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ABSTRACT 

RETRIEVAL PERFORMANCE PREDICTION AND DOCUMENT QUALITY 
 

SEPTEMBER 2007 
 

YUN ZHOU 
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The ability to predict retrieval performance has potential applications in many 

important IR (Information Retrieval) areas. In this thesis, we study the problem of 

predicting retrieval quality at the granularity of both the retrieved document set as a 

whole and individual retrieved documents. At the level of ranked lists of documents, 

we propose several novel prediction models that capture different aspects of the 

retrieval process that have a major impact on retrieval effectiveness. These techniques 

make performance prediction both effective and efficient in various retrieval settings 

including a Web search environment. As an application, we also provide a framework 

to address the problem of query expansion prediction. At the level of documents, we 

predict the quality of documents in the context of Web ad-hoc retrieval. We explore 

document features that are predictive of quality. Furthermore, we propose a document 

quality language model to improve retrieval effectiveness by incorporating quality 

information.
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CHAPTER 1   

INTRODUCTION  

1.1 Retrieval Performance Prediction 

 1.1.1 Problem Overview   

In a typical retrieval system, a user forms a query according to her information 

need and a number of documents (usually in the form of a ranked list) are presented to 

the user by the retrieval system in response to the query. However, simply showing 

the user the results which are the best the system can provide does not mean these 

documents are relevant. It is important to know how effective the retrieval is. 

Although the user himself can judge the results, in many cases this is not practical 

because the user will be burdened with reading a nontrivial amount of information. 

Therefore, we desire an automatic way of assessing the quality of retrieval results.       

In this thesis, the problem of predicting retrieval performance refers to the process 

of estimating the quality of the output of a text retrieval system in response to a 

particular information need without any relevance judgments.  



 2 

User queries considered in this thesis can be classified by retrieval task into two 

categories1: informational or navigational [64]. Next we discuss these two retrieval 

tasks in detail.  

Informational queries2 are used in ad-hoc retrieval which is the task of finding a 

number of documents that are relevant to a particular information need. For example, 

“Type II diabetes” is a query of the ad-hoc retrieval task. The user who issued this 

query wants to acquire information on this disease. In other words, she wants to find 

documents relevant to a particular topic (that is, “Type II diabetes” in our example). 

The ad-hoc retrieval task has been used as the basis for the evaluation of retrieval 

models since the 1960s, but it was given the name “ad hoc” first in the TREC (Text 

REtrieval Conference) evaluations [10]. Since this task is based on topical relevance, 

that is, the semantic similarity between a given document and a query formulated by 

the user to express her information need, it is sometimes referred as “topic relevance 

task” in IR(Information Retrieval) literature. Average Precision (please refer to 

Appendix A for details) is often adopted for the evaluation of this task.   

In response to navigational queries which are typically used in a Web search 

environment, a new task called Named-Page (NP) finding task was introduced into 

TREC several years ago. This is a navigational task since the purpose of this task is to 

                                                 

1 Broder [64] divided web queries into three types: informational, navigational and 

transactional. In this thesis, we do not consider transactional queries, since so far there 
has been no widely accepted test data for such queries.        

2 In this thesis, we also call them as content-based queries and use the two terms 

interchangeably. 
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find a particular Web page, given a query describing it by name. This type of search is 

sometimes referred as “known-item” search in classic IR and information science. For 

example, “TREC proceedings” (TREC topic # NP973) is a NP query submitted by a 

user who is looking for the TREC publication page that contains TREC proceedings. 

One fundamental difference between this task and the ad-hoc retrieval task is that with 

respect to the NP task the user knows the document she searches for, while unknown 

documents may satisfy the user’s information need in the case of the ad-hoc retrieval 

task. Accordingly, generally there is only one correct answer for a NP query, as 

opposed to multiple relevant documents for a content-based (informational) query. 

Regarding evaluation, this task is often evaluated with MRR (mean reciprocal rank) 

or precision at a given cutoff rank K for low values of K (please refer to Appendix A 

for details on these two measures), since the user is assumed to be interested in only 

one result and prefer it to be ranked as high as possible.        

    Performance prediction is closely related to the task of system evaluation in 

information retrieval which refers to measuring the effectiveness of IR systems. 

System evaluation usually needs a test collection which typically consists of three 

parts: a test document collection, a test set of information needs and a set of relevance 

judgments. Examples are the classic CRANFIELD collection and the widely used 

TREC test collections. Though estimation of search quality is the common problem in 

both tasks, they differ significantly in a few ways. 

First of all, system evaluation usually needs relevance judgments while 

performance prediction does not. Though the use of relevance judgments surely leads 
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to more accurate estimation compared to zero-judgment, the high cost of producing 

relevance judgments precludes us from performing evaluation on a large scale. 

Furthermore, there are situations when obtaining relevance judgments is out of the 

question. For example, it is normal for a web search engine to receive millions of 

queries per day and providing relevance judgments for all of them or even a small 

fraction of them is practically impossible. Therefore, in the situations when relevance 

judgments are impractical to acquire, performance prediction offers an alternative 

way to provide valuable information on search effectiveness. 

Additionally, system evaluation, as its name suggests, is more system-oriented 

rather than user-oriented in the sense that only a number of carefully-selected topics 

with relevance judgments are adopted for evaluation. In other words, one system that 

is found to perform well on a test collection using one set of topics may not perform 

well when the test topics have changed. It is a well-known fact that retrieval system 

performance is highly topic-dependent.  Moreover, relevance judgments are made 

according to the stated information needs instead of actual user queries. Last, systems 

are measured by the average retrieval performance on a topic set. In short, an 

individual user may not acquire much information from the results of system 

evaluation about the performance of the retrieval in response to her specific query. In 

comparison, performance prediction focuses on the effectiveness of individual 

retrievals and accordingly is more user-oriented. 

Furthermore, performance prediction can contribute to improving the efficiency 

of system evaluation. For example, the number of judgments required for reliably 
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evaluating two retrieval systems may be reduced when the predicted retrieval 

performance of the two systems is properly incorporated.   

1.1.2 Motivation  

Compared to the long history of developing sophisticated retrieval models for 

improving performance in IR, research on predicting performance is still in its early 

stage. However, researchers have started to realize the importance of the prediction 

problem and a number of new methods have been proposed for prediction recently 

[1]. The ability to predict performance has the potential of a fundamental impact both 

on the retrieval system and the user.      

From the perspective of a retrieval system, performance prediction is the first step 

at solving the crucial problem of retrieval consistency. It is important for an 

operational retrieval system to return at least acceptable results in response to most 

requests. As we stated before, current retrieval systems are evaluated by the average 

effectiveness on a fixed set of topics. However, an individual user may not benefit 

from an improvement on average performance when her information need is not 

covered by the topics used during the evaluation. To make matters worse, it is not 

unusual in IR for a given technique to improve average performance at the expense of 

performance on individual queries. For example, it is well-known that the query 

expansion technique can improve average retrieval performance. It has not been used 

in many operational systems because of the fact that it can greatly degrade the 

performance of some individual queries. Although failures on a small number of 

topics may not have a significant effect on average performance, users who are 
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interested in these topics are unlikely to be tolerant of this kind of deficiency. A 

reliable system that always produces acceptable retrieval performance is more 

preferred by users than another system that works extremely well on a number of 

topics but occasionally makes terrible mistakes. To improve the consistency of 

retrieval systems, we first need to distinguish poorly-performing topics by 

performance prediction techniques (the strategy of picking up poorly-performing 

topics by relevance judgments is not practical and useful in most cases). The 

important role of performance prediction in improving retrieval consistency has been 

recognized by the IR community. For example, in 2003, the Robust Track [2] was 

proposed by TREC which addresses the problem of enhancing the retrieval of 

poorly-performing queries. As the first footprint in finding a solution to this problem, 

the Robust Track requires systems to rank the topics by predicted effectiveness to 

investigate the capabilities of systems to detect hard topics [2].      

Identifying low performance queries is not the only way that performance 

prediction can contribute to retrieval systems. With feedback from accurate 

performance prediction, retrieval systems are equipped with the ability to 

self-diagnose and can be adjusted to the characteristics of individual information 

requests. Performing query-centered processing is a very desirable function for ad hoc 

retrieval systems. One way to do query-centered processing is to selectively use IR 

models based on performance prediction for the query. For example, in terms of the 

query expansion technique mentioned above, if we could determine in advance when 

the technique would fail by utilizing performance prediction, we would selectively 
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apply this technique on a per query basis3. In fact, the Reliable Information Access 

(RIA) workshop organized by NIST in 2003 manually analyzed the causes of retrieval 

failure of several IR systems on several queries [3]. The primary goal of the workshop 

was to understand the roles of both system-related factors and query- related factor in 

retrieval failure. One of the major conclusions from their analysis was that if a system 

realizes the problem associated with a given query, then current IR techniques can 

improve results for a majority of the poorly-performing queries [3]. This suggests that 

selectively applying techniques on a per-query basis can adapt a retrieval system more 

to users’ information needs.     

Other than guiding retrieval systems to selectively apply IR techniques, current 

retrieval models can directly take advantage of performance prediction. For example, 

it is well-known that setting parameters in IR models plays a crucial role in retrieval 

effectiveness. Even theoretically motivated models like the language models reply 

heavily on parameter tuning to achieve good performance [4]. Usually there are two 

ways to estimate model parameters. One is by human experience and the other is to 

automatically choose parameters using training data. In essence, both ways depend on 

observed data4 to set model parameters that will be used for unseen data. However, 

we know that the performance of retrieval systems can vary considerably on different 

queries and therefore we lack confidence in whether a model that is tuned based on 

                                                 

3 This problem will be addressed in section 3.5 as an application of performance 

prediction. 

4 Human experience usually comes from observed data. 
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one set of queries will still perform well on another set of entirely new queries. If we 

have a reliable predictor of retrieval performance, we can either directly maximize the 

predicted performance or at least acquire useful information from the predicted 

performance when tuning model parameters.  

 On the other hand, from the perspective of a user, performance prediction 

provides valuable feedback that can be used to direct a search. For example, when the 

retrieved documents are estimated to be of low quality, the user may rephrase his 

query or be more willing to cooperate with the system to improve retrieval 

effectiveness, such as providing relevance feedback. With the help of prediction, the 

user can quickly form a good query to acquire satisfying results for her information 

need. Otherwise, the user must spend time reading the returned documents to rewrite 

the query when the results for the initial query are not satisfactory. Note that 

formulating a well-defined information request is not an easy task for an ordinary 

user, as the user may be unaware of the inherent ambiguity in her query which usually 

results in a poor retrieval performance. An example is the one term query “apple” that 

has at least the following three possible meanings: a kind of fruit called apple, the 

Apple computer, the Big Apple (the nickname of New York City). Even what an 

experienced user believes to be a well-defined query may, in fact, perform poorly 

depending on the system and the data. For instance, suppose a user interested in the 

development of an application of ocean remote sensing issues the query “ocean 

remote sensing” which seems a clearly-defined query. However, according to the 

results reported in [5], all the retrieval systems in [5] fail to recognize the importance 
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of the aspect of “ocean” and there is little chance for the user to forecast this kind of 

failure.    

In addition to being a useful tool from the perspective of both user and system, 

performance prediction can play an important role in user-system interaction. As we 

stated above, even an expert may find it difficult to formulate an effective query that 

accurately reflects her information need, since much information about the retrieval 

system, is unavailable to the user.  For an ambiguous query issued, instead of shifting 

the burden of query disambiguation to the retrieval system, an alternative way is to 

invoke use-system interaction and gather more information from the user. One 

example of user-system interaction is query refinement that allows the user to 

interactively specify her information need by selecting new terms suggested by the 

system.      

One important issue in user-system interaction is when to apply it, since 

interaction is not necessary for every query. In fact, selecting a well-formed query for 

interaction can not only degrade the user experience but also make the retrieval 

system inefficient. One possible solution to this problem is applying query 

performance prediction. For example, we can invoke interaction only when the 

predicted query performance is below some threshold. Some researchers have started 

to work on incorporating performance prediction in interaction [63]. We believe that 

integrating performance prediction into user-system interaction can results in the 

design of more intelligent and user-friendly information retrieval systems.   
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Retrieval performance prediction also has a natural application to the field of 

distributed information retrieval where the retrieval process is performed over 

multiple databases. Performance predictors that run on each database will provide 

helpful information for database selection and merging results from all databases, 

which are two fundamental problems in distributed IR. Elad et al [6] have shown 

some early work in this direction.     

Performance prediction, as we described above, has potential applications in 

many important IR areas such as system evaluation, user-system interaction, ranking 

strategies and distributed IR. Furthermore, to develop a good performance predictor, 

we require a deep understanding of the strength and weakness of retrieval techniques 

on a per query basis. We also need to understand the relationship of the query to the 

system as a whole. These not only enable us to comprehend the fundamentals behind 

the observed performance, but also to provide query-centered processing either by 

selectively applying multiple IR models or by adjusting each model on a per-query 

basis. This will be appreciated by individual users and represents a novel approach to 

IR research over the “single fixed model for all queries” which has prevailed so far. 

1.1.3 Challenges   

 The major difficulty in performance prediction comes from the fact that many 

factors have an impact on retrieval performance. Each factor affects performance to a 

different degree and the overall effect is hard to predict accurately. Typically, the 

following three aspects are most responsible for retrieval effectiveness.  

  (1) Query Quality   
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  Some queries, like the query “apple” described above, are ambiguous and it is 

not easy for a retrieval system to understand the true information need of a user 

without more information beyond the query itself. Sometimes there is little ambiguity 

in every single query term, but the whole query is still obscure. Such an example is 

TREC topic 413 “what are new methods of producing steel”. The interpretation of 

“new methods” is unclear even for humans. As we can see, the type of failure is 

difficult for performance predictors to catch since it needs natural language 

understanding.  

 (2) Collection Characteristics 

   The nature of collections can affect performance in unobvious ways. For 

example, intuitively the more relevant documents that exist in a collection for a given 

query, the higher the retrieval precision will be. However, Giambattista et al. reported 

[20] that they observed a negative correlation between the number of relevant 

documents and the precision (measured by mean average precision or precision at top 

10 documents) on the TREC disk 4 and 5 using 100 TREC queries. Their explanation 

is that a small number of relevant documents suggest that the query is specific and is 

relatively easy for the system to retrieve. Another example is that if a collection 

contains quite a few non-relevant documents that are similar to some relevant 

documents, the retrieval performance will be lower.  

(3) Retrieval Model 

   A typical retrieval model consists of three parts: query representation, 

document representation and a retrieval function that explicitly or implicitly estimate 
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the probability of relevance based on the query and document representation. The 

three parts interact with each other in a complicated way and every part can exert a 

significant impact on retrieval performance either alone or with the others. Even 

implementation details such as stemming may result in failure for a given query. For 

example, as reported in [5], being unable to stem “Antarctica” to “Antarctic” caused 

the failure of TREC topic 353 (“Antarctica exploration”). 

 Usually a combination of factors affects performance and it is difficult to 

separate one factor from the others, making the prediction problem more complicated. 

For instance, suppose a user who is a soccer fan issues the query “World Cup” against 

a collection to search for articles about World Cup soccer. If the collection happens to 

contain a number of documents about World Cup chess which can be highly ranked 

by the system, the performance will be low. If there is no other kind of “World Cup ” 

in the collection, the user’s query will be effective. In this example, we can not simply 

attribute the problem to query ambiguity or collection characteristics. It is the 

relationship of the query to the collection that causes the problem. Considering the 

fact that the user’s query, the collection and the retrieval model act as a whole on the 

overall retrieval performance, we think that any predictor that takes only one aspect 

into account is not likely to be accurate. 

In addition to the above challenges, the advent of the Web further complicates the 

prediction task. Due to the popularity and influence of the Web, next we discuss some 

of the major challenges to prediction posed by web search environments.       
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First, web collections, which are much larger than conventional test collections, 

include a variety of documents that are different in many aspects such as quality and 

style. Prediction techniques can be vulnerable to these characteristics of web 

collections. For example, some state-of-the-art prediction techniques perform 

significantly worse on a large web collection compared to other non-web collections 

[7,8]. 

Furthermore, web search goes beyond the scope of the ad-hoc retrieval task based 

on topical relevance. For example, the Named-Page (NP) finding task, which is a 

navigational task, is also popular in web retrieval. Query performance prediction for 

the NP task is still necessary since NP retrieval performance is far from perfect. In 

fact, according to the report on the NP task of the 2005 Terabyte Track [9], about 40% 

of the test queries perform poorly (no correct answer in the first 10 search results) 

even in the best run from the top group. To our knowledge, little research has 

explicitly addressed the problem of NP-query performance prediction. Prediction 

models devised for content-based queries will be less effective for NP queries 

considering the fundamental differences between the two.   

Third, in real-world web search environments, user queries are usually a mixture 

of different types and prior knowledge about the type of each query is generally 

unavailable. The mixed-query situation raises new problems for query performance 

prediction. For instance, we may need to incorporate a query classifier into prediction 

models. Despite these problems, the ability to handle this situation is a crucial step 
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towards turning query performance prediction from an interesting research topic into 

a practical tool for web retrieval. 

1.2 Document Quality 

In the problem of retrieval performance prediction discussed above, we predict 

retrieval quality at the granularity of the retrieved document set as a whole. Here we 

are interested in predicting the quality of individual documents within the context of 

Web ad-hoc retrieval. Traditionally, retrieval models for ad-hoc retrieval have 

focused on capturing topics through word distributions. For example, in the query 

likelihood language modeling approach [11], documents are ranked by the probability 

that their underlying language model can “generate” the query. Other factors relating 

to document content, such as the quality or genre of the text, have had very little 

impact. However, with the advent of the Web and test collections derived from the 

Web, it is clear that these other content-related document properties are much more 

important. In particular, due to the relative simplicity of generating and publishing 

web documents, the quality and style of web documents varies much more widely 

than the newswire-based TREC test collections. Web pages vary in quality from 

well-written articles to pages with very little or even no real content.     

Empirical studies play an important role in IR research and many successful 

information retrieval (IR) systems heavily rely on the empirical tuning of model 

parameters. Therefore the performance of IR models typically has a close relationship 

with the characteristics of test collections. When the characteristics of the test 

collections change, as with the introduction of large Web-based collections, problems 
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with the retrieval model can be exposed.  For example, the query ‘artificial 

intelligence’ (TREC topic 741), when used to retrieve Web pages (using the query 

likelihood model) from the TREC GOV2 web collection [10], ranks lists of AI 

conferences or papers at the top, although these do not directly describe artificial 

intelligence at all. They are highly ranked only because the two query terms occur 

many times in the documents. In other words, the retrieved documents are topically 

relevant but are not the right type of document. In this paper, we consider this type of 

retrieval failure (and others described later) to be related to document “quality” and 

propose methods for allowing quality to influence ranking.  

There has been a considerable amount of research related to Web page quality 

based on links. PageRank[12] and HITS[13] are two of the best-known algorithms for 

link structure analysis. The basic idea behind these link-based models is that a page to 

which many documents link is popular and therefore is likely to be of high quality. 

While link-based methods are clearly effective at estimating popularity, this is only 

one aspect of document quality.  Link information has been shown to be valuable for 

the home-page and named-page finding TREC tasks [14,15], but participants in recent 

TREC web tracks [16,17,18] consistently reported that there is no conclusive benefit 

from the use of link information for the ad hoc task (sometimes called “content-based 

retrieval”). In fact, incorporating link information can sometimes even hurt retrieval 

performance [16,17,18]. 

A major goal of this study is improving the performance of Web ad-hoc retrieval 

by exploiting document quality information. Specifically, we are interesting in these 
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two problems: (1) how to measure quality, and (2) how to incorporate quality 

information into a retrieval model.  

 

1.3 Contributions 

 1.3.1 Performance Prediction  

The work in this thesis helped to define the area of retrieval performance 

prediction. The experiments are the most comprehensive yet done in terms of test 

collections and query types used. These experiments show that satisfactory prediction 

accuracy can be achieved across a variety of search scenarios.    

In particular, one of our performance prediction techniques, WIG (weighted 

information gain), demonstrates superiority over most of the others when it comes to 

Web search. WIG provides a uniform framework to deal with both content-based and 

named-page finding queries. To our knowledge, most past work has only considered 

content-based queries. In addition, with the help of an automatic query classifier, 

WIG offers a practical solution to predicting mixed-query performance, which is a 

crucial step towards turning query performance prediction from an interesting 

research topic into a practical tool for Web search. Our experiment on realistic Web 

data collected from a commercial Web search engine shows a tendency that high WIG 

scores predict more clicks on search results. In addition, WIG can be implemented 

very efficiently.    
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As an application, we study the task of predicting the performance difference 

between an expanded retrieval and an unexpanded retrieval for a given query. We 

provide a framework called model comparison for this task. 

1.3.2 Document Quality 

Document quality can be viewed as predicting retrieval quality at the level of 

individual documents. This work offers a number of contributions. First, we propose a 

new document quality metric that was found to be helpful for identifying low quality 

documents. Second, our results show that the document quality model proposed by us 

can improve accuracy for Web ad hoc retrieval. Third, our query analysis provides 

some interesting insights on the relationship between document quality and relevance.             

1.4 Thesis Organization     

 The rest of this thesis is organized as follows. Chapter 2 describes related work. 

In Chapter 3, we introduce several models for performance prediction. We also 

approach the task of query expansion prediction in this chapter. Experimental results 

for prediction are shown in Chapter 4. In Chapter 5, we discuss implementation of 

prediction models. Chapter 6 addresses the problem of document quality. Conclusions 

and future work are presented in Chapter 7. 
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CHAPTER 2 

RELATED WORK 

2.1 Query Performance Prediction 

  When we predict the quality of the retrieved documents for a given query, we 

call it query performance prediction. Prediction of query performance has long been 

of interest in information retrieval and has been investigated under different names 

such as query-difficulty or query-ambiguity [20,21]. Our work, the clarity score 

method originally proposed in [19] for prediction, demonstrated some of the first 

success at addressing this task.  

 Recently, a number of prediction methods have been tried since the introduction 

of the TREC Robust Track in 2003. In the Robust Track systems are required to rank 

the queries by predicted performance, with the goal of utilizing the prediction 

capability to do query-specific processing. Generally speaking, these methods extract 

features of retrieval and compute the performance score for each query by using the 

features to estimate the query performance. One way to measure the quality of the 

performance prediction methods is to compare the rankings of queries based on their 

actual precision (such as MAP) with the rankings of the same queries ranked by their 

performance scores (that is, predicted precision). Based on whether retrieval results 

are needed when computing the performance score, these methods can be classified 

into two groups: pre-retrieval approaches and post-retrieval approaches. 
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Category I: Pre-retrieval approaches   

 In this category, performance predictors do not rely on the retrieved document 

set. The efficiency of this kind of predictor is often high since the performance score 

can be computed prior to the retrieval process. However, regarding prediction 

accuracy, these predictors generally have a low performance since many factors 

related to retrieval effectiveness are ignored.   

Some researchers have used IDF-related (inverse document frequency) features 

as predictors. For example, Tomlinson et al. [22] adopted the weighted average IDF 

of the query terms for predicting. He and Ounis [23] proposed a predictor based on the 

standard deviation of the IDF of the query terms. Plachouras [24] represented the 

quality of a query term by Kwok’s inverse collection term frequency. The above 

IDF-based predictors showed some moderate correlation with query performance. 

Diaz and Jones [25] have tried time features for prediction. They found that 

although they are not highly correlated to performance, using these time features 

together with clarity scores improves prediction accuracy.   

Kwok et al. [26] built a query predictor using support vector regression. For 

features, they chose the best three terms in each query and used their log document 

frequency and their corresponding frequencies in the query. They observed a small 

correlation between predicted and actual query performance. 

He and Ounis [23] proposed the notion of query scope for performance 

prediction, which is quantified as the percentage of documents that contain at least 
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one query term in the collection. No strong correlation with retrieval performance was 

observed.  

 

Category II: Post-retrieval approaches   

In this category, predictors make use of retrieved results in a variety of ways. All 

of our prediction models fall into this category. Generally speaking, techniques in this 

category provide better prediction accuracy compared to those in category I. 

However, computational efficiency can be an issue for many of these techniques. 

Fortunately, some of our techniques can achieve satisfactory prediction accuracy 

without sacrificing efficiency.   

Bernstein et al. [27] estimate the prior probability of each document that will be 

retrieved by the retrieval system. For a given query, they compare the ranking of 

documents based on the prior probabilities to the ranking of documents returned from 

the retrieval system. They hypothesize that if the two rankings are similar, the query 

will be difficult since the query does not have strong discriminating power. Their 

results show some limited indication of query performance.   

Using visual features, such as titles and snippets, from a surrogate document 

representation of retrieved documents, Jensen et al. [28] trained a regression model 

with manually labeled queries to predict precision at the top 10 documents in the Web 

search. They reported moderate correlation with precision.     

Elad Yom-Tov et al. [6] proposed a histogram-based predictor and a decision tree 

based predictor. The features used in their models were the document frequency of 
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query terms and the overlap of top retrieval results between using the full query and 

the individual query terms. Their idea was that well-performing queries tend to agree 

on most of the retrieved documents. They reported promising prediction results and 

showed that their methods were more precise than those used in [26][24][22]. We call 

this technique the overlap method in this thesis.   

A few techniques are based on measuring some characteristics of the retrieved 

document set to estimate performance. For example, our clarity technique measures 

the coherence5 of the retrieved document set. In fact, the initial success of the clarity 

method has inspired a number of similar techniques. Amati [20] proposed to use the 

KL-divergence between a query term’s frequency in the top retrieved documents and 

the frequency in the whole collection, which is very similar to the definition of the 

clarity score. He and Ounis [23] proposed a simplified version of the clarity score 

where the query model is estimated by the term frequency in the query. Carmel et al. 

[8] found that the distance measured by the Jensen-Shannon Divergence (JSD) 

between the retrieved document set and the collection is significantly correlated to 

average precision (we call it the JSD method in this thesis).  

 Vinay et al.[29] propose four measures to capture the geometry of the top 

retrieved documents for prediction. The most effective measure is the sensitivity to 

document perturbation (we call it the document perturbation method in this thesis), an 

idea somewhat similar to one of our techniques: the robustness score. Unfortunately, 

                                                 

5 Broadly speaking, coherence means topical similarity among the retrieved 

documents. In the case of clarity score, it means the extent that the retrieved 
documents use the same certain terms.    
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their way of measuring the sensitivity does not perform equally well for short queries 

and prediction accuracy drops considerably when a state-of-the-art retrieval technique 

(like Okapi or a language modeling approach) is adopted for retrieval instead of the 

tf-idf weighting used in their paper [30].  

 Kwok et al. [31] suggest predicting query performance by retrieved document 

similarity. The basic idea is that when relevant documents occupy the top ranking 

positions, the similarity between top retrieved documents should be high, based on the 

assumption that relevant documents are similar to each other. While this idea is 

interesting, preliminary results are not promising.    

Diaz [67] proposes a technique called spatial autocorrelation for performance 

prediction. This technique measures the degree to which the top ranked documents 

(for a given retrieval) receive similar scores by spatial autocorrelation of the retrieval. 

This approach is based on the cluster hypothesis [58]: closely-related documents tend 

to be relevant to the same request. A significant correlation between score consistency 

and retrieval performance was observed in their experiments. 

One important issue we want to point out is that most work on prediction has 

focused on the traditional ad-hoc retrieval task where query performance is measured 

according to topical relevance. In fact, we know of no published work of other 

researchers that addresses other types of queries such as named-page finding (NP) 

queries, let alone a mixture of query types. Moreover, these prediction models are 

usually evaluated on traditional TREC document collections which typically consist 

of no more than one million relatively homogenous newswire articles. In this thesis, 
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we will present techniques that are capable of dealing with different retrieval tasks 

and thoroughly evaluate them against a variety of test collection, including a large 

web collection.     

 

2.2 Selective Query Expansion 

Automatic query expansion is a well-known IR technique that has been studied 

extensively. For example, [32] and [33]. Although query expansion has been shown to 

be capable of improving average retrieval performance, one common criticism of this 

technique is that it can diminish the retrieval quality for some queries.  

Only recently have some researchers begun to study predicting query expansion 

failure. Amati [20] proposed a measure similar to query length for predicting 

expansion. Yom-Tov et al [6] used an SVM classifier for this purpose. Research in 

this area is still in its infancy and no one has reported significant results in this 

direction. The key problem is that we lack the understanding of this technique on a 

per-query basis. 

 

2.3 Document Quality Prediction for Improving Retrieval Performance 

The research on link-based approaches to the popularity aspect of quality, such as 

PageRank[12] and HITS[13], has already been mentioned earlier. There have been 

many attempts to combine link information with content-based IR approaches to 

improve Web ad hoc retrieval performance [14,15,16,34,35]. However, no consistent 
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and conclusive improvements have been demonstrated. In this thesis, we focus on 

using content-based features rather than links to estimate document quality.    

 Other related work uses prior probabilities to improve IR based language 

modeling. The language modeling approach provides a convenient framework for 

incorporating prior knowledge in the form of prior probabilities. A variety of prior 

information, such as document length and time, has been used for ad hoc retrieval 

[36,37]. Kraaij et al [38] also used Web-specific features as prior knowledge for a 

home page retrieval system. In our approach, the prior probabilities in the language 

model framework are based on estimates of document quality based on content 

features.  

 There have been few attempts to directly integrate document quality into ad hoc 

retrieval. Zhu and Gauch [39] show that incorporating quality metrics can improve 

precision in a web search environment. They combine quality metrics into a 

vector-based algorithm in a heuristic way. The quality metrics they studied were 

related to currency, availability, information-to-noise ratio, authority, popularity and 

cohesiveness. They found information-to-noise to be possibly the most effective 

metric and we use this measure in our study. The other metric we use 

(collection-document distance) is new. One major limitation of the work is that the 

non-standard test collection used for evaluation is extremely small (less than 1500 

documents). In fact, the test collection only comes from twenty target sites and only 

covers five topics. We evaluate our technique on three different Web collections that 

contain millions of document.
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CHAPTER 3 

PERFORMANCE PREDICTION MODELS BASED ON RANKED LISTS  

 In a typical retrieval system, the user submits a query and the system returns a 

ranked list of documents in response to the query. The characteristics of the ranked list 

provide useful information for predicting retrieval performance.  

 In this chapter, we describe four query performance prediction techniques that 

capture and quantify some properties of the ranked list. The first model, named the 

clarity score, is designed to measure the coherence of the ranked list. Ranking 

robustness, our second model, is proposed for measuring the robustness of the ranked 

list. Our third model, called Query Feedback (QF), measures to what extent we can 

restore the original query from the ranked list. Our last model, called Weighted 

Information Gain (WIG), measures the change in information from an imaginary state 

where only an average document is retrieved to a posterior state that the actual ranked 

list is observed. 

In addition to the task of query performance prediction, we also address the 

problem of predicting when to apply query expansion to a particular query. We 

develop a method called Model Comparison (MC) that is built on clarity score- 

related ideas.                        
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3.1 Clarity Score  

In this section we introduce a measure of the coherence of a ranked document list 

called the clarity score. Here “coherence” means the extent to which top ranked 

documents use similar language. Therefore, the clarity score can be used to 

distinguish a coherent ranked list that uses similar language from an incoherent 

ranked list containing a huge variety of documents in terms of word-usage.  

The reason we are interested in measuring coherence is that there is a relation 

between the coherence of a ranked list and the chances of that list containing many 

relevant documents. To illustrate this relation, let us consider two ranked lists of 

documents returned for the same given query: an incoherent one and a coherent one. 

In the incoherent ranked list containing documents of greatly differing word usage 

generally no more than one document is relevant because these top ranked documents 

are very different. On the other hand, in the coherent ranked list the likely options are 

that either many of the documents are relevant or none of them are relevant. The 

former option is much more likely because the document list was ranked using the 

query.        

To measure coherence, we first build a query language model which is based on 

the retrieved documents using the query. This query language model represents the 

language usage in the ranked list in response to the query. Then the query model is 

compared to the collection model representing the average language usage in the 

collection. The KL-divergence between the query and collection language models is 
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the clarity score for the query. This process is shown in Figure 3.1. To understand 

why this measure can estimate ranking coherence, let us think of a query whose highly 

ranked documents are roughly about the same topic (which means high coherence). In 

this case, the large probabilities of the query language model are allocated to a small 

number of topic terms. Therefore, the KL-divergence between the two models is high. 

On the other hand, if a ranked list consists of a mix of documents about different 

topics, we can imagine that the word probabilities in the query model would be more 

evenly distributed, leading to a low clarity score. 

   

Figure 3.1 : Clarity Score Calculation 

 Next we discuss details regarding clarity calculation.  Given query Q  and 

collection C  , the query language model ( | )P w Q  is estimated by the relevance 

model proposed in [40], that is, 

( | ) ( | ) ( | ) (3.1)
D

P w Q P w D P D Q=∑  

wherew is any term andD is a document in the collection.  

     This can be interpreted as a weighted average of document models,( | )P w D , 

with weights given by ( | )P D Q .   
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The document model( | )P w D is given by 

( | ) ( | ) (1 ) ( ) (3.2)ml collP w D P w D P wλ λ= + −  

where ( | )mlP w D is the relative frequency of termw in documentD , ( )collP w  is a 

collection model and is estimated by the relative frequency of the term in the 

collection C .λ is a smoothing parameter ranging from zero to one. Generally there 

are two popular ways to set λ . One is Jelinek-Mercer smoothing which sets λ  to a 

constant value [4]. The other way is  Dirichlet smoothing [4] where λ  is estimated 

by: 

| |
(3.3)

| |

D

D
λ

µ
=

+
 

 where µ is a parameter called document prior and |D| is the length of document D.   

For the weight ( | )P D Q in Equation 3.1, we first perform query likelihood 

retrieval [41]. We estimates the likelihood of an individual document model 

generating the query as 

( | ) ( | ) ( | ) (1 ) ( ) (3.4)ml coll
w Q w Q

P Q D P w D P w D P wλ λ
∈ ∈

= = + −∏ ∏  

and obtain ( | )P D Q by Bayesian inversion with uniform prior distribution for 

documents.  

     We find it important to estimate the document model P(w|D) in Equation 3.2 by 

Dirichlet smoothing. Jelink-Mercer smoothing is appropriate for mixing the 

document models in Equation 3.4. Our finding is consistent with what is found in 

relevance model retrieval [40] and Zhai and Lafferty’s paper about smoothing [4].  
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    We can see that the query model ( | )P w Q  defined in Equation 3.1 represents the 

language usage in documents closely related to the query, since terms that are 

prominent in the query model are those occurring frequently in documents whose 

model are likely to generate the query.      

    Theoretically, the summation in Equation 3.1 is done over all documents. 

However, in practice this is infeasible and unnecessary. We truncate the summation at 

the top 500 documents. That is, we consider the top 500 documents retrieved by the 

query likelihood retrieval. Since ( | )P D Q  generally drops sharply well before this 

cutoff, this cutoff has very little effect on clarity calculations. 

   Finally, the clarity score is defined as the KL-divergence (or the relative entropy) 

between the query and collection models 

2

( | )
( | ) log (3.5)

( )w V coll

P w Q
clarity score P w Q

P w∈

=∑  

where V is the vocabulary of the collection.  

   The collection model ( )collP w  represents the average language usage in the 

collection. The KL-divergence is a measure of the difference between two probability 

distributions. Under this scheme, a query matching documents using very 

generic language (on average) receives a score near zero, and a query matching 

documents using a certain specialized vocabulary (on average) receives a relatively 

high score.  
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    Next we give two examples. Figure 3.2 shows the top 50 individual term 

contributions to the summation in Equation 3.5 (clarity score) for two same-topic 

queries. The two queries are query A: “How does computerized medical diagnosis 

circumvent the need to use invasive techniques?” with a clarity score of 

3.53 and query B: “What are the current and future medical innovations and 

improvements?” with a score of 0.73. Top contributing terms are those whose 

probabilities most stand out in comparison to the collection model, such as “invasive” 

and “diagnosis” for query A. The total clarity score is the total of all bars for the 

appropriate query if one imagines extending the plot to include all vocabulary terms. 

The figure shows that the query model for query A is much more unusual than the 

collection model, and shows the contributions for these spikes. This is due to its 

highly-scoring documents using the same certain terms, what we call coherence. 

Query B has much lower maximum contributions and a lower total (clarity 

score). The fact that the medical term “enthesopathy” was one of the top contributing 

terms in query A’s clarity score while the top terms of query B’s language model are 

all fairly general is a good indicator that query A is a better performing query than 

query B. For Query A, “Enthesopathy” occurred in documents that had high query 

likelihood scores, leading to an estimate of its probability in the query model well 

above its collection model probability. For Query B, by contrast, the only terms that 

stand out are fairly general terms, indicating that P(D|Q) is less focused (peaked) on a 

coherent set of documents. 
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Figure 3.2 : Term clarity score contributions for the top terms for two 
same-topic queries 

    As we stated earlier in this section, the clarity score measures to what extent the 

top ranked document will form a coherent topic. Therefore, the use of the clarity score 

to predict retrieval performance is particularly appropriate for the ad-hoc retrieval 

task based on topic-relevance. However, for other fundamentally different retrieval 

tasks, such as the named-page finding task, prediction using the clarity score will 

consequently be much less effective. 

3.2 Ranking Robustness 

In this section, we describe another property of a ranked list for performance 

prediction: robustness. A measure called the robustness score is proposed to measure 

ranking robustness. The robustness score is primarily designed for content-based 
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queries and is less effective for named-page finding queries. Accordingly, we develop 

another method called the first rank change (FRC) by modifying the robustness score 

technique to measure ranking robustness for named-page finding queries.  

The notion of ranking robustness originates in the field of noisy data retrieval. We 

first introduce the background in noisy data retrieval that inspires our ideas.  

3.2.1 Information Retrieval on Noisy Data  

With regard to text document collections in information retrieval, it is often 

convenient to assume that the contents of the collections are clean and free of errors. 

With the advent of large collections of multimedia documents (such as audio or image 

document), techniques such as OCR (optical character recognition) or ASR 

(automatic speech recognition) have been widely used to extract text from multimedia 

archives. In the following description, the text output of a recognition process applied 

to multimedia documents is noisy data or corrupted data since the recognition 

process is error prone and brings significant levels of noise to the data. The 

recognition process that produces corrupted data is called data corruption. 

One of the core problems in the field of information retrieval on corrupted data is 

to explore the impact of data corruption on retrieval effectiveness in order to design a 

ranking function that is robust to unexpected errors in corrupted data. Here a robust 

retrieval model means that some changes in document or collection statistics caused 

by data corruption do not alter the retrieval results significantly compared to retrieval 
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on perfect documents (that is, the results of a recognition process with 100% 

accuracy). 

A general observation about experiments on investigating the effects of data 

corruption is that as retrieval effectiveness improves, the ranking function becomes 

more robust against data corruption. For example, Lopresti and Zhou [42] explored 

the effectiveness of three retrieval functions on simulated OCR noisy data. They 

found that the ranking of the three functions with respect to retrieval effectiveness is 

the same as their ranking with respect to their ability to deal with simulated noise. 

Another example is that Singhal, Salton and Buckley [43] proposed a new robust 

length normalization method to alleviate the problem that the regular cosine 

normalization is sensitive to OCR errors. Although the original motivation for this 

technique was to deal with OCR data corruption, surprisingly they found that the new 

normalization scheme also brought significant improvements on correct text 

collections in comparison to the original cosine normalization. Moreover, Mittendorf 

[44] studied data corruption effects on retrieval and presented a theorem on ranking 

robustness that partially explained the phenomenon that retrieval performance on 

corrupted data is often correlated with the degree of resilience against noise.  

The above work reveals the interesting relationship between ranking robustness 

and retrieval performance. Although this work was done in the context of retrieval on 

noisy data, clean documents in regular retrieval also contain “noise” if we interpret 
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noise as uncertainty. Next, we will propose a framework to quantify ranking 

robustness.  

3.2.2 Robustness Score: Measuring Ranking Robustness    

As we mentioned before, the notion of ranking robustness originates in the field 

of noisy data retrieval, where retrieval is performed on the output of a recognition 

process that exacts text from multimedia archives. Ranking robustness in noisy data 

retrieval refers to a property of a ranked list of documents that indicates how stable the 

ranking is in the presence of noise brought by the recognition process. Note that clean 

documents also contain “noise” if we generalize the notion of noise from recognition 

errors to uncertainty in text documents. For example, the meaning of a document may 

remain the same even after adding or deleting some words. Synonymy and 

homonymy are another two popular examples that can bring uncertainty to clean text 

documents. Therefore, we can extend the notion of ranking robustness to regular 

ad-hoc document retrieval. In essence, ranking robustness reflects the ability of a 

retrieval system to handle uncertainty.  

The idea of predicting retrieval performance by measuring ranking robustness is 

inspired by a general observation in noisy data retrieval that the degree of ranking 

robustness against noise is positively correlated with retrieval performance. We 

hypothesize that when it comes to regular ad-hoc retrieval, the positive correlation 
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between robustness and performance still holds. Our hypothesis will be thoroughly 

examined in the evaluation chapter of this thesis.      

Next we describe our way of measuring ranking robustness for ad-hoc retrieval. 

We begin by considering how to calculate ranking robustness in noisy data retrieval. 

If we can acquire a clean version of the corrupted data, one straightforward way is to 

compare a ranked document list from the corrupted collection to the corresponding 

ranked list from the perfect collection using the same query and ranking function. 

With regard to regular document retrieval, usually documents are assumed to be free 

of corruption. To simulate data corruption, we assume that there exists a noisy 

channel which is analogous to the recognition process in noisy data retrieval. 

Documents are corrupted after going thought the channel. One way to implement the 

noisy channel is to design a document model for each document (document models 

are distributions over words or other linguistic units). One corrupted version of the 

original document is one random sample from the corresponding document model. 
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Figure 3.3 : Robustness Score Calculation 

Specifically, suppose we have query Q, ranking function G and collection C.  

We generate corrupted collection C’ by sampling from the document models of the 

documents in C. Then we perform retrieval on both C and C’ and two ranked list L and 

L’ are returned respectively. Finally we compute the similarity between the two 

rankings. Note that L is a fixed ranked list while L’ is a random variable. We call the 

expected similarity between L and L’ the robustness score and use it to measure 

ranking robustness. This process is illustrated in Figure 3.3. 

Let us formally define the robustness score. Consider query Q and a document 

collection of M documents C=(D1,D2,…DM). Let V denote the size of vocabulary, 
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both query Q and the documents are represented as vectors of indexed term counts, 

that is, 

Q=(q1,q2,…qV)∈NV 

Dk=(Dk,1,Dk,2,…Dk,V) ∈NV 

where Dk,i is the number of times that term i appears in document Dk and qj is the 

number of times that term j appears in query Q. N denotes nonnegative integer and  

NV denotes a V-dimension vector space of nonnegative integer. Under our 

representation, collection C is a M×V matrix with nonnegative integer entries, that is, 

C∈S(M×V), where S(M×V) denotes the set of a M×V matrix with nonnegative integer 

entries . The rows of matrix C can be viewed as a set of documents represented by 

V-dimension vectors.    

We introduce a few definitions before we show the computation of the robustness 

score.  

Definition 1: Retrieval Function G(D,Q)  

retrieval function G(D,Q) maps query Q and document D into a real number, that is , 

G(D,Q)∈R,D∈ NV ,Q∈NV 

 

Definition 2: Ranked List L(Q,G,C)  

Let SM denote the set of permutation of {1,2..M}. Ranked list L(Q,G,C)∈ SM  is a 

permutation of the documents in collection C that describes the ordering of 

documents by decreasing G(D,Q) where D∈C 
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Definition 3: Document Model kX  and Probability Mass Function (pmf) ( )
kXf x  

We assume that document , [1, ]kd k M∈ , corresponds to document modelkX  which 

is a V-dimension multivariate distribution and can be represented by a random vector 

,1 ,2 , ,{ , ,... ,.. } V
k k k k i k VX X X X X N= ∈ , where random variable ,k iX  denotes the 

number of times termi occurs. The joint pmf of kX  is the function defined by 

1 ,1 1 ,( ) ( ,..., ) Pr( ,..., )
kX V k k V Vf x f x x X x X x= = = =  where 1( ,..., ) V

Vx x x N= ∈ . 

 

Definition 4: Ranking Similarity 1 2( , )SimRank L L  

Given two ranked list 1 1( , , )L Q G C and 2 2( , , )L Q G C , function 

1 2( , )SimRank L L returns a real number that measures the similarity between the two 

ranked lists (we assume that the documents in C1 have one-to-one correspondence to 

the documents in C1). Moreover, SimRank(L1,L2)  should be bounded. 

 

 

 

Definition 5: Random Collection  X 

Given document model X1,…XM , where Xk (k∈[1,M]) is a V-dimension random 

vector, we define random collection X=(X1,X2,…XM) ,that is, X is a M×V  matrix 

whose entries consist of random nonnegative integers from some distributions. The 

pmf of X is the function defined by 1 1 1( ) ( ,..., ) Pr( ,..., )X X M M Mf T f t t X t X t= = = = , 

where Xk denotes the k-th row of X and tk∈ NV, k∈[1,M].  

With the above definitions, we give the definition of the robustness score.  
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Given query Q∈NV , retrieval function G, collection C=(D1,D2,…DM)∈S(M×V)  

and random collection X=(X1,X2,…XM), the robustness score is defined as the 

expected value of random variable  SimRank(L(Q,G,C),L(Q,G,X)): 

( )

( , , , ) { ( ( , , ), ( , , ))}

( ( , , ), ( , , )) ( ) (3.6)X
T S M V

Robustness Score Q G C X E SimRank L Q G C L Q G X

SimRank L Q G C L Q G T f T
∈ ×

=
= ∑  

 

To make Equation 3.6 feasible to calculate, we further make the following five 

assumptions: 

(1) We assume independence between any two document models iX and jX , that 

is, 

1 2
1 1

( ) ( , ,... ) Pr( ) ( ) (3.7)
k

M M

X X M k k X k
k k

f T f t t t X t f t
= =

= = = =∏ ∏  

(2) Instead of the whole collection, only the top J retrieved documents in 

L(Q,G,C) and the corresponding J documents in L(Q,G,X) are used to compute the 

similarity between the two ranked lists. For the purpose of rank comparison, the 

corresponding J documents in L(Q,G,X)  will shift up in rank and form a new ranked 

list of length J. 

(3) The Spearman rank correlation coefficient [45] is adopted to compute the 

value of function SimRank(L1,L2)  in Equation 3.6. The coefficient ranges from -1 to 

1. A value close to 1 means a perfect positive correlation between the two rankings 

and a value close to -1 means a perfect negative correlation. If the two rankings have 

almost no correlation, the correlation coefficient will be close to zero. 
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 (4) For each document model, we assume independence between any terms. We 

also assume the term frequencies in the sampled document follow Poisson 

distributions with the means equal to the corresponding term frequencies in the 

original document. Modeling term frequencies by Poisson distributions has been 

widely adopted by other researchers [46,47]. Furthermore, many retrieval models, 

such as the query likelihood model, only take query terms into account when ranking 

documents. In this case, we can simplify Equation 3.6 by assuming that the 

frequencies of non-query terms are constant in the sampled document. Formally 

speaking, given document ,1 , ,{ ,... ,... }k k k i k Vd d d d= and query 1{ ,... ,... }i VQ q q q= , 

probability mass function
kXf  of document model ,1 ,2 , ,{ , ,... ,.. }k k k k i k VX X X X X=  is 

estimated as follows: 

,1 2
1

( , ,... ) ( ) (3.8)
k k j

V

X V X j
j

f x x x f x
=

= ∏  

 where 
,
( )

k jXf x  is given by : 

,

,

,

, ,

,

,

( 0) ( 0)

( ) Pr( ) , ,
!

1,
( ) Pr( )

0,

k j

k j

j k j

x

X k j k j

k j

X k j

if q AND D

e
f x X x x N D

x
else

if x D
f x X x

else

λλ λ
−

> >

= = = ∈ =

=
= = = 



 

For better understanding, we give a toy example to show how to generate a 

simulated document given the original document based on the above assumptions. 
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The basic idea is to perturb document term counts according to the Poisson 

distribution.   

 Given vocabulary V={a,b,c}, query Q={a} and document D1={a,a,b,b,b} , Q 

and D1 are represented by 3-dimension vector [1,0,0] and [2,3,0] respectively. Let 

N(D1) denotes a simulated document generated from X1 ,that is, the document model 

of D1 . Since term c does not occur in D1 , it will  not occur in N(D1).  Since term b is 

a non-query term and it occurs three times in D1, it will occur exactly three times in 

N(D1). The occurrence frequency of term a in N(D1) is a random number determined 

by Poisson distribution P(λ) with λ=2 because term a occurs twice in D1. For example, 

{ a,a,a,b,b,b} and {a,b,b,b} are two possibilities of N(D1).  

(5)  The expectation in Equation 3.6 is very hard to evaluate directly. Instead, we 

independently draw K samples T(1),T(2),..T(K) from fX (T) to approximate the 

expectation, that is, Equation 3.6 is estimated as:   

 

1

( , , , )

1
( ( , , ), ( , , ( ))) (3.9)

K

i

Robustness Score Q G C X

SimRank L Q G C L Q G T i
K =

≅ ∑
 

where T(i) is a sample independently drawn from fX(T) which is determined by 

Equation 3.7 and 3.8. 

The error of this estimation is proportional to the reciprocal of the square root of 

K [48]. According to our experiments, we find that a relatively small value of K is 

good and stable enough for query performance prediction.  
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In summary, robustness score calculation takes the following steps. First, we 

perform retrieval with query Q and retrieval function G. Then we generate J simulated 

documents using the document models of the top J documents retrieved and rank the 

simulated documents with the same query and retrieval function. The similarity 

between the two ranked lists is computed using the Spearman rank correlation 

coefficient. We repeat this K times and the average of the Spearman correlation 

coefficient is the robustness score.     

We briefly explain why the robustness score defined above gives us useful 

information on retrieval performance. A low robustness score means that after 

document perturbation the ranking function provides a very different ranking 

compared to the original ranking. The low robustness score suggests that the degree of 

correlation between documents in the ranked list is low and the original ranking is 

more like a random ranking. In other words, the low robustness score is likely to 

correspond to a poorly- performing retrieval that returns a ranked list of loosely 

related topic covering many topics.     

In the above discussion, we assume that the retrieval task is the ad-hoc retrieval 

based on topic relevance. However, with regard to named-page (NP) finding queries 

that usually have only a single relevant document, the expected positive correlation 

with query performance may not exist any more. In fact, our experiments in the next 

chapter will show that the use of the robustness score for performance prediction is 

much less effective when it comes to named-paged finding (NP) queries. This is 
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largely due to the fact that top ranked documents in the ranked list in response to a NP 

query are not necessarily related while those documents are connected more or less by 

the topic in the case of ad-hoc retrieval.  

3.2.3 First Rank Change  

 
Input: (1) ranked list L={Di} where 1≤i≤100. Di denotes the i-th ranked document. (2) 
query Q 

1 initialize: (1) set the number of trials J=100000 (2) counter c=0; 

2 for  i=1 to J 

3 Perturb every document in L, let the outcome be a set F={Di’} where Di’ denotes the 
perturbed version of  Di. 

4   Do retrieval with query Q on set F 

5   c=c+1 if and only if D1’ is ranked first in step 4  

6   end of for  

7   return the ratio c/J 

 

Figure 3.4:  Pseudo-code for computing FRC 

 

To measure ranking robustness for named-page (NP) finding queries, we propose 

a method called the first rank change (FRC) which is derived from the robustness 

score technique. As we described above, the robustness score is not very effective for 

NP queries because it takes the top ranked documents as a whole into account while 

NP queries usually have only one single relevant document. Instead, FRC focuses on 

the first-ranked document, since the quality of this first-ranked document dominates 
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retrieval effectiveness for the named-page finding task. Specifically, the pseudo-code 

for computing FRC is shown in figure 3.4.   

FRC approximates the probability that the first-ranked document in the original 

list L will remain ranked first even after the documents are perturbed. The higher the 

probability is, the more confidence we have in the first ranked document. On the other 

hand, in the extreme case of a random ranking, the probability would be as low as 0.5. 

We expect that FRC has a positive association with NP query performance. The 

document perturbation step (step 3) is the same as that used in robustness score 

computation (we refer the reader to Equation 3.8 and the toy example given in section 

3.2.2).    

3.3 Query Feedback 

 In this section, we introduce our third prediction technique called query 

feedback (QF). Suppose that a user issues query Q to a retrieval system and a ranked 

list L of documents is returned. We view the retrieval system as a noisy channel. 

Specifically, we assume that the output of the channel is L and the input is Q. After 

going through the channel, Q becomes corrupted and is transformed to ranked list L. 

    By thinking about the retrieval process this way, the problem of predicting 

retrieval effectiveness turns to the task of evaluating the quality of the channel. In 

other words, prediction becomes finding a way to measure the degree of corruption 

that arises when Q is transformed to L. As directly computing the degree of the 
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corruption is difficult, we tackle this problem by approximation. Our main idea is that 

we measure to what extent information on Q can be recovered from L on the 

assumption that only L is observed. Specifically, we design a decoder that can 

accurately translate L back into new query Q’ and the similarity S between the 

original query Q and the new query Q’ is adopted as a performance predictor. This is a 

sketch of how the QF technique predicts query performance. Before filling in more 

details, we briefly discuss why this method would work. 

     There is a relation between the similarity S defined above and retrieval 

performance. On the one hand, if the retrieval has strayed from the original sense of 

the query Q, the new query Q’ extracted from ranked list L in response to Q would be 

very different from the original query Q. On the other hand, a query distilled from a 

ranked list containing many relevant documents is likely to be similar to the original 

query. Further examples in support of the relation will be provided later. 

Next we detail how to build the decoder and how to measure the similarity S. 

In essence, the goal of the decoder is to compress ranked list L into a few 

informative terms that should represent the content of the top ranked documents in L. 

Our approach to this goal is to represent ranked list L by a language model 

(distribution over terms). Then terms are ranked by their contribution to the language 

model’s KL (Kullback-Leibler) divergence from the background collection model 

(that is, clarity contribution). Top ranked terms will be chosen to form the new query 

Q’. This approach is similar to that used in Section 4.1 of [49].  
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   Specifically, we take three steps to compress ranked list L into query Q’ without 

referring to the original query.  

1. We adopt the ranked list language model [50], to estimate a language model 

based on ranked list L. The model can be written as: 

( | ) ( | ) ( | ) (3.10)
D L

P w L P w D P D L
∈

=∑  

where w is any term and D is a document. ( | )P D L  is estimated by a linearly 

decreasing function of the rank of document D. 

2. Each term in P(w|L) is ranked by the following KL-divergence contribution: 

( | )
( | ) log (3.11)

( | )

P w L
P w L

P w C
 

where P(w|C) is the collection model estimated by the relative frequency of term w in 

collection C as a whole .  

3. The top N ranked terms by Eq.3.11 form a weighted query Q’={(wi,ti)} i=1,N. 

where wi denotes the i-th ranked term and weight ti is the KL-divergence contribution 

of wi in Eq. 3.11.  

Two representative examples, one for a poorly performing query “Cruise ship 

damage sea life” (TREC topic 719; average precision: 0.08) and the other for a high 

performing query “prostate cancer treatments”( TREC topic 710; average precision: 

0.49), are shown in Table 3.1 and 3.2 respectively. These examples indicate how the 

similarity between the original and the new query correlates with retrieval 

performance. The parameter N in step 3 is set to 20 empirically and choosing a larger 
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value of N is unnecessary since the weights after the top 20 are usually too small to 

make any difference.  

  
Table 3.1 : Top 5 terms compressed from the ranked list in response to query 

“Cruise ship damage sea life” 
 

  

 

Table 3.2:  Top 5 terms compressed from the ranked list in response to query 
“prostate cancer treatments” 

Term prostate cancer treatment men therapy 

KL 
contribution 

0.177 0.140 0.028 0.025 0.020 

 

 

To measure the similarity between original query Q and new query Q’, we first 

use Q’ to do retrieval on the same collection. A variant of the query likelihood model 

[41] is adopted for retrieval. Namely, documents are ranked by: 

( , ) '

( ' | ) ( | ) (3.12)i

i i

t
i

w t Q

P Q D P w D
∈

= ∑  

where wi is a term in Q’ and ti is the associated weight. D is a document.   

Let L’ denote the new ranked list returned from the above retrieval. The similarity 

is measured by the overlap of documents in L and L’. Specifically, the percentage of 

Term cruise ship vessel sea passenger 

KL 
contribution 

0.050 0.040 0.012 0.010 0.009 
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documents in the top K documents of L that are also present in the top K documents in 

L’. the cutoff K is treated as a free parameter. 

We summarize here how the QF technique predicts performance given a query Q 

and the associated ranked list L. We first obtain a weighted query Q’ compressed from 

L by the above three steps. Then we use Q’ to perform retrieval and the new ranked 

list is L’. The overlap of documents in L and L’ is used for prediction. In addition, QF 

is mainly designed for content-based queries.    

3.4 Weighted Information Gain 

    This section introduces a weighted information gain approach that incorporates 

both single term and proximity features for predicting performance for both 

content-based and Named-Page (NP) finding queries.    

Given a set of queries Q={Qs} (s=1,2,..N) which includes all possible user queries 

and a set of documents D={Dt} (t=1,2…M), we assume that each query-document 

pair (Qs,Dt) is manually judged and will be put in a relevance list if Qs is found to be 

relevant to Dt. The joint probability P(Qs,Dt) over queries Q and documents D denotes 

the probability that pair (Qs,Dt) will be in the relevance list. Such assumptions are 

similar to those used in [51]. Assuming that the user issues query Qi ∈Q and the 

retrieval results in response to Qi is a ranked list L of documents, we calculate the 

amount of information contained in P(Qs,Dt) with respect to Qi and L by Eq.3.13 
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which is a variant of entropy called the weighted entropy[52]. The weights in Eq.3.13 

are solely determined by Qi and L.   

  
,

,

( , ) ( , ) log ( , ) (3.13)
iQ L s t s t s t

s t

H Q D weight Q D P Q D= −∑    

Since we are given the user’s query Qi and the associated ranked list L, we choose 

the weights as follows: 

1/ , ( )
( , ) (3.14)

0,

( )

t K
s t

K

K if s i and D T L
weight Q D

otherwise

where T L contains the top K documents in L

= ∈
= 


 

 The cutoff rank K is a parameter in our model.  

Noticing that weight(Qs,Dt) sums up to 1 over s and t, Eq.3.13 can be rewritten as 

follows: 

,
,

,

1
( , ) ( , ) ( , ) log ( , ) (3.25)

( , )
( , ) , ( , ) ( , )

( , )

iQ L s t s t s t s t
s t

s t
s t s t s t

s ts t

H Q D W Q D P Q D P Q D
N

weight Q D
where W Q D N W Q D P Q D

P Q D

= −

= =

∑

∑

 

When weight(Qs,Dt) is equal to P(Qs,Dt), weighted entropy ),(, tsLQ DQH
i

 reduces 

to the ordinary Sharon entropy which is the expected value of log P(Qs,Dt), a measure 

of the uncertainty associated with distribution P(Qs,Dt). From Eq. 3.25, we can see 

weighted entropy ),(, tsLQ DQH
i

 can be viewed as an expectation value of the same 

quantity with a weighted version of P(Qs,Dt) being used to calculate the expectation 

value. That is, weighted entropy ),(, tsLQ DQH
i

 measures the amount of information 

(uncertainty) associated with P (Qs,Dt) with respect to the weights decided by query Q 

and ranked list L. Specifically, since P (Qs,Dt) denotes the probability that top ranked 
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document Dt in L will be relevant to query Q, weighted entropy ),(, tsLQ DQH
i

 can 

represent the amount of information about how likely the top ranked documents in L 

would be relevant to query Qi on average.  

When plugging Eq. 3.14, weighted entropy ),(, tsLQ DQH
i

 defined in Eq.3.13 can 

be simplified as follows: 

  
,

( )

1
( , ) log ( , ) (3.15)

i

t K

Q L s t i t
D T L

H Q D P Q D
K ∈

= −∑  

If we view the term -log P(Qi,Dt) in Eq. 3.15 as the relevance score of document 

Dt with respect to query Qi , another interpretation of weighted entropy ),(, tsLQ DQH
i

 is 

the average relevance score over the top K ranked documents for a given query. 

Therefore, weighted entropy ),(, tsLQ DQH
i

 can also represent the retrieval quality of 

the given ranked list L. However, we want to point out that the average relevance 

score cannot be interoperated as weighted entropy if the score is not in the form of a 

logarithm of a probability (if it is, for example, a tf-idf score).           

Unfortunately, weighted entropy ),(, tsLQ DQH
i

 computed by Eq.3.15, cannot be 

compared across different queries, making it inappropriate for directly predicting 

query performance. To mitigate this problem, we come up with a background 

distribution P(Qs,C) over Q and D by imagining that every document in D is replaced 

by the same special document C which represents average language usage. In this 

thesis, C is created by concatenating every document in D. Roughly speaking, C is the 

collection (the document set) {Dt} without document boundaries. Similarly, weighted 

entropy ),(, CQH sLQi
 calculated by Eq.3.15 represents the amount of information about 
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how likely an average document (represented by the whole collection) would be 

relevant to query Qi.  Since a “ranked list” of this average document can be viewed as 

a random ranking of documents in the collection on average, ),(, CQH sLQi
 can be 

thought of representing the average retrieval quality of a random ranked list of 

documents.   

Now we introduce our performance predictor WIG which is the weighted 

information gain [52] computed as the difference between ),(, tsLQ DQH
i

 and 

),(, CQH sLQi
. Specifically, given query Qi , collection C and ranked list L of 

documents, WIG is calculated as follows: 

, ,

, ( )

( , , ) ( , ) ( , )

( , ) ( , )1
( , ) log log (3.16)

( , ) ( , )

i i

t K

i Q L s Q L s t

s t i t
s t

s t D T Ls i

WIG Q C L H Q C H Q D

P Q D P Q D
weight Q D

P Q C K P Q C∈

= −

= =∑ ∑
 

From the viewpoint of information theory, with respect to a given query and its 

corresponding ranked list, WIG computed by Eq.3.16 measures the change in 

information (uncertainty) associated with the probability P(Q, D) (the probability that 

query Q is relevant to document D) from an imaginary state that all documents are 

replaced by a special “average” document to a posterior state that the actual 

documents are restored. On the other hand, from the viewpoint of IR (Information 

retrieval), WIG can be viewed as the difference of the average document score 

between the actual ranked list and a random ranked list. We hypothesize that WIG is 

positively correlated with retrieval effectiveness because high quality retrieval should 

be much more effective than just randomly ranking the documents in the collection. 
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The heart of this technique is how to estimate the joint distribution P(Qs,Dt). In 

the language modeling approach to IR, a variety of models can be applied readily to 

estimate this distribution. Although most of these models are based on the 

bag-of-words assumption, recent work on modeling term dependence under the 

language modeling framework have shown consistent and significant improvements 

in retrieval effectiveness over bag-of-words models. Inspired by the success of 

incorporating term proximity features into language models, we decide to adopt a 

good dependence model to estimate the probability P(Qs,Dt).  The model we chose 

for this paper is Metzler and Croft’s Markov Random Field (MRF) model, which has 

already demonstrated superiority over a number of collections and different retrieval 

tasks [51,53]. 

According to the MRF model, log P(Qi, Dt) can be written as 

1
( )

log ( , ) log log ( | ) (3.17)
i

i t t
F Q

P Q D Z P Dξ
ξ

λ ξ
∈

= − + ∑  

where Z1 is a constant that ensures that P(Qi, Dt) sums up to 1. F(Qi) consists of a set of 

features expanded from the original query Qi . For example, assuming that query Qi is 

“talented student program”, F(Qi) includes features like “program” and “talented 

student”.  We consider two kinds of features: single term features T and proximity 

features P. Proximity features include exact phrase (#1) and unordered window 

(#uwN) features as described in [51]. Note that F(Qi) is the union of T(Qi) and P(Qi). 

For more details on F(Qi) such as how to expand the original query Qi to F(Qi), we 

refer the reader to [51] and [53]. P(ξ|Dt) denotes the probability that feature ξ will 
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occur in Dt.  More details on P(ξ|Dt) will be provided later in this section. The choice 

of  λξ  is somewhat different from that used in [51] since λξ plays a dual role in our 

model. The first role, which is the same as in [51], is to weight between single term 

and proximity features. The other role, which is specific to our prediction task, is to 

normalize the size of F(Qi).We found that the following weight strategy for λξ satisfies 

the above two roles and generalizes well on a variety of collections and query types. 

, ( )
| ( ) |

(3.18)
1

, ( )
| ( ) |

T
i

i

T
i

i

T Q
T Q

P Q
P Q

ξ

λ ξ
λ

λ ξ

 ∈
=  − ∈


 

where |T(Qi)| and |P(Qi)| denote the number of single term and proximity features in 

F(Qi) respectively. The reason for choosing the square root function in the 

denominator of λξ is to penalize a feature set of large size appropriately, making WIG 

more comparable across queries of various lengths.  λT is a fixed parameter and set to 

0.8  according to [51] throughout this thesis.  

Similarly, log P(Qi,C) can be written as: 

2
( )

log ( , ) log log ( | ) (3.19)
i

i
F Q

P Q C Z P Cξ
ξ

λ ξ
∈

= − + ∑  

When constant Z1 and Z2 are dropped, WIG computed in Eq.3.16 can be rewritten 

as follows by plugging in Eq.3.18 and Eq.3.19: 

( ) ( )

( | )1
( , , ) log (3.20)

( | )
t K i

t
i

D T L F Q

P D
WIG Q C L

K P Cξ
ξ

ξλ
ξ∈ ∈

= ∑ ∑  

One of the advantages of WIG over other techniques is that it can handle well 

both content-based and NP queries. Based on the type (or the predicted type) of Qi, the 
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calculation of WIG in Eq. 3.20 differs in two aspects: (1) how to estimate P(ξ|Dt) and 

P(ξ|C), and  (2) how to choose K. 

For content-based queries, P(ξ|C) is estimated by the relative frequency of feature 

ξ in collection C as a whole. The estimation of P(ξ|Dt) is the same as in [51]. Namely, 

we estimate P(ξ|Dt)  by the relative frequency of feature ξ in Dt  linearly smoothed 

with collection frequency P(ξ|C). K in Eq.3.20 is treated as a free parameter. Note that 

K is the only free parameter in the computation of WIG for content-based queries 

because all parameters involved in P(ξ|Dt) are assumed to be fixed by taking the 

suggested values in [51]. 

Regarding NP queries, we make use of document structure to estimate P(ξ|Dt) and 

P(ξ|C) by the so-called mixture of language models proposed in [54] and incorporated 

into the MRF model for Named-Page finding retrieval in [53]. The basic idea is that a 

document (collection) is divided into several fields such as the title field, the 

main-body field and the heading field. P(ξ|Dt) and P(ξ|C) are estimated by a linear 

combination of the language models from each field. We refer the reader to [53] for 

details. We adopt the exact same set of parameters as used in [53] for estimation. With 

regard to K in Eq.3.20, we set K to 1 because the named-page finding task heavily 

focuses on the first ranked document. Consequently, there are no free parameters in 

the computation of WIG for NP queries. 
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3.5 Summary of Performance Prediction Techniques 

In the previous four sections we introduced several techniques for performance 

prediction. Here we summarize and compare these methods in Table 3.3. For better 

comparison, we also include the JSD method [8] which was proposed by other 

researchers and will be used as one of our baselines later.   

      

Table 3.3 :  Comparison of Prediction Techniques  
CB: Content-Based queries, NP: Named-Page finding queries, QM: Query 

Language Model, CM: Collection Language Model, RS: Robustness Score, FRC: 
First Rank Change, WIG: Weighted Information Gain.  

Technique Key ideas  Designed for 

Clarity KL-divergence between QM and CM  CB 

JSD Jensen-Shannon Divergence between QM 6and 

CM 

CB 

Ranking Robustness 

(RS and FRC) 

Perturb terms in the top ranked documents  RS: CB 

FRC:NP 

Query Feedback Similarity between the original query and the new 

query based on clarity contribution  

CB 

WIG The difference between two weighted entropies  CB and NP 

 The clarity technique measures ranked list coherence by the KL-divergence 

between the query language model based on the top retrieved documents (in response 

                                                 

6 The JSD method differs from the clarity technique in how QM is estimated. 
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to a given query) and the collection language model representing general language 

usage. Similar to clarity, the JSD method uses the Jensen-Sharon Divergence (JSD) to 

compute the distance between the top ranked documents and the collection. The 

ranking robustness technique (robustness score and first rank change) measures the 

sensitivity of the ranking to the perturbing of the top ranked documents. Query 

feedback compares the similarity between the original query and the new query 

distilled from the ranked list. WIG (weighted information gain) measures the 

difference between weighted entropy H1 based on the actual ranked list and weighted 

entropy H2 based on a random ranked list (simulated by treating the whole collection 

as a single document).   

Since both clarity and WIG measure the distance between an object representing 

the retrieved documents and an object representing the whole collection, we would 

like to explore the relationship between the two techniques in depth.      

When we substitute Eq. 3.5 by Eq 3.1, the clarity score can be rewritten as 

follows7: 

( | ) ( | )
( | ) ( | ) log (3.25)

( )
D L

w V D L coll

P D Q P w D
clarity score P D Q P w D

P w
∈

∈ ∈

=
∑

∑∑   

As a comparison, we rewrite the calculation of WIG which is given in Eq. 3.20: 

( ) ( )

( | )1
( , , ) log (3.20)

( | )
t K i

t
i

D T L F Q

P D
WIG Q C L

K P Cξ
ξ

ξλ
ξ∈ ∈

= ∑ ∑  

                                                 

7 L represents the ranked list obtained by query likelihood retrieval  
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We can see Eq. 3.25 is very similar to Eq. 3.25. In fact, given query Q , collection 

C and ranked list L, Eq 3.25 and Eq. 3.20 can be written in the same form as follows: 

( , )
( , , ) ( , ) log , (3.26)

( )T D L coll

P D
score Q L C weight D

Pξ

ξξ
ξ∈ ∈

=∑∑  

where T is a feature space , ξ  is a feature in T, D is a document in L,( , )P Dξ  is a 

distribution over feature space T and ( )collP ξ  denotes the probability that feature ξ  

will occur in collection C.  

Clarity and WIG differ in the following three aspects:   

(1) The feature space T 

For clarity, the feature space is the whole vocabulary consisting of single terms.   

For WIG, the feature space is single terms or phrases that extracted from query Q.  

(2) The ( , )weight Dξ  

For clarity score, ( , ) ( | ) ( | )weight D P D Q P Dξ ξ= .  

For WIG, 
,

( , )

0,

if D is one of the top K documents in L
weight D K

otherwise

ξλ
ξ


= 



. 

We can see that the ( , )weight Dξ for WIG is a almost a constant and is much 

simpler than that for clarity, which makes WIG free from estimation noise in 

( | )P Dξ and ( | )P D Q .    

(3) ( , )P Dξ  

For the clarity score,( , ) ( | ) ( | )
D L

P D P D Q P Dξ ξ
∈

=∑ .  

For WIG, ( , ) ( | )P D P Dξ ξ= .  
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    This means that the clarity score uses a document model averaged over all 

documents in the ranked list for ( , )P Dξ , while WIG use the actual document model 

of document D.    

    

3.6 Model Comparison for Query Expansion Prediction 

Query expansion is an effective technique for improving average IR 

performance. However, one problem with this approach is that it can greatly hurt the 

performance of some individual queries when many unrelated terms are added during 

expansion. Motivated by this issue, in this section we address the problem of detecting 

the case when using the results of an expansion technique hurts the retrieval 

performance for that particular query. In other words, we would like to predict the 

performance change (either positive or negative change) between the two retrieval 

strategies (that is, the unexpanded and the expended retrieval) for a given query. We 

call this task query expansion prediction. Based on this prediction, we can selectively 

apply the query expansion technique on a per-query basis.  

In the previous sections, we have discussed our models for query performance 

prediction. One major difference between query performance prediction and query 

expansion prediction is as follows: In the former, the retrieval function is usually 

assumed to be fixed and we compare retrieval effectiveness across queries. In the 

latter, essentially we compare the retrieval effectiveness between two retrieval 

functions for a given particular query. Simply applying techniques for query 
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performance prediction is not sufficient for query expansion prediction. The main 

reason is that the performance of a query is not directly related to whether or not we 

should apply expansion for that query. For example, one might expect that query 

expansion would improve poorly-performing queries. However, this is not always the 

case according to our observation on many TREC test collections. Query expansion is 

based on the assumption that the top retrieved documents are relevant. However, 

when the initial retrieval is not of high quality (that is, includes many irrelevance 

documents), it is unclear whether or not terms extracted from the initial results will be 

related to the original query. We also tried the difference between the predicted 

performance of the unexpanded retrieval (by some of our prediction techniques) and 

that of the expanded retrieval for query expansion prediction, but this strategy does 

not work well. Instead of applying a performance prediction technique, we propose a 

method called model comparison inspired by clarity score-related ideas for query 

expansion prediction.         

For the query expansion prediction task we are interested in predicting which of 

the two ranked lists yield better performance for a given query: the unexpanded 

retrieval rank list or the expanded one. For each ranked list, we estimate a ranked list 

language model to represent the language usage in the ranked list as we did in our 

query feedback technique (Eq. 3.10). We then compare the two ranked list models. 

With this comparison, our goal is to catch when the expanded retrieval has deviated 
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from the original sense of the query by calculating the distance between the two 

language models of the unexpanded and expanded results. 

Specifically, given query Q, we assume the unexpanded retrieval results are 

presented by a ranked document list A. Similarly, the expanded retrieval results are 

presented by a ranked document list B. We build two ranked list language models for 

these two ranked list respectively. That is, applying the ranked list language model 

defined in Eq. 3.10 to ranked list A and B, we have 

( | ) ( | ) ( | ) (3.21)

( | ) ( | ) ( | ) (3.22)
D A

D B

P w A P w D P D A

P w B P w D P D B
∈

∈

=

=

∑

∑
 

To estimate document model( | )P w D , we use Equation 3.2 with Dirichlet smoothing. 

 The model comparison score is calculated as follows: 

2

( | )
( | ) log (3.23)

( | )w

P w A
comparison score P w A

P w Bτ∈

=∑  

where τ represents the set of top T terms in contribution to the clarity score of Model 

A. That is, given query Q, we compute the score of each term as  

2

( | )
( | ) ( | ) log (3.24)

( | )

P w Q
contrib w Q P w Q

P w coll
=  

and take the T highest terms. These terms are considered to be important terms in 

terms of describing the query. The choice of using the top T terms rather than all 

vocabulary terms is due to the observation that comparing the two models on generic 

terms can bring noise to the comparison score.  
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The model comparison score defined in Eq. 3.24 is an expectation of the 

difference in log probabilities for the important unexpanded terms in models of the 

two ranked lists. We briefly discuss why the comparison score can be helpful for 

query expansion prediction. When the important terms are used much less frequently 

in the expanded model, the comparison score will be positively high. This often 

indicates an expansion that has strayed from the original sense of the query. On the 

other hand, a negative score indicates that the expanded retrieval uses the important 

terms more frequently, which often indicates that the expanded result is better than the 

other.      
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CHAPTER 4  

EVALUATION OF PREDICTION MODELS  

In this chapter, we thoroughly evaluate our query performance prediction 

techniques across a variety of search settings. We first report our experiments on a 

number of traditional TREC test collections that focus on the ad-hoc retrieval task. 

Then we consider web search environments that are significantly different from the 

traditional TREC settings in many aspects such as query types. In addition, we show 

results of the model comparison technique for query expansion prediction.  

4.1 Query Performance Prediction in Traditional TREC Settings 

In this thesis, “traditional TREC settings” refer to the following: (1) ad-hoc 

retrieval which is the task of finding a number of documents that are relevant to a 

particular information need, and (2) TREC document collections which typically 

consist of no more than one million relatively homogenous newswire articles. Most 

previous work on query performance prediction has focused on these traditional 

TREC settings.  

4.1.1 Experimental Setup  

Our experiments use a variety of TREC collections. The retrieval task is the 

ad-hoc retrieval. Queries used in our experiments are titles of TREC topics unless 

explicitly noted. Table 4.1 gives the summary of these test collections.  
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Table 4.1: Summary of test collections used in Section 4.1 
TREC Collection Topic Number Number of 

Document 

1+2+3 Disk 1+2+3 51-150 1,078,166 

4 Disk 2+3 201-250 567,529 

5 Disk 2+4 251-300 524,929 

Robust 2004 Disk 4+5 minus 
CR 

301-450;  
601-7008 

528,155 

    

In this section, we evaluate four of our models, that is, clarity score, robustness 

score, QF (query feedback) and WIG (weighted information gain). 

For computing the clarity score, the document model P(w|D) in Equation 3.2  is 

estimated by using Dirichlet smoothing with Dirichlet priorµ =1000. Document 

models are mixed from Jelinek-Mercer smoothed document models with λ =0.6. 

With regard to robustness score calculation, we use the query likelihood model 

[41] with Dirichlet smoothing as the ranking function (Dirichlet prior µ  is again set 

to 1000). We set parameter K in Equation 3.9 to 100. We tried different values of K 

ranging from 10 to 500000 and found that the results change very little starting from 

100. This means we do not have to require a large number of samples to compute 

robustness scores. In addition, for all of the test collections we choose the top 50 

documents to compute the rank similarity in Equation 3.9. We observe that the 

prediction performance using the robustness score is relatively insensitive to the 

choice of the cutoff rank as long as it is in the range of 30 to 100.        
                                                 

8 Topic 672 is removed because of no relevant documents.  
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Regarding Query Feedback (QF) calculation, we empirically set the parameter N 

(that is, the top N terms ranked by Equation 3.11) to 20. In fact, choosing a larger 

value of N is unnecessary since the weights after the top 20 are usually too small to 

make any difference. When comparing the overlap between the old and the new 

ranked list, we need to specify the cutoff rank K. We set K to 25 for all of our test 

collections. Further investigation shows that any value of K ranging from 20 to 50 will 

lead to satisfactory prediction accuracy in most cases. 

Regarding WIG computation, there is only one free parameter, that is, the cutoff 

rank in Equation 3.20. We find that a small value of K (a value less than 10) gives 

good prediction in most cases and accordingly we set K to 5 for all of the collections.  

To evaluate the accuracy of query performance prediction, we measure the 

correlation between the predicted and the actual retrieval performance for a set of test 

queries, which is widely adopted in most prediction work. In essence, we predict the 

relative performance of retrieval instead of the actual performance, considering the 

fact that prediction accuracy may be affected by the choice of performance measure if 

we choose to predict the actual retrieval performance.  

Next we provide more details on the evaluation of prediction power. Given query 

set 1 2{ , ,... }nQ Q Q Q=  containing n queries and a document collection, we perform 

retrieval on the collection and have 1 2{ , ,... }nX X X X=  where iX  denotes the actual 

retrieval performance of query iQ . Since our retrieval task is ad-hoc retrieval in this 

section, we choose average precision for measuring performance. That is, iX  is the 
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average precision of iQ . For a given prediction technique to be evaluated, we then 

compute 1 2{ , ,... }nY Y Y Y=  where iY  is the score computed by the prediction technique 

for query iQ . Our goal is to measure the extent of dependence between X and Y . 

The higher the dependence is, the more accuracy the prediction will be.  

To this end, we use both the Pearson’s ρ correlation test [55] and the Kendall’s 

τ  rank correlation test[45]. Pearson's correlation reflects the degree of linear 

relationship between the two variables X and Y. The formula for computing Pearson’s 

correlation coefficient ρ  is as follows: 

2 2
2 2

(4.1)
( ) ( )

( )( )

X Y
XY

n
X Y

X Y
n n

ρ
−

=

− −

∑ ∑∑

∑ ∑∑ ∑

 

Let ( )R X  denote the ranking of X, that is,
1 2

( ) { , ,.. }
nX X XR X R R R=  where 

iXR  is 

the rank of iX  in X. Similarly, let ( )R Y  denote the ranking of Y. Instead of directly 

measuring the correlation between X  and Y , Kendall’s τ  rank correlation tests the 

agreement between ( )R X  and ( )R Y  to evaluate the magnitude of the correlation. 

Kendall’s rank correlation test is a non-parametric test since it does not assume any 

distributions of both variables. Kendall τ  coefficient is computed by: 

(4.2)
1

( 1)
2

C D

n n
τ −=

−
   

where C denotes the number of concordance (correctly-ordered) pairs and D denotes 

the number of discordance (incorrectly-ordered) pairs. The total number of pairs is 

1
( 1)

2
n n−   



 66 

The values of both kinds of correlation range between -1.0 and 1.0 where -1.0 

means perfect negative correlation and 1.0 means perfect positive correlation.    

Although the Kendall’s test and the Pearson’s test are widely adopted in the 

evaluations of many prediction techniques, there are other ways to measure the 

correlations between two variables. One example is the Spearman’s rank correlation 

test [45]. Our experience is that it does not matter which correlation measure to use, 

since these measures generally give similar results.        

To obtain average precision, document retrieval is done by using the 

query-likelihood model [41] and the results are evaluated by the trec_eval program. 

Again, Dirichlet smoothing with Dirichlet prior µ =1000 is used for smoothing.  

4.1.2 Experimental Results 

The results for correlation with average precision measured by the Pearson and 

Kendall test are presented in Table 4.2 and 4.3 respectively.  

From these results, for all of our four prediction models we observe statistically 

significant correlation with average precision over all of the test collections no matter 

which correlation coefficient is adopted. To better understand how these numbers 

translate to the strength of correlation, we plot average precision versus robustness 

scores on Robust04 in Figure 4.1. We clearly observe a linear trend between the 

predicted and the actual retrieval performance.  
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Table 4.2:  Pearson’s correlation coefficient for correlation with average 
precision, for clarity score(Clarity), robustness score (Robustness), Weighted 

Information Gain (WIG) and Query Feedback(QF). Bold cases mean the results 
are statistically significant at the 0.05 level. Stars represent the strongest 

correlation for that collection.   

TREC Clarity Robustness WIG QF 

TREC123 0.335 0.434 0.494* 0.484 

TREC5 0.366 0.454 0.432 0.530* 

Robust 04 0.507 0.550* 0.456 0.499 

  
 
 

Table 4.3 : Kendall’s correlation coefficient for correlation with average 
precision, for clarity score(Clarity), robustness score(Robustness ), Weighted 

Information Gain (WIG) and Query Feedback(QF). Bold cases mean the results 
are statistically significant at the 0.05 level. Stars represent the strongest 

correlation for that collection. 

TREC Clarity Robustness WIG QF 

TREC123 0.331 0.329 0.407* 0.339 

TREC5 0.311 0.328 0.317 0.396* 

Robust 04 0.412* 0.392 0.370 0.355 

 

 

We also notice that there is no single predictor that always performs the best or 

the worst consistently on all of the three collections. This suggests that the prediction 

power of our models is roughly at the same level on these data sets.   
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  Figure 4.5 : Average precision versus robustness scores for the 249 title queries 

from the Robust 2004 Track 

When comparing Table 4.2 to Table 4.3, we can see that results obtained by using 

the Pearson’s test are highly consistent with those obtained by using the Kendall’s 

test. For example, the two tests always agree on which one is the best predictor for a 

given test collection. Therefore, it is not necessary to include both measures for 

measuring prediction accuracy. In addition, similar to Pearson’s correlation 

measuring linear correlation between two variables, R-square (or coefficient of 

determination) measures how well a linear model fits data. Although not reported 

here, we also tried R-square in some of our experiments and found that the results are 

consistent to those obtained by Pearson’s correlation. For more details, we refer the 

reader to section 4.3 of our paper [6]. 
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All queries used in the above experiments are the title part of TREC topics that 

typically consists of two or three key words. In this thesis we focus on this kind of 

query, since short queries dominate current search engines. However, it would be 

interesting to see how our techniques will perform when it comes to long queries that 

typically consist of one or more natural English sentences. To this end, we evaluate 

our techniques on two data sets: TREC4 and Robust 2004. We use the description part 

of the topics as our test queries. To see how description queries may be different from 

title queries, we take TREC topic 301 for example. The title part of this topic is as 

follows: International Organized Crime. The description part is as follows: Identify 

organizations that participate in international criminal activity, the activity, and, if 

possible, collaborating organizations. Other than queries, all settings (such as 

prediction model parameters, retrieval parameters) are the same as those used for title 

queries in our previous experiments. Here we choose the Kendall’s τ  for evaluating 

prediction accuracy and the results are presented in Table 4.4.   

Again, all of our predictors show significant correlation with retrieval 

performance. However, from Table 4.4 we observe that WIG does not perform well 

compared to the other three models. To better understand how query types can have 

an impact on our prediction techniques, Figure 4.2 compares Kendall coefficients for 

title queries to those for description queries on the Robustness 2004 Track.   
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Table 4.4 : Kendall’s correlation coefficient for correlation with average 
precision, for clarity score(Clarity), robustness score(Robustness ), Weighted 

Information Gain (WIG) and Query Feedback(QF). Bold cases mean the results 
are statistically significant at the 0.05 level. Stars represent the strongest 

correlation for that collection. Queries are the description part of TREC topics. 

Collection Clarity Robust WIG QF 

TREC4 0.353 0.548* 0.304 0.533 

Robust 04 0.373 0.464* 0.216 0.381 
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 Figure 4.2 Comparison of prediction accuracy between title queries and 
description queries  

    For the first three methods, (that is, clarity score, robustness score and query 

feedback), they perform consistently on both types of queries, which suggests that 
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these three models are robust to query length. Unfortunately, the performance of WIG 

drops noticeably when it comes to description queries.  

We briefly discuss the reason that WIG is sensitive to long queries. Given a query, 

WIG extracts a set of features from the query (the feature can be either a term or a 

phrase in the query) and compare the frequencies of these features in the top ranked 

documents to those in the whole collection. The quality of these features has a direct 

impact on the prediction power of WIG. Features extracted from a title query are 

usually closely related to the information need (topic). This means these extracted 

features generally are of high quality. However, it is not the case for description 

queries, since the description field of a topic uses natural language to describe the 

topic. In fact, features extracted from non-keywords in a description query can be 

misleading and are likely to degrade the performance of WIG. One possible way to 

overcome this problem is to automatically generate a few keywords from a 

description query. Though long queries can be an issue for WIG, we will see in the 

next section that WIG is far better than other techniques in Web search environments 

where short queries predominate.      

We compare our methods to predictor techniques proposed by other researchers. 

We focus on two techniques from recent SIGIR conferences. The first one ( we call it 

the overlap method) is a technique that is based on the overlap between the top 

retrieved documents of the full query and those of its sub-queries (a query consists of 

one query-term) [6].Yom-Tov et al. [6] demonstrated that this method has prediction 
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accuracy superior to several other predictors proposed in the Robust Track 2004. 

According to the learning techniques used, there are two variants of this method: 

tree-based and histogram-based . We choose the best settings reported in their paper. 

The second one is the document perturbation (DP) method proposed in [29]. In this 

method, a document is randomly selected from the retrieved document set. This 

document is perturbed by adding some amount of noise. Then, retrieval is performed 

using the perturbed document as a pseudo-query. They investigate how the amount of 

noise added will affect the ranking. The idea behind this method is somewhat similar 

to our ranking robustness technique. They claim to have better predication accuracy 

than the overlap method on Robust 2004, a popular dataset that has been used in the 

evaluation of many prediction techniques. We do not include the JSD method [8] as 

one of our baselines in this section, since their evaluation of this method is performed 

on a web collection. (we will use this method as our baseline in the next section that 

focuses on a Web search environment.)         

We also chose to use Robust 2004. By doing so, we can make fair comparison 

using the same dataset. Both title and description queries are considered. We choose 

the robustness score as the basis for this comparison. The Kendall’s correlation 

coefficients of these methods for both of the title and the description field of 249 

topics used in the Robust Track 2004 are presented in Table 4.5. 

Regarding the overlap method, we assume the best Kendall scores reported in 

their paper. Originally, they divided 249 topics into two parts: 200 old topics and 49 
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new topics. For each query type, they reported two Kendall’s scores: one score for the 

first part by using four-fold cross-validation and the other score for the second part by 

using the first part (the 200 old topics) as training data. This is equivalent to 

performing five-fold cross-validation on all 249 topics. Here we combine the two 

Kendall’s scores into one score for our comparison on all 249 topics. For the 

document perturbation method, we quote their results for description queries. They do 

not report results for title queries and the result for title queries comes from our own 

implementation.    

 

Table 4.5 : Comparison to other techniques. The reported numbers are 
Kendall’s correlation coefficients for correlation with average precision on the 

Robust 2004 Track for robustness score, the overlap method [6] and the 
document perturbation method [29].  

 Robustness Overlap Document 

Perturbation 

Title 0.392 0.284 0.181 

Description 0.464 0.465 0.520 

From Table 4.5, we can see that our predictor consistently performs well for both 

title queries and description queries while the two baselines suffer from either one 

type or the other. Moreover, our predictor works at least at the same level with or 

better than the best baseline in each query type.  

One interesting thing about these three methods in Table 4.5 is that they are based 

on the same general idea: utilize the sensitivity of retrieval system to some noise 
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intentionally introduced in the retrieval process to estimate retrieval performance. The 

overlap method can be seen as a way of measuring the robustness of search results to 

query perturbation. The document perturbation method is essentially another way of 

implementing query perturbation, considering the fact that both the original document 

randomly selected from search results and the corresponding perturbed document are 

used as a pseudo-query for retrieval. On the other hand, the robustness score can be 

seen as a kind of collection perturbation, since documents in the collection are 

perturbed while the query remains intact. Therefore, the results in Table 4.5 can be 

interpreted as the evidence that collection perturbation is more appropriate than query 

perturbation for the task of performance prediction.                

 

4.2 Query Performance Prediction in Web Search Environments 

Web search environments are remarkably different from the traditional TREC 

settings adopted in the previous section in many ways. Major differences include: (1) 

a Web collection is usually much larger and more heterogeneous than a traditional 

TREC collection, and (2) Web queries often consist of more than one type. For 

example, both content-based queries and named-page finding queries are popular in 

web retrieval.    

The major goal in this section is to evaluate the prediction power of our models in 

a variety of Web search settings. Specifically, we consider the following cases: (1) 
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content-based (CB) queries, (2) named-page (NP) finding queries, and (3) the 

situation where the actual query type is unknown, that is, the user query can be either 

CB or NP. Other than evaluations on laboratory test collections with pre-defined 

query sets and relevance judgments, we carry out experiments on realistic Web data 

collected from a commercial search engine to explore the potential of our techniques 

to predict user preference for search results.       

4.2.1 Content-based Queries 

Performance prediction for content-based queries was discussed within the 

context of traditional TREC settings in Section 4.1. In this section our retrieval task is 

the same (that is, ad-hoc retrieval). But we adopt a large Web collection called 

“GOV2” used in the Terabyte Tracks [56]. This collection, containing about 25 

million documents crawled from Web sites in the .gov domain during the year of 2004 

[57], is significantly larger than the collections used previously. Other than its size, 

the GOV2 collection includes Web documents with a variety of styles ranging from 

Web pages containing only tables to well-written articles published in newspapers.      

 
Table 4.6 : Summary of data sets for content-based queries 

Name Collection Topic Number Query Type 

TB04-adhoc GOV2 701-750 CB 

TB05-adhoc GOV2 751-800 CB 

TB06-adhoc GOV2 801-850 CB 
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  In this section, we use the ad-hoc topics of the Terabyte Tracks of 2004, 2005 

and 2006 and name them TB04-adhoc, TB05-adhoc and TB06-adhoc respectively. 

All queries used in our experiments are titles of TREC topics as most Web queries are 

short. Table 4.6 summarizes the above data sets. 

  Retrieval performance of content-based queries is measured by average 

precision. We make use of the Markov Random field model for ad-hoc retrieval. This 

model is particularly effective in Web search environments [51]. We adopt the same 

setting of retrieval parameters used in [51,53]. Though not reported here, we also tried 

the query likelihood model for ad-hoc retrieval and found that the results change little 

because of the very high correlation between the query performances obtained by the 

two retrieval models (0.96 measured by Pearson’s coefficient).  We evaluate 

prediction accuracy by the correlation between the predicted and the actual 

performance, which is the same as what we did in Section 4.1. To be comparable to 

the results reported in other researchers’ papers, we adopt the Pearson’s correlation 

test (one of the two correlation tests used in Section 4.1) to measure the correlation. 

As we stated in section 4.1, it does not matter much which test to choose.    

Table 4.7 shows the correlation with average precision on two data sets: one is a 

combination of TB04-adhoc and TB05-adhoc(100 topics in total) and the other is 

TB06-adhoc (50 topics). Again, our models are the clarity score (clarity), the 

robustness score (robust), query feedback (QF) and weighted information gain 

(WIG). Our baseline is the JSD method (JSD) proposed by David Carmel et al.[8]  
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According to the results reported in their paper, this method is significantly better than 

the overlap method [6] used as one of our two baselines in the previous section. For 

the other baseline used previously (that is, the document perturbation method), we do 

not use it as a baseline here, since this method performs poorly for short queries. For 

the clarity and robustness score, we have tried different parameter settings and report 

the highest correlation coefficients we have found. We directly cite the result of the 

JSD-based method reported in [8]. Regarding WIG, we adopt the same parameters as 

used in Section 4.1. In fact, we find that this set of parameter settings for WIG can 

achieve nearly-optimal prediction accuracy in two considerably different situations. 

With regard to QF, we set the cutoff K to 100, a value that is significantly different 

from the value used in Section 4.1. Further investigation shows that the choice of K is 

related to collection size. For a large web collection like the GOV2, QF prefers a 

larger value of K such as 100, while a smaller value of K such as 25 is appropriate on 

traditional TREC collections that are much smaller than a Web collection.   

Even though we chose the best parameters for clarity and robustness score, the 

prediction accuracy of the two is low compared to WIG and QF. This suggests that 

clarity and robustness have difficulty in adapting to a Web collection. Similar to the 

clarity score method, the JSD method uses the distance between the query model and 

the collection model to predict performance, although the two methods differ in some 

details such as how to calculate the distance. Therefore, it is reasonable that the 

prediction power of the two is on the same level as shown in Table 4.7. In short, WIG 
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and QF are considerably more accurate than the others. As an example, Figure 4.3 

depicts the strength of the correlation with average precision for WIG on the first data 

set. It shows a clear linear relationship between the predictor and the actual retrieval 

performance.          

Table 4.7 : Pearson’s correlation coefficients for correlation with average 
precision on the Terabyte Tracks (ad-hoc) for clarity score, robustness score, the 

JSD-based method(we directly cites the score reported in [8]), query 
feedback(QF) and WIG. Bold cases mean the results are statistically significant 

at the 0.05 level. 

Methods Clarity Robust QF WIG JSD 

TB04+05 

Adhoc 

0.333 0.317 0.480 0.556 0.362 

TB06  

Adhoc 

0.076 0.294 0.422 0.464 N/A 
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Figure 4.3:  WIG score versus average precision for the 100 title ad-hoc queries 

from the Terabyte Tracks of 2004 and 2005 
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For the clarity score, we observe that it performs very poorly on TB06-adhoc. 

Further investigation shows that the mean average precision of TB06-ad-hoc is 0.342 

and is about 10% better than that of the first data set. While the other methods 

typically consider the top 100 or less documents given a ranked list, the clarity method 

usually needs the top 500 or more documents to adequately measure the coherence of 

a ranked list. Higher mean average precision makes ranked lists retrieved by different 

queries more similar in terms of coherence at the level of top 500 documents. We 

believe that this is the main reason for the low accuracy of the clarity score on this data 

set.  

To see how well our prediction models scale to large Web collections, we suggest 

the reader compare Table 4.7 to Table 4.3. One the one hand, we are glad to find that 

both WIG and QF consistently perform well in a variety of collections. On the other 

hand, no matter how we tune the parameter settings of clarity and robustness on the 

GOV2 collection, their performance on this collection is still noticeably lower than 

the performance on the traditional TREC collections used in Section 4.1.   

Noticing that all of our prediction models are based on the language modeling 

framework, why some of them are sensitive to collections while others are not? The 

heart of the language model technique is the estimation of the probability ( | )P w M  

where w  is a language unit and M  is a language model. With regard to a Web 

collection, the estimation of ( | )P w M  is generally less accurate, considering the fact 

that Web collections are often much more heterogeneous than traditional TREC 
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collections. For the clarity score, it directly includes ( | )P w M  in its computation, 

since the clarity is defined as the sum of 
( | )

( | ) log
( | )

P w M
P w M

P w C
 over all terms in 

collection C. Regarding the robustness score, in essence this method directly perturbs 

( | )P w M  if the retrieval function is based on language modeling, which is true in our 

experiments. However, both WIG and QF make use of ( | )P w M  in an indirect way. 

For WIG, it makes use of ( | )P w M  in the form of log ( | )P w M  instead of directly 

incorporating ( | )P w M  in its calculation. This logistic form makes WIG more 

resilient to estimation noise in ( | )P w M . With respect to QF, this technique does not 

directly rely on ( | )P w M  , since it uses the overlap between two rankings for 

performance prediction.             

In short, estimation accuracy of ( | )P w M  has a more impact on clarity and 

robustness than WIG and QF. We believe this is the main reason that the prediction 

accuracy of clarity and robustness drops noticeably on the GOV2 collection.     

4.2.2 Named-Page (NP) Finding Queries 

The Named-page (NP) finding task is a navigation task where a user is interested 

in finding a particular Web page that she may have seen before. For example, “TREC 

proceedings” (TREC topic # NP973) is a NP query submitted by a user who is looking 

for the TREC publication page that contains TREC proceedings. This task is 

fundamentally different from the ad-hoc retrieval task based on topic relevance. 

Usually there is only one correct answer for a NP queries, as opposed to multiple 
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relevant documents for a content-based query. As we stated earlier, most research on 

performance prediction focuses on the ad-hoc retrieval task and we know of no 

published work by other researchers that explicitly addresses the problem of 

performance prediction for NP queries.  

Regarding our prediction models, the clarity score, the robustness score and 

query feedback are mainly designed for content-based queries while the first rank 

change (FRC) is solely designed for NP queries. Only WIG is designed for handling 

both types of queries. Accordingly, the major goal of this section is testing the 

prediction power of WIG and FRC. In addition, we are also interesting in how well the 

techniques designed for content-based queries will perform for NP queries. To this 

end, we include the clarity score and the robustness score as two baselines.               

We still use the GOV2 collection as our test collection. We adopt the 

Named-Page finding topics of the Terabyte Tracks of 2005 and 2006 and we name 

them TB05-NP and TB06-NP respectively. Table 4.8 summarized the above data set. 

Retrieval performance of NP queries is measured by reciprocal rank of the first 

correct answer. Again, we make use of the Markov Random field model for retrieval 

and we adopt the same setting of retrieval parameters used in [51,53].  

Table 4.8 : Summary of data sets for named-page finding queries   

Name Collection Topic Number Query Type 

TB05-NP GOV2 NP601-NP872 NP 

TB06-NP GOV2 NP901-NP1081 NP 
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We use the correlation with the reciprocal ranks measured by the Pearson’s 

correlation test to evaluate prediction quality. The results are presented in Table 4.9. 

To see the full potential of the clarity score, we tune it in different ways.  We 

found that using the first ranked document to build the query model yields the best 

prediction accuracy. This makes sense since retrieval performance of NP queries 

heavily depends on the quality of the first ranked document. We also attempted to 

utilize document structure by using the mixture of language models mentioned in 

Section 3.4. Little improvement was obtained. The correlation coefficients for the 

clarity score reported in Table 4.9 are the best we have found. As we can see, WIG 

and FRC considerably outperform the clarity score technique on both of the runs. This 

confirms our intuition that the use of a coherence-based measure like the clarity score 

is inappropriate for NP queries. 

Table 4.9 : Pearson’s correlation coefficients for correlation with reciprocal 
ranks on the Terabyte Tracks (NP) for clarity score, robustness score, WIG, the 
first rank change (FRC). Bold cases mean the results are statistically significant 

at the 0.05 level.   

Methods Clarity Robust WIG FRC 

TB05-NP 0.150 -0.370 0.458 0.440 

TB06-NP 0.112 -0.160 0.478 0.386 

 

Regarding the robustness score, we also tune the parameters to see its full 

potential and report the best we have found. We observe an interesting and surprising 

negative correlation with reciprocal ranks. We explain this finding briefly. A high 
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robustness score means that a number of top ranked documents in the original ranked 

list are still highly ranked after perturbing the documents. The existence of such 

documents is a good sign of high performance for content-based queries as these 

queries usually contain a number of relevant documents. However, with regard to NP 

queries, one fundamental difference is that there is only one relevant document for 

each query. The existence of such documents can confuse the ranking function and 

lead to low retrieval performance. Although the negative correlation with retrieval 

performance exists, the strength of the correlation is weaker and less consistent 

compared to WIG and FRC as shown in Table 4.9.  

Moreover, from Table 4.9 we can see that prediction techniques like clarity score 

and robustness score that are mainly designed for content-based queries face 

significant challenges and are inadequate to deal with NP queries. Our two techniques 

proposed for NP queries consistently demonstrate good prediction accuracy, 

displaying initial success in solving the problem of predicting performance for NP 

queries.  

Why do techniques designed mainly for content-based queries generally have 

difficulty in coping with NP queries? Many of these techniques are related to the 

famous cluster hypothesis in IR: closely-related documents tend to be relevant to the 

same request [58]. Assuming that this hypothesis holds, if retrieval is of high quality, 

top ranked documents should be roughly on the same topic and are highly related to 

each other. Therefore, the relationship among these top retrieved documents can be 
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used to predict performance. For example, the clarity method directly measures 

ranked list coherence by comparing the query model (which can be see as a summary 

of top retrieved documents) to the collection model. For the robustness score, a ranked 

list of very dissimilar documents is sensitive to document perturbation and is very 

likely to have a low robustness score. This broad idea is also frequently adopted 

explicitly or implicitly in prediction models developed by other researchers. For 

instance, Vinay et al. [29] uses the Cox-Lewis statistics to measure the clustering 

tendency of top ranked documents for prediction. However, when it comes to NP 

queries, the clustering hypothesis generally does not hold any more since there is only 

one correct answer for NP queries. Accordingly, techniques based on the clustering 

hypothesis are likely to be much less effective for NP queries. 

 In comparison, WIG and FRC do not rely on this hypothesis. We believe this is 

one of the main reasons that WIG and FRC works well for NP queries. Combined 

with results from the previous section, we observe that WIG performs well for both 

types of queries, a desirable property that most prediction techniques lack.       

4.2.3 Unknown Query Types   

In this section, we consider a more challenging situation where the type of a given 

query is unknown. Specifically, we run two kinds of experiments without access to 

query type labels. First, we assume that only one type of query exists but the type is 

unknown. Second, we experiment on a mixture of content-based (CB) and NP 
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queries. The following two subsections will report results for the two conditions 

respectively. Previously WIG was shown to be the only one of our models (in fact we 

know of no other models that claim to be effective for both CB and NP queries) that 

can deal with both types of queries provided that query types are known in advance. 

The major goal of this section is to test the prediction power of WIG under the 

demanding situation that no prior information on query types is available.     

4.2.3.1 Only One Query Type Exists 

We first consider a simple case by assuming that all queries are of the same type, 

that is, they are either NP queries or content-based queries. We consider two cases: (1) 

CB: all 150 title queries from the ad-hoc task of the Terabyte Tracks 2004-2006 , and 

(2)NP: all 433 NP queries from the named page finding task of the Terabyte Tracks 

2005 and 2006. 

We take a simple strategy by labeling all of the queries in each case as the same 

type (either NP or CB) regardless of their actual type. The computation of WIG will 

be based on the labeled query type instead of the actual type. There are four 

possibilities with respect to the relation between the actual type and the labeled type. 

The correlation with retrieval performance under the four possibilities is presented in 

Table 4.10. For example, the value 0.445 at the intersection between the second row 

and the third column shows the Pearson’s correlation coefficient for correlation with 
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average precision when the content-based queries are incorrectly labeled as the NP 

type. 

Based on these results, we recommend treating all queries as the NP type when 

only one query type exists and accurate query classification is not feasible, 

considering the risk that a large loss of accuracy will occur if NP queries are 

incorrectly labeled as content-based queries. These results also demonstrate the strong 

adaptability of WIG to different query types. 

Table 4.10 : Comparison of Pearson’s correlation coefficients for correlation 
with retrieval performance under four possibilities on the Terabyte Tracks 

(NP). Bold cases mean the results are statistically significant at the 0.05 level.   
 CB (labeled) NP (labeled) 

CB (actual) 0.536 0.445 

NP (actual) 0.174 0.467 

 

4.2.3.2 A Mixture of Content-based and NP Queries 

An unknown mixture of the two types of queries is a more realistic description of 

the situation that a Web search engine faces. Considering the fact that retrieval 

performance of the two types of queries is measured differently, we do not use the 

correlation with retrieval performance to evaluate prediction accuracy for the mixed 

situation. Instead, we evaluate prediction accuracy by how accurately 

poorly-performing queries can be identified by the prediction method assuming that 

actual query types are unknown (but we can predict query types). This is a challenging 
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task because both the predicted and actual performance for one type of query can be 

incomparable to that for the other type. 
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Figure 4.4: Distribution of robustness scores for NP and CB queries. The NP 
queries are the 252 NP topics from the 2005 Terabyte Track. The content-based 

queries are the 150 ad-hoc title from the Terabyte Tracks 2004-2006. The 
probability distributions are estimated by the Kernel density estimation method. 

Next we discuss how to implement our evaluation. We create a query pool which 

consists of all of the 150 ad-hoc title queries from Terabyte Track 2004-2006 and all 

of the 433 NP queries from Terabyte Track 2005&2006. We divide the queries in the 

pool into classes: “good” (better than 50% of the queries of the same type in terms of 

retrieval performance) and “bad” (otherwise). According to these standards, a NP 

query with the reciprocal rank above 0.2 or a content-based query with the average 

precision above 0.315 will be considered as good. 

Then, each time we randomly select one query Q from the pool with probability p 

that Q is content-based. The remaining queries are used as training data. We first 

decide the type of query Q according to a query classifier. Namely, the query 
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classifier tells us whether query Q is NP or content-based (CB). Based on the 

predicted query type and the score computed for query Q by a prediction technique, a 

binary decision is made about whether query Q is good or bad by comparing to the 

score threshold of the predicted query type obtained from the training data. Prediction 

accuracy is measured by the accuracy of the binary decision. In our implementation, 

we repeatedly take a test query from the query pool and prediction accuracy is 

computed as the percentage of correct decisions, that is, a good(bad) query is 

predicted to be good (bad). It is obvious that random guessing will lead to 50% 

accuracy. 

Let us take the WIG method for example to illustrate the process. Two WIG 

thresholds (one for NP queries and the other for content-based queries) are trained by 

maximizing the prediction accuracy on the training data. When a test query is labeled 

as the NP (CB) type by the query type classifier, it will be predicted to be good if and 

only if the WIG score for this query is above the NP (CB) threshold. Similar 

procedures will be taken for other prediction techniques. 

Table 4.11: Comparison of prediction accuracy for five strategies in the 
mixed-query situation. Two ways to sample a query from the pool: (1) the 

sampled query is content-based with the probability p=0.6. (that is, the query is 
NP with probability 0.4 )  (2) set the probability p=0.4. 

Strategies  Robust WIG-1 WIG-2 WIG-3 

p=0.6 0.565 0.624 0.665 0.684 

P=0.4 0.567 0.633 0.654 0.673 
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Now we briefly introduce the automatic query type classifier used in this paper. 

We find that the robustness score, though originally proposed for performance 

prediction, is a good indicator of query types. The use of the robustness score for 

query classification is motivated by the observation obtained from our previous 

prediction experiments reported in Section 4.2.1 and 4.2.2 that the robustness score 

behaves very differently between these two types of queries. We find that on average 

content-based queries have a much higher robustness score than NP queries. For 

example, Figure 4.4 shows the distributions of robustness scores for NP and 

content-based queries. According to this finding, the robustness score classifier will 

attach a NP (CB) label to the query if the robustness score for the query is below 

(above) a threshold trained from training data. In addition, many other techniques 

have been proposed for the task of query classification [65][66]. For example, Kang et 

al.[66] used features such as POS (part-of-speech), term distributions and anchor text 

for classification. We expect that further improvement on classification accuracy can 

be achieved when the robustness score is used in combination with other features.  

We consider four strategies in our experiments. In the first strategy (denoted by 

“ robust”), we use the robustness score for query performance prediction with the help 

of a perfect query classifier that always correctly map a query into one of the two 

categories (that is, NP or CB). This strategy represents the level of prediction 

accuracy that current prediction techniques can achieve in an ideal condition that 

query types are known. In the next following three strategies, the WIG method is 
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adopted for performance prediction. The difference among the three is that three 

different query classifiers are used for each strategy: (1) the classifier always 

classifies a query into the NP type, (2) the classifier is the robust score classifier 

mentioned above, (3) the classifier is a perfect one.  These three strategies are 

denoted by WIG-1, WIG-2 and WIG-3 respectively. The reason we are interested in 

WIG-1 is based on the results from section 4.3.1.  

The results for the four strategies are shown in Table 4.11. For each strategy, we 

try two ways to sample a query from the pool: (1) the sampled query is CB with 

probability p=0.6. (the query is NP with probability 0.4)  (2) set the probability 

p=0.4. From Table 8 We can see that in terms of prediction accuracy WIG-2 (the WIG 

method with the automatic query classifier) is not only better than the first two cases, 

but also is close to WIG-3 where a perfect classifier is assumed. Some further 

improvements over WIG-3 are observed when combined with other prediction 

techniques. The merit of WIG-2 is that it provides a practical solution to automatically 

identifying poorly performing queries in a Web search environment with mixed query 

types, which poses considerable obstacles to most prediction techniques. 

4.2.4 Prediction on Realistic Web Data  

In the previous section, we see the superiority of WIG over other methods in Web 

search environments. However, our evaluation was performed under laboratory 

settings which consist of carefully-selected topic sets with relevance judgments made 
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by human assessors and pre-defined retrieval tasks. In this section, we focus on testing 

the real-world performance of WIG by experimenting on realistic Web data gathered 

from a commercial search engine.      

Specifically, the dataset used in this section is a query log file that contains about 

149 million queries collected by a web search company during of one month period 

(from May 1 to May 31 of 2006). For each query, the following information is 

associated: (1) query ID,(2) the time the query is submitted, (3) the content of the 

query, (4) the result(s) clicked by the user who submits the query, (5) the number of 

returned results. Notice that (4) and (5) are not available if no results are clicked for 

the query. No relevance information on queries is available. This dataset represents 

the kind of information that a typical web search engine can readily obtain from user 

interaction.      

Considering the fact that positive correlation between WIG scores and retrieval 

performance was observed previously, it is natural to investigate whether a similar 

relationship exists for WIG on the dataset described above. One problem with this is 

that we can not calculate the actual retrieval performance without any relevance 

judgments. Instead of relying on human relevance judgments that are accurate but 

usually too expensive to obtain in a Web collection, we resort to click information that 

may be noisy but can provide valuable information about relevance. We assume that a 

document clicked by the user can be roughly viewed as relevant to her information 
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need. Accordingly our hypothesis is that high WIG scores would predict more clicks 

on search results. That is, WIG is related to user’s preference for search results.    

We now describe our experimental design to test the above hypothesis. We 

randomly sample 2000 queries from the query log file. We assume that each query is 

issued by a unique user (that is, one-to-one correspondence between a query and a 

user) .We divide these queries into three groups according to the number of results the 

user clicked when seeing the ranked list of results in response to her query. Table 4.12 

gives the details. For example, Group A represents those users who do not click any of 

the returned results. In fact, group A, B and C represent three levels of user interest in 

search results in ascending order. The percentage of each group in our sampled query 

set is also provided in Table 4.12. We can see that the majority of users only click one 

of the retrieved results.    

For each query in the sampled query set, we compute the WIG score. For WIG 

calculation, in addition to the query itself we need the ranked list in response to the 

query and a collection. We use the provided search engine API to download the top 

ranked documents for the query. The GOV2 collection is used to approximate the 

Web collection statistics required in WIG calculation. The parameter settings of WIG 

are the same as used in Section 4.2.2. The distributions of WIG scores for the three 

groups are presented in Table 4.13. We adopt two statistics to represent the 

distribution of WIG scores for each group: sample mean and sample variance. The 

size of each group (the number of queries in the group) is also provided. 
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Table 4.12 : Division of test queries into three groups based on the number of 
clicked results  

Group A B C 

# of clicked results  0 =1 >=2 

Percentage  34.8% 50.1% 14.1% 

 

Table 4.13 : Distributions of WIG scores for Group A, B and C   

Group A B C 

Sample mean of 

WIG score  

5.340 6.040 6.648 

Sample variance of 

WIG score 

11.645 8.120 8.877 

Size 695 1002 283 

 

Let ( )WIG A , ( )WIG B  and ( )WIG C  represent the mean of WIG scores in group 

A,B and C respectively, that is , 
1

( ) ( )
| |q A

WIG A WIG q
A ∈

= ∑  where | |A is the size of 

group A and ( )WIG q  is the WIG score for query q. ( )WIG B and ( )WIG C   have 

similar definitions. From Table 4.13 we observe that ( )WIG C > ( )WIG B  and 

( )WIG B > ( )WIG A . Further investigation shows that both of the two differences 

( ( )WIG C - ( )WIG B  and ( )WIG B - ( )WIG A ) are statistically significant at the 95% 

confidence level according to the student t test [61]. This shows that high WIG scores 
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suggest more clicks, which is consistent with our previous finding that high WIG 

scores generally correspond to high retrieval performance.        

We want to point out the correlation between WIG and clicks is not strong 

enough to make a conclusion that WIG alone can accurately predict clicks, 

considering the large variance of WIG scores in each group as shown in Table 4.13. 

This is due to the fact that user preferences for search results depend on many factors 

other than retrieval quality. For example, user education background may have a huge 

impact on their preferences. In fact, we observe in the dataset that for the same query 

some users do not click on any of the returned results while others do click. Since 

WIG is an effective feature only for predicting relevance and clicks are only related to 

relevance to some degree, we do not expect that clicks can be accurately predicted by 

WIG alone. However, WIG is still a useful feature as shown in the above experiment.  

4.3 Combination of performance predictors 

We observe that our predictors can sometimes perform better when linearly 

combined, due to the fact that they capture different aspects of the retrieval process 

that have a major impact on retrieval effectiveness. For example, the Pearson’s 

correlation coefficients for the clarity score and the robustness score on Robust 04 are 

0.507 and 0.557 respectively according to Table 4.2. When we combine the two 

predictors by a simple linear combination, the corresponding Pearson’s correlation 

coefficient is increased to 0.613 [7]. In Web search environments, a similar trend is 
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observed in our paper [68]: the linear combination of WIG and QF is better than WIG 

alone for content-based queries and the linear combination of WIG and FRC is better 

than WIG alone for named-page finding queries. Other researchers also report that the 

combination of multiple prediction features can provide better prediction accuracy 

than anyone when used in isolation [25]. In general, performance prediction should be 

done using a combination of resources, if this is computationally possible.       

       

4.4 Model Comparison for Query Expansion Prediction           

In this section, we address the task of query expansion prediction. The major goal 

of this section is to test the ability of model comparison in sensing poor expansion 

results. Specifically, we perform both an unexpanded retrieval and an expanded 

retrieval. We adopt the query likelihood model [41] for our unexpanded retrieval for 

each query. For our expanded retrieval, we use the relevance model [40] which is a 

conceptually simple and effective way for implementing query expansion. We will 

explore if model comparison can accurately predict the change in performance 

between the two retrievals for a particular query.  

We apply the model comparison method for the task of query expansion 

prediction on a variety of data sets as shown in Table 4.14. All queries used in this 

section are titles of TREC topics. Regarding the calculation of model comparison 
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score, we set T to 10 in Equation 3.23. (Tests show that this method is not very 

sensitive to T as long as it is in the range of 5 to 50). 

Table 4.14 : Summary of test collections for query expansion prediction  
TREC Collection Topic Number Number of 

Document 

1+2+3 Disk 1+2+3 51-150 1,078,166 

5 Disk 2+4 201-250 524,929 

Robust 2004 Disk 4+5 minus 
CR 

301-450;  601-700 528,155 

Terabyte 04-05 

(ad-hoc task) 

GOV2 701-800 25,205,197 

Figure 4.5 shows our models comparison scores applied to the Robust Track 04 

data. The delta average precision is the value with relevance retrieval minus the value 

with query-likelihood retrieval. Highly positive comparison scores are an indicator 

that the performance of the expanded retrieval may be significantly worse than the 

unexpanded retrieval. Moreover, highly positive scores, when they occur, are often 

well separated from the other scores. This separation makes it possible to distinguish 

hard-to-expand queries from others by setting a threshold. Specifically, after setting a 

threshold of model comparison score, we use expanded retrieval for a given query if 

the model comparison score is below the threshold and vice versa. We call this 

strategy selective query expansion based on model comparison (SQEMC for short).           
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Figure 4.5 a scatter plot of model comparison scores versus delta average 

precision for each of the 250 queries of Robust 2004.The delta average precision 
is the value with relevance retrieval(REL) minus query-likelihood retrieval(QL).   
 

    
Table 4.15 :  Mean Average Precision  

   QL: query-likelihood   
   REL: query expansion by using the relevance model  

   SQEMC: selective query expansion based on model comparison by 
predicting change between QL and REL in average precision using a threshold 

learned from training data  

TREC QL REL SQEMC 

TREC123 0.187 0.249 0.245 

TREC5 0.149 0.161 0.168 

Robust 04 0.244 0.280 0.286 

Terabyte 04-05 0.291 0.311 0.313 

Table 4.15 shows the mean average precision for SQEMC compared to using 

relevance model retrieval (REL) and query-likelihood retrieval (QL). We obtain the 

Model Comparison Score 

D
elta A

verage P
recision  
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results for SQEMC by leave-one-out cross-validation, by setting the threshold score 

using training data, then applying the threshold to held-out test data. Generally we do 

not observe large mean average precision improvement over relevance retrieval. The 

main reason is that this method is only capable of detecting a small percentage of 

queries that perform very poorly on expansion as shown in Figure 4.5. Moreover, 

SQEMC usually does not hurt retrieval performance. 

Examining some example queries is illuminating and can help us understand the 

strength and weakness of this method. We first look at cases when model comparison 

works well. In the case of “supercritical fluid” [delta average precision (REL-QL): 

-0.290, model comparison score: 4.313 ], loosing the requirement that documents use 

the exact query terms frequently to be highly ranked (by going from unexpanded 

retrieval to expanded retrieval) ranks documents too highly that do not contain all the 

correct jargon term frequently. In other words, in this case matching the exact 

technical terms is what satisfying the information need requires. This query receives a 

high model comparison score because query expansion makes the technical terms 

occur less frequently in the search results. In the example of the “tourist violence” 

query [delta average precision (REL-QL): 0.254, model comparison score:-0.757], 

broadening the search to contain closely related terms can help. However, there are 

hard-to-expand queries that the method fail to detect. One is “Legionnaires disease” 

[delta average precision (REL-QL): -0.248, model comparison score:-0.256 ] where 

documents can contain the terms “legionnaire (meaning soldier)” and “disease” (and 
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related words) yet not be about Legionnaires’ disease, leading to a low comparison 

score despite its hard-to-expand status.       

4.5 Summary 

Several prediction techniques (clarity, ranking robustness, query feedback and 

WIG) were evaluated for the task of performance predication. Our major findings are:  

(1) Regarding the clarity score, we found that it performs reasonable well for 

content-based queries on traditional TREC test collections. However, the prediction 

accuracy of clarity drops remarkably in a Web search environment.    

 (2) For the ranking robustness technique, there are two variants: robustness score 

for content-based queries and first rank change (FRC) for named-page (NP) finding 

queries. FRC is found to be effective for NP queries on the GOV2 collection. Like the 

clarity score, the performance of robustness score for content-based queries is good 

on traditional TREC test collections but is low on the GOV2 web collection. One 

interesting phenomenon we observed about the robustness score is a moderate 

negative correlation with retrieval performance for NP queries. Though the 

correlation is not strong, the opposite behavior of the robustness score between the 

two types of queries motivates us to investigate the possibility of the use of robustness 

score for query classification. Our results show that the robustness score is a good 

feature for distinguishing between the two query types.       
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  (3) Query feedback (QF) is found to be effective for content-based queries on 

both traditional TREC collections and the GOV2 collection.  

  (4) WIG offers consistent prediction accuracy across various search scenarios. 

WIG provides a uniform framework to deal with both content-based and named-page 

finding queries. In fact, as far as we know, WIG is the only predictor we have found so 

far that can successfully deal with both types of queries, making it particularly 

suitable for performance prediction in a Web search environment. In addition, with 

the help of an automatic query classifier, WIG offers a practical solution to predicting 

mixed-query performance. Our experiment on realistic Web data collected from a 

commercial Web search engine shows a tendency that high WIG scores predict more 

clicks on search results. We also find that description queries can make WIG less 

effective compared to title queries.  

 (5) For the clarity score, the robustness score and QF, we observe no noticeable 

change of prediction accuracy from short queries based on the topic title to long 

queries based on the topic description.  

In addition, we proposed a method called model comparison to address the task of 

query expansion prediction. We found that this method can improve retrieval 

consistency by catching a small proportion of queries and avoiding some poor 

expansions, although no significant improvement over expansion retrieval was 

observed in terms of mean average precision.   
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CHAPTER 5  

IMPLEMENTATION OF PREDICTION MODELS 

We evaluated the effectiveness of our models in the previous chapter. Other than 

effectiveness, efficiency is another major concern especially when facing a large 

amount of data. Accordingly, we devote this chapter to discussing the implementation 

of our prediction models.  

(1)  Clarity Score   

Let us revisit the definition of clarity which is given in Equation 3.5:         

2

( | )
( | ) log

( )w V coll

P w Q
clarity score P w Q

P w∈

=∑  

The collection model ( )collP w  is typically estimated by the relative frequency of 

term w in the collection. The estimation of ( )collP w only needs two kinds of statistics: 

the number of occurrences of term w in the collection and the total number of terms in 

the collection. Since almost all indexes will store these statistics, the computation of 

( )collP w  costs nearly no additional space and time. In fact, the most time-consuming 

and space-consuming part of clarity computation is the estimation of the query model 

( | )P w Q  which is estimated as follows: 

( | ) ( | ) ( | )
D

P w Q P w D P D Q=∑    

Theoretically, the D in the above equation includes every document in the 

collection. This means that we need to compute and store the probability ( | )P w Q  

for every word in the collection, which is almost infeasible when the collection is 
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large. One practical solution is that we perform a first round retrieval and limit the D 

to the top K ranked documents from the retrieval. By doing so, we only need to pay 

attention to terms that do occur in the top K ranked documents. However, both time 

and space complexity can still be high even after this approximation. In essence, the 

query model ( | )P w Q  can be viewed as a type of automatic query expansion (AQE) 

which is usually slow in practical applications. Methods for speeding up AQE can be 

helpful for improving the efficiency of clarity computation. 

 (2) Ranking Robustness 

The efficiency of both robustness score and FRC is dominated by the following 

two steps:  i) perturb term counts in a document, ii) re-rank the perturbed documents. 

If only query terms are considered, the perturbation process (the first step) can be 

implemented efficiently. For example, we can create a table where entry (i,j) records 

the number of occurrences of query term j in document i. Since a cutoff is set on the 

ranked list and the query is usually relatively short, the size of the table is small and 

therefore can be stored in main memory. The perturbation process can be directly 

performed on this table by perturbing the term count in each cell of the table. 

Regarding the second step, the re-ranking process will be fast with the help of the 

perturbed table, since this table can be used as an index of the perturbed documents to 

be re-ranked.        

(3) Weighted information gain 
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 WIG can be implemented very efficiently. The calculation of WIG is given in 

Equation 3.20. We rewrite it as follows: 

( ) ( )

( ) ( ) ( )

( ) ( )
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In Equation 5.1, ( , )i tscore Q D  is exactly the relevance score of document tD  

for query iQ  when the Markov Random Field (MRF) model is adopted for retrieval. 

Similarly, ( , )iscore Q C  is the relevance score of collection C by treating the 

collection as a whole. For ( , )i tscore Q D , we can directly copy the corresponding 

document score from the given ranked list when the MRF model is used for retrieval. 

Even if another retrieval technique is adopted, the computation of ( , )i tscore Q D  is 

still quite efficient since only features occurring in query iQ  are considered. 

Regarding ( , )i tscore Q D , ( | )P Cξ  is usually estimated by the relative frequency of 

feature ξ  in the collection. This information can be readily obtained from the index. 

Considering that both single term and phrase features are used in the computation of 

WIG, we require that the index supports both types of features. The Indri search 

engine [62] is one example that fully supports such a request. In short, the 

computation of WIG can be made extremely efficient under the proper conditions.  

(4) Query feedback (QF) 
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There are two major bottlenecks for the implementation of QF: i) the estimation 

of the ranked list language model , ii) an extra retrieval required for measuring the 

similarity between the original query and the new query. The ranked list model is a 

variant of the query model used in the computation of clarity. Therefore, the 

efficiency issues of implementing the query model in clarity calculation also apply 

here. Both i) and ii) make it difficult to implement QF efficiently.          

(5) Model Comparison 

The most complex part for computing model comparison scores comes from the 

estimation of the ranked list model which is stated above. 

Based on the above discussion, we can see that the implementation of WIG is the 

most efficient among our prediction models. Considering the fact that WIG shows 

satisfactory prediction accuracy across a variety of search settings (especially in Web 

search environments), WIG is our first choice for the task of performance prediction 

in realistic applications involving a large amount of data.           
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CHAPTER 6 

PREDICTING DOCUMENT QUALITY FOR WEB AD-HOC RETRIEVA L 

6.1 Overview    

In this chapter, we address the problem of document quality and its application to 

Web retrieval. As we mentioned before, this problem can be viewed as performance 

prediction at the level of individual documents. To achieve the goal of improving the 

performance of Web ad hoc retrieval by exploiting document quality information, we 

propose a document quality model that incorporates features other than link structure. 

This quality model is incorporated into the basic query likelihood retrieval model in 

the form of a prior probability. We first introduce two quality metrics, that is, 

information-to-noise ratio and collection-document distance. The latter is a novel 

feature found to be helpful for identifying low quality documents. We then show how 

to estimate the quality of a web document using a naïve Bayes classifier which makes 

use of these two features. This naïve Bayes classifier is embedded as a prior 

probability in the query likelihood model. We evaluate our document quality model 

on three TREC web collections (GOV2, WT2G and WT10G) in terms of three 

measures: precision in the top ranked documents, mean average precision and MRR. 

Our results demonstrate that, on average, the retrieval model incorporating quality is 

significantly better than the baseline in terms of MRR and precision at the top ranks, 
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although the impact of our model on mean average precision is quite small. Last, we 

give a detailed query analysis to understand the limitations of our model. 

6.2 Quality Metrics 

We focus on two quality metrics, collection-document distance and 

information-to-noise ratio, the first of which is new and the second having been used 

with some success in a previous study [39]. 

6.2.1 Collection-document Distance 

  The Collection-Document Distance (CDD for short), is simply the relative 

entropy, or Kullback-Leibler (KL) divergence, between the collection and document 

unigram language models. The collection or background language model is estimated 

using the word occurrence frequencies over the whole collection (e.g. GOV2). 

Given a document D and a collection C, the CDD is given by  

( | )
( | ) log (6.1)

( | )

( | ) ( | ) (1 ) ( | )

# ( , ) # ( , )
( | ) , ( | )

|| || || ||
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CDD P w C

P w D

where P w D P w D P w C
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λ λ

=

= + −

= =

∑

 

In this formulation, we use linear smoothing for estimating the document language 

model probabilities. 

 Our hypothesis is that low quality documents will have unusual word 

distributions. In other words, if a document differs significantly from the word usage 

in an average document, the quality of this document may be low. In the CDD 
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measure, the average document is represented by the collection language model. The 

KL divergence between the collection language model and the document language 

model (i.e. the CDD) indicates how different these distributions are. The higher the 

CDD is, the more unusual the word distribution of the document is, and the more 

likely, according to our hypothesis, that the document is of low quality.  

Let us consider three cases that are helpful for understanding why CDD can 

predict low quality documents.  

Case 1:  documents that are tables or lists. Common words, such as pronouns, 

adjectives and verbs, would have very low numbers of occurrences, which makes the 

document language models quite different from the collection language model.     

Case 2: documents that have misspelled words. The probability of a misspelled 

word in the collection is much lower than that of normal words. If any document 

contains misspelled words, the CDD tends to be high.  

Case 3: documents where the frequency of some term is unnecessarily high. Since 

the web environment contains competing profit seeking ventures, one may 

intentionally increase the occurrence of some keywords in a document to get 

attention. CDD can recognize this case.   

As an alternative to Equation 6.1, one can compute the divergence with the role of 

the collection language model and the document language model reversed. The 

method shown in Equation 6.1 performs slightly better in our evaluations and is used 
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throughout this thesis. The value of the parameter λ is determined empirically and is 

0.8 for all runs in this paper.  
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Figure 6.1:  Distribution of CDD values for low and high quality documents. 

    

Fig 6.1 shows the distributions of CDD values for high quality and low quality 

documents respectively. (The details on the data used to generate this figure will be 

described in section 6.3.1.) These two distributions are estimated from our training 

data by the Kernel density estimation method that will be discussed later. We can see 

that there is an obvious separation between the two classes of documents. 

6.2.2 Information-to-noise ratio 

The information-to-noise ratio is computed as the total number of terms in the 

documents after indexing divided by the raw size of the document [39]. This metric 

predicts low quality documents based on a different characteristic than the CDD 

metric. Consider a web document that has only a few words and many HTML tags 
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which will be removed after indexing. The information-to-noise ratio of this 

document is very low and the quality of this document also tends to be low.     

Fig 6.2 shows the distributions of information-to-noise ratios for high quality and 

low quality documents respectively. (The details on the data used to generate this 

figure will be described in section 6.3.1.) The two distributions are also estimated 

from our training data by the Kernel density estimation method. As we can see, a 

document with a low information-to-noise ratio is much more likely to be of low 

quality.  
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Figure 6.2: Distribution of information-to-noise ratios for low and high quality 
documents. 

 

6.3 Predicting Document Quality  

    In this section, we show how to estimate the quality of a Web document by a naïve 

Bayes classifier using the two quality metrics described in the previous section.  
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6.3.1. Training data 

First of all, we give the details of how the training data were created. These data 

are used for estimating the parameters in our naïve Bayes classifier. 

We ran 50 title queries (TREC topics 701-750) from the 2004 Terabyte Track on 

the GOV2 collection. The search algorithm used is the query-likelihood model with 

Dirichlet smoothing [41]. We looked at the top ten retrieved documents for each 

query (that is, 500 documents in total). We manually judged these documents either as 

high quality or low quality. These labeled documents will be used as the training data 

in our experiments described in section 6.5. In the experiments involving Terabyte 

Track 2004, we used five-fold cross validation to avoid testing on the training data. 

 

 

Figure 6.3: “Low quality” document retrieved in response to the query 
controlling type II diabetes. 
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     Document quality is an inherently subjective concept and involves many aspects 

such as popularity, authority and quality of writing. Since we focus on the ad-hoc 

content-based retrieval task, we used the following criterion for judging a document 

to be low quality: A document is judged as low quality if it contains few or none of the 

typical sentences that would be required to describe a topic. Any other document that 

is not judged as low quality would be regarded as high quality.  In practice, most low 

quality documents we found consisted of primarily tables or lists. Figure 1 gives an 

example of part of a typical low quality document in the training data. The document 

contains a list of diabetes studies that are recruiting patients for trials and was 

retrieved in response to the query “controlling type II diabetes”. 

The intuition behind this basis for quality judgments is that a relevant document 

for the TREC ad hoc task usually explains or describes some topic using sentences 

with typical English structure and vocabulary. Therefore, documents like tables or 

lists are unlikely to be relevant for ad hoc queries.  

We examined the relationship between relevance and document quality and 

Table 6.1 shows the distribution of relevant documents over two classes: high quality 

and low quality documents. 

Table 6.1 : Distribution of relevant documents in the training data 

  Relevant  Non-relevant 

High quality 238 171 

Low quality 9  82 
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As we can see, the proportion of relevant documents among low quality 

documents is much lower than that in high quality ones. Overall, based on our training 

data, successfully recognizing low quality documents should be helpful for improving 

retrieval performance. 

 

 6.3.2 Naïve Bayes Classifier 

The Naïve Bayes classifier technique is based on the Bayesian theory and 

assumes independence in features. Despite its simplicity, Naïve Bayes classifiers 

often work much better in many real applications than might be expected from their 

simple design [59]. 

In this thesis, we use this technique to predict document quality. Specifically, let 

D denote a document. Note that we assume that all documents belong to one of the 

two classes: high quality and low quality. Let H denote the high quality class, L 

denote the low quality class, X denote a vector of quality metric values, and πΗ and πL 

denote the prior probabilities of the high quality class and the low quality class 

respectively. Let fH and fL denote the probability density functions of the high quality 

class and the low quality class respectively. By Bayes rule , we have: 

0
0

0 0

( )
Pr( | ) (6.2)

( ) ( )
H H
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f x
D H X x

f x f x
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π π
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Given multiple features (in this case, quality metric values) it is common to 

assume independence among the features. In fact, we examined the training data and 

found there is little correlation between the two metrics. Under this assumption, we 

have 

0 1( ) ( ) ( ), , (6.3)j j jf X f x f x j H L= =  

where x0 is the CCD metric and x1 is the information-noise ratio. 

The key part of computing Pr(D=H |X) is the estimation of the probability density 

functions in Equation 6.2, since πΗ and πL can be simply estimated by the relative 

frequencies in the training data. However, it is not easy to estimate these functions 

since we do not know what distribution the two metrics actually follow. Instead, we 

adopt Kernel density estimation which does not assume any specific distribution on 

the features we want to estimate. Kernel density estimators belong to a class of 

estimators called non-parametric density estimators that have no fixed structure and 

depend upon all data points to reach an estimate.   

Assume we have a random sample x1, x2, …xN drawn from a probability density 

function f(x) and we wish to estimate f(x) at a point x0 , the Kernel density estimator 

for f(x) at the point x0 is defined as  [59]: 

0
1

1ˆ( ) ( , ) (6.4)
N

i
i

f x K x x
N λλ =

= ∑  

where λ is the bandwidth and Kλ is a Kernel function. In this paper we use the 

Gaussian Kernel and Equation 6.4 can be written as  
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There is a standard way to select the bandwidth (λ) based on minimizing the 

expected square error between the estimated density and the original density [59].   

In this proposal, we adopt this method to calculate λ.   

6.4 Document Quality Language Model 

   To utilize our quality predictor to improve retrieval performance, we propose 

the document quality language model [60] that is built on the top of the basic query 

likelihood model by incorporating document quality prediction in the form of a prior 

probability. 

 Specifically, given a query Q and a document D, let P(D|Q) be the probability 

that D is relevant given Q, the document quality language model is as follows: 

( | ) ( | ) ( | )P D Q P Q D P D H X∝ =  

where P(Q|D) is the query likelihood model described in [41] and P(D=H |X) 

computed by Equation 6.2 can be interpreted as the document prior probability that 

reflects prior knowledge about the relevance of the document D[38].  

6.5 Results 

In this section, we present the results of comparisons between the document 

quality model and the query likelihood model on the three Web test collections. The 

details of these test collections are shown in Table 6.2. Three metrics are used for 
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evaluation: precision at top retrieved documents, mean average precision and MRR 

(mean reciprocal rank). Our results show that the document quality model 

significantly outperforms the baseline in the evaluation using precision at top ranked 

documents and MRR, although the differences of MAP between the two models are 

quite small.   

 For query likelihood retrieval, we use Dirichlet smoothing with a smoothing 

parameter of 2500 for all runs.  

Table 6.2: Summary of test collections 
Test Collection Topic Number Number of Document 

WT10G 501-550 1,692,096 

WT2G 401-450 247,491 

GOV2  

(Terabyte Track 04-05) 

701-800 25,205,197 

6.5.1 Results for Precision at Top Ranks     

 In a typical Web search environment, few people would look at more than the 

first ten or twenty results.  Precision at the top ranks is a very important metric since 

it reflects the concern with high retrieval accuracy. In this thesis, we evaluate 

precision at 4 rank levels: 5, 10, 15 and 20. 

 Table 6.3 shows the precisions at top ranks on the GOV2 collection. To better 

compare our model with the baseline, all queries are divided into three types: “Pos”, 

“Neg” and “Eq”, which means our model is better, worse or equal to the baseline 
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respectively. The last column in Table 6.3 shows the numbers of the three types of 

queries.    

Table 6.3:  Precision on the GOV2 collection. “Pos” means result is better than 
the baseline, “Neg” means result is worse than the baseline, “Eq” means result is 

the same as the baseline  

Precision 

@ 

Query-likelihood 

model  

Document quality 

model 

 

Pos     Neg    Eq 

 5 docs 0.5592 0.6037 27       11      61   

10 docs 0.5430 0.5673 28       12      59 

15 docs 0.5207 0.5550 37       18      44 

20 docs 0.5066 0.5400 38       18      43 

. 
 

Table 6.4:  Precision on the WT2Gcollection 

Precision 

@ 

Query-likelihood 

model  

Document quality 

model 

 

Pos     Neg    Eq 

 5 docs 0.4960 0.5240  9       3      38   

10 docs 0.4640 0.4760 10       4      36 

15 docs 0.4107 0.4280 10       3      37 

20 docs 0.3880 0.3920 10       7      33 

 

We can see that the document quality model consistently outperforms the 

baseline at all of the 4 rank levels. On the other hand, the majority of the queries are 

not affected by the quality-based prior. One reason is that high quality documents, 
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where the differences in the prior probabilities tend to be negligible, consist of a large 

part of the whole collection. In other words, our model can make a difference only 

when there are enough low quality documents in a rank list. Approximately twice as 

many queries are improved by this technique than are hurt. 

Table 6.5:  Precision on the WT10G collection 

Precision 

@ 

Query-likelihood 

model  

Document quality 

model 

 

Pos     Neg    Eq 

 5 docs 0.3440 0.3640  9       6      35   

10 docs 0.3000 0.3240 13       5      32 

15 docs 0.2880 0.2907 13       12     25 

20 docs 0.2660 0.2900 19       9      22 

 

 The results for WT2G and WT10G are shown in Table 6.4 and 6.5 respectively. 

As with the results on the GOV2 collection, the document quality model consistently 

improves precision. Moreover, considering the limited size of the training data, we 

believe that performance could be further improved by including more training data 

from a variety of web collections.               

In summary, these results suggest that incorporating document quality 

information can significantly improve precision at the top ranks.               
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6.5.2 Mean Average Precision Results 

Mean average precision (MAP for short) is the most frequently used measure for 

ad hoc retrieval. In our view, MAP is a less important measure than precision at the 

top ranks for a typical web user, but to fully evaluate and understand the quality 

model, we include this measure.  

Table 6.6 shows the mean average precision on GOV2, WT2G and WT10G. 

Percentage improvements with respect to the baseline are also given. “Pos”, “Neg” 

and “Eq” have the same meaning mentioned in Section 6.5.1. As we can see, although 

the differences between the two models are small, the document model is consistently 

better than the baseline on all of the three collections.      

Table 6.6: MAP on the three test collections         

Collection Query-likelihood 

model 

Document quality model  

    Pos     Neg    Eq 

GOV2 0.2882 0.2905 (+0.8%) 55     45      0 

 

WT2G 0.3135 0.3220 (+2.7%) 34     16      0 

WT10G 0.1831 0.1840 (+ 0.5%) 27     21      2 
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6.5.3 MRR Results 

Table 6.7 shows MRR on the three test collections. Since the document quality 

model is consistently better than the baseline in terms of precision at top ranked 

documents, it is not surprising that our model performs better on GOV2 and WT2G.  

WT10G is an exception where our model is slightly worse than the baseline. We 

discuss this more in the next section, but MRR is more sensitive to a small fluctuation 

in the rank list than precision. For example, if the rank of the first relevant document is 

second instead of first, the MRR drops from 1.0 to 0.5 while the precision in the top 5 

documents may change very little.    

  Table 6.7 : MRR on the three test collections 

Collection Query-likelihood model Document quality 

model 

 

Pos.     Neg.   Eq.      

GOV2 0.7391 0.7927 25       6       68 

WT2G 0.7406 0.7781  9        1       40 

WT10G 0.6215 0.6139   9        8      33 

6.6 Query Analysis 

  Previously we showed that on average the quality-based model can effectively 

improve precision and MRR with respect to the baseline. To understand the 

limitations of this approach and potentially find improvements, we analyzed the 

queries for which the model did most poorly in terms of MAP and MRR. Below are 

the details of six of these queries and our explanations why the quality model does not 
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perform well.  Note that in the cases where no MRR is listed, the two models have 

the same MRR value. 

Example 1 (GOV2):  
Query  Topic Baseline Quality model 

Nuclear reactor types 748 0.1138 (MAP) 
1.0 (MRR) 

0.0628 (MAP) 
0.5 (MRR)  

Explanation: According to the narrative for this topic, relevant documents only need 

to mention the names of the types of nuclear reactor power plants. Therefore, low 

quality documents like lists or tables could be relevant for this topic. The quality 

model penalizes some of these relevant documents.  

 
Example 2 (GOV2):  
Query  Topic Baseline Quality model 

Green party political 
views 

704 0.1733 (MAP) 
 

0.0662 (MAP) 

Explanation:  it seems that low quality documents are not likely to be relevant for this 

topic. However, the narrative section of this topic says “Any members’ names noted 

are considered relevant”. There are a few low quality documents judged as relevant 

only because the names of green party members are listed, which leads to the failure 

of our model in this case.    

 

Example 3 (WT10G):  
Query  Topic Baseline Quality model 

History of 
skateboarding 

506 0.1276 (MAP) 
0.25 (MRR) 

0.017 (MAP) 
0.026 (MRR) 
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Explanation:  There are only two documents judged as relevant for this topic.  One 

of the two is retrieved by neither the quality model nor the baseline. The other one that 

is highly ranked by the baseline is a list.  

 
Example 4 (WT10G):  
Query  Topic Baseline Quality model 
Instruments to forecast 
the weather 

541 0.2588 (MAP) 
 

0.1497 (MAP) 

Explanation: As in example 1, low quality documents such as lists can be relevant 

documents for this topic 

 
Example 5 (WT2G):  
Query  Topic Baseline Quality model 

Cuba sugar exports 414 0.5898 (MAP) 
1.0 (MRR) 

0.4806 (MAP) 
0.5 (MRR) 

Explanation: In the description section of this topic it says “How much sugar does 

Cuba export and which countries import it”. As we can see, just numbers and names 

are enough to be relevant for this topic.  

 
 
Example 6 (WT2G): 
Query  Topic Baseline Quality model 

Quilts, income 418 0.3643 (MAP) 
 

0.2634 (MAP) 

Explanation: The narrative section of this topic states “Documents mentioning 

quilting books, quilting classes, quilted objects and museum exhibits of quilts are all 

relevant”. According to these criteria, low quality documents can be relevant for this 

topic. 
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    In summary, it seems that the biggest problem for the current quality model is that 

there are queries with relevant documents that are low quality according to the model.  

To better understand this issue, we manually divided all queries for the Terabyte 

Track 2004 into the following two types:  

Type one: queries that are not likely to have relevant low quality documents. 

Type two: queries that are likely to have relevant low quality documents. 

    According to our classification, there are 33 type one queries and 16 type two 

queries. The heuristic we used for the classification is that if a few named entities are 

enough to satisfy the information need as defined in the narrative, the query will be 

classified as type two. Otherwise, if detailed topic description is needed, the query 

will be classified as type one. Of course, the classification is still somewhat 

ambiguous for some queries. 

    Table 6.8 shows MAP results for the two types of queries defined above. 

Percentage improvements with respect to the baseline are also given. Considering the 

explanations given above, it is not surprising to see that the performance of the 

document quality model is quite low on the type two queries. On the other hand, our 

model is better than the baseline on the type one queries, although the improvement is 

small. This is because there are relatively few low quality documents in a typical 

ranked list and MAP is based on the whole ranked list. Another interesting 

observation from table 8.1 is that both two models perform better on type one queries.  

Even though we currently can not automatically distinguish the two types of queries, 
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our analysis suggests that a different strategy is needed to improve the performance of 

type two queries.          

        Table 6.8 : MAP on the two types of queries 
Query Type Query likelihood model Document quality model 

Type One   0.2664  0.2710 (+1.7%) 

Type Two   0.2209  0.2045 (-7.4%) 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusions 

The contributions of this thesis have been stated in the introduction chapter of this 

thesis. We summarize them as follows: 

- Defining the area of performance prediction  

- Describing a comprehensive range of experiments for performance 

prediction  

- Showing that satisfactory prediction accuracy is achievable across a variety 

of search scenarios 

- Demonstrating the superiority of WIG in Web search environments  

- A framework for query expansion prediction 

- A document quality language model incorporating quality features for Web 

retrieval   

In addition, major insights and lessons gained from this work are: 

 (1) Collection types and query types have a significant impact on the accuracy of 

a prediction technique.     
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 (2) As is the case for retrieval, term proximity can be helpful for performance 

prediction, although carefully modeling term proximity is required.  

(3) Performance prediction techniques designed for content-based queries 

generally do not perform well for named-page finding queries.  

(4) Regarding performance prediction, there exists a uniformed framework for 

dealing with performance prediction for both content-based and named-page finding 

queries. 

(5) In general, the performance difference between two retrieval techniques for a 

given query is smaller than the difference between two queries for a given retrieval 

technique. Therefore, query expansion prediction is a harder problem than query 

performance prediction.    

(6) The notion of quality within the context of IR is necessary deserves further 

investigation.     

     

7.2 Future Work  

There are many interesting extensions to this thesis work. Here we highlight some 

of them.  

(1) Improving Prediction Models 

 Our most promising performance prediction model is WIG, but one issue with 

WIG is its sensitivity to a description query. One naïve way would be automatically 

compressing the description query into a few key words. Since the compression 
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process is not perfect, we would like to see if this strategy can eventually improve the 

prediction accuracy of WIG for description queries. Additionally, the query feedback 

method leaves much room for improvement. For example, exploring alternative ways 

of implementing the rank list distillation part has the potential of making this 

technique computationally efficient.         

(2) Ranking Robustness and Ranking Functions 

We have shown that the ranking robustness technique is capable of predicting 

query performance. In that case, the ranking function is fixed and we compare 

robustness scores across a set of queries. Another interesting question is: given a set of 

queries and more than one ranking functions, can we utilize the idea of ranking 

robustness to select the best ranking function for that particular set of queries? For 

example, as a first step, we can compare the robustness scores of two kinds of ranking 

functions: document likelihood and query likelihood. Previous studies have shown 

empirically that using query likelihood leads to much better retrieval performance 

compared to document likelihood. However, there is no theoretical justification for 

choosing one over the other. It would be interesting to investigate whether the 

superior performance of query likelihood can be explained under our ranking 

robustness framework. 

(3) Applications in Distributed IR 

Retrieval performance can be viewed as a function of query Q and collection C. 

In this thesis, we focus on the situation when collection C is fixed but query Q is a 
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variable. We are also interested in the reverse situation: query Q is fixed but collection 

C is a variable. This situation corresponds to the collection selection problem in 

distributed IR. With the help of a performance predictor, those collections with the 

highest predicted performance for a given query will be chosen. We believe that 

taking performance prediction into account has the potential of significantly 

improving selection accuracy. Moreover, performance predication can be applied to 

the problem of merging document rankings. Traditional methods for results merging 

are based on the normalization of document scores from different search engines. We 

can incorporate performance prediction by assigning a weight learned from a 

performance predictor to each of these search engines. Search results are merged 

based on these performance weights associated to the search engines.       

 (4) Query Disambiguation 

 Retrieval effectiveness suffers greatly from users’ ambiguous queries, notably in 

Web search where most users tend to submit very short queries with little context.  

On the other hand, formulating a well-defined information request is still challenging 

even for experts. The performance prediction techniques developed in this thesis can 

play an important role in query disambiguation by either incorporating them into 

existing methods or by providing insights to develop new disambiguation techniques. 

For example, one way used by many commercial search engines for query 

disambiguation is the technique called query refinement that allows the user to 

interactively specify her information need by selecting new terms suggested by the 
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system. Prediction techniques will provide guidance on important issues such as what 

kind of queries need refinement and how to select effective terms based on the user’s 

original query. 

 (5) Information Quality  

Information quality has become a significant concern especially on the Web 

where little restriction is placed on generating and publishing web documents.  

Relevant but fraudulent information is much worse than irrelevant but reliable 

information. Modeling information quality is difficult because it is highly 

user-dependant and involves many aspects such as authority, accuracy, objectivity 

and timeliness. The document quality chapter in this thesis only addresses one aspect 

of information quality and the features used are solely based on term statistics. We 

would like to explore more features related to quality, especially user-interaction 

features such as click information. We also plan to further investigate the relationship 

between quality and relevance, and potentially develop different quality measures for 

different types of queries. 
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APPENDIX A : RETRIEVAL PERFORMANCE MEASURES 

 In this thesis, we use the following three measures for evaluating the 

performance of the retrieval results in response to a given query: precision at a given 

cut-off level, Mean Reciprocal Rank (MRR) and average precision. Specifically, we 

assume that the retrieval results are in the form of a ranked list of documents, that is , 

1 2{ , ,.. }nd d d where n is the length of the ranked list and id  is the i-th ranked 

document. We also assume the relevance judgments is in the form of a binary vector 

1 2{ , ,... }nR r r r=  where 1ir =  if document id  is relevant or 0ir =  if document id  is 

irrelevant. Next we give details on these measures. 

    

(1) Precision at a given cut-off rank k: ( )precision k  

    It is defined as follows: 

   1( ) ,

k

i
i

r
precision k k n

k
== ≤
∑

 

     That is, precision at cut-off rank k is the percentage of relevant documents in the 

top k retrieved documents. This measure is often used for ad-hoc retrieval evaluation 

in a Web search environment where a user generally looks at no more than the first 

one or two pages of results. 

 (2) Mean Reciprocal Rank : MRR 

 MRR is defined as the inverse of the rank of the first relevant document, that is, 



 130 

1

1

1
, 0 1

j

i j
i

MRR where r and r
j

−

=

= = =∑  

MRR is useful in cases where users are primarily looking for one correct answer 

and want that answer ranked as high as possible. Named-Page finding and question 

answering are two TREC tasks where MRR is the standard for evaluation. 

 (3) Average Precision 

 Average precision is frequently used for ad-hoc retrieval. It emphasized 

returning more relevance document earlier. It is the arithmetic mean of precisions 

calculated at each of the relevant documents. Mathematically speaking, 
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