward in the list to a particular document without

decompressing many intermediate postings. In our experiments, the max-score opti-

mization improves query throughput by a factor of 10.

133

6.2.3 Score Skipping

The efficiency of max-score comes from the ability to skip forward in an inverted

list to a particular document number. In our indexes, we have added the ability to skip

to the next document with a particular score. The resulting performance optimization

is called score skipping, and it produces throughput gains of 40 to 80% over max-score

alone. For two-term queries, score skipping improves query throughput by a factor

of 4.

With score skipping indexes, we get some additional functions that act on inverted

lists:

• CurrentBound – Returns an upper bound on the score of the current document.

• MoveSkipsToDocument – Advances the skip pointer list (and therefore the cur-

rent bound) to the given document.

• MoveToBound – Moves the list iterator to the next posting that has a score at

least as large as the score bound parameter.

• MoveToDocumentBound – Moves the list iterator to the document only if it

might have a score at least as large as the parameter.

We keep MovePastDocument unchanged, but we change ScoreDocument and

FindNextDocument. We start with FindNextDocument:

1: procedure FindNextDocument(L)

2: D ← undefined

3: if τ > Θ1 then

4: D ← MoveToBound(τ − Θ1)

5: else if

6: for all dotheni < |L|

7: if τ > Θi then break

134

8: end if

9: if CurrentDocument(Li) is undefined then

10: continue

11: end if

12: if D is undefined or CurrentDocument(Li) < D then

13: D ← CurrentDocument(Li)

14: end if

15: end for

16: end if

17: return D

18: end procedure

This function is the same as the max-score version, except for the addition of an

if block at line 2. The if condition here is τ > Θ1. Recall that Θ1 is an upper bound

on the maximum score contribution of all lists {Li|i ≥ 1}. This means that the first

list, L0, must contribute at least τ − Θ1 to the final score for a document to enter

the top k query results. Therefore, we can safely skip forward in the first list to a

document that has a term score of at least τ − Θ1.

We also change the ScoreDocument function slightly:

1: procedure ScoreDocument(D, L)

2: S ← 0

3: for all i < |L| do

4: if τ > S + Θi then

5: break

6: end if

7: MoveSkipsToDocument(D, Li)

8: if τ > S + Θi+1+ CurrentBound(Li) then

9: break

135

10: end if

11: MoveToDocument(D, Li)

12: if CurrentDocument(Li) = D then

13: S ← S+ CurrentScore(Li)

14: end if

15: end for

16: return S

17: end procedure

At line 6, we added a all to MoveSkipsToDocument, which sets up the call to

CurrentBound on the next line. The added if statement at 7 mirrors the one at 3,

but we use the tighter score bound given by the CurrentBound function instead of

the whole list bound βi.

6.3 Index Construction

6.3.1 Inverted lists

The inverted lists used in our experiments begin with a short header which includes

an upper bound b on all weight values in the list. Skip information is stored next.

Short lists, defined as those shorter than 2,048 bytes, contain no skip information.

Longer lists contain a skip pointer for approximately each 128 bytes in the inverted

list. Each skip pointer (d, o, b) consists of a document number d, a list byte offset o,

and a binned weight bound b. All values are v-byte compressed, and the document d

and offset o are also delta-encoded. Typically a skip pointer is about 5 bytes in size,

with 2 bytes for the compressed d, 2 byte for the compressed o, and 1 byte for the

compressed b. The exact meaning of the skip pointer values will be discussed later in

this section.

Inverted list postings are 2-tuples, (d, b), containing a document d and a binned

weight b. Both values are compressed, but the d value is also delta-encoded. For

136

reasonably long lists, postings are approximately 3 bytes each, with 2 bytes used for

d and 1 byte used for b.

For two consecutive skip pointers, (d0, o0, b0) and (d1, o1, b1), the second skip

pointer asserts that:

1. The posting for document d1 immediately precedes offset o1 in the inverted list.

2. All postings between o0 and o1 have document numbers di such that d0 < di ≤

d1.

3. All postings between o0 and o1 have binned weights bi such that bi ≤ b1.

The first property is necessary to allow skipping, because the postings are delta-

encoded. The d value stored in the skip pointer is the key to delta-decoding starting

at byte offset o. The second property allows efficient forward search for a posting

with a particular document number, and the third property allows efficient forward

search for a posting with a particular weight.

Note that the skip pointers are stored contiguously instead of scattered throughout

the postings. As discussed in Chapter 5, this is necessary for good cache performance.

Storing skip pointers contiguously allows the processor to efficiently prefetch skip

pointers, reduces cache pollution, and reduces the number of cache misses necessary

to skip through the list.

6.3.2 Other structures

The other structures in the index are identical to those used in the score-sorted

indexes of Chapter 5. Inverted lists are stored in lexicographic order. Smaller lists

are stored in blocks of approximately 32K each, while each big list (defined as longer

than 32K) gets its own block. Each block contains a compressed vocabulary look up

table, and the strings are delta-encoded in blocks of 16. There is also a vocabulary

file stored separately. The vocabulary file contains one word per block, making it

138

about one-thousandth the size of the inverted file. Its size allows it to be loaded into

memory quickly. This structure is meant to be efficient for disk operations: assuming

the vocabulary file is loaded in RAM, the start of any inverted list can be found with

one seek and less than 32K of sequential reading.

The document names file is also meant to be loaded into RAM, and is specifically

optimized for looking up TREC document identifiers. Any kind of document name

can be stored in the structure, but TREC document identifiers compress particularly

well, allowing all 25 million of the GOV2 names to fit easily in RAM.

6.3.3 Construction with TupleFlow

Figure 6.1 shows the TupleFlow construction process for these indexes. Files

enter the system from the filenames stage, and are passed to replicated parsing stage

instances. Each parsing stage extracts word postings, word counts, and document

names. Document names are passed to the numbering stage, which assigns an integer

to each document name. Word counts are passed to the offset generator, which

determines the minimum offset Cw for each term (as discussed in Chapter 4). Offset

data, count data, and postings are passed to replicated binning stages, which combine

all of this information into binned integer postings. These postings are then merged

into a single inverted file.

6.4 Evaluation

To show the usefulness of this query evaluation strategy, we evaluated both the

effectiveness and efficiency of our system. Since the contributions in this work are

not about query effectiveness, the point of the effectiveness test is to prove that the

results coming out of our system are reasonable. We spend additional time on the

efficiency experiments to show the nature of the efficiency improvement.

139

Binned MAP
Queries P@20 BPREF MAP Real Indri
701-750 0.4969 0.3373 0.2660 0.2593 0.2870
751-800 0.5382 0.3649 0.3137 0.3029 0.3432
801-850 0.4610 0.3485 0.2899 0.2917 0.3071

Table 6.1. Effectiveness results from the GOV2 collection.

6.4.1 Effectiveness

Our effectiveness results are shown in Table 6.1. The three binned columns are

results from the system presented in this chapter. Mean average precision values from

two other systems, described below, are shown for comparison.

Some query optimization methods for text search are unsafe, in that they provide

no guarantees of correctness. By contrast, our system is score-safe, which provides

two guarantees: first, that the scores of each document retrieved are correct, and

second, that no document with a score greater than τ is missed. This means that

the effectiveness results shown here apply to all of the query evaluation methods

mentioned in this chapter.

However, these guarantees only apply based on the weights stored in the index,

which are integer approximations of real-valued weights. Therefore, we compare

against a traditional query-likelihood evaluation using full real-valued computation,

and those results are shown in the Real MAP column. To perform this evaluation,

we used the same parsing and stemming pipeline used to create binned indexes, but

instead stored the data into a traditional document-ordered index with word posi-

tions. We used an unoptimized document-at-a-time retrieval to evaluate the queries,

using Dirichlet smoothing with µ = 1500. The binned results are better for two of

the three ad hoc query sets.

In addition, the effectiveness of a system can change based on how documents are

parsed and which stopwords are removed. This helps account for the difference in the

140

Query length (terms)
Algorithm Throughput 1 2 3 4 5 6 7 8 9 10+

Counts 47,625 10,682 17,264 11,004 5,606 2,059 721 241 39 7 1
Unoptitmized 5.2 16.2 111.4 249.0 405.8 594.7 783.5 931.3 1445.1 1388.7 727.1

Turtle/Flood max-score 46.7 3.1 22.4 23.4 31.1 45.4 61.4 88.0 146.8 173.0 11.9
Score skipping 86.6 1.3 4.4 14.5 27.1 39.6 54.9 82.9 140.2 167.5 10.7

Table 6.2. TREC 2005 Efficiency Queries, average query execution times, in milliseconds. Throughput is measured in queries
per second.

141

Query length (terms)
Algorithm Throughput 1 2 3 4 5 6 7 8 9 10+

Counts 99,946 3,291 22,536 33,170 24,146 10,883 3,788 1281 459 192 199
Unoptimized 2.0 33.2 145.1 367.0 649.7 937.9 1188.8 1471.1 1688.0 1892.1 2559.0

Turtle/Flood max-score 19.6 6.7 31.0 41.1 53.9 80.6 112.5 151.2 188.2 232.4 389.2
Score skipping 27.9 2.8 6.4 23.9 45.9 70.5 102.4 141.3 179.2 223.5 364.2

Table 6.3. TREC 2006 Efficiency Queries, average query execution times, in milliseconds. Throughput is measured in queries
per second.

142

effectiveness of our system versus the Indri results shown here. The Indri results are

supplied by Metzler et al. [70] and were official submissions to TREC.

6.4.2 Efficiency

We evaluated the efficiency of our technique using the 50,000 query TREC 2005

Efficiency query set, and the 100,000 query TREC 2006 Efficiency query set. Both of

these query sets were used in Chapter 5 to evaluate our score-sorted index techniques.

We used a computer with two Intel Xeon 5355 microprocessors, each with 4 CPU

cores, for a total of 8 CPU cores in the machine. Each core has a clock speed of

2.66GHz. Only one core was used for query processing experiments, and the rest

were left idle. The cores share 16GB of memory over a 1333MHz bus.

Our results are shown in Tables 6.2 and 6.3. The table layouts are similar to those

in Chapter 5.

Overall, we see a 85% overall improvement in throughput on the 2005 query set,

and a 42% improvement on the 2006 query set. As in Chapter 5, the longer queries

in the 2006 set not only run slower, but also are improved less than the 2005 query

set. Notice, however, that max-score helps the longer 2006 queries somewhat more

than the 2005 queries (an improvement of 9.8x versus 8.9x).

The benefit of our optimization is most pronounced on two-term queries, where

it improves throughput by a factor of 5 over max-score. To understand this result,

consider how two-term evaluation works in max-score. At the beginning of query

evaluation, every document in both inverted lists is evaluated. After a short time,

evaluation switches to where only documents that contain the less frequent term are

considered. At this point, there is nothing more max-score can do except evaluate

every document in the shorter inverted list. However, our method is able to skip

through the shorter list, evaluating only documents that might enter the ranked list.

143

Score skipping is helpful for single term queries as well, but the cost of scoring a

document in a single-term query is very low, so the benefit is not as great as with

two-term queries. For three-term queries, we see a smaller benefit, since it is less

likely that we will be able to ignore two of the three query terms. Interestingly, for

longer queries, this method reduces overall query time by about 6 milliseconds (2005)

or 10 milliseconds (2006).

Because the bulk of user queries are less than 5 words long, our efficiency gains on

these shorter queries make a big impact on final throughput. Like our score-sorted

optimizations, this technique is not as useful for longer queries.

6.5 Related Work

All modern retrieval systems use inverted lists to evaluate queries efficiently [105].

The differences between the optimizations discussed here lie in how these inverted lists

are processed. In term-at-a-time systems, the inverted list for each term is considered

separately. These systems use a table of score accumulators to keep track of partial

scores for documents that have been seen. At the end of evaluation, the accumulators

are sorted, and the top k documents (where k is a parameter given by the user) are

returned to the user. In document-at-a-time systems, the inverted lists are considered

simultaneously, much like the classical merge sort algorithm [55]. In this case, there

are no partial scores; this allows the system to maintain a list of the top k scores it

has seen so far.

One of the earliest papers on modern query optimization comes from Buckley [22].

In this approach, terms are evaluated one at a time, from the least frequent term to

the most frequent term. At some point during query evaluation, it may be possible

to show that it is not necessary to consider any more terms, as the document at rank

k + 1 cannot surpass the score of the document at rank k.

144

This approach, and approaches based on it, have the advantage that some inverted

lists will not need to be read from disk. As the gap between disk access speed and

processing speed continues to increase, this is an attractive feature. However, this

approach has trouble with duplicate (or nearly duplicate) documents in the collection.

If two documents at ranks k and k + 1 will evaluate to the same score, the Buckley

algorithm will read the inverted lists for all the terms in the query.

For large collections, the likelihood that two documents will evaluate to the same

score is greatly increased, even among documents that are not exactly the same. For

example, many legal documents follow specific templates, with only minor changes to

the template text. It is likely that many documents generated with the same template

will be the same length, and will therefore have the same score for many queries. In

order to guard against this effect, the exactness conditions for ranking order must be

relaxed. Buckley suggests a method for doing this.

Moffat and Zobel [74] evaluate two heuristics, Quit and Continue, which reduce

the time necessary to evaluate term-at-a-time queries. The Quit heuristic dynamically

adds accumulators while query processing continues, until the number of accumula-

tors meets some fixed threshold. At this point, documents are ranked by the partial

scores in the accumulators and returned to the user. The Continue strategy is similar,

in that it uses only a fixed number of accumulators. However, when the accumulator

threshold is reached, it continues query evaluation, but only considers those docu-

ments that already have accumulators allocated. The Continue method was found to

be particularly effective; at times it was more effective than the baseline system.

Lester et al. [58] remark that the continue strategy is generally quite effective, but

can have difficulties in web-scale collections. To see why this is so, suppose that the

continue strategy is used with a fixed number of accumulators k. If a query appears

where the term q1 occurs k/2 times, but term q2 appears 10k times, what should

the system do? Based on the traditional implementation of the continue strategy,

145

the system adds accumulators for all k/2 documents that contain q1, and all 10k

documents that contain q2, since after evaluation of q1, the limit of k accumulators has

not been reached. This overshoots the fixed accumulator budget and slows retrieval

significantly. Instead, evaluation could switch from full to continue mode part of the

way through evaluating q2, thus efficiently processing the query and maintaining the

proper accumulator budget, but this causes a strong bias for early documents in the

collection, which may hurt retrieval effectiveness. Instead, the authors propose that

only documents with many occurrences of q2 should be allowed to have accumulators.

As evaluation continues and the number of accumulators in use grows closer to k,

higher frequencies of term q2 are required to gain an accumulator. This biases retrieval

effort toward the highest scoring documents, which is what we prefer. The authors

find that this adaptive strategy results in efficient query evaluation with accumulator

counts as low as 0.4% of the collection size.

Brown [19] presents a method for efficiently finding a small list of candidate doc-

uments for scoring. These candidate documents are considered to be the most likely

set of documents to appear in the top k results. This short list of candidates can be

scored quickly by skipping through inverted lists. To create the candidates list for a

query, the search engine takes the union of term-specific candidates lists created at

index time. For a given term t, its candidate list contains the top documents in the

ranked list for the query t. Brown finds excellent speedups for this approach.

Broder, et al. [18], consider query evaluation in a two stage process. First, the

query is run as a Boolean and query, where a document is only scored if all terms

appear. If this process finds at least k documents, the process stops. However, if the

number of documents found is less than k, a second query is issued that considers all

documents that contain any query term.

As we discussed in some detail in the algorithms section, Turtle and Flood [100],

consider a series of query optimization techniques, including some exact methods and

146

some approximate methods. In the document-at-a-time max-score method, the top

candidate document for each term is stored in the index, like the approach taken

by Brown, except only one document is stored. This is somewhat like the Continue

approach of Moffat and Zobel, except the process is dynamic and guarantees correct

results.

The term-at-a-time max-score method is similar to the method presented by Buck-

ley. However, Turtle and Flood explore a rank-safe optimization, where terms are

evaluated until the top k documents are guaranteed to be in the correct order.

We previously proposed another document-at-a-time evaluation strategy using top

documents lists [94]. In this strategy, 1% of all postings are stored at the top of the

inverted list. The documents in these postings are always scored. A bound on the

other 99% of list postings is computed in the index. Essentially this strategy uses

max-score on 99% of the postings, and does unoptimized retrieval on the top 1% of

postings. The result is that the bounds on the lower 99% of postings can be much

tighter, causing more efficient skipping, and better overall query throughput. To

compare with our current work, this previous work splits each list into two pieces and

computes bounds on each of them. Our current work instead breaks each list into

many pieces. The result is a system that is faster, more flexible and less dependent

on parameter settings.

6.6 Conclusion

We have presented a new efficient query processing strategy for document-sorted

indexes, producing a up to an 85% throughput improvement for the kinds of short

queries encountered on the web. Two-term queries receive the largest improvement

of all, with overall throughput improving by a factor of 5.

147

While this chapter is primarily about fast document-sorted indexes, we have also

shown that the binned language models from Chapter 4 can be used as a basis for an

efficient retrieval system.

The speed boost we achieve with document-sorted indexes is encouraging because

of the advantages of document-sorted indexes: there is no unbounded accumulator

table to worry about, and most traditional indexes are document-sorted. One inter-

esting avenue for research would be to see if our binned document-sorted indexes can

be combined efficiently with a traditional document-sorted index that contains word

position information. Such an index combination could combine the flexibility of a

traditional index system with the efficiency of the technique presented here.

148

CHAPTER 7

NAVIGATIONAL SEARCH WITH COMPLEX FEATURES

7.1 Introduction

At this point in the dissertation we have presented two types of indexes, score-

sorted and document-sorted, and have shown novel query optimization strategies for

each. We showed how to perform binning on language model probabilities while

maintaining retrieval accuracy. We also described TupleFlow, our framework for

distributed computation.

In this chapter, we combine the work of all the previous chapters and apply them

to the task of navigational web search. Our previous effectiveness evaluation has been

on ad hoc query tasks, meaning the kind of recall-focused tasks that a paralegal or

intelligence analyst might perform. By contrast, web users often use search engines

as a tool for finding specific pages. This requires a different, more complex kind of

query formulation than we have seen in previous chapters.

In Chapter 2, we explored some of the differences between navigational search

and ad hoc search. In particular, the most successful navigational search systems use

complex feature-based query formulations for the highest possible accuracy. Some of

the more useful features for navigational search include title text, heading text, anchor

text, document priors (like PageRank), and phrase text. Each one of these features

provides useful evidence about the relevance of a web page to a navigational query.

While combining all of this evidence is necessary for high effectiveness, traditional

means for feature combination require large computational efforts at query time.

149

In this chapter, we move the work of feature combination and mixing into the

indexer. TupleFlow makes it possible to adapt the indexing system to extract more

features from each document, and to do so in a scalable way. The probability binning

work gives us a method for combining that feature data and storing it in integers.

The previous two chapters, on score-sorted and document-sorted indexes, give us an

efficient platform for query evaluation on these combined binned feature lists.

Our goal in this chapter is not to create a new, highly effective ranking strategy.

Instead, we want to show how a strategy that has previously been shown to be

effective can be adapted to work on our system. To do this, we adapt the named page

formulation used by UMass the TREC 2005 Efficiency Track for our system [72]. Our

effectiveness results are usually comparable to the UMass Indri results. However, by

using our efficient query processing strategies, we reduce query times from a minute

each down to a small fraction of a second.

Adapting a new ranking strategy also gives us a chance to re-evaluate our query

processing speeds. In the process, we found some very surprising results: our score-

sorted indexes performed quite poorly under the new data, while our document-sorted

indexes got faster. Later in this chapter we explore the reasons why this happened.

7.2 Model

7.2.1 Conversion

Table 7.1 shows the parameter settings developed by Metzler, and used by UMass

at TREC 2005 for named page finding. For the remainder of this chapter, we will

call this the UMass formulation. This table requires some extra explanation, because

the meaning of the weight parameters is affected by Indri’s weight normalization. If

more explanation of the Indri system is needed, see the discussion in Chapter 2.

A sample query using the UMass formulation is shown in Figure 7.1. Notice how

there are three sections to the query, starting with a priors section, then a section of

150

Feature Mixture Weight Dirichlet µ

Single Terms 0.8 -
Body 3 250
Title 1 10

Heading 1 40
Anchor 1 100
Phrases 0.1 -

Body Phrase 3 1000
Title Phrase 1 5

Heading Phrase 1 80
Priors 0.1 -
Inlinks 0.6 -

PageRank 0.4 -

Table 7.1. Parameter settings used in the UMass TREC 2005 experiments.

#combine(

0.1 #weight(0.4 #prior(pagerank) 0.6 #prior(inlinks))

1.0 #weight(0.8 #combine(#wsum(1.0 david.(anchor)

1.0 david.(title)

3.0 david.(mainbody)

1.0 david.(heading))

#wsum(1.0 fisher.(anchor)

1.0 fisher.(title)

3.0 fisher.(mainbody)

1.0 fisher.(heading))

#wsum(1.0 lemur.(anchor)

1.0 lemur.(title)

3.0 lemur.(mainbody)

1.0 lemur.(heading))

0.1 #combine(#wsum(1.0 #1(david fisher).(anchor)

1.0 #1(david fisher).(title)

3.0 #1(david fisher).(mainbody)

1.0 #1(david fisher).(heading))

#wsum(1.0 #1(fisher lemur).(anchor)

1.0 #1(fisher lemur).(title)

3.0 #1(fisher lemur).(mainbody)

1.0 #1(fisher lemur).(heading))

))

Figure 7.1. A sample query formed using the UMass TREC 2005 Named Page
formulation.

151

single terms, then a section of phrases. The outer combination gives a weight of 0.1

to the priors and 1.0 to the text portion. Inside the text portion, 0.8 of the weight

goes to body text, and 0.1 goes to two-term phrases. Within each #wsum, a weight of

3 is assigned to body text, and a weight of 1 is assigned to occurrences in particular

fields.

Within each weighted operator, Indri normalizes weights so that they sum to 1.

For example, the weights for body text, title, heading and inlink become 0.5, 0.16,

0.16, and 0.16 (instead of 3, 1, 1, and 1). If only one weight operator is used, this does

not affect how the documents are ranked. However, in a nested query like the one we

see here, the normalization affects the relative weight of the different operators. Also

note that the #combine operator works the same way, so that each term receives a

weight of 1/n, where n is the number of terms in the operator.

Galago has no such normalization, so we approximate it in our converted weights,

shown in Figure 7.2. Notice that Body, Title, Heading and Anchor are in the same

3:1:1:1 proportion as in the UMass model, but the weights are lower. The Body

Phrase, Title Phrase and Heading Phrase components are also in the same 3:1:1

proportion as the UMass model, but the actual values are lower, to reflect the lower

relative weight of the phrase component when mixed with the single terms. Finally,

we give PageRank a weight of 0.1. In the original formulation, it gets a weight of

0.4 within an operator that has an unnormalized weight of 0.1. However, since our

formulation does not use an inlink count prior, we boost PageRank somewhat to

account for its loss.

The weighting of phrases versus single terms is especially tricky because of the

natural normalization done by the #combine operator. The number of two-term

phrases used in the query is n − 1, which means the proportion of phrase terms to

text terms (n−1
n

) changes as the query gets longer. The #combine operator accounts

152

Feature Mixture Weight Dirichlet µ Length

Body 0.75 250 500
Title 0.25 10 20

Heading 0.25 40 80
Anchor 0.25 100 200

Body Phrase 0.15 1000 500
Title Phrase 0.05 5 20

Heading Phrase 0.05 80 80
PageRank 0.1 - -

Table 7.2. Parameter settings for features in our experiments.

for this somewhat by normalizing the weights given to each phrase term. Our Galago

system has no such query time normalization.

A final issue is how to set the length parameter that our binning process requires.

Recall from Chapter 4 that we need to use a fixed document length to compute a

background probability for documents that do not contain a particular term. For ad

hoc search we typically use a length that is equal to µ. However, since the µ values

in this section are so low, we found that many of our probabilities “bottomed out”

in the binning process, resulting in many postings binning to a bin value of 1. By

using a slightly larger length value, we were able to get acceptable fidelity for low

probabilities.

Since Metzler et al. used PageRank values that were trained specifically for their

query formulation, we used the same PageRank values used in their experiments

instead of calculating our own at index time.

This conversion process is certainly not clean. In a production system we would

have re-trained parameters for this kind of test instead of using this kind of error-

prone conversion method. However, part of our goal for this system is to show how

models built elsewhere can be adapted to work on this more efficient machinery, so we

wanted to test using direct conversion. Because of the error in this process, however,

this is certainly a lower bound on the effectiveness that could be achieved.

153

7.2.2 Feature Combinations

We used five different ranking functions for each query log:

• Text – Uses just single terms from the body text of each document.

• Structure – Uses title and heading text models mixed with the body text

model.

• + Anchor Text – Uses an additional anchor text model mixed with the title,

heading and text models.

• + Phrases – Mixes in body, title and heading phrase models with the previous

models.

• + PageRank – Mixes in a PageRank prior with the previous models.

Single term lists were constructed from, at most, the Body, Title, Heading, An-

chor and PageRank features. Phrase lists were constructed from Body Phrase, Title

Phrase, Heading Phrase and PageRank features. These features were mixed together

using a weighted mixture (known as #wsum in Indri). Note that this is also a diver-

gence from the original model, which uses PageRank as a separate feature. Here we

mixed PageRank into each list in order to cause authoritative documents to drift to

the top of the score-sorted index inverted lists. We hoped that this might improve

query speeds.

All indexes were built with the recommended binning setting from Chapter 4: 64

bin values and saturation = 0.001.

7.2.3 Index Construction

Figure 7.2 shows a simplified diagram of the indexing process in TupleFlow. File-

names are generated from a filenames stage, then passed to many instances of a

154

Run Type NDCG@15 MRR Success@10 Not Found

Text 0.5694 0.5203 0.7133 0.0267
Structure 0.7019 0.6661 0.8267 0.0133
+ Anchor Text 0.6999 0.6629 0.8400 0.0133
+ Phrases 0.6995 0.6626 0.8333 0.0133
+ PageRank 0.6935 0.6492 0.8133 0.0133

Table 7.3. GOV Collection, 2002 Navigational Queries

Run Type NDCG@15 MRR Success@10 Not Found

Text 0.4104 0.3579 0.5633 0.0867
Structure 0.5533 0.4989 0.7067 0.0367
+ Anchor Text 0.6776 0.6391 0.8300 0.0233
+ Phrases 0.6869 0.6481 0.8367 0.0233
+ PageRank 0.7144 0.6735 0.8633 0.0200

Table 7.4. GOV Collection, 2003 Navigational Queries

space savings was over 50%. The indexes with phrases were about 20% larger than

without (5.9GB vs. 5GB for score-sorted, 9.2GB vs. 7.7GB for document-ordered).

Note that there are many more two-term phrases than single terms, but that the

average two-term phrase occurs much less often than the average term. This helps

explain the small overhead of phrases in our vocabulary-pruned indexes.

7.3 Evaluation

To test the usefulness of our work, we need to test both effectiveness and efficiency.

Our goal was to come close to the effectiveness of top TREC systems while showing

large efficiency gains.

7.3.1 Effectiveness

Tables 7.3 and 7.4 show our results on the GOV dataset, a 20GB partial crawl of

the .GOV domain. Our results for 2003 (Table 7.4), show exactly the kind of behavior

we had hoped to see: as each new feature is added, effectiveness rises. Our results

for 2002 do not show the same kind of behavior, although there is a strong boost in

156

Run Type NDCG@15 MRR Success@10 Not Found

Ad Hoc 0.3108 0.2826 0.4365 0.2262
Text 0.3486 0.3132 0.4683 0.2460
Structure 0.4638 0.4513 0.5952 0.1706
+ Anchor Text 0.4524 0.4414 0.5635 0.1825
+ Phrases 0.4528 0.4418 0.5556 0.1825
+ PageRank 0.4289 0.4200 0.5516 0.1706

Table 7.5. GOV2 Collection, 2005 Named Page Queries

Run Type NDCG@15 MRR Success@10 Not Found

Ad Hoc 0.2706 0.2362 0.3978 0.2210
Text 0.2961 0.2570 0.4420 0.2265
Structure 0.4314 0.4153 0.5912 0.1989
+ Anchor Text 0.4248 0.4234 0.5580 0.2099
+ Phrases 0.4223 0.4190 0.5580 0.2099
+ PageRank 0.4365 0.4227 0.5912 0.1823

Table 7.6. GOV2 Collection, 2006 Named Page Queries

effectiveness as we add in title and heading postings to the index. Based on the mean

reciprocal rank (MRR) metric, our best 2002 run would have placed 11th among the

73 submitted runs [36]. Our 2003 result fares better, placing 6th of 70 submitted

runs [37]. We also calculate other metrics here, like NDCG@15, Success@10, and Not

Found, although they generally follow the trends in the MRR column. Since Indri

did not exist until 2004, we cannot compare directly to Indri TREC runs.

Tables 7.5 and 7.6 follow the 2002 results, with strong improvements as title and

heading text are added, but inconsistent results with extra features. In addition to

all of our traditional models, we added in the ad hoc index used for our experiments

in Chapter 6. This index uses the same postings as the Text index, but uses µ = 1500

instead of µ = 250. The extra smoothing results in a reasonable boost in effectiveness

when used alone. However, the UMass parameter setting was trained in concert, so

that µ = 250 was found to be an optimal parameter when mixed with the other

features.

157

Our best 2005 MRR result of 0.4513 actually slightly beats the Indri result of

0.441 at TREC 2005. Our TREC 2006 result of 0.4234 is, however, quite a bit worse

the Indri result of 0.512. Even comparing against the Indri no-phrase result of 0.4980,

our results are much worse. This result is somewhat perplexing, seeing as the Indri

results are generated from the same query formulation, and it seemed to work well

for us with the TREC 2005 queries.

In 2005 and 2006, the TREC Proceedings list just the best run from each institu-

tion instead of a list of all runs submitted. Our best 2005 result would have placed

2nd among the 8 participating institutions [34]. Our best 2006 run would have placed

5th among 11 participating institutions [29]. Again, we find our 2006 results to be

less interesting than the 2005 results, but in both cases we are performing above the

median.

Our overall results here are strong; we have successfully made use of additional

feature information in the lists, and have produced results that are close to the best

academic results.

7.3.2 Efficiency

We tested the efficiency of our system using the TREC 2005 and 2006 Efficiency

query sets, which we used previously in both Chapters 5 and 6.

Our text computer contained two Intel Xeon 5355 microprocessors, each with 4

CPU cores, for a total of 8 CPU cores. Each core has a clock speed of 2.66GHz. The

cores share 16GB of memory over a 1333MHz bus. This is the same machine used

for our document-ordered index experiments in Chapter 6. For each test, we ensured

that the entire inverted list was loaded memory before beginning the timing process.

Although the machine has 8 CPU cores, only one was used for query processing while

the other 7 were left idle.

Our query throughput figures are shown in Tables 7.7 and 7.8.

158

List Order Run Type Elapsed Throughput

Score Text 962 49.5
Score Structure 3458 13.8
Score + Anchor Text 3357 14.2
Score + Phrases 3386 14.1
Score + PageRank 3153 15.1
Document Text 804 59.3
Document Structure 374 127.5
Document + Anchor Text 313 152.2
Document + Phrases 341 139.8
Document + PageRank 356 133.8

Table 7.7. Throughput results for 2005 TREC Efficiency queries.

List Order Run Type Elapsed Throughput

Score Text 5932 16.8
Score Structure 21557 4.6
Score + Anchor Text 22924 4.4
Score + Phrases 22895 4.4
Score + PageRank 20981 4.8
Document Text 5219 19.2
Document Structure 2000 50.0
Document + Anchor Text 1623 61.6
Document + Phrases 1813 55.1
Document + PageRank 1974 50.6

Table 7.8. Throughput results for 2006 TREC Efficiency queries.

159

The score-sorted results cannot be compared directly with results from Chapter 5,

since both the machine and the data stored in the index are different. However, we can

make a comparison between these results and those in Chapter 6, where we evaluated

our document-sorted indexes with binned language models on this same machine.

Notice that query througput for the Text feature is about 30% less than we saw in

Chapter 6. We can attribute this drop to the very different smoothing parameter

used. Our Chapter 6 results used µ = 1500, while these results use µ = 250. When

using a large parameter like µ = 1500, weights for frequent terms like “cheese” are

much higher than infrequenct terms like “abacus,” because the collection frequency

is emphasized. The smaller smoothing parameter µ = 250 increases the effect that

a word like “cheese” can have in a query, which makes it difficult for max-score to

prune that inverted list.

Notice, however, that as we add features, the document-sorted results get much

faster. Using the TREC 2005 query set, throughput rises from 59.3 queries per second

to 127.5, which is 215% times faster. This is also 47% than our results with µ = 1500.

Adding in anchor text, throughput rises to 152.2 queries/second. Throughput drops

somewhat as we add phrases, presumably because we now have to consider more

inverted lists in the query evaluation process. We also see a large throughput increase

in the 2006 queries, and again our indexes with feature mixtures are achieving large

throughput gains over the Text feature alone.

As we said before, we cannot directly compare our score-sorted results here with

those in Chapter 5, since they use a different binning strategy and were produced

on a different machine. However, it does at least seem like we are seeing a similar

smoothing effect with the Text feature results. The throughput figures we see here

for just the Text feature are about 50% lower than those we saw in Chapter 5.

Interestingly, our efficiency results for the combined feature indexes are very low.

While our document-sorted indexes improved with the additional feature data, notice

160

that the score-sorted index throughput drops by over 70%. The addition of PageRank

improves speed by 10%, as the postings with high PageRank rise higher in the lists

and make pruning easier. However, this small boost is not enough to counteract the

earlier losses.

Comparing our results with those of the TREC 2006 named page task, our

throughput results are dramatically faster than all other systems. The fastest system,

from University of Melbourne, uses a score-sorted index and achieves a throughput

of just under 4 queries per second, with MRR of 0.397. No other system processes

queries faster than 1 per second.

In particular, the Indri system ran distributed across 6 CPUs and 12GB of RAM,

but required an average of 60 seconds per query. This dissertation was inspired by

Indri’s low throughput on the navigational search task. We are encouraged that our

best system runs over three orders of magnitude faster on a single CPU core (although

of a newer vintage) and 4GB additional RAM.

7.4 Conclusion

In this chapter, we adapted our system to perform the navigational search task.

We intentionally adapted our system without training to try to validate the claim that

our methods are easily adaptable to new tasks. Our effectiveness results are close to

some of the best known academic results, while setting new records in efficiency for

this task.

The dramatic lesson from this chapter is the dependence of query optimization

strategies on the data stored in the index. It is not surprising that there is some effect,

since all of the optimization strategies we consider prune postings from consideration

based on score bounds, so when document scores change we expect pruning to change.

The extent to which the score affects speed is, however, surprising.

161

This chapter brought together all of our previous work, including TupleFlow,

binned probabilities, score-sorted indexes and document-sorted indexes. All of these

contributions were necessary to generate these efficient navigational results.

162

CHAPTER 8

EXTENSIONS

8.1 Introduction

This dissertation has explored how to efficiently process queries using feature-

based query models. While building indexes and processing queries compose a major

part of the document retrieval problem, more pieces are necessary to build a modern

search engine. In this chapter we consider three key obstacles that would need to

be overcome to deploy our research findings into a production system. For each

challenge, we include a small survey of relevant state-of-the-art techniques, combined

with specific guidance on how to integrate our work with these techniques.

8.2 Update

All experiments shown in this dissertation have relied on experimental text col-

lections. For research purposes, it is desirable to use collections of documents that

do not change so that experimental results can be accurately compared between re-

searchers. However, few real text collections are unchanging. Typically users want to

search web sites, their e-mail, internal corporate documents or a collection of news

stories. All of these tasks require a search engine that can handle a collection that

changes over time.

8.2.1 Update background

Whether documents are crawled or held locally in a single system, the indexing

system needs some way to keep the index synchronized with the document collection.

163

This process is called index maintenance or incremental indexing. While there has

always been practical interest in incremental indexing, academic work on this topic

has been sparse. A small pool of researchers considered this topic between 1990 and

1995, then publications nearly stopped. In the past three years, new research has

arrived to build upon and update the assumptions in earlier work.

Cutting and Pedersen [38] present the first incremental indexing work that we

consider here. The authors use a variety of methods to store posting lists so that

they may be dynamically updated. In the first method, they store postings (word

and document location pairs) directly in the B-Tree, sorted first by word and second

by document location. This straightforward approach is used more recently by the

MySQL database engine for full-text search [2]. This method is simple and concep-

tually clean, but leaves room for improvement in both space and speed. The authors

improve on space utilization by storing the word only once, instead of in each posting.

Then, they improve on speed by using an external heap file to store list data instead

of storing the data within the tree itself.

Tomasic, Garcia-Molina and Shoens [98] focus on the storage allocation policy in

the inverted file. As in Cutting and Pedersen’s approach, the inverted file is a heap

that requires an allocation policy. Clearly the individual lists are expected to grow

over time, but leaving large gaps in the file for extra postings wastes space and time

(since the extra file space implies longer seek times between relevant data regions).

The authors explore three allocation policies: constant, block, and proportional. In

the constant case, each inverted list update operation reserves a constant amount of

extra space for new postings. The block strategy is similar, except the extended list

is forced to end on a block boundary. The proportional strategy increases leaves some

percentage of the total length of the list as empty space; this means that longer lists

have more room to grow. Additionally, the authors consider three update policies;

new, whole and fill. The new strategy writes new postings to a new location, effec-

164

tively making each inverted list a linked list of segments. The fill strategy is similar,

except each linked list segment is forced to be the same length. Finally, the whole

strategy requires that each inverted list be copied at every update, so that lists remain

contiguous. Not surprisingly, the authors find that the new strategy is quicker for

updates, while the whole strategy is preferred for queries.

Brown, Callan and Croft [20] investigate similar approaches to those of Tomasic

et al. [98]. The authors modify the INQUERY retrieval system to store its data in the

Mneme object store [75]. This abstraction of the storage layer is similar to more recent

work, such as de Vries et al. [41]. Brown et al. store inverted lists in this disk-based

object store; small lists are segregated from large ones, and small lists are allocated

in power-of-two sized blocks. Large lists are not necessarily stored sequentially, but

may be stored in a linked list of blocks. The results are largely similar to Tomasic et

al. [98].

Clarke et al. [33] present a system which, in contrast with the others shown so far,

explicitly discusses query activity while new documents are added to the collection.

Unlike the work shown in this paper, this method still adds documents to the index

in batches, but these updates are committed quickly to the index, so that pauses in

query operations are as short as possible.

The four papers mentioned here represented the state-of-the-art for index main-

tenance until recently. However, these papers were written in the mid-1990s; since

that time, computer technology has changed drastically. While all aspects of disk

performance have improved, disk capacity has outpaced transfer rates, and transfer

rates have outpaced accesses per second (inverse of seek time). It appears that mean

capacity, transfer rate, and accesses per second are following exponential curves, but

each factor has a different exponent, meaning that capacity will continue to diverge

from transfer rate, which will continue to diverge from accesses per second.

165

More details on this and the effect on retrieval system performance can be found

in Zobel, Williams and Kimberly [110]. The important factor is that research that

relies on disk performance must be revisited in order to maintain relevance.

Lester et al. [60] revived interest in the area of index maintenance with a 2004

study on the relative advantages of three strategies, in-place, re-build and re-merge.

The in-place strategy is similar to Tomasic’s whole strategy with a proportional al-

location policy. The re-build strategy simply rebuilds the entire collection, while

re-merge merges new postings into an existing index, forming a new index. The au-

thors find that for updates of less than 10000 documents, both incremental strategies

are better than rebuilding the index. Furthermore, for the smallest updates (under

100 documents), the in-place strategy is faster. However, for these small updates, the

update time per document approaches 1 second.

Especially because of the issues in transfer time, a new class of update algorithms

has been discussed in the literature recently. This strategy, called geometric parti-

tioning by Lester et al. [59], does not force inverted lists to be merged together when

postings are flushed to disk. Instead, new postings are flushed to disk in entirely new

indexes, called partitions. Queries acting upon this data must check each partition

for inverted list data, so there is a query speed penalty for maintaining too many par-

titions. Therefore, these partitions can be merged together to form larger partitions

that are more efficient to query. Since merging is costly, an efficient system must

balance the needs of query processing and efficient indexing in choosing its merging

policy.

The name geometric partitioning refers specifically to a merging policy developed

by Lester et al. [59]. For a system that can hold b document pointers in memory and

some positive integer parameter r, the ith partition is limited in size to bri pointers.

For example, if r = 3, the first disk partition is limited to holding 3 times as many

documents as the system memory can hold; if this partition grows beyond that size,

166

its data is merged into the second partition (which is limited to 9 times the system

memory). By keeping this exponential distribution of partition sizes, the total number

of indexes is kept small while still making the common case (merging in-memory data

into the first partition) fast.

Many authors ([26], [28], [59], [91], [92]) have studied the partitioning strategy

with good results. Büttcher and Lester focus primarily on balancing document in-

sertion throughput with indexing throughput, while Strohman and Croft focus on

reducing the latency of document insertions. However, previous work has focused on

throughput instead of latency of operations.

8.2.2 Application Notes

The Strohman and Croft work [92] incorporates one in-memory index and perhaps

multiple on-disk indexes. All new or updated documents are added to the in-memory

index. When memory fills up, the memory index is written to disk. Queries are

processed on each individual index, and results are merged to form a final result list.

Deleted documents are marked in a bitmap so the query processor can ignore them.

All document updates are performed as a pair of delete and insert operations.

We can use this strategy with either the score-sorted or document-sorted index

types discussed in this thesis. Our document-sorted index is easy to integrate, since

Strohman and Croft also use a document-sorted index. By assigning document num-

bers sequentially to new documents, all inverted list mutations are appends to the

in-memory index, each of which happens in amortized constant time. Using score-

sorted indexes for the in-memory index is trickier, since inverted list postings must be

added in sorted order. Using a sorted structure like a B-Tree would give us O(log n)

insertion times instead of the constant time updates with the document-sorted index.

This B-Tree would also have to hold uncompressed data in order to make fast in-

sertions possible, which would reduce query speeds and would reduce the number of

167

inverted list postings that could be held in memory before writing to disk. Because

of these drawbacks, the best approach is to use a document-sorted index for the in-

memory structure, although either score-sorted or document-sorted indexes could be

used on disk.

As we discussed at the beginning of this dissertation, most retrieval approaches

rely on some statistics about the collection for scoring, like the length of the collection

and the frequency of particular vocabulary terms. This data changes in a dynamic

collection. For traditional indexes that do not store score information, it is appro-

priate to update these statistics with each document insertion, although updating

on document delete can be difficult to do efficiently. In our case, these statistics are

used to compute binned term weights that are stored in the inverted list. If we use a

changing language model, the term weights for early documents will be incompatible

with those of later documents. Therefore, we need to keep a static statistical model

of text that is used for all score computations.

Using an unchanging model could have unknown negative effects on retrieval ef-

fectiveness. For instance, the word Flickr was a misspelling ten years ago, but now

it is a popular photo sharing website. A model of text produced ten years ago would

necessarily assume that Flickr is a very rare word, but this assumption is now in-

correct. Queries evaluated under that old text model will give far too much weight

to the supposedly rare word flickr, and presumably these queries would return poor

results.

The best approach is to periodically build a new, accurate text model and build all

indexes again. Given that our approach also requires new indexes to be built whenever

the basic feature set changes, indexes would probably need to be rebuilt periodically

just to incorporate improved document representations. The ideal update frequency

for the text model is unknown and is an appropriate topic for future research.

168

8.3 Distribution

The largest collections of documents are too large for a single machine to process

efficiently. Our results suggest that servers using current technology can handle be-

tween 10 million and 100 million documents each. Collections larger than this size will

require multiple machines in order to process queries in with acceptable interactive

response times.

8.3.1 Background

There are two obvious ways to distribute a large collection over machines. One

method is term distribution, where only a portion of the inverted lists in the index

are stored on each machine. Another method is document distribution, where the

collection is split into smaller sub-collections, with each sub-collection stored in a

self-contained index on a single machine.

The term distribution method is attractive because it reduces data access costs

versus document distribution. Suppose we wish to process a k word query on a cluster

of n nodes. A document-distributed architecture will look up k inverted lists on n

nodes, for a total of kn random accesses. The term-distributed architecture needs

just k lookups, since the inverted lists are stored sequentially. Unfortunately, the

probability that all k lists will be on the same machine is 1/nk; so even for a two

word query using a two machine cluster, we only have a 25% chance that the data is

properly located.

By contrast, a document-distributed retrieval system is very simple. Each server

holds an index for a portion of the documents. One server, sometimes called the query

broker or receptionist, sends the query out to all of the servers for processing. Each

server returns a small set of top documents for the sub-collection, including the score

for each document. The query broker merges these result lists into a single ranked

list using the document scores as a sort key. The top results are returned to the user.

169

Moffat, Webber and Zobel [73] have produced the most comprehensive work to

date on this subject. They improve term distribution performance by combining a

query processing approach called pipelining with selective data replication and a log-

based term assignment scheme. These techniques help to balance the load across

a query cluster, but the result still fails to achieve the performance of the simpler

document-distributed scheme. These results are disk-based, meaning that the high

cost of random disk accesses has been taken into account. Presumably the results

would skew even more in favor of document-distributed retrieval if all indexes were

stored in memory.

8.3.2 Application Notes

Since a document-distributed retrieval system consists of many smaller informa-

tion retrieval systems, almost any kind of retrieval algorithm can work in a document-

distributed setting. There is only one requirement: the retrieval algorithm must re-

turn scores on the the sub-collections that are comparable, since we want to be able

to merge the sub-results efficiently based only on score.

We have already discussed score compatibility in the previous section. For dis-

tribution, we need to be sure that the same statistical text model is used to build

all of the sub-indexes. This is a relatively simple requirement and does not have the

possible negative effect on retrieval effectiveness that could affect an updating system.

One other note of caution concerns the ignore phase of retrieval proposed both

by Anh and Moffat [11] and Buckley and Lewit [22]. This optimization stops the

retrieval evaluation process when the system determines that the order of the top

ranked documents has been determined. Although the scores of each document may

not be entirely determined at this point, the system can compute upper and lower

bounds for each accumulator in the table. If these bounds do not overlap, retrieval

can safely terminate.

170

Notice that this rests on the assumption that all of the retrieved documents are in

the accumulator table. This is not a correct assumption in the distributed case, since

the final ranked list of documents is a merged result from many different systems.

If the ignore phase is used during retrieval, some documents may have scores that

are incompletely specified. This may lead to the merge phase ordering documents

inappropriately because of incomparable document scores.

8.3.3 Improvements

All of the query optimization methods shown in this thesis rely on a high quality

threshold estimate in order to prune uninteresting documents. The threshold is a

lower bound on the score of the kth document in the final ranked list. The tighter

this lower bound can be, the more uninteresting documents can be skipped and the

faster retrieval will go. Preliminary experiments showed that query throughput on

score-sorted indexes improved over 50% when an oracle was used to produce tight

threshold bounds instead of estimates.

Unfortunately, in distributed retrieval, the document collection is scattered across

many machines, and this necessarily reduces the quality of threshold estimates. For

large clusters, it may make sense to have the query nodes share threshold information.

In the simplest case, all nodes could use the highest threshold computed on all of the

query nodes. In a more complicated implementation, the query broker could maintain

a running top k document list and periodically create a threshold estimate to share

with the query nodes.

This section has used the term distributed retrieval to mean retrieval using a clus-

ter of computers in parallel. This is different than the term distributed IR, which typ-

ically involves routing a query to the appropriate small collection that best matches

the information need. There is a large amount of literature on this topic, includ-

ing inference network [31] and cluster-based language model [106] approaches to the

171

problem. Routing queries to an appropriate collection may have important efficiency

gains, since query evaluation can be restricted to just the collection of documents

that contain a relevant match.

By combining threshold methods with a distributed IR technique, it may be pos-

sible to achieve a throughput increase while still returning exact answers. Running

the query first on a small collection of good documents should generate a good set

of candidate answers and a high threshold estimate. Retrieval can then proceed to

the less relevant collections. The high threshold estimate should allow most of the

documents in these less relevant collections to be skipped, but without compromising

retrieval effectiveness.

Lu [63] suggests this kind of technique, where a query is routed first to a small

collection of good documents. However, retrieval does not proceed to the rest of the

collection, so exact results are not guaranteed. By contrast, Ntoulas [76] presents

a system where exact results are guaranteed. However, there are only two collec-

tions: a small index of popular documents and a large index with less popular docu-

ments. Through clever mathematics, some queries can be provably satisfied on just

the small index without looking at the large index. It would be interesting to inves-

tigate whether multiple small topical indexes would work even more efficiently.

8.4 Query caching

The fastest way to evaluate a query is to not evaluate it at all. This is the

fundamental idea behind caching: if a query has already been evaluated, we can save

the results and display them later if someone else asks for the same result.

We performed a quick analysis of query log data provided by Microsoft in order

to estimate the potential for caching. In a query log of almost 15 million queries, we

found 7.1 million unique queries. 5.5 million of those queries were issued only once,

leaving about 1.6 million that were issues multiple times. This means that, within

172

this query log, 52.5% of queries could have been answered directly from a cache of

unlimited size. Note that this log represents a sample of queries taken over a month,

and we might find more duplication if we had all of the data for a particular day.

We also would expect more duplication within larger query logs. Also note that we

did no case normalization, stemming, or punctuation removal to these queries which

might also improve caching results.

Recent work by Baeza-Yates et al. [14] shows the diminishing returns achieved by

caching query results. As we might expect, a few queries are issued very often to

search engines, and caching these results in a major reduction in load. As the cache

gets larger, each additional result cached provides a smaller overall benefit. Baeza-

Yates et al. show that if there is competition between result caches and inverted list

data for memory space, that often storing inverted lists in memory is a better use of

space than ever larger result caches. Long and Suel [62] propose a three-level caching

scheme which caches results, inverted lists, and inverted list intersections. Fagni et

al. [46], like others, recommend that part of the query cache be made dynamic and

part static, so that the most popular queries are never evicted from the cache but that

some space is left for temporal queries (like those for breaking news events) where

popularity will change over time.

Stale data is a problem for any caching system. If we expect that the data in

our collection is constantly changing, cached query results represent the results the

system would have retrieved at some point in the past. However, our proposed index

update strategy consists of old generations of data and new generations, with each

generation stored in a different index. By caching accesses to older indexes separately

from new indexes, the freshness problem can be tightly controlled.

173

CHAPTER 9

CONCLUSION

We took a complete view of the indexing and retrieval process informed by current

information retrieval trends, like feature-based query models, massive distribution,

and main memory processing. Our resulting work ties together a novel distributed

computing architecture, a binning method for probabilities, and two optimization

strategies for two types of indexes. We have shown that our system is suitable for

producing high quality web search results efficiently.

9.1 The Broad View

Distributed computation is the future of text processing and indexing. We believe

that TupleFlow (like the similar Dryad system) is a good choice as a basis for next

generation text processing systems. We found that the tuple processing framework

was a good fit overall for text processing tasks, and that it was easy to distribute

load across a cluster of machines this way. The most difficult part of TupleFlow is its

configuration, since a TupleFlow job can easy grow to dozens of interconnected stages.

Making changes to a TupleFlow job can be tedious and requires a lot of concentration,

since the connections between stages are complex and difficult to reason about when

viewing the XML configuration files. Based on a suggestion, we plan to make a

graphical tool for building jobs so that users can see connections visually. We also

hope to allow for multi-stage sub-jobs that can be imported into a TupleFlow job.

We notice that both Dryad and MapReduce have been extended with special-purpose

174

query languages that abstract away the mechanics of job scheduling, and perhaps this

is the primary way these frameworks will be used in the future.

The optimizations presented for score-sorted and document-sorted indexes bring

produce large throughput gains concentrated at the short query lengths common on

the web. The score-sorted indexes appear to be the most efficient query processing

route, but unfortunately they are not easily compatible with other kinds of data. With

a document-sorted index, it is possible to imagine how a user might mix a binned

index with a more traditional document-sorted index that contains word positions.

This might be the appropriate approach for a system that is too disk-constrained to

hold a lot of phrase information. Notice that score skipping can still be used even

when only some of the lists have score skipping information.

In some ways, this work has been an experiment in how much work can be offloaded

to the index process. The answer is, “almost all of it.” However, building scoring

logic into the index makes it difficult to quickly change query weighting. For instance,

our named page indexes must be built again if the user wants to focus a little bit

more on the titles of documents. For many search scenarios, especially ones where

expert searchers expect a variety of search tools at their disposal, this kind of binned

indexing is probably not appropriate. An interesting subject for future work is to

determine how to make binned indexes coexist better with other types of indexes at

query time.

One of the troubles with this kind of work is the massive investment in time

necessary to build a reliable system that works on a large scale. To support this

dissertation, we built Galago1, which will soon be available as an open source toolkit.

Surprisingly, much of the academic work into efficient systems results in code that

is written but never released. Other systems, like our previous Indri system, are

1http://www.galagosearch.org

175

written to be useful as they are, but not extended. With Galago, we have attempted

to build a system which is extensible and suitable for all kinds of information retrieval

research. Galago represents over a year of development effort, and is based on lessons

learned from the Indri project. We hope that Galago can save valuable research time,

not only for end users and ranking researchers, but for systems researchers as well.

9.2 Contributions

We have established the following contributions to the literature:

• Score-ordered query optimization. We add skipping and trimming to the

best known algorithm for score-ordered query evaluation, and show a query

throughput increase of almost 70%. This algorithm is the fastest rank-safe

query evaluation method known to us for ad hoc queries.

• Document-ordered query optimization. We show how score skipping can

give some of the speed advantages of score-ordered indexes to document-ordered

indexes. Score skipping improves throughput by over 80% on a set of web

queries, with almost a 400% throughput increase for two word queries.

• TupleFlow. We present TupleFlow, a system for distributed computation on

a grid of machines. TupleFlow extends MapReduce with comparators, com-

pression, graph-based scheduling and arbitrary data flow, allowing for complex

distributed task execution, but while still allowing for single-threaded tasks.

TupleFlow is particularly suited for index building and text processing.

• Binning Probabilities. We show language model binning, which allows lan-

guage model probabilities to be used in retrieval systems that require positive

integers. We show how to solve the problem of smoothing, and how a saturation

parameter can improve overall effectiveness.

176

• Case study of named page retrieval. We show how features used in a

real web ranking function can be stored as integers to produce an effective and

efficient search engine.

177

BIBLIOGRAPHY

[1] Open MPI: http://www.open-mpi.org.

[2] MySQL AB. MySQL.

[3] Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking
by incorporating user behavior information. In SIGIR ’06: Proceedings of the
29th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 19–26, New York, NY, USA, 2006. ACM Press.

[4] James Allan, James P. Callan, W. Bruce Croft, Lisa Ballesteros, John Broglio,
Jinxi Xu, and Hongmin Shu. INQUERY at TREC-5. In Text REtrieval Con-
ference, pages 119–132, 1996.

[5] James Allan and Giridhar Kumaran. Stemming in the language modeling frame-
work. In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 455–456,
New York, NY, USA, 2003. ACM.

[6] Thomas Anderson, David Culler, David Patterson, and NOW Team. A case for
networks of workstations: NOW. In IEEE Micro, pages 54–64, February 1995.

[7] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-space ranking with
effective early termination. In SIGIR ’01: Proceedings of the 24th annual inter-
national ACM SIGIR conference on Research and development in information
retrieval, pages 35–42, New York, NY, USA, 2001. ACM Press.

[8] Vo Ngoc Anh and Alistair Moffat. Impact transformation: effective and efficient
web retrieval. In Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 3–10.
ACM Press, 2002.

[9] Vo Ngoc Anh and Alistair Moffat. Improved retrieval effectiveness through im-
pact transformation. In ADC ’02: Proceedings of the thirteenth Australasian
database conference, pages 41–47, Darlinghurst, Australia, Australia, 2002. Aus-
tralian Computer Society, Inc.

[10] Vo Ngoc Anh and Alistair Moffat. Simplified similarity scoring using term
ranks. In SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 226–
233, New York, NY, USA, 2005. ACM Press.

178

[11] Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-computed
impacts. In SIGIR ’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
372–379, New York, NY, USA, 2006. ACM Press.

[12] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concur-
rent Programming in Erlang. Prentice Hall, 1996.

[13] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler,
Joseph M. Hellerstein, and David A. Patterson. High-performance sorting on
networks of workstations. In SIGMOD ’97: Proceedings of the 1997 ACM SIG-
MOD international conference on Management of data, pages 243–254, New
York, NY, USA, 1997. ACM Press.

[14] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock,
Vassilis Plachouras, and Fabrizio Silvestri. The impact of caching on search
engines. In SIGIR ’07: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
183–190, New York, NY, USA, 2007. ACM Press.

[15] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet:
The Google cluster architecture. IEEE Micro, 23(2):22–28, 2003.

[16] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Ger-
hard Weikum. IO-Top-k: index-access optimized top-k query processing. In
VLDB’2006: Proceedings of the 32nd international conference on Very large
data bases, pages 475–486. VLDB Endowment, 2006.

[17] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In WWW7: Proceedings of the seventh international conference
on World Wide Web 7, pages 107–117, Amsterdam, The Netherlands, The
Netherlands, 1998. Elsevier Science Publishers B. V.

[18] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason
Zien. Efficient query evaluation using a two-level retrieval process. In CIKM
’03: Proceedings of the twelfth international conference on Information and
knowledge management, pages 426–434, New York, NY, USA, 2003. ACM Press.

[19] Eric W. Brown. Fast evaluation of structured queries for information retrieval.
In SIGIR ’95: Proceedings of the 18th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pages 30–38, New
York, NY, USA, 1995. ACM Press.

[20] Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast incremental in-
dexing for full-text information retrieval. In VLDB ’94: Proceedings of the
20th International Conference on Very Large Data Bases, pages 192–202, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

179

[21] Chris Buckley. Implementation of the SMART information retrieval system.
Technical report, Cornell University, Ithaca, NY, USA, 1985.

[22] Chris Buckley and Alan F. Lewit. Optimization of inverted vector searches. In
Proceedings of the 8th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 97–110. ACM Press, 1985.

[23] Chris Buckley, Mandar Mitra, Janet Walz, and Claire Cardie. Using cluster-
ing and SuperConcepts within SMART: TREC 6. Information Processing and
Management, 36(1):109–131, 2000.

[24] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. Learning to rank using gradient descent. In ICML
’05: Proceedings of the 22nd international conference on Machine learning,
pages 89–96, New York, NY, USA, 2005. ACM Press.

[25] Brendan Burns, Kevin Grimaldi, Alex Kostadinov, and Mark Corner. Flux: A
language for programming high-performance servers. In USENIX, 2006.

[26] Stefan Büttcher and Charles L. A. Clarke. Indexing time vs. query time trade-
offs in dynamic information retrieval systems. In CIKM 2005: Proceedings of the
14th ACM Conference on Infromation and Knowledge Management, Bremen,
Germany, November 2005.

[27] Stefan Büttcher and Charles L. A. Clarke. A document-centric approach to
static index pruning in text retrieval systems. In CIKM ’06: Proceedings of
the 15th ACM international conference on Information and knowledge manage-
ment, pages 182–189, New York, NY, USA, 2006. ACM Press.

[28] Stefan Büttcher and Charles L. A. Clarke. A hybrid approach to index main-
tenance in dynamic text retrieval systems. In ECIR 2006: Proceedings of the
28th European Conference on Information Retrieval, London, UK, April 2006.

[29] Stefan Büttcher, Charles L. A. Clarke, and Ian Soboroff. The TREC 2006
Terabyte track. In TREC 2006, Gaithersburg, Maryland USA, November 2007.

[30] James P. Callan, W. Bruce Croft, and Stephen M. Harding. The INQUERY
retrieval system. In Proceedings of DEXA-92, 3rd International Conference on
Database and Expert Systems Applications, pages 78–83, 1992.

[31] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching distributed col-
lections with inference networks. In SIGIR ’95: Proceedings of the 18th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 21–28, New York, NY, USA, 1995. ACM Press.

[32] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael Herscovici,
Yoelle S. Maarek, and Aya Soffer. Static index pruning for information retrieval
systems. In SIGIR ’01: Proceedings of the 24th annual international ACM

180

SIGIR conference on Research and development in information retrieval, pages
43–50, New York, NY, USA, 2001. ACM Press.

[33] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. Fast
inverted indexes with on-line update. Technical Report CS-94-40, University of
Waterloo, Waterloo, Canada, 1994.

[34] Charles L. A. Clarke, Falk Scholer, and Ian Soboroff. The TREC 2005 Terabyte
track. In TREC 2005, 2006.

[35] Cyril W. Cleverdon. The significance of the Cranfield tests on index languages.
In SIGIR ’91: Proceedings of the 14th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 3–12, New
York, NY, USA, 1991. ACM Press.

[36] Nick Craswell and David Hawking. Overview of the TREC-2002 web track. In
TREC 2002, 2003.

[37] Nick Craswell, David Hawking, Ross Wilkinson, and Mingfang Wu. Overview
of the TREC 2003 web track. In TREC 2003, 2004.

[38] D. Cutting and J. Pedersen. Optimization for dynamic inverted index main-
tenance. In SIGIR ’90: Proceedings of the 13th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
405–411, New York, NY, USA, 1990. ACM Press.

[39] Doug Cutting. Hadoop: http://lucene.apache.org/hadoop.

[40] James R. Dabrowski and Ethan V. Munson. Is 100 milliseconds too fast? In
CHI ’01: CHI ’01 extended abstracts on Human factors in computing systems,
pages 317–318, New York, NY, USA, 2001. ACM Press.

[41] Arjen P. de Vries, Johan A. List, and Henk Ernst Blok. The multi-model
DBMS architecture and XML information retrieval. In Intelligent Search on
XML Data, pages 179–191, 2003.

[42] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. In OSDI, pages 137–150, 2004.

[43] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In ACM Symposium on Operating Systems Principles (SOSP), Steven-
son, WA, October 2007.

[44] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the web fron-
tier. In WWW ’04: Proceedings of the 13th international conference on World
Wide Web, pages 309–318, New York, NY, USA, 2004. ACM Press.

181

[45] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms
for middleware. In PODS ’01: Proceedings of the twentieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 102–
113, New York, NY, USA, 2001. ACM Press.

[46] Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Orlando.
Boosting the performance of web search engines: Caching and prefetching query
results by exploiting historical usage data. ACM Trans. Inf. Syst., 24(1):51–78,
2006.

[47] Hui Fang, Tao Tao, and ChengXiang Zhai. A formal study of information
retrieval heuristics. In SIGIR ’04: Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 49–56, New York, NY, USA, 2004. ACM Press.

[48] Norbert Fuhr. Two models of retrieval with probabilistic indexing. In SIGIR
’86: Proceedings of the 9th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 249–257, New York,
NY, USA, 1986. ACM.

[49] Sanjay Ghemawat, Howard Goboff, and Shun-Tak Leung. The Google file sys-
tem. In ACM Symposium on Operating System Principles (SOSP), pages 29–43,
New York, NY, USA, 2003. ACM Press.

[50] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages.
In WWW ’05: Special interest tracks and posters of the 14th international con-
ference on World Wide Web, pages 902–903, New York, NY, USA, 2005. ACM.

[51] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: Distributed data-parallel programs from sequential building blocks.
In European Conference on Computer Systems (EuroSys), Lisbon, Portugal,
March 2007.

[52] Kalervo Järvelin and Jaana Kekäläinen. IR evaluation methods for retrieving
highly relevant documents. In SIGIR ’00: Proceedings of the 23rd annual inter-
national ACM SIGIR conference on Research and development in information
retrieval, pages 41–48, New York, NY, USA, 2000. ACM.

[53] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri
Gay. Accurately interpreting clickthrough data as implicit feedback. In SIGIR
’05: Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 154–161, New York,
NY, USA, 2005. ACM Press.

[54] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

182

[55] Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 1998.

[56] Robert Krovetz. Viewing morphology as an inference process. In SIGIR ’93:
Proceedings of the 16th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 191–202, New York,
NY, USA, 1993. ACM Press.

[57] Victor Lavrenko and James Allan. Real-time query expansion in relevance
models. IR 473, University of Massachusetts, 2006.

[58] Nicholas Lester, Alistair Moffat, William Webber, and Justin Zobel. Space-
limited ranked query evaluation using adaptive pruning. In WISE, pages 470–
477, 2005.

[59] Nicholas Lester, Alistair Moffat, and Justin Zobel. Fast on-line index construc-
tion by geometric partitioning. In CIKM ’05: Proceedings of the 14th ACM in-
ternational conference on Information and knowledge management, pages 776–
783, New York, NY, USA, 2005. ACM Press.

[60] Nicholas Lester, Justin Zobel, and Hugh E. Williams. In-place versus re-build
versus re-merge: index maintenance strategies for text retrieval systems. In CR-
PIT ’04: Proceedings of the 27th conference on Australasian computer science,
pages 15–23, Darlinghurst, Australia, Australia, 2004. Australian Computer
Society, Inc.

[61] Xiaohui Long and Torsten Suel. Optimized query execution in large search
engines with global page ordering. In VLDB, pages 129–140, 2003.

[62] Xiaohui Long and Torsten Suel. Three-level caching for efficient query pro-
cessing in large web search engines. In WWW ’05: Proceedings of the 14th
international conference on World Wide Web, pages 257–266, New York, NY,
USA, 2005. ACM Press.

[63] Zhihong Lu and Kathryn S. McKinley. Partial collection replication versus
caching for information retrieval systems. In SIGIR ’00: Proceedings of the 23rd
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 248–255, New York, NY, USA, 2000. ACM Press.

[64] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press, 2008.

[65] Marissa Mayer. Scaling Google for every user. Seattle Conference on Scalability,
June 2007.

[66] Donald Metzler. Beyond Bags of Words: Effectively Modeling Dependence and
Features in Information Retrieval. PhD thesis, University of Massachusetts,
University of Massachusetts, September 2007.

183

[67] Donald Metzler and W. Bruce Croft. Combining the language model and in-
ference network approaches to retrieval. Inf. Process. Manage., 40(5):735–750,
2004.

[68] Donald Metzler and W. Bruce Croft. A Markov random field model for term
dependencies. In SIGIR ’05: Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
472–479, New York, NY, USA, 2005. ACM Press.

[69] Donald Metzler, Victor Lavrenko, and W. Bruce Croft. Formal multiple-
bernoulli models for language modeling. In SIGIR ’04: Proceedings of the 27th
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 540–541, New York, NY, USA, 2004. ACM.

[70] Donald Metzler, Trevor Strohman, and W. Bruce Croft. Indri at TREC 2006:
Lessons learned from three Terabyte tracks. In TREC 2006, Gaithersburg,
Maryland USA, 2007. electronic proceedings only.

[71] Donald Metzler, Trevor Strohman, and W. Bruce Croft. Revisiting document-
centric impact-based retrieval models from a probabilistic perspective. In In
submission, 2007.

[72] Donald Metzler, Trevor Strohman, Yun Zhou, and W. Bruce Croft. Indri at
TREC 2005: Terabyte track (notebook version). In TREC 2005 Notebook, pages
175–180, Gaithersburg, Maryland USA, November 2006.

[73] Alistair Moffat, William Webber, and Justin Zobel. Load balancing for term-
distributed parallel retrieval. In SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 348–355, New York, NY, USA, 2006. ACM Press.

[74] Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast text re-
trieval. ACM Trans. Inf. Syst., 14(4):349–379, 1996.

[75] J. Eliot B. Moss. Design of the Mneme persistent object store. ACM Trans.
Inf. Syst., 8(2):103–139, 1990.

[76] Alexandros Ntoulas and Junghoo Cho. Pruning policies for two-tiered inverted
index with correctness guarantee. In SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 191–198, New York, NY, USA, 2007. ACM Press.

[77] Paul Ogilvie and Jamie Callan. Combining document representations for
known-item search. In SIGIR ’03: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval,
pages 143–150, New York, NY, USA, 2003. ACM Press.

184

[78] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the web. Technical report, Stan-
ford Digital Library Technologies Project, 1998.

[79] Michael Persin, Justin Zobel, and Ron Sacks-Davis. Filtered document retrieval
with frequency-sorted indexes. Journal of the American Society of Information
Science, 47(10):749–764, 1996.

[80] Rob Pike, Sean Dorward, Robert Grisemer, and Sean Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, 13(4):244–298,
2005.

[81] Jay M. Ponte and W. Bruce Croft. A language modeling approach to informa-
tion retrieval. In SIGIR ’98: Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval, pages
275–281, New York, NY, USA, 1998. ACM.

[82] M. F. Porter. An algorithm for suffix stripping. pages 313–316, 1997.

[83] Francois Raab. TPC-C - the standard benchmark for online transaction pro-
cessing (OLTP). In Jim Gray, editor, The Benchmark Handbook. Morgan Kauf-
mann, 1993.

[84] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple BM25 ex-
tension to multiple weighted fields. In CIKM ’04: Proceedings of the thir-
teenth ACM international conference on Information and knowledge manage-
ment, pages 42–49, New York, NY, USA, 2004. ACM Press.

[85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.
Design and implementation of the Sun Network Filesystem. In USENIX, pages
119–130, Portland OR (USA), 1985.

[86] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu
Kim, Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore.
Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture.
SIGARCH Comput. Archit. News, 31(2):422–433, 2003.

[87] Philip Schwan. Lustre: Building a file system for 1000-node clusters. In Linux
Symposium, 2003.

[88] Margo Seltzer, David Krinsky, Keith Smith, and Xiaolan Zhang. The case
for application-specific benchmarking. In HOTOS ’99: Proceedings of the The
Seventh Workshop on Hot Topics in Operating Systems, page 102, Washington,
DC, USA, 1999. IEEE Computer Society.

[89] Tom Spring. Three minutes with Google’s Eric Schmidt, 2002.

185

[90] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: a column-
oriented DBMS. In VLDB ’05: Proceedings of the 31st international conference
on Very large data bases, pages 553–564. VLDB Endowment, 2005.

[91] Trevor Strohman. Dynamic collections in Indri. Technical Report IR-426, Uni-
versity of Massachusetts Amherst, 2005.

[92] Trevor Strohman and W. Bruce Croft. Low latency index maintenance in Indri.
In SIGIR Workshop on Open Source Information Retrieval, August 2006.

[93] Trevor Strohman, Donald Metzler, Howard Turtle, and W. Bruce Croft. Indri:
A language model-based search engine for complex queries. In Proceedings of
the International Conference on Intelligence Analysis, 2005.

[94] Trevor Strohman, Howard Turtle, and W. Bruce Croft. Optimization strategies
for complex queries. In SIGIR ’05: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 219–225, New York, NY, USA, 2005. ACM Press.

[95] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael A. S. Potts. Information
re-retrieval: repeat queries in Yahoo’s logs. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 151–158, New York, NY, USA, 2007. ACM.

[96] Douglas Thain, Todd Tannenbaus, and Miron Livny. Distributed computing
in practice: The Condor experience. Concurrency and Computation: Practice
and Experience, 17(2-4):232–256, 2005.

[97] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. Efficient and self-tuning
incremental query expansion for top-k query processing. In SIGIR ’05: Pro-
ceedings of the 28th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 242–249, New York, NY, USA,
2005. ACM Press.

[98] Anthony Tomasic, Hector Garcia-Molina, and Kurt Shoens. Incremental up-
dates of inverted lists for text document retrieval. In SIGMOD ’94: Proceedings
of the 1994 ACM SIGMOD international conference on Management of data,
pages 289–300, New York, NY, USA, 1994. ACM Press.

[99] H. Turtle and W. B. Croft. Inference networks for document retrieval. In SIGIR
’90: Proceedings of the 13th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 1–24, New York, NY,
USA, 1990. ACM Press.

[100] Howard Turtle and James Flood. Query evaluation: strategies and optimiza-
tions. Information Processing and Management, 31(6):831–850, 1995.

186

[101] Sergei Vassilvitskii and Eric Brill. Using web-graph distance for relevance feed-
back in web search. In SIGIR ’06: Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 147–153, New York, NY, USA, 2006. ACM.

[102] William Webber and Alistair Moffat. In search of reliable retrieval experiments.
In Andrew Turpin and Ross Wilkinson, editors, Proc. 10th Australasian Docu-
ment Computing Symposium, pages 26–33, Sydney, Australia, December 2005.

[103] Matt Welsh, David Culler, and Eric Brewer. SEDA: an architecture for well-
conditioned, scalable internet services. In SOSP ’01: Proceedings of the eigh-
teenth ACM symposium on Operating systems principles, pages 230–243, New
York, NY, USA, 2001. ACM Press.

[104] Hugh E. Williams, Justin Zobel, and Dirk Bahle. Fast phrase querying with
combined indexes. ACM Trans. Inf. Syst., 22(4):573–594, 2004.

[105] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing gigabytes (2nd
ed.): compressing and indexing documents and images. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

[106] Jinxi Xu and W. Bruce Croft. Cluster-based language models for distributed
retrieval. In SIGIR ’99: Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in information retrieval, pages
254–261, New York, NY, USA, 1999. ACM Press.

[107] Yun Zhou and W. Bruce Croft. Document quality models for web ad hoc
retrieval. In CIKM ’05: Proceedings of the 14th ACM international conference
on Information and knowledge management, pages 331–332, New York, NY,
USA, 2005. ACM Press.

[108] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM
Comput. Surv., 38(2):6, 2006.

[109] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted files
versus signature files for text indexing. ACM Trans. Database Syst., 23(4):453–
490, 1998.

[110] Justin Zobel, Hugh E. Williams, and Sam Kimberley. Trends in retrieval system
performance. In ACSC, pages 241–248, 2000.

[111] M. Zukowski, P. A. Boncz, N. Nes, and S. Heman. MonetDB/X100 - a DBMS
in the CPU cache. IEEE Data Engineering Bulletin, 28(2):17–22, June 2005.

187

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Overview
	Our Approach
	Contributions
	Layout

	Background
	The inverted index
	Ranking documents
	Ranking with Impacts

	Search Tasks
	Using Additional Features
	Indri query language
	Query examples
	Probabilistic Interpretation
	Bag of words
	Adding Term Proximity
	Document Mixture Models
	Additional Document Features
	The UMass 2005 Navigational Formulation
	Query Expansion
	Stemming
	Synonyms
	Pseudo-relevance feedback

	Evaluating Effectiveness and Efficiency
	Test Collections
	Effectiveness
	Precision
	Success
	Recall
	Average Precision
	Normalized Discounted Cumulative Gain

	Efficiency
	Experiments

	Basic query evaluation
	Score-ordered evaluation
	Precomputed Phrase Lists

	Optimization Types

	TupleFlow
	Introduction
	Example
	A Traditional Approach
	Using TupleFlow

	Related Work
	Model of Computation
	Step Implementation
	Execution
	Code Generation
	Hash functions
	Comparators
	Order Compatibility
	Compression

	Built-in Steps
	Storing Streams
	Checkpointing
	Sample Tasks
	Building an Index

	Rapid Experimentation
	Experiments
	Word Count
	Balance
	Compression

	Anchor Text Combination
	Indexing

	Weaknesses
	Summary

	Binned Probabilities
	Introduction
	Method
	Exploration
	Evaluation
	Results
	Summary

	Score-sorted Index Optimization
	Algorithm
	AND Processing
	Trimming Accumulators
	Ignoring Postings

	Implementation
	Indexing

	Choosing Skip Lengths
	Evaluation
	Analysis
	Multiple Cores

	Related Work
	Summary

	Document-sorted Index Optimization
	Introduction
	Algorithm
	Traditional
	Max-Score
	Score Skipping

	Index Construction
	Inverted lists
	Other structures
	Construction with TupleFlow

	Evaluation
	Effectiveness
	Efficiency

	Related Work
	Conclusion

	Navigational Search with Complex Features
	Introduction
	Model
	Conversion
	Feature Combinations
	Index Construction

	Evaluation
	Effectiveness
	Efficiency

	Conclusion

	Extensions
	Introduction
	Update
	Update background
	Application Notes

	Distribution
	Background
	Application Notes
	Improvements

	Query caching

	Conclusion
	The Broad View
	Contributions

	Bibliography

