RETRIEVAL PERFORMANCE PREDICTION AND DOCUMENT QUALI TY

A Dissertation Presented

by
YUN ZHOU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partialifunfent
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
September 2007

Computer Science



© Copyright by Yun Zhou 2007

All Rights Reserved



RETRIEVAL PERFORMANCE PREDICTION AND DOCUMENT QUALI TY

A Dissertation Presented

by

YUN ZHOU

Approved as to style and content by:

W. Bruce Croft, Chair

James Allan, Member

David Jensen, Member

David Schmidt, Member

Andrew Barto, Department Chair
Computer Science



DEDICATION

To my parents, my wife and my daughter



ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Wrige Croft, who taught me how
to conduct high-quality research, and whose adamokinsightful comments on my
work are invaluable. | also would like to thank &swllan, David Jensen and David
Schmidt for serving on my committee. | was fort@ntat be a member of CIIR, one of
the top IR research labs in the world. | enjoyadresting and useful conversations
with my fellow CIIR students: Jiwoon Jeon, VaneSkadock, Trevor Strohman
,Ben Carterette, Mark Smucker, Giridhar Kumaramayong Liu, Xing Wei, Xing
Yi, Ao Feng and Shaolei Feng . In particular, | \ebiike to thank Donald Metzler for
his patient programming support and helpful comment my work. | would like to
thank Steve Cronen-Townsend, a former post-doot®iR, for his help in my early
years of Ph.D study. | would like to thank, Kateizzi, the CIIR secretary, for her
help over years. Finally, this thesis would notén&ished without the support and
encouragement from my wife Hairong Wu.

This work was supported in part by the Center mdelligent Information
Retrieval, in part by NSF grant #CNS-0454018 ,art py the Defense Advanced
Research Projects Agency (DARPA) under contractbermiiR0011-06-C-0023,in
part by NSF grant #11S-9907018 , in part by That€a Intelligence Agency and the
National Science Foundation under NSF grant #EI18324.5, in part by
SPAWARSYSCEN-SD grant number N66001-02-1-8903 a66(0901-99-1-8912, in
part by NSF grant number DUE-0226144 , and in ppAdvanced Research and

Development Activity and NSF grant #CCF-0205575y Apinions, findings and



conclusions or recommendations expressed in thisrrabare the author's and do not

necessarily reflect those of the sponsors.

Vi



ABSTRACT
RETRIEVAL PERFORMANCE PREDICTION AND DOCUMENT QUAIMY

SEPTEMBER 2007

YUN ZHOU
Bachelor of Engineer, WUHAN UNIVERSITY OF TECHNOLQOQG

Master of Science, UNIVERSITY OF MASSACHUSETTS AMRET
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

The ability to predict retrieval performance hasgotial applications in many
important IR (Information Retrieval) areas. In tthesis, we study the problem of
predicting retrieval quality at the granularitylafth the retrieved document set as a
whole and individual retrieved documents. At theeleof ranked lists of documents,
we propose several novel prediction models thatucamlifferent aspects of the
retrieval process that have a major impact oneedtieffectiveness. These techniques
make performance prediction both effective anccedfit in various retrieval settings
including a Web search environment. As an appbeative also provide a framework
to address the problem of query expansion predicth the level of documents, we
predict the quality of documents in the contex\adb ad-hoc retrieval. We explore
document features that are predictive of qualitythermore, we propose a document
quality language model to improve retrieval effeetiess by incorporating quality

information.
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CHAPTER 1

INTRODUCTION

1.1 Retrieval Performance Prediction
1.1.1 Problem Overview

In a typical retrieval system, a user forms a quagording to her information
need and a number of documents (usually in the @raranked list) are presented to
the user by the retrieval system in response tqtieey. However, simply showing
the user the results which are the best the systenprovide does not mean these
documents are relevant. It is important to know leff@ctive the retrieval is.
Although the user himself can judge the resultsnamy cases this is not practical
because the user will be burdened with readingrivéal amount of information.
Therefore, we desire an automatic way of asseseguality of retrieval results.

In this thesis, the problem of predicting retriepatformance refers to the process
of estimating the quality of the output of a teatrieval system in response to a

particular information need without any relevansggments.



User queries considered in this thesis can beifibby retrieval task into two
categorie% informational or navigational [64]. Next we dissuthese two retrieval
tasks in detall.

Informational queriezsare used id-hoc retrievalwhich is the task of finding a
number of documents that are relevant to a paaicaformation need. For example,
“Type Il diabetes” is a query of the ad-hoc retaktask. The user who issued this
guery wants to acquire information on this dise&sether words, she wants to find
documents relevant to a particular topic (thatTigpe 1l diabetes” in our example).
The ad-hoc retrieval task has been used as the foashe evaluation of retrieval
models since the 1960s, but it was given the nadehdc” first in the TREC (Text
REtrieval Conference) evaluations [10]. Since thgk is based on topical relevance,
that is, the semantic similarity between a giveauhoent and a query formulated by
the user to express her information need, it isesones referred as “topic relevance
task” in IR(Information Retrieval) literature. Avaage Precision (please refer to
Appendix A for details) is often adopted for thaknation of this task.

In response to navigational queries which are glpiaised in a Web search
environment, a new task calldthmed-Page (NP) findinigask was introduced into

TREC several years ago. This is a navigational $aste the purpose of this task is to

! Broder [64] divided web queries into three typagormational, navigational and

transactional. In this thesis, we do not considerdactional queries, since so far there
has been no widely accepted test data for sucheguer

% In this thesis, we also call them as content-basedies and use the two terms

interchangeably.



find a particular Web page, given a query descgliithy name. This type of search is
sometimes referred as “known-item” search in ctadgiand information science. For
example, “TREC proceedings” (TREC topic # NP973 NP query submitted by a
user who is looking for the TREC publication pagattcontains TREC proceedings.
One fundamental difference between this task amddhhoc retrieval task is that with
respect to the NP task the user knows the docushensearches for, while unknown
documents may satisfy the user’s information nedtie case of the ad-hoc retrieval
task. Accordingly, generally there is only one ectranswer for a NP query, as
opposed to multiple relevant documents for a cdrbased (informational) query.
Regarding evaluation, this task is often evaluatgd MRR (mean reciprocal rank)
or precision at a given cutoff rank K for low vatuef K (please refer to Appendix A
for details on these two measures), since theisigsmsumed to be interested in only
one result and prefer it to be ranked as high asipke.

Performance prediction is closely related mtdsk of system evaluation in
information retrieval which refers to measuring #ffectiveness of IR systems.
System evaluation usually needs a test collectimicntypically consists of three
parts: a test document collection, a test setfofimation needs and a set of relevance
judgments. Examples are the classic CRANFIELD ctilb@ and the widely used
TREC test collections. Though estimation of segpedity is the common problem in
both tasks, they differ significantly in a few ways

First of all, system evaluation usually needs rah®e judgments while

performance prediction does not. Though the uselefance judgments surely leads



to more accurate estimation compared to zero-judgntige high cost of producing
relevance judgments precludes us from performiraduasion on a large scale.
Furthermore, there are situations when obtainiteyamce judgments is out of the
guestion. For example, it is normal for a web de@rmgine to receive millions of
gueries per day and providing relevance judgmemntalf of them or even a small
fraction of them is practically impossible. Thenefoin the situations when relevance
judgments are impractical to acquire, performaneeliption offers an alternative
way to provide valuable information on search dff@ness.

Additionally, system evaluation, as its name sutgyes more system-oriented
rather than user-oriented in the sense that onlynaber of carefully-selected topics
with relevance judgments are adopted for evaluatioonther words, one system that
is found to perform well on a test collection usorge set of topics may not perform
well when the test topics have changed. It is d-kredwn fact that retrieval system
performance is highly topic-dependent. Moreovelevance judgments are made
according to the stated information needs instéadtoal user queries. Last, systems
are measured by tlaerageretrieval performance on a topic set. In short, an
individual user may not acquire much informatioonfrthe results of system
evaluation about the performance of the retrievaésponse to her specific query. In
comparison, performance prediction focuses on fileetevzeness of individual
retrievals and accordingly is more user-oriented.

Furthermore, performance prediction can contriboienproving the efficiency

of system evaluation. For example, the number ddfoents required for reliably



evaluating two retrieval systems may be reducedwthe predicted retrieval

performance of the two systems is properly incaoaijeat.

1.1.2 Motivation

Compared to the long history of developing soptéséd retrieval models for
improving performance in IR, research on predicpegormance is still in its early
stage. However, researchers have started to reh&aenportance of the prediction
problem and a number of new methods have been geddor prediction recently
[1]. The ability to predict performance has thegmial of a fundamental impact both
on the retrieval system and the user.

From the perspective of a retrieval system, perémoe prediction is the first step
at solving the crucial problem of retrieval consigty. It is important for an
operational retrieval system to return at leaseptable results in response to most
requests. As we stated before, current retrie\akesys are evaluated by theerage
effectiveness on a fixed set of topics. Howevernaividual user may not benefit
from an improvement on average performance whemf@mation need is not
covered by the topics used during the evaluationmé@ke matters worse, it is not
unusual in IR for a given technique to improve agerperformance at the expense of
performance on individual queries. For examples well-known that the query
expansion technique can improve average retrieadbpnance. It has not been used
in many operational systems because of the fatittban greatly degrade the
performance of some individual queries. Althouglufas on a small number of

topics may not have a significant effect on avenagdormance, users who are



interested in these topics are unlikely to be aoleof this kind of deficiency. A
reliable system that always produces acceptabievat performance is more
preferred by users than another system that wottikeraely well on a number of
topics but occasionally makes terrible mistakesimgrove the consistency of
retrieval systems, we first need to distinguishrpeperforming topics by
performance prediction techniques (the strategyiaking up poorly-performing
topics by relevance judgments is not practical @seful in most cases). The
important role of performance prediction in impnoyiretrieval consistency has been
recognized by the IR community. For example, in20@0Be Robust Track [2] was
proposed by TREC which addresses the problem aremihg the retrieval of
poorly-performing queries. As the first footprintfinding a solution to this problem,
the Robust Track requires systems to rank the sdpyqoredicted effectiveness to
investigate the capabilities of systems to detaad opics [2].

Identifying low performance queries is not the onlyy that performance
prediction can contribute to retrieval systems.n¥gedback from accurate
performance prediction, retrieval systems are gupdpvith the ability to
self-diagnose and can be adjusted to the charstotsrof individual information
requests. Performing query-centered processingesyadesirable function for ad hoc
retrieval systems. One way to do query-centeredgssing is to selectively use IR
models based on performance prediction for theyqu@r example, in terms of the
guery expansion technique mentioned above, if vddotdetermine in advance when

the technique would fail by utilizing performanaegiction, we would selectively



apply this technique on a per query bhdis fact, the Reliable Information Access
(RIA) workshop organized by NIST in 2003 manualiyabyzed the causes of retrieval
failure of several IR systems on several querigsIJ3e primary goal of the workshop
was to understand the roles of both system-refatgtdrs and query- related factor in
retrieval failure. One of the major conclusionsrtheir analysis was that if a system
realizes the problem associated with a given quken current IR techniques can
improve results for a majority of the poorly-perfong queries [3]. This suggests that
selectively applying techniques on a per-querydean adapt a retrieval system more
to users’ information needs.

Other than guiding retrieval systems to selectiagply IR techniques, current
retrieval models can directly take advantage ofgperance prediction. For example,
it is well-known that setting parameters in IR misddays a crucial role in retrieval
effectiveness. Even theoretically motivated motikésthe language models reply
heavily on parameter tuning to achieve good peréorre [4]. Usually there are two
ways to estimate model parameters. One is by haxperience and the other is to
automatically choose parameters using training. diaissence, both ways depend on
observed dafato set model parameters that will be used for emsata. However,
we know that the performance of retrieval systeams\ary considerably on different

gueries and therefore we lack confidence in whatheodel that is tuned based on

® This problem will be addressed in section 3.5raaplication of performance
prediction.

4 .
Human experience usually comes from observed data.



one set of queries will still perform well on anetlset of entirely new queries. If we
have a reliable predictor of retrieval performanee can either directly maximize the
predicted performance or at least acquire usefatnmation from the predicted
performance when tuning model parameters.

On the other hand, from the perspective of a ymaformance prediction
provides valuable feedback that can be used totdirsearch. For example, when the
retrieved documents are estimated to be of lowityu#he user may rephrase his
query or be more willing to cooperate with the systo improve retrieval
effectiveness, such as providing relevance feedb&dk the help of prediction, the
user can quickly form a good query to acquire Batig results for her information
need. Otherwise, the user must spend time realdengeturned documents to rewrite
the query when the results for the initial query aot satisfactory. Note that
formulating a well-defined information request @ an easy task for an ordinary
user, as the user may be unaware of the inherdsgaity in her query which usually
results in a poor retrieval performance. An exangptee one term query “apple” that
has at least the following three possible meaniagsnd of fruit called apple, the
Apple computer, the Big Apple (the nickname of Néark City). Even what an
experienced user believes to be a well-definedygqunaty, in fact, perform poorly
depending on the system and the data. For instanpppse a user interested in the
development of an application of ocean remote sgrissues the query “ocean
remote sensing” which seems a clearly-defined qu¢oyever, according to the

results reported in [5], all the retrieval systam§b] fail to recognize the importance



of the aspect of “ocean” and there is little chafucehe user to forecast this kind of
failure.

In addition to being a useful tool from the perdpecof both user and system,
performance prediction can play an important rolaser-system interaction. As we
stated above, even an expert may find it diffitolformulate an effective query that
accurately reflects her information need, since motormation about the retrieval
system, is unavailable to the user. For an ambiggoery issued, instead of shifting
the burden of query disambiguation to the retrisyatem, an alternative way is to
invoke use-system interaction and gather more nmédion from the user. One
example of user-system interactiorgigery refinementhat allows the user to
interactively specify her information need by séleg new terms suggested by the
system.

One important issue in user-system interactionnemto apply it, since
interaction is not necessary for every query. o, feelecting a well-formed query for
interaction can not only degrade the user expegidot also make the retrieval
system inefficient. One possible solution to thigljpem is applying query
performance prediction. For example, we can invokeraction only when the
predicted query performance is below some thresi8ude researchers have started
to work on incorporating performance predictionnteraction [63]. We believe that
integrating performance prediction into user-systet@raction can results in the

design of more intelligent and user-friendly infatmon retrieval systems.



Retrieval performance prediction also has a naapplication to the field of
distributed information retrieval where the retaéprocess is performed over
multiple databases. Performance predictors thabrnueach database will provide
helpful information for database selection and nmgrgesults from all databases,
which are two fundamental problems in distributedElad et al [6] have shown
some early work in this direction.

Performance prediction, as we described abovepdiastial applications in
many important IR areas such as system evaluatg®r;system interaction, ranking
strategies and distributed IR. Furthermore, to igwva good performance predictor,
we require a deep understanding of the strengtiwaattness of retrieval techniques
on a per query basis. We also need to understaneldtionship of the query to the
system as a whole. These not only enable us to r@mapd the fundamentals behind
the observed performance, but also to provide goenyered processing either by
selectively applying multiple IR models or by adjng each model on a per-query
basis. This will be appreciated by individual usansl represents a novel approach to

IR research over the “single fixed model for alegas” which has prevailed so far.

1.1.3 Challenges

The major difficulty in performance prediction cesifrom the fact that many
factors have an impact on retrieval performancehBactor affects performance to a
different degree and the overall effect is hargrixdict accurately. Typically, the
following three aspects are most responsible fiienaal effectiveness.

(1) Query Quality

10



Some queries, like the query “apple” describeavabare ambiguous and it is
not easy for a retrieval system to understandrtreeibformation need of a user
without more information beyond the query itsetbin&times there is little ambiguity
in every single query term, but the whole quersti obscure. Such an example is
TREC topic 413 “what are new methods of productegls. The interpretation of
“new methods” is unclear even for humans. As wese the type of failure is
difficult for performance predictors to catch sinteeeds natural language
understanding.

(2) Collection Characteristics

The nature of collections can affect performanagnobvious ways. For
example, intuitively the more relevant documeng #xist in a collection for a given
query, the higher the retrieval precision will Blawever, Giambattista et al. reported
[20] that they observed a negative correlation ketwthe number of relevant
documents and the precision (measured by meangevpracision or precision at top
10 documents) on the TREC disk 4 and 5 using 10Bd Rueries. Their explanation
is that a small number of relevant documents sudbasthe query is specific and is
relatively easy for the system to retrieve. Anotveample is that if a collection
contains quite a few non-relevant documents tfeasemilar to some relevant
documents, the retrieval performance will be lower.

(3) Retrieval Model
A typical retrieval model consists of three paguery representation,

document representation and a retrieval functiah eéiplicitly or implicitly estimate
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the probability of relevance based on the querydowliment representation. The
three parts interact with each other in a compidatay and every part can exert a
significant impact on retrieval performance eitakme or with the others. Even
implementation details such as stemming may rasdétilure for a given query. For
example, as reported in [5], being unable to stAmtdrctica” to “Antarctic” caused
the failure of TREC topic 353 (“Antarctica explamt”).

Usually a combination of factors affects perforiceand it is difficult to
separate one factor from the others, making théigtren problem more complicated.
For instance, suppose a user who is a soccerdaesthe query “World Cup” against
a collection to search for articles about World Gapcer. If the collection happens to
contain a number of documents about World Cup civbssh can be highly ranked
by the system, the performance will be low. If thex no other kind of “World Cup ”
in the collection, the user’s query will be effeeti In this example, we can not simply
attribute the problem to query ambiguity or colieatcharacteristics. It is the
relationship of the query to the collection thatses the problem. Considering the
fact that the user’s query, the collection andrétaeval model act as a whole on the
overall retrieval performance, we think that angdictor that takes only one aspect
into account is not likely to be accurate.

In addition to the above challenges, the advetti®iVeb further complicates the
prediction task. Due to the popularity and influen¢ the Web, next we discuss some

of the major challenges to prediction posed by sedrch environments.
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First, web collections, which are much larger thanventional test collections,
include a variety of documents that are differentiany aspects such as quality and
style. Prediction techniques can be vulnerabléése characteristics of web
collections. For example, some state-of-the-aipt®n techniques perform
significantly worse on a large web collection comggbto other non-web collections
[7,8].

Furthermore, web search goes beyond the scope afithoc retrieval task based
on topical relevance. For example, the Named-Pld&¢ finding task, which is a
navigational task, is also popular in web retrie@alery performance prediction for
the NP task is still necessary since NP retrieealgpmance is far from perfect. In
fact, according to the report on the NP task of20@5 Terabyte Track [9], about 40%
of the test queries perform poorly (no correct aarsw the first 10 search results)
even in the best run from the top group. To ounvikiedge, little research has
explicitly addressed the problem of NP-query pemiance prediction. Prediction
models devised for content-based queries will be &dfective for NP queries
considering the fundamental differences betweertvtbe

Third, in real-world web search environments, ugesries are usually a mixture
of different types and prior knowledge about theetpf each query is generally
unavailable. The mixed-query situation raises nesblems for query performance
prediction. For instance, we may need to incorgoaaquery classifier into prediction

models. Despite these problems, the ability to keatids situation is a crucial step
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towards turning query performance prediction framrderesting research topic into

a practical tool for web retrieval.

1.2 Document Quality

In the problem of retrieval performance predictibscussed above, we predict
retrieval quality at the granularity of the ret@evdocument set as a whole. Here we
are interested in predicting the quality of indivadl documents within the context of
Web ad-hoc retrieval. Traditionally, retrieval mé&ifor ad-hoc retrieval have
focused on capturing topics through word distrim$i. For example, in the query
likelihood language modeling approach [11], docuts@ne ranked by the probability
that their underlying language model can “genertite’query. Other factors relating
to document content, such as the quality or gehtieeatext, have had very little
impact. However, with the advent of the Web antl¢eiections derived from the
Web, it is clear that these other content-relamclichent properties are much more
important. In particular, due to the relative simapy of generating and publishing
web documents, the quality and style of web docusesries much more widely
than the newswire-based TREC test collections. éges vary in quality from
well-written articles to pages with very little even no real content.

Empirical studies play an important role in IR @s# and many successful
information retrieval (IR) systems heavily rely the empirical tuning of model
parameters. Therefore the performance of IR mdgisally has a close relationship
with the characteristics of test collections. Whigs characteristics of the test

collections change, as with the introduction of&a¥Web-based collections, problems
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with the retrieval model can be exposed. For exanmbpe query ‘artificial
intelligence’ (TREC topic 741), when used to rete&Veb pages (using the query
likelihood model) from the TREC GOV2 web collectif®], ranks lists of Al
conferences or papers at the top, although thesetddirectly describe artificial
intelligence at all. They are highly ranked onlgaese the two query terms occur
many times in the documents. In other words, tireekeed documents are topically
relevant but are not the right type of documenthls paper, we consider this type of
retrieval failure (and others described later) éadlated to document “quality” and
propose methods for allowing quality to influeneeking.

There has been a considerable amount of resedatbd¢o Web page quality
based on links. PageRank[12] and HITS[13] are titb@best-known algorithms for
link structure analysis. The basic idea behinddhiedk-based models is that a page to
which many documents link is popular and therefsiiely to be of high quality.
While link-based methods are clearly effectivesdineating popularity, this is only
one aspect of document quality. Link informati@sbeen shown to be valuable for
the home-page and named-page finding TREC tasksd[ldut participants in recent
TREC web tracks [16,17,18] consistently reporteat there is no conclusive benefit
from the use of link information for the ad hockkésometimes called “content-based
retrieval”). In fact, incorporating link informatiocan sometimes even hurt retrieval
performance [16,17,18].

A major goal of this study is improving the perf@nte of Web ad-hoc retrieval

by exploiting document quality information. Spec#ily, we are interesting in these
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two problems: (1) how to measure quality, and (&) to incorporate quality

information into a retrieval model.

1.3 Contributions

1.3.1 Performance Prediction

The work in this thesis helped to define the afe@tieval performance
prediction. The experiments are the most comprebenst done in terms of test
collections and query types used. These experinséots that satisfactory prediction
accuracy can be achieved across a variety of seaettarios.

In particular, one of our performance predictiocht@ques, WIG (weighted
information gain), demonstrates superiority ovestad the others when it comes to
Web search. WIG provides a uniform framework tol eeéth both content-based and
named-page finding queries. To our knowledge, mast work has only considered
content-based queries. In addition, with the hélgnoautomatic query classifier,
WIG offers a practical solution to predicting mixgdery performance, which is a
crucial step towards turning query performance iptesh from an interesting
research topic into a practical tool for Web seair experiment on realistic Web
data collected from a commercial Web search ergline/s a tendency that high WIG
scores predict more clicks on search results. ditiad, WIG can be implemented

very efficiently.
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As an application, we study the task of predictimg performance difference
between an expanded retrieval and an unexpandeslettfor a given query. We

provide a framework calleshodel comparisofor this task.

1.3.2 Document Quality

Document quality can be viewed as predicting resdiguality at the level of
individual documents. This work offers a numbecanitributions. First, we propose a
new document quality metric that was found to beféfor identifying low quality
documents. Second, our results show that the datuspiality model proposed by us
can improve accuracy for Web ad hoc retrieval. d,hour query analysis provides

some interesting insights on the relationship betw@ncument quality and relevance.

1.4 Thesis Organization

The rest of this thesis is organized as followsagiler 2 describes related work.
In Chapter 3, we introduce several models for perémce prediction. We also
approach the task of query expansion predicticghisichapter. Experimental results
for prediction are shown in Chapter 4. In Chapten® discuss implementation of
prediction models. Chapter 6 addresses the prodleimcument quality. Conclusions

and future work are presented in Chapter 7.
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CHAPTER 2

RELATED WORK

2.1 Query Performance Prediction

When we predict the quality of the retrieved duoeuats for a given query, we
call it query performance prediction. Predictiorgokry performance has long been
of interest in information retrieval and has bemrestigated under different names
such as query-difficulty or query-ambiguity [20,20ur work, the clarity score
method originally proposed in [19] for predictialemonstrated some of the first
success at addressing this task.

Recently, a number of prediction methods have Iréeh since the introduction
of the TREC Robust Track in 2003. In the RobustKmsystems are required to rank
the queries by predicted performance, with the gbatilizing the prediction
capability to do query-specific processing. Gengiseaking, these methods extract
features of retrieval and compute the performanoeesfor each query by using the
features to estimate the query performance. Onetoveyeasure the quality of the
performance prediction methods is to compare thkimgs of queries based on their
actual precision (such as MAP) with the rankingthefsame queries ranked by their
performance scores (that is, predicted precisida3ed on whether retrieval results
are needed when computing the performance sca®g thethods can be classified

into two groups: pre-retrieval approaches and petsieval approaches.
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Category I: Pre-retrieval approaches
In this category, performance predictors do niytoe the retrieved document
set. The efficiency of this kind of predictor igexi high since the performance score
can be computed prior to the retrieval process. él@n regarding prediction
accuracy, these predictors generally have a lofopeance since many factors
related to retrieval effectiveness are ignored.

Some researchers have used IDF-related (inverserdot frequency) features
as predictors. For example, Tomlinson et al. [2R@ed the weighted average IDF
of the query terms for predicting. He and Ounid [@®8posed a predictor based on the
standard deviation of the IDF of the query termiacRouras [24] represented the
quality of a query term by Kwok’s inverse collectiterm frequency. The above
IDF-based predictors showed some moderate cowoelatith query performance.

Diaz and Jones [25] have tried time features fedjmtion. They found that
although they are not highly correlated to perfanogg using these time features
together with clarity scores improves predictionwacy.

Kwok et al. [26] built a query predictor using sopfpvector regression. For
features, they chose the best three terms in assty @nd used their log document
frequency and their corresponding frequencieserginery. They observed a small
correlation between predicted and actual queryoperdnce.

He and Ounis [23] proposed the notion of query sdop performance

prediction, which is quantified as the percentaiggocuments that contain at least
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one query term in the collection. No strong cotrefawith retrieval performance was

observed.

Category Il: Post-retrieval approaches

In this category, predictors make use of retrienssalilts in a variety of ways. All
of our prediction models fall into this categoryer@rally speaking, techniques in this
category provide better prediction accuracy conpévehose in category I.
However, computational efficiency can be an issuwerfany of these techniques.
Fortunately, some of our techniques can achievsfaetiory prediction accuracy
without sacrificing efficiency.

Bernstein et al. [27] estimate the prior probapitif each document that will be
retrieved by the retrieval system. For a given gugrey compare the ranking of
documents based on the prior probabilities to éim&ing of documents returned from
the retrieval system. They hypothesize that ifttih@ rankings are similar, the query
will be difficult since the query does not haveosty discriminating power. Their
results show some limited indication of query perfance.

Using visual features, such as titles and snipjets) a surrogate document
representation of retrieved documents, Jensen &jltrained a regression model
with manually labeled queries to predict precisabthe top 10 documents in the Web
search. They reported moderate correlation witkigian.

Elad Yom-Tov et al. [6] proposed a histogram-basedlictor and a decision tree

based predictor. The features used in their maglets the document frequency of
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guery terms and the overlap of top retrieval resditween using the full query and
the individual query terms. Their idea was thatlygerforming queries tend to agree
on most of the retrieved documents. They reportethsing prediction results and
showed that their methods were more precise thasethsed in [26][24][22]. We call
this technique theverlapmethod in this thesis.

A few techniques are based on measuring some ¢baséics of the retrieved
document set to estimate performance. For exaraplte;larity technigue measures
the coherenceof the retrieved document set. In fact, the ihgizccess of the clarity
method has inspired a number of similar technigAesati [20] proposed to use the
KL-divergence between a query term’s frequencyhatbp retrieved documents and
the frequency in the whole collection, which isywemilar to the definition of the
clarity score. He and Ounis [23] proposed a singaliversion of the clarity score
where the query model is estimated by the termuigaqy in the query. Carmel et al.
[8] found that the distance measured by the JeBsamnon Divergence (JSD)
between the retrieved document set and the calleaisignificantly correlated to
average precision (we call it td&Dmethod in this thesis).

Vinay et al.[29] propose four measures to captimeegeometry of the top
retrieved documents for prediction. The most effecineasure is the sensitivity to
document perturbation (we call it tHecument perturbatiomethod in this thesis), an

idea somewhat similar to one of our techniquesrabestness score. Unfortunately,

> Broadly speaking, coherence means topical sirtylarmong the retrieved

documents. In the case of clarity score, it mehasktent that the retrieved
documents use the same certain terms.
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their way of measuring the sensitivity does nofgren equally well for short queries
and prediction accuracy drops considerably wheata-®f-the-art retrieval technique
(like Okapi or a language modeling approach) ispéehb for retrieval instead of the
tf-idf weighting used in their paper [30].

Kwok et al. [31] suggest predicting query perfono@ by retrieved document
similarity. The basic idea is that when relevantudoents occupy the top ranking
positions, the similarity between top retrievedwwoents should be high, based on the
assumption that relevant documents are similaath @ther. While this idea is
interesting, preliminary results are not promising.

Diaz [67] proposes a technique called spatial artetation for performance
prediction. This technique measures the degreétohvthe top ranked documents
(for a given retrieval) receive similar scores pgtsal autocorrelation of the retrieval.
This approach is based on the cluster hypothe8js ¢bsely-related documents tend
to be relevant to the same request. A significametation between score consistency
and retrieval performance was observed in theiegrgents.

One important issue we want to point out is thastweork on prediction has
focused on the traditional ad-hoc retrieval taslesghguery performance is measured
according to topical relevance. In fact, we knowofpublished work of other
researchers that addresses other types of quadksas named-page finding (NP)
gueries, let alone a mixture of query types. Moeggpthese prediction models are
usually evaluated on traditional TREC documentemibns which typically consist

of no more than one million relatively homogenoesvawire articles. In this thesis,
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we will present techniques that are capable ofidgatith different retrieval tasks
and thoroughly evaluate them against a varietgstf ¢ollection, including a large

web collection.

2.2 Selective Query Expansion

Automatic query expansion is a well-known IR tecjua that has been studied
extensively. For example, [32] and [33]. Althougleay expansion has been shown to
be capable of improving average retrieval perforreanne common criticism of this
technique is that it can diminish the retrievallgydor some queries.

Only recently have some researchers begun to giatdlcting query expansion
failure. Amati [20] proposed a measure similar ey length for predicting
expansion. Yom-Tov et al [6] used an SVM classiftgrthis purpose. Research in
this area is still in its infancy and no one hgsoréed significant results in this
direction. The key problem is that we lack the ustinding of this technique on a

per-query basis.

2.3 Document Quality Prediction for Improving Retrieval Performance

The research on link-based approaches to the pitgwapect of quality, such as
PageRank[12] and HITS[13], has already been meadi@arlier. There have been
many attempts to combine link information with camitbased IR approaches to

improve Web ad hoc retrieval performance [14,184@5]. However, no consistent
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and conclusive improvements have been demonstiatéus thesis, we focus on
using content-based features rather than linkstimate document quality.

Other related work uses prior probabilities to oy IR based language
modeling. The language modeling approach providemaenient framework for
incorporating prior knowledge in the form of prigmobabilities. A variety of prior
information, such as document length and time Jdegs used for ad hoc retrieval
[36,37]. Kraaij et al [38] also used Web-specitatures as prior knowledge for a
home page retrieval system. In our approach, tiee probabilities in the language
model framework are based on estimates of docuqality based on content
features.

There have been few attempts to directly integidat2iment quality into ad hoc
retrieval. Zhu and Gauch [39] show that incorporguuality metrics can improve
precision in a web search environment. They combuadity metrics into a
vector-based algorithm in a heuristic way. The iyahetrics they studied were
related to currency, availability, information-toigse ratio, authority, popularity and
cohesiveness. They found information-to-noise tpdassibly the most effective
metric and we use this measure in our study. Therahetric we use
(collection-document distance) is new. One majoithtion of the work is that the
non-standard test collection used for evaluatiaxtsemely small (less than 1500
documents). In fact, the test collection only cornes twenty target sites and only
covers five topics. We evaluate our technique oeetldifferent Web collections that

contain millions of document.
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CHAPTER 3
PERFORMANCE PREDICTION MODELS BASED ON RANKED LISTS

In a typical retrieval system, the user submigiary and the system returns a
ranked list of documents in response to the qudrg.characteristics of the ranked list
provide useful information for predicting retriey@rformance.

In this chapter, we describe four query perfornegorediction techniques that
capture and quantify some properties of the rahkedrhe first model, named the
clarity score, is designed to measure the coherefnite ranked list. Ranking
robustness, our second model, is proposed for magdhe robustness of the ranked
list. Our third model, called Query Feedback (QR¢asures to what extent we can
restore the original query from the ranked listr @it model, called Weighted
Information Gain (WIG), measures the change inrmfation from an imaginary state
where only an average document is retrieved testepior state that the actual ranked
list is observed.

In addition to the task of query performance preaoin; we also address the
problem of predicting when to apply query expansma particular query. We
develop a method called Model Comparison (MC) thauilt on clarity score-

related ideas.
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3.1 Clarity Score

In this section we introduce a measure of the @iee of a ranked document list
called the clarity score. Here “coherence” meaesetttent to which top ranked
documents use similar language. Therefore, thé@yckgore can be used to
distinguish a coherent ranked list that uses siralaguage from an incoherent
ranked list containing a huge variety of documémterms of word-usage.

The reason we are interested in measuring cohergtitat there is a relation
between the coherence of a ranked list and thecelsaof that list containing many
relevant documents. To illustrate this relation uke consider two ranked lists of
documents returned for the same given query: ashgrent one and a coherent one.
In the incoherent ranked list containing documenigreatly differing word usage
generally no more than one document is relevardusecthese top ranked documents
are very different. On the other hand, in the cehteranked list the likely options are
that either many of the documents are relevanboerof them are relevant. The
former option is much more likely because the doewnintist was ranked using the
query.

To measure coherence, we first build a query lagguaodel which is based on
the retrieved documents using the query. This glaeryuage model represents the
language usage in the ranked list in responseetqtiery. Then the query model is
compared to the collection model representing Yegame language usage in the

collection. The KL-divergence between the query ewltection language models is
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theclarity scorefor the query. This process is shown in Figure Bdlunderstand

why this measure can estimate ranking coherentags ink of a query whose highly
ranked documents are roughly about the same tapiicli means high coherence). In
this case, the large probabilities of the quergleage model are allocated to a small
number of topic terms. Therefore, the KL-divergebetveen the two models is high.
On the other hand, if a ranked list consists offaohdocuments about different

topics, we can imagine that the word probabilitrethe query model would be more

evenly distributed, leading to a low clarity score.

Query
Model

Compare

Collection
Model

Figure 3.1 : Clarity Score Calculation

Next we discuss details regarding clarity calealat Given queryQ and
collection C , the query language modé&(w| Q) is estimated by the relevance
model proposed in [40], that is,

P(w| Q)= ; P(w{ DA D| Q (3.1)
wherewis any term an® is a document in the collection.
This can be interpreted as a weighted aveshgecument model$(w| D),

with weights given byP(D| Q).
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The document mod®&(w| D)is given by

P(w| D)= AR, (w| D)+ (1= A) Ry, (W) 3.2
where P, (w| D)is the relative frequency of tenmin documenD , P, ,(w) is a
collection modeband is estimated by the relative frequency oftéhe in the
collection C. Ais a smoothing parameter ranging from zero to Generally there
are two popular ways to set. One is Jelinek-Mercer smoothing which sdtsto a
constant value [4]. The other way is Dirichlet sitiong [4] where A is estimated
by:

1=_1P]
|D|+u

(3.3)
where uis a parameter called document prior and |D| isethgth of document D.

For the weightP (D | Q) in Equation 3.1, we first perform query likelihood
retrieval [41]. We estimates the likelihood of adividual document model
generating the query as

P(Q|D)= |_L P(w| D)= |_L AR (W D)+ (1-4) B, (W (3.4,
wol W

and obtairP (D | Q) by Bayesian inversion with uniform prior distribai for
documents.

We find it important to estimate the docummatdel P(w|D) in Equation 3.2 by
Dirichlet smoothing. Jelink-Mercer smoothing is egriate for mixing the

document models in Equation 3.4. Our finding isststent with what is found in

relevance model retrieval [40] and Zhai and Laffsrpaper about smoothing [4].
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We can see that the query modlw| Q) defined in Equation 3.1 represents the
language usage in documents closely related tqubey, since terms that are
prominent in the query model are those occurriegdently in documents whose
model are likely to generate the query.

Theoretically, the summation in Equation 3.8lame over all documents.
However, in practice this is infeasible and unnsaggs We truncate the summation at
the top 500 documents. That is, we consider th&@fpdocuments retrieved by the
query likelihood retrieval. Sincd® (D | Q) generally drops sharply well before this
cutoff, this cutoff has very little effect on clgricalculations.

Finally, the clarity score is defined as the Hilkcergence (or the relative entropy)

between the query and collection models

clarity score= > R w Qlogzi(L(l\g) (3.5)

where V is the vocabulary of the collection.

The collection modeP,, (w) represents the average language usage in the
collection. The KL-divergence is a measure of tiffteience between two probability
distributions. Under this scheme, a query matchimguments using very
generic language (on average) receives a scoreaggrand a query matching
documents using a certain specialized vocabularayerage) receives a relatively

high score.
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Next we give two examples. Figure 3.2 showgdpes0 individual term
contributions to the summation in Equation 3.5rftfescore) for two same-topic
gueries. The two queries are query A: “How doesmaterized medical diagnosis
circumvent the need to use invasive techniquestt aclarity score of
3.53 and query B: “What are the current and futneglical innovations and
improvements?” with a score of 0.73. Top contribgtierms are those whose
probabilities most stand out in comparison to thieection model, such as “invasive”
and “diagnosis” for query A. The total clarity seas the total of all bars for the
appropriate query if one imagines extending the folanclude all vocabulary terms.
The figure shows that the query model for querg Miuch more unusual than the
collection model, and shows the contributions Fase spikes. This is due to its
highly-scoring documents using the same certamsgewhat we call coherence.
Query B has much lower maximum contributions ataliger total (clarity
score). The fact that the medical term “enthesogiatlas one of the top contributing
terms in query A’s clarity score while the top terof query B’s language model are
all fairly general is a good indicator that querysfa better performing query than
query B. For Query A, “Enthesopathy” occurred icaments that had high query
likelihood scores, leading to an estimate of ishability in the query model well
above its collection model probability. For Queryldy contrast, the only terms that
stand out are fairly general terms, indicating t@|Q) is less focused (peaked) on a

coherent set of documents.
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Figure 3.2 : Term clarity score contributions for the top terms for two
same-topic queries

As we stated earlier in this section, the tfastore measures to what extent the
top ranked document will form a coherent topic. fElfiere, the use of the clarity score
to predict retrieval performance is particularlyegpriate for the ad-hoc retrieval
task based on topic-relevance. However, for othedédmentally different retrieval
tasks, such as the named-page finding task, pr@daiasing the clarity score will

consequently be much less effective.

3.2 Ranking Robustness

In this section, we describe another property i@rked list for performance
prediction: robustness. A measure calledrtiristness scons proposed to measure

ranking robustness. The robustness score is phntisigned for content-based
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gueries and is less effective for named-page fopdureries. Accordingly, we develop
another method called tliest rank change (FRQ)y modifying the robustness score
technique to measure ranking robustness for naragd-finding queries.

The notion of ranking robustness originates irfigeld of noisy data retrieval. We

first introduce the background in noisy data retieéhat inspires our ideas.

3.2.1 Information Retrieval on Noisy Data

With regard to text document collections in infotioa retrieval, it is often
convenient to assume that the contents of theatalles are clean and free of errors.
With the advent of large collections of multimedi@cuments (such as audio or image
document), techniques such as OCR (optical charestegnition) or ASR
(automatic speech recognition) have been widelg tsextract text from multimedia
archives. In the following description, the textmut of a recognition process applied
to multimedia documents ®isy dataor corrupted datasince the recognition
process is error prone and brings significant kwélnoise to the data. The
recognition process that produces corrupted datallsddata corruption

One of the core problems in the field of informatietrieval on corrupted data is
to explore the impact of data corruption on retieaffectiveness in order to design a
ranking function that is robust to unexpected ariorcorrupted data. Here a robust
retrieval model means that some changes in docuonexailection statistics caused

by data corruption do not alter the retrieval resssignificantly compared to retrieval
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on perfect documents (that is, the results of ageition process with 100%
accuracy).

A general observation about experiments on invastig the effects of data
corruption is that as retrieval effectiveness inwes) the ranking function becomes
more robust against data corruption. For examperésti and Zhou [42] explored
the effectiveness of three retrieval functions iomuated OCR noisy data. They
found that the ranking of the three functions wehpect to retrieval effectiveness is
the same as their ranking with respect to theirtglto deal with simulated noise.
Another example is that Singhal, Salton and Bucld@&y} proposed a new robust
length normalization method to alleviate the prablbat the regular cosine
normalization is sensitive to OCR errors. Althoulgé original motivation for this
technique was to deal with OCR data corruptiorpissingly they found that the new
normalization scheme also brought significant invpraents on correct text
collections in comparison to the original cosinemalization. Moreover, Mittendorf
[44] studied data corruption effects on retrievad @resented a theorem on ranking
robustness that partially explained the phenoménatretrieval performance on
corrupted data is often correlated with the degifaesilience against noise.

The above work reveals the interesting relationdeipveen ranking robustness
and retrieval performance. Although this work waselin the context of retrieval on

noisy data, clean documents in regular retrie\a abntain “noise” if we interpret
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noise as uncertainty. Next, we will propose a framork to quantify ranking

robustness.

3.2.2 Robustness Score: Measuring Ranking Robustrees

As we mentioned before, the notion of ranking rabess originates in the field
of noisy data retrieval, where retrieval is perfechon the output of a recognition
process that exacts text from multimedia archiRasking robustness in noisy data
retrieval refers to a property of a ranked listo€uments that indicates how stable the
ranking is in the presence of noise brought by¢leegnition process. Note that clean
documents also contain “noise” if we generalizertbgon of noise from recognition
errors to uncertainty in text documents. For exanble meaning of a document may
remain the same even after adding or deleting seonds. Synonymy and
homonymy are another two popular examples thabdag uncertainty to clean text
documents. Therefore, we can extend the notioarding robustness to regular
ad-hoc document retrieval. In essence, rankingsiiass reflects the ability of a
retrieval system to handle uncertainty.

The idea of predicting retrieval performance by suggng ranking robustness is
inspired by a general observation in noisy dataenal that the degree of ranking
robustness against noise is positively correlated retrieval performance. We

hypothesize that when it comes to regular ad-hoewal, the positive correlation
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between robustness and performance still holds h@pothesis will be thoroughly
examined in the evaluation chapter of this thesis.

Next we describe our way of measuring ranking rafess for ad-hoc retrieval.
We begin by considering how to calculate rankingusiness in noisy data retrieval.
If we can acquire a clean version of the corruplaid, one straightforward way is to
compare a ranked document list from the corruptdiéction to the corresponding
ranked list from the perfect collection using tlaene query and ranking function.
With regard to regular document retrieval, usudtbguments are assumed to be free
of corruption. To simulate data corruption, we assuhat there exists a noisy
channel which is analogous to the recognition sede noisy data retrieval.
Documents are corrupted after going thought thembla One way to implement the
noisy channel is to design a document model fon eacument (document models
are distributions over words or other linguistiatsy One corrupted version of the

original document is one random sample from theesponding document model.
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Figure 3.3 : Robustness Score Calculation

Specifically, suppose we have qué€yranking functiorc and collectiorC.
We generate corrupted collecti@by sampling from the document models of the
documents itC. Then we perform retrieval on bathandC’ and two ranked list and
L’ are returned respectively. Finally we computegimailarity between the two
rankings. Note thdt is a fixed ranked list while’ is a random variable. We call the
expected similarity betwednandL’ the robustness score and use it to measure
ranking robustness. This process is illustrateéigure 3.3.

Let us formally define the robustness score. CansideryQ and a document

collection of M document€=(D1,D,,...Dy). LetV denote the size of vocabulary,
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both queryQ and the documents are represented as vectordexfed term counts,

that is,

Q=(tG...a) ONY
D= (Dk1,Dk2,---Dey) ONY

whereDy is the number of times that term i appears in dwmntDy andg; is the
number of times that terjrappears in quer®. N denotes nonnegative integer and
N denotes &-dimension vector space of nonnegative integer.dodr
representation, collection C igvixV matrix with nonnegative integer entries, that is,
CUS(MxV),whereS(MxV)denotes the set oldxV matrix with nonnegative integer
entries . The rows of matrix C can be viewed ast@sdocuments represented by
V-dimension vectors.

We introduce a few definitions before we show tbmputation of the robustness

score.

Definition 1: Retrieval FunctiorG(D,Q)
retrieval function G(D,Q) maps query Q and docuni2imito a real number, that is|,

G(D,QUR,DU N ,QUNY

Definition 2: Ranked List_(Q,G,C)
Let Sy denote the set of permutation of {1,2..M}. Rarlksd (Q,G,C}H Sy isa
permutation of the documents in collection C tregatibes the ordering of

documents by decreasing G(D,Q) wherd®
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Definition 3: Document Model X, and Probability Mass Function (pmff, (x)
We assume that documedf, kI[1, M], corresponds to document model which

is a V-dimension multivariate distribution and danrepresented by a random veqg
X ={ Xip Xz Xy X} 0 N, where random variableX, ; denotes the

number of times termoccurs. The joint pmf ofX, is the function defined by

fy (X)) = F(X,00 X, )= Pr(X = % ,0 X, = % | where x=(x;,...,%, )0 N'.

Definition 4: Ranking Similarity SimRank L, L)

Given two ranked listL (Q, G, C)and L,(Q, G, C,), function

SimRank L L) returns a real number that measures the similaetyween the two
ranked lists (we assume that the documeng; imave one-to-one correspondence

the documents i€;). Moreover,SimRank(L,L,) should be bounded.

tor

to

Definition 5: Random Collection X

Given document modeds,... Xy , whereX, (kL[1,M]) is a V-dimension random
vector, we define random collectidfF(Xz,Xz,... %) ,that is, X is aMxV matrix
whose entries consist of random nonnegative ingefyem some distributions. The
pmf of X is the function defined biy (T) = f, (t,...t,,)= PrX,=t,...X,, = t, ,

whereX, denotes the k-th row of X argd] NV, kO[1,M].

With the above definitions, we give the definitiohthe robustness score.

38



Given quenyQLINY , retrieval function G, collectio@=(D1,Ds,...Dy)LS(MxV)
and random collectiol=(X3,X,...Xu), the robustness score is defined as the

expected value of random variabl8imRank(L(Q,G,C),L(Q,G,X))
Robustness Scdre,Q,G,C)Xx {E SimRaifk,L Q)5 C ,L.Q B X
= Y SimRank LQG G LQGN,f( T (3.6)

TOS( MxV)

To make Equation 3.6 feasible to calculate, wehkrimake the following five

assumptions:

(1) We assume independence between any two documeeigis X; andX , that

()= fy (e )=|ﬁ PI(X, = , )=f_| ft) (7

(2) Instead of the whole collection, only the tbgetrieved documents in
L(Q,G,C)and the correspondingdocuments il (Q,G,X)are used to compute the
similarity between the two ranked lists. For thegmse of rank comparison, the
corresponding documents ih(Q,G,X) will shift up in rank and form a new ranked
list of lengthJ.

(3) The Spearman rank correlation coefficient [#5dopted to compute the
value of functiorSimRank(L,L,) in Equation 3.6. The coefficient ranges fromal t
1. A value close to 1 means a perfect positiveatation between the two rankings
and a value close to -1 means a perfect negativelaton. If the two rankings have

almost no correlation, the correlation coefficiarlt be close to zero.
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(4) For each document model, we assume indepeaditween any terms. We
also assume the term frequencies in the sampladhtird follow Poisson
distributions with the means equal to the corredpamnterm frequencies in the
original document. Modeling term frequencies bysBon distributions has been
widely adopted by other researchers [46,47]. Funioee, many retrieval models,
such as the query likelihood model, only take quersns into account when ranking
documents. In this case, we can simplify Equati@by assuming that the
frequencies of non-query terms are constant irsémepled document. Formally
speaking, given documert, ={d,,...d,,...d ,}and queryQ ={q,...q,...q },
probability mass functiofi,  of document modelX, ={ X, ,, X, 5... X X} 1S

estimated as follows:

\%
ka(><1,><2,--->9)=|fl fi., (%) (3.8)
j=
where ka,j (x) is given by :

if (@; >0) AND(Q,_; > 0)

B B B e—/l/]x
fy, ()=Pr(X,;=x)= ' XU NA= D0
kil ‘ x! ’
else
Lif x=D,
fy, (X)=Pr(X, i~ X)= Y
o) ’ 0,else

For better understanding, we give a toy exampkhtaw how to generate a

simulated document given the original document thasethe above assumptions.
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The basic idea is to perturb document term couterding to the Poisson
distribution.

Given vocabulary={a,b,d, queryQ={a} and documenD;={a,a,b,b,B, Q
andD; are represented by 3-dimension vector [1,0,0][218]0] respectively. Let
N(D;) denotes a simulated document generated ¥pjtinat is, the document model
of D1 . Since ternt does not occur iD; , it will not occur in ND;). Since ternio is
a non-query term and it occurs three timeBinit will occur exactly three times in
N(D1). The occurrence frequency of teenm N(D,) is a random number determined
by Poisson distribution R with A=2 because termoccurs twice iD;. For example,
{a,a,a,b,b,band {a,b,b,§ are two possibilities of NJ,).

(5) The expectation in Equation 3.6 is very hardwaluate directly. Instead, we
independently draw samplesT(1),T(2),..T(K)fromfx (T) to approximate the

expectation, that is, Equation 3.6 is estimated as:
Robustness Scofe,Q,G,C)X

1.
DEZ SimRank L QG G, LQGT)) (3.9
i=1
whereT(i) is a sample independently drawn frégT) which is determined by
Equation 3.7 and 3.8.
The error of this estimation is proportional to teeiprocal of the square root of

K [48]. According to our experiments, we find thae&tively small value oK is

good and stable enough for query performance predic
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In summary, robustness score calculation takefotlmaving steps. First, we
perform retrieval with quer§ and retrieval functio®. Then we generatkesimulated
documents using the document models of theltpcuments retrieved and rank the
simulated documents with the same query and retrfemction. The similarity
between the two ranked lists is computed usingitearman rank correlation
coefficient. We repeat this times and the average of the Spearman correlation
coefficient is the robustness score.

We briefly explain why the robustness score defialeadve gives us useful
information on retrieval performance. A low robueds score means that after
document perturbation the ranking function providegry different ranking
compared to the original ranking. The low robussrore suggests that the degree of
correlation between documents in the ranked likivisand the original ranking is
more like a random ranking. In other words, the folwustness score is likely to
correspond to a poorly- performing retrieval tretirns a ranked list of loosely
related topic covering many topics.

In the above discussion, we assume that the ratriask is the ad-hoc retrieval
based on topic relevance. However, with regarcatoed-page (NP) finding queries
that usually have only a single relevant documiiet expected positive correlation
with query performance may not exist any morealt,four experiments in the next
chapter will show that the use of the robustneesesior performance prediction is

much less effective when it comes to named-pageting (NP) queries. This is
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largely due to the fact that top ranked documentke ranked list in response to a NP
guery are not necessarily related while those decusrare connected more or less by

the topic in the case of ad-hoc retrieval.

3.2.3 First Rank Change

Input: (1) ranked list L={G} where ¥Ki<100. D denotes the i-th ranked document. (2)
query Q

1 initialize: (1) set the number of trials J=100@p counter c=0;
2fori=1toJ

3 Perturb every document in L, let the outcome bet&={0)’} where D;’ denotes the
perturbed version of D

4 Do retrieval with query Q on set F
5 c=c+lifand only if @ is ranked first in step 4
6 end offor

7 return the ratio c/J

Figure 3.4: Pseudo-code for computing FRC

To measure ranking robustness for named-page {NiHh§ queries, we propose
a method called thirst rank changgFRC) which is derived from the robustness
score technique. As we described above, the roéssigcore is not very effective for
NP queries because it takes the top ranked docsgmasra whole into account while
NP queries usually have only one single relevantudent. Instead, FRC focuses on

the first-ranked document, since the quality of fimst-ranked document dominates
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retrieval effectiveness for the named-page findasi. Specifically, the pseudo-code
for computing FRC is shown in figure 3.4.

FRC approximates the probability that the firstkeohdocument in the original
list L will remain ranked first even after the dooents are perturbed. The higher the
probability is, the more confidence we have infttet ranked document. On the other
hand, in the extreme case of a random rankingyriblgability would be as low as 0.5.
We expect that FRC has a positive association MiRlquery performance. The
document perturbation step (step 3) is the santieaasised in robustness score
computation (we refer the reader to Equation 3dBtha toy example given in section

3.2.2).

3.3 Query Feedback

In this section, we introduce our third predictiechnique calleduery
feedback QF). Suppose that a user issues query Q toiavaltsystem and a ranked
list L of documents is returned. We view the retalesystem as a noisy channel.
Specifically, we assume that the output of the alears L and the input is Q. After
going through the channel, Q becomes corruptedsammdnsformed to ranked list L.

By thinking about the retrieval process thig/wtae problem of predicting
retrieval effectiveness turns to the task of evagethe quality of the channel. In
other words, prediction becomes finding a way t@suee the degree of corruption

that arises when Q is transformed to L. As directynputing the degree of the
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corruption is difficult, we tackle this problem Bpproximation. Our main idea is that
we measure to what extent information on Q carebewered from L on the
assumption that only L is observed. Specificallg, design a decoder that can
accurately translate L back into new query Q’ drgldimilarity S between the
original query Q and the new query Q’ is adopted psrformance predictor. This is a
sketch of how the QF technique predicts query perémce. Before filling in more
details, we briefly discuss why this method woulokkv

There is a relation between the similarityefirced above and retrieval
performance. On the one hand, if the retrievaldties/ed from the original sense of
the query Q, the new query Q’ extracted from ranistd. in response to Q would be
very different from the original query Q. On théet hand, a query distilled from a
ranked list containing many relevant documentgedy to be similar to the original
query. Further examples in support of the relatidhbe provided later.

Next we detail how to build the decoder and howntasure the similarity S.

In essence, the goal of the decoder is to compags®d list L into a few
informative terms that should represent the cortéttie top ranked documents in L.
Our approach to this goal is to represent rankstd.lby a language model
(distribution over terms). Then terms are rankedhayr contribution to the language
model’s KL (Kullback-Leibler) divergence from thadkground collection model
(that is, clarity contribution). Top ranked termslwe chosen to form the new query

Q’. This approach is similar to that used in Secdal of [49].
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Specifically, we take three steps to compresked list L into query Q’ without
referring to the original query.
1. We adopt theanked list language modf0], to estimate a language model

based on ranked list L. The model can be written as
P(w|L)=> P(w| D)P(D| L) (3.10
DOL
where w is any term and D is a documeR{D | L) is estimated by a linearly
decreasing function of the rank of document D.

2. Each term in P(w]|L) is ranked by the following-Kivergence contribution:

P(w] L)log% (3.11

where P(w|C) is the collection model estimatedhgyrelative frequency of term w in
collection C as a whole .

3. The top N ranked terms by Eq.3.11 form a weidjlotieery Q'={(w,t)} i=1,N.
where wdenotes the i-th ranked term and weigid the KL-divergence contribution
of w; in EqQ. 3.11.

Two representative examples, one for a poorly perifog query “Cruise ship
damage sea life” (TREC topic 719; average preci€iddB) and the other for a high
performing query “prostate cancer treatments”( TR&gic 710; average precision:
0.49), are shown in Table 3.1 and 3.2 respectividigse examples indicate how the
similarity between the original and the new quesirelates with retrieval

performance. The parameter N in step 3 is set ten@@irically and choosing a larger
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value of N is unnecessary since the weights dfieetdp 20 are usually too small to

make any difference.

Table 3.1 : Top 5 terms compressed from the rankelist in response to query
“Cruise ship damage sea life”

Term cruise ship vessel sea passenger

KL 0.050 0.040 0.012 0.010 0.009
contribution

Table 3.2: Top 5 terms compressed from the rankelist in response to query
“prostate cancer treatments”
Term prostate cancer| treatmemt men therapy

KL 0.177 0.140 0.028 0.025 0.020
contribution

To measure the similarity between original quergr@ new query Q’, we first
use Q’ to do retrieval on the same collection. Aarat of the query likelihood model

[41] is adopted for retrieval. Namely, documents r@anked by:

P(QID)= >, P(w|Dy (3.12)

(w.§)0Q’

where wis a term in Q' and ts the associated weight. D is a document.
Let L’ denote the new ranked list returned fromabeve retrieval. The similarity

is measured by the overlap of documents in L andpeécifically, the percentage of
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documents in the top K documents of L that are ptesent in the top K documents in
L. the cutoff K is treated as a free parameter.

We summarize here how the QF technique predictsipeance given a query Q
and the associated ranked list L. We first obtasreaghted query Q' compressed from
L by the above three steps. Then we use Q’ to parfetrieval and the new ranked
listis L. The overlap of documents in L and L'used for prediction. In addition, QF

is mainly designed for content-based queries.

3.4 Weighted Information Gain

This section introduces a weighted informagam approach that incorporates
both single term and proximity features for predigtperformance for both
content-based and Named-Page (NP) finding queries.

Given a set of queries Q=fXs=1,2,..N) which includes all possible user degr
and a set of documents D={jt=1,2...M), we assume that each query-document
pair (Q,Dy) is manually judged and will be put in a relevahseif Qs is found to be
relevant to [@ The joint probability P(QD;) over queries Q and documents D denotes
the probability that pair (€D;) will be in the relevance list. Such assumptiores a
similar to those used in [51]. Assuming that therussues queryQ Q and the
retrieval results in response tei®a ranked list L of documents, we calculate the

amount of information contained in P{0) with respect to Qand L by Eq.3.13
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which is a variant of entropy called the weightatrepy[52]. The weights in Eq.3.13
are solely determined by, @nd L.
Hq . (Q D) = —; weigh(Q, DQ)log R Q, D) (3.13
Since we are given the user’s querna@d the associated ranked list L, we choose
the weights as follows:

1/K,if s=iand QO T, (D

i (3.14)
0,otherwise

weigh((Q, Q) = {

where T ( ) contains the top K documents in L

The cutoff rank K is a parameter in our model.

Noticing that weight(@D;) sums up to 1 over s and t, Eq.3.13 can be renréds
follows:

Hq(QuD)=— S W(Q, D)RQ Dog RQ B)  (3.25
W D) -y W@ D eQ D

P(Qs! Dt) ' st
When weight(QDy) is equal to P(QDy), weighted entropi, , (Q,,D,) reduces

where W Q, D)=

to the ordinary Sharon entropy which is the expkutdue of log P(QDy), a measure

of the uncertainty associated with distribution PIy). From Eq. 3.25, we can see

weighted entropi,, , (Q,,D,) can be viewed as an expectation value of the same

guantity with a weighted version of P{0);) being used to calculate the expectation

value. That is, weighted entroply,  (Q,,D,) measures the amount of information

(uncertainty) associated with P{[) with respect to the weights decided by query Q

and ranked list L. Specifically, since Ps(Q) denotes the probability that top ranked
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document Rin L will be relevant to query Q, weighted entrepy, (Q,,D,) can

represent the amount of information about how Yikbae top ranked documents in L
would be relevant to query; @n average.

When plugging Eq. 3.14, weighted entrapy, (Q,,D,) defined in Eq.3.13 can

be simplified as follows:

Ho (Q.D)=— ¥ -logP(Q,D) (3.15)

DT (L)

If we view the term -log P(D:) in Eq. 3.15 as the relevance score of document

D with respect to queryQanother interpretation of weighted entréy, (Q,,D,) is

the average relevance score over the top K rangedndents for a given query.
Therefore, weighted entropi, , (Q,,D,) can also represent the retrieval quality of
the given ranked list L. However, we want to pauat that the average relevance
score cannot be interoperated as weighted entfdpg score is not in the form of a
logarithm of a probability (if it is, for example,tf-idf score).

Unfortunately, weighted entropy, , (Q,,D,) computed by Eq.3.15, cannot be
compared across different queries, making it inappate for directly predicting
guery performance. To mitigate this problem, we eap with a background
distribution P(QC) over Q and D by imagining that every documariis replaced
by the same special document C which representage/éanguage usage. In this
thesis, C is created by concatenating every doctimé&n Roughly speaking, C is the

collection (the document set) {Pwithout document boundaries. Similarly, weighted

entropyH,, , (Q.,C) calculated by Eq.3.15 represents the amount ofrimition about
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how likely an average document (represented bwtime collection) would be
relevant to query Q Since a “ranked list” of this average document be viewed as
a random ranking of documents in the collectioraeerage,H, , (Q,,C) can be
thought of representing the average retrieval uafia random ranked list of
documents.

Now we introduce our performance predidfdlG which is the weighted

information gain [52] computed as the differenceseenH,  (Q,,D,) and

H, . (Q.,C). Specifically, given query Q collection C and ranked list L of

documents, WIG is calculated as follows:

WIG(Q,C D=H, (Q,0- H, (Q D)

P(Q. D) _ MQ. D) \
_Zwe|ghI(Q D)log—=—12 PQ.0) KD,DZK:(L) log 0.0 (3.16)

From the viewpoint of information theory, with resp to a given query and its
corresponding ranked list, WIG computed by Eq.3riE&sures the change in
information (uncertainty) associated with the ptaby P(Q, D) (the probability that
guery Q is relevant to document D) from an imagirsate that all documents are
replaced by a special “average” document to a postgtate that the actual
documents are restored. On the other hand, fromi¢wgpoint of IR (Information
retrieval), WIG can be viewed as the differencéhefaverage document score
between the actual ranked list and a random raligedVe hypothesize that WIG is
positively correlated with retrieval effectivendsscause high quality retrieval should

be much more effective than just randomly rankimggdocuments in the collection.
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The heart of this technique is how to estimatedime distribution P(QDy). In
the language modeling approach to IR, a varietyodiels can be applied readily to
estimate this distribution. Although most of thesedels are based on the
bag-of-words assumption, recent work on modelingn téependence under the
language modeling framework have shown consisteshisagnificant improvements
in retrieval effectiveness over bag-of-words modkispired by the success of
incorporating term proximity features into languagedels, we decide to adopt a
good dependence model to estimate the probabii@yB;). The model we chose
for this paper is Metzler and Croft's Markov Randbrald (MRF) model, which has
already demonstrated superiority over a numbepléations and different retrieval
tasks [51,53].

According to the MRF model, log P{@®@;) can be written as

logP(Q.,Q)=-logz+ > A logP¢ |Q) (3.17

¢OF(Q)

where Z is a constant that ensures that ;P sums up to 1. F({@consists of a set of
features expanded from the original query Eor example, assuming that queryQ
“talented student program”, F{Qncludes features like “program” and “talented
student”. We consider two kinds of features: srtigkrm features T and proximity
features P. Proximity features include exact ph(#%gand unordered window
(#uwN) features as described in [51]. Note thatF&Xhe union of T(Q and P(Q.
For more details on F{Rsuch as how to expand the original queryad(Q), we

refer the reader to [51] and [53].gf¥;) denotes the probability that featurevill
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occur in . More details on RB[D;) will be provided later in this section. The chmic
of A: is somewnhat different from that used in [51] sikgplays a dual role in our
model. The first role, which is the same as in [$d}o weight between single term
and proximity features. The other role, which ie@fic to our prediction task, is to
normalize the size of F(PWe found that the following weight strategy feisatisfies

the above two roles and generalizes well on a tyaofecollections and query types.

A
L fF0T
L _T@] @

Sl A sop)
JPQ)]

where |T(Q®]| and |P(Q| denote the number of single term and proximestdires in

(3.18)

F(Q) respectively. The reason for choosing the squ@refunction in the
denominator o is to penalize a feature set of large size appatgly, making WIG
more comparable across queries of various lengthigs a fixed parameter and set to
0.8 according to [51] throughout this thesis.

Similarly, log P(Q,C) can be written as:

logP(Q,C)=-log Z + Z A: log P¢ | C) (3.19
SR (Q)

When constant Zand 2 are dropped, WIG computed in Eq.3.16 can be reamrit

as follows by plugging in Eq.3.18 and Eq.3.19:

WIG(Q, C, |_)=i > > Aflogp(let)

(3.20
K DT, (L) 0F(Q) P({lC)

One of the advantages of WIG over other techniggésat it can handle well

both content-based and NP queries. Based on tedayphe predicted type) of Ghe
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calculation of WIG in Eq. 3.20 differs in two aspedl) how to estimate ;) and
PE|C), and (2) how to choose K.

For content-based queries{)) is estimated by the relative frequency of featu
& in collection C as a whole. The estimation df|By) is the same as in [51]. Namely,
we estimate B(D;) by the relative frequency of featuyen D; linearly smoothed
with collection frequency RB[C). K in Eq.3.20 is treated as a free parametete that
K is the only free parameter in the computatioMt6 for content-based queries
because all parameters involved i§|Bf) are assumed to be fixed by taking the
suggested values in [51].

Regarding NP queries, we make use of documentstauo estimate B|D;) and
PE|C) by the so-calledhixture of language modegtsoposed in [54] and incorporated
into the MRF model for Named-Page finding retriendb3]. The basic idea is that a
document (collection) is divided into several feklich as the title field, the
main-body field and the heading field 5f%) and P§|C) are estimated by a linear
combination of the language models from each fidld.refer the reader to [53] for
details. We adopt the exact same set of paranmeersed in [53] for estimation. With
regard to K in EQ.3.20, we set K to 1 because #read-page finding task heavily
focuses on the first ranked document. Consequédhtlye are no free parameters in

the computation of WIG for NP queries.
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3.5 Summary of Performance Prediction Techniques

In the previous four sections we introduced sevie@iniques for performance

prediction. Here we summarize and compare theskaudstn Table 3.3. For better

comparison, we also include the JSD method [8] Wwiias proposed by other

researchers and will

Table

be used as one of our basdiiey.

3.3: Comparison of Prediction Techniques

CB: Content-Based queriesNP: Named-Page finding queriesQM: Query
Language Model,CM: Collection Language Model RS: Robustness Score;RC:
First Rank Change,WI G: Weighted Information Gain.

Technique Key ideas Designed for
Clarity KL-divergence between QM and CM CB
JSD Jensen-Shannon Divergence between @wd CB

CM
Ranking Robustness Perturb terms in the top ranked documents RS: CB
(RS and FRC) FRC:NP
Query Feedback Similarity between the original guerd the new CB

query based on clarity contribution
WIG The difference between two weighted entropiesCB and NP

The clarity technique measures ranked list coleeréry the KL-divergence

between the query language model based on thetaogved documents (in response

® The JSD method differs from the clarity techniquéow QM is estimated.
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to a given query) and the collection language mogl@esenting general language
usage. Similar to clarity, the JSD method usesémsen-Sharon Divergence (JSD) to
compute the distance between the top ranked dodsraed the collection. The
ranking robustness technique (robustness scorérahthnk change) measures the
sensitivity of the ranking to the perturbing of tio@ ranked documents. Query
feedback compares the similarity between the caigyuery and the new query
distilled from the ranked list. WIG (weighted infoation gain) measures the
difference between weighted entropylbéised on the actual ranked list and weighted
entropy B based on a random ranked list (simulated by trgdtie whole collection

as a single document).

Since both clarity and WIG measure the distancevdxt an object representing
the retrieved documents and an object represetitengshole collection, we would
like to explore the relationship between the twahteques in depth.

When we substitute Eq. 3.5 by Eq 3.1, the clagtyrs can be rewritten as

foIIows7:

2> P(D|Q)P(w]| D)

clarityscore=> > R Ol Q R w Dlog2: P w (3.25

As a comparison, we rewrite the calculation of WAGIch is given in Eg. 3.20:

WIG(Q, C, |_)=i > > Aflogp(let)

(3.20
K DT, (L) 0F(Q) P({lC)

L represents the ranked list obtained by quemsliliood retrieval
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We can see Eq. 3.25 is very similar to Eq. 3.2%admn, given query Q, collection

C and ranked list L, Eq 3.25 and Eq. 3.20 can beenrin the same form as follows:

scor Q L Q=) >" weigh¢, Dlog P, D) (3.26

$0r boL I:)coll (E) '

where T is a feature space, is a feature in T, D is a document inA({, D) is a

distribution over feature space T al], () denotes the probability that featuée

will occur in collection C.
Clarity and WIG differ in the following three aspgc
(1) The feature space T
For clarity, the feature space is the whole vocatyutonsisting of single terms.
For WIG, the feature space is single terms or @w#sat extracted from query Q.
(2) The weighté, D)

For clarity score,weight(é, D= R D| Q R¢ | D.

A
2 i D .
For WIG, weight¢, D) =K ,if Dis one of the top K documents in

0,otherwise
We can see that theveight(&, D) for WIG is a almost a constant and is much
simpler than that for clarity, which makes WIG fifeem estimation noise in
P({|D)and P(D|Q).

(3) P(£. D)
For the clarity scord?(¢&, D) = Z P(D| Q)P | D).

DOL

For WIG, P(&, D)= P(&| D).
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This means that the clarity score uses a dooumedel averaged over all

documents in the ranked list fd?(¢, D), while WIG use the actual document model

of document D.

3.6 Model Comparison for Query Expansion Prediction

Query expansion is an effective technique for imuprg average IR
performance. However, one problem with this apgnaac¢hat it can greatly hurt the
performance of some individual queries when mamglated terms are added during
expansion. Motivated by this issue, in this secti@address the problem of detecting
the case when using the results of an expansitmitpee hurts the retrieval
performance for that particular query. In other dgmwe would like to predict the
performance change (either positive or negativeagepbetween the two retrieval
strategies (that is, the unexpanded and the exgdaetiéeval) for a given query. We
call this taslquery expansion predictioBased on this prediction, we can selectively
apply the query expansion technique on a per-go@sis.

In the previous sections, we have discussed oueladadr query performance
prediction. One major difference between queryqrarnce prediction and query
expansion prediction is as follows: In the forntlg retrieval function is usually
assumed to be fixed and we compare retrieval @ffguess across queries. In the
latter, essentially we compare the retrieval effectess between two retrieval

functions for a given particular query. Simply appy techniques for query
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performance prediction is not sufficient for querpansion prediction. The main
reason is that the performance of a query is metty related to whether or not we
should apply expansion for that query. For exampuhe, might expect that query
expansion would improve poorly-performing querldswever, this is not always the
case according to our observation on many TRECQtdk&ctions. Query expansion is
based on the assumption that the top retrievedrdents are relevant. However,
when the initial retrieval is not of high qualitthét is, includes many irrelevance
documents), it is unclear whether or not termsaetéd from the initial results will be
related to the original query. We also tried thigedence between the predicted
performance of the unexpanded retrieval (by sonmioprediction techniques) and
that of the expanded retrieval for query expangiaiction, but this strategy does
not work well. Instead of applying a performancedaction technique, we propose a
method callednodel comparisomspired by clarity score-related ideas for query
expansion prediction.

For the query expansion prediction task we areested in predicting which of
the two ranked lists yield better performance fgneen query: the unexpanded
retrieval rank list or the expanded one. For eaclked list, we estimate a ranked list
language model to represent the language usape manked list as we did in our
query feedback technique (Eq. 3.10). We then coentbea two ranked list models.

With this comparison, our goal is to catch whendkpanded retrieval has deviated
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from the original sense of the query by calculatimg distance between the two
language models of the unexpanded and expandéetsresu

Specifically, given query Q, we assume the unexpdmdtrieval results are
presented by a ranked document list A. Similahg, éxpanded retrieval results are
presented by a ranked document list B. We buildrandked list language models for
these two ranked list respectively. That is, apgyhe ranked list language model

defined in Eq. 3.10 to ranked list A and B, we have

P(wl A= Aw DRD| A (3.2

DOA

P(w|B)=> A(w DRD|B (3.22

DOB

To estimate document mod&lw| D), we use Equation 3.2 with Dirichlet smoothing.
The model comparison score is calculated as faliow

. P(w| A
comparison score _— 3.23)
P MET € W Yog, P(W| B) (3.23)
where 1 represents the set of top T terms in contributootié clarity score of Model

A. That is, given query Q, we compute the scoreaah term as

contrib(w| Q)= R( W Qlogz% (3.24

and take the T highest terms. These terms ared=nesi to be important terms in
terms of describing the query. The choice of usiregtop T terms rather than all
vocabulary terms is due to the observation thatpaymg the two models on generic

terms can bring noise to the comparison score.
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The model comparison score defined in Eq. 3.24 iex@ectation of the
difference in log probabilities for the importameaxpanded terms in models of the
two ranked lists. We briefly discuss why the congaar score can be helpful for
guery expansion prediction. When the important sean@ used much less frequently
in the expanded model, the comparison score wifldsatively high. This often
indicates an expansion that has strayed from tigenat sense of the query. On the
other hand, a negative score indicates that tharelqu retrieval uses the important
terms more frequently, which often indicates thatéxpanded result is better than the

other.
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CHAPTER 4
EVALUATION OF PREDICTION MODELS
In this chapter, we thoroughly evaluate our queasfgrmance prediction
techniques across a variety of search settingdirédfeeport our experiments on a
number of traditional TREC test collections thatus on the ad-hoc retrieval task.
Then we consider web search environments thatgméisantly different from the
traditional TREC settings in many aspects suchuasygtypes. In addition, we show

results of the model comparison technique for qespansion prediction.

4.1 Query Performance Prediction in Traditional TREC Settings

In this thesis, “traditional TREC settings” referthe following: (1) ad-hoc
retrieval which is the task of finding a numbemdoituments that are relevant to a
particular information need, and (2) TREC docuneatiections which typically
consist of no more than one million relatively hayanous newswire articles. Most
previous work on query performance prediction loesi$ed on these traditional

TREC settings.

4.1.1 Experimental Setup

Our experiments use a variety of TREC collectidree retrieval task is the
ad-hoc retrieval. Queries used in our experimerggithes of TREC topics unless

explicitly noted. Table 4.1 gives the summary @ test collections.
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Table 4.1: Summary of test collections used in Séah 4.1

TREC Collection Topic Number Number Df
Document
1+2+3 Disk 1+2+3 51-150 1,078,166
4 Disk 2+3 201-250 567,529
5 Disk 2+4 251-300 524,929
Robust 2004 Disk 4+5 minus301-450; 528,155
CR 601-706

In this section, we evaluate four of our modelst iR, clarity score, robustness
score, QF (query feedback) and WIG (weighted infirom gain).

For computing the clarity score, the document m&{el|D) in Equation 3.2 is
estimated by using Dirichlet smoothing with Diriehpriorzz=1000. Document
models are mixed from Jelinek-Mercer smoothed d@urmodels withx =0.6.

With regard to robustness score calculation, wethisguery likelihood model
[41] with Dirichlet smoothing as the ranking furazti (Dirichlet prior 1 is again set
to 1000). We set parameter K in Equation 3.9 ta Y@ tried different values of K
ranging from 10 to 500000 and found that the resthiange very little starting from
100. This means we do not have to require a langeber of samples to compute
robustness scores. In addition, for all of the tediections we choose the top 50
documents to compute the rank similarity in EquaB®. We observe that the
prediction performance using the robustness ssamrgatively insensitive to the

choice of the cutoff rank as long as it is in taege of 30 to 100.

8 Topic 672 is removed because of no relevant doatsne
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Regarding Query Feedback (QF) calculation, we aoghy set the parameter N
(that is, the top N terms ranked by Equation 3ttD)0. In fact, choosing a larger
value of N is unnecessary since the weights dfieetdp 20 are usually too small to
make any difference. When comparing the overlapréen the old and the new
ranked list, we need to specify the cutoff rank¥e set K to 25 for all of our test
collections. Further investigation shows that aalpie of K ranging from 20 to 50 will
lead to satisfactory prediction accuracy in mosesa

Regarding WIG computation, there is only one frammeter, that is, the cutoff
rank in Equation 3.20. We find that a small valfi& ¢a value less than 10) gives
good prediction in most cases and accordingly w& e 5 for all of the collections.

To evaluate the accuracy of query performance ptied, we measure the
correlation between the predicted and the actwia¢val performance for a set of test
gueries, which is widely adopted in most predictirk. In essence, we predict the
relative performance of retrieval instead of theiakperformance, considering the
fact that prediction accuracy may be affected leyctoice of performance measure if
we choose to predict the actual retrieval perforrean

Next we provide more details on the evaluationrefiction power. Given query
set Q={Q, Q,...Q} containing n queries and a document collectionperéorm
retrieval on the collection and have ={ X, X,,... X} whereX, denotes the actual
retrieval performance of quer . Since our retrieval task is ad-hoc retrievalhis t

section, we choose average precision for measpernigrmance. That isX; is the
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average precision of) . For a given prediction technique to be evaluatetithen
computeY ={Y, Y,... Y} whereY, is the score computed by the prediction technique
for query Q . Our goal is to measure the extent of dependeetvecien X and Y .
The higher the dependence is, the more accuraqyréagction will be.

To this end, we use both the Pearsop’'sorrelation test [55] and the Kendall’s
r rank correlation test[45]. Pearson's correlateftects the degree of linear

relationship between the two variables X and Y. fitmmula for computing Pearson’s

correlation coefficientp is as follows:
5 Xy - > anY
p =
X)? Y)?
\/(z X 2 _(Z:n))(zYZ _(Z:n))

Let R(X) denote the ranking of X, that B(X) ={ R, R ,.. R} where R, is

(4.2)

the rank of X, in X. Similarly, let R(Y) denote the ranking of Y. Instead of directly
measuring the correlation betweeft and Y, Kendall's 7 rank correlation tests the
agreement betweeR( X) and R(Y) to evaluate the magnitude of the correlation.
Kendall's rank correlation test is a non-paramegst since it does not assume any
distributions of both variables. Kendatl coefficient is computed by:

r=-S"0 4y

;n(n—l)

where C denotes the number of concordance (coyreatlered) pairs and D denotes

the number of discordance (incorrectly-orderedigpdihe total number of pairs is

%n(n—l)

65



The values of both kinds of correlation range betwel.0 and 1.0 where -1.0
means perfect negative correlation and 1.0 mearfisgb@ositive correlation.

Although the Kendall’s test and the Pearson’sdestwidely adopted in the
evaluations of many prediction techniques, theeeo#iner ways to measure the
correlations between two variables. One examplledsSpearman’s rank correlation
test [45]. Our experience is that it does not nnattach correlation measure to use,
since these measures generally give similar results

To obtain average precision, document retrievebise by using the
guery-likelihood model [41] and the results areleated by the trec_eval program.

Again, Dirichlet smoothing with Dirichlet priogz=1000 is used for smoothing.

4.1.2 Experimental Results

The results for correlation with average precisioeasured by the Pearson and
Kendall test are presented in Table 4.2 and 4 3wely.

From these results, for all of our four predictrandels we observe statistically
significant correlation with average precision ogiof the test collections no matter
which correlation coefficient is adopted. To betiederstand how these numbers
translate to the strength of correlation, we pleatrage precision versus robustness
scores on Robust04 in Figure 4.1. We clearly olesarinear trend between the

predicted and the actual retrieval performance.
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Table 4.2: Pearson’s correlation coefficient for arrelation with average
precision, for clarity score(Clarity), robustness sore (Robustness), Weighted
Information Gain (WIG) and Query Feedback(QF). Bold cases mean the results
are statistically significant at the 0.05 level. @irs represent the strongest

correlation for that collection.

TREC Clarity Robustness WIG QF
TREC123 0.335 0.434 0.494* 0.484
TREC5 0.366 0.454 0.432 0.530*
Robust 04 0.507 0.550* 0.456 0.499

Table 4.3 : Kendall's correlation coefficient for orrelation with average
precision, for clarity score(Clarity), robustness sore(Robustness ), Weighted
Information Gain (WIG) and Query Feedback(QF). Bold cases mean the results
are statistically significant at the 0.05 level. &rs represent the strongest

correlation for that collection.

TREC Clarity Robustness WIG QF
TREC123 0.331 0.329 0.407* 0.339
TRECS5 0.311 0.328 0.317 0.396*
Robust 04 0.412* 0.392 0.370 0.355

We also notice that there is no single predictat #lways performs the best or
the worst consistently on all of the three collees. This suggests that the prediction

power of our models is roughly at the same levalh@se data sets.
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Figure 4.5: Average precision versus robustness scores for tBd9 title queries
from the Robust 2004 Track

When comparing Table 4.2 to Table 4.3, we canlsga¢sults obtained by using
the Pearson’s test are highly consistent with tloddained by using the Kendall’s
test. For example, the two tests always agree achvdne is the best predictor for a
given test collection. Therefore, it is not necegsa include both measures for
measuring prediction accuracy. In addition, simitaPearson’s correlation
measuring linear correlation between two varialdResguare (or coefficient of
determination) measures how well a linear modslddta. Although not reported
here, we also tried R-square in some of our exparimand found that the results are
consistent to those obtained by Pearson’s coroelafior more details, we refer the

reader to section 4.3 of our paper [6].
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All gueries used in the above experiments areitleepart of TREC topics that
typically consists of two or three key words. listthesis we focus on this kind of
guery, since short queries dominate current seamgmes. However, it would be
interesting to see how our techniques will perfevhren it comes to long queries that
typically consist of one or more natural Englishte&ces. To this end, we evaluate
our techniques on two data sets: TREC4 and Rol@@ek. 2VVe use the description part
of the topics as our test queries. To see how gidser queries may be different from
title queries, we take TREC topic 301 for examplee title part of this topic is as
follows: International Organized Crimeélhe description part is as followslentify
organizations that participate in international grinal activity, the activity, and, if
possible, collaborating organization®ther than queries, all settings (such as
prediction model parameters, retrieval parametesjhe same as those used for title
gueries in our previous experiments. Here we chtus&endall’'s 7 for evaluating
prediction accuracy and the results are presentédhle 4.4.

Again, all of our predictors show significant cdateéon with retrieval
performance. However, from Table 4.4 we observe\WWi& does not perform well
compared to the other three models. To better gtalet how query types can have
an impact on our prediction techniques, Figurectrapares Kendall coefficients for

title queries to those for description queriestmmRobustness 2004 Track.
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Table 4.4 : Kendall's correlation coefficient for @rrelation with average
precision, for clarity score(Clarity), robustness sore(Robustness ), Weighted
Information Gain (WIG) and Query Feedback(QF). Bold cases mean the results
are statistically significant at the 0.05 level. @irs represent the strongest

correlation for that collection. Queries are thedescription part of TREC topics.

Collection Clarity Robust WIG QF
TREC4 0.353 0.548* 0.304 0.533
Robust 04 0.373 0.464* 0.216 0.381
0.5
x 45 ]
D
2 04
2
o 35 T
Q 03
% o5 | 0O Description Queries
g - B Title Queries
S 0.2
0.15
0.1 —
0.05 —
O
Clarity Robust QF WIG

Figure 4.2 Comparison of prediction accuracy betwen title queries and
description queries

For the first three methods, (that is, clasitpre, robustness score and query

feedback), they perform consistently on both typlegueries, which suggests that
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these three models are robust to query length. ttinfately, the performance of WIG
drops noticeably when it comes to description agseri

We briefly discuss the reason that WIG is sensttMeng queries. Given a query,
WIG extracts a set of features from the query {#a¢ure can be either a term or a
phrase in the query) and compare the frequencideesé features in the top ranked
documents to those in the whole collection. Thdityuaf these features has a direct
impact on the prediction power of WIG. Featuresapted from a title query are
usually closely related to the information neegigh This means these extracted
features generally are of high quality. Howevers mot the case for description
gueries, since the description field of a topicsusatural language to describe the
topic. In fact, features extracted from non-keyvgoirtla description query can be
misleading and are likely to degrade the perforraafdVIG. One possible way to
overcome this problem is to automatically geneaaftew keywords from a
description query. Though long queries can be sureigor WIG, we will see in the
next section that WIG is far better than other téghes in Web search environments
where short queries predominate.

We compare our methods to predictor techniquesgsex by other researchers.
We focus on two techniques from recent SIGIR camfees. The first one ( we call it
the overlap method) is a technique that is basdati®@overlap between the top
retrieved documents of the full query and thosigsofub-queries (a query consists of

one query-term) [6].Yom-Tov et al. [6] demonstratidt this method has prediction
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accuracy superior to several other predictors megaon the Robust Track 2004.
According to the learning techniques used, thezewao variants of this method:
tree-based and histogram-based . We choose thediBsgs reported in their paper.
The second one is the document perturbation (DR)adeproposed in [29]. In this
method, a document is randomly selected from threeved document set. This
document is perturbed by adding some amount oendisen, retrieval is performed
using the perturbed document as a pseudo-query.ifmhestigate how the amount of
noise added will affect the ranking. The idea bdhins method is somewhat similar
to our ranking robustness technique. They clailmatee better predication accuracy
than the overlap method on Robust 2004, a popalasédt that has been used in the
evaluation of many prediction techniques. We doimdtide the JSD method [8] as
one of our baselines in this section, since thafwation of this method is performed
on a web collection. (we will use this method aslmaseline in the next section that
focuses on a Web search environment.)

We also chose to use Robust 2004. By doing soanwerake fair comparison
using the same dataset. Both title and descripfumries are considered. We choose
the robustness score as the basis for this compar$ie Kendall’s correlation
coefficients of these methods for both of the tihel the description field of 249
topics used in the Robust Track 2004 are present&dble 4.5.

Regarding the overlap method, we assume the bestdtlescores reported in

their paper. Originally, they divided 249 topicsartwo parts: 200 old topics and 49
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new topics. For each query type, they reportediendall’s scores: one score for the
first part by using four-fold cross-validation ati@ other score for the second part by
using the first part (the 200 old topics) as tnagndata. This is equivalent to
performing five-fold cross-validation on all 24%tos. Here we combine the two
Kendall’s scores into one score for our comparisomll 249 topics. For the
document perturbation method, we quote their regaitdescription queries. They do
not report results for title queries and the refiltitle queries comes from our own

implementation.

Table 4.5 : Comparison to other techniques. The rapted numbers are
Kendall's correlation coefficients for correlation with average precision on the
Robust 2004 Track for robustness score, the overlapethod [6] and the
document perturbation method [29].

Robustness Overlap Document
Perturbation
Title 0.392 0.284 0.181
Description 0.464 0.465 0.520

From Table 4.5, we can see that our predictor stersily performs well for both
title queries and description queries while the baselines suffer from either one
type or the other. Moreover, our predictor work&east at the same level with or
better than the best baseline in each query type.

One interesting thing about these three methodalohe 4.5 is that they are based

on the same general idea: utilize the sensitivityetrsieval system to some noise

73



intentionally introduced in the retrieval proces&stimate retrieval performance. The
overlap method can be seen as a way of measuenm@blustness of search results to
guery perturbation. The document perturbation netth@ssentially another way of
implementing query perturbation, considering tret faat both the original document
randomly selected from search results and the gporeling perturbed document are
used as a pseudo-query for retrieval. On the dtaed, the robustness score can be
seen as a kind of collection perturbation, sinceudzents in the collection are
perturbed while the query remains intact. Therefthre results in Table 4.5 can be
interpreted as the evidence that collection pediioh is more appropriate than query

perturbation for the task of performance prediction

4.2 Query Performance Prediction in Web Search Enwonments

Web search environments are remarkably differemhfthe traditional TREC
settings adopted in the previous section in mangswislajor differences include: (1)
a Web collection is usually much larger and mortetogeneous than a traditional
TREC collection, and (2) Web queries often consligshore than one type. For
example, both content-based queries and namedfipageg queries are popular in
web retrieval.

The major goal in this section is to evaluate tregliztion power of our models in

a variety of Web search settings. Specifically,ooasider the following cases: (1)

74



content-based (CB) queries, (2) named-page (NBinighqueries, and (3) the
situation where the actual query type is unknoWwat ts, the user query can be either
CB or NP. Other than evaluations on laboratory¢eBections with pre-defined
guery sets and relevance judgments, we carry qérarents on realistic Web data
collected from a commercial search engine to explloe potential of our techniques

to predict user preference for search results.

4.2.1 Content-based Queries

Performance prediction for content-based queriesdiscussed within the
context of traditional TREC settings in Section.4nlthis section our retrieval task is
the same (that is, ad-hoc retrieval). But we addprge Web collection called
“GOV2” used in the Terabyte Tracks [56]. This cotlen, containing about 25
million documents crawled from Web sites in thev.gomain during the year of 2004
[57], is significantly larger than the collectionsed previously. Other than its size,
the GOV2 collection includes Web documents wittagety of styles ranging from

Web pages containing only tables to well-writteticis published in newspapers.

Table 4.6 : Summary of data sets for content-baseglieries

Name Collection Topic Number Query Type
TB04-adhoc GOV2 701-750 CB
TBO05-adhoc GOV2 751-800 CB
TB06-adhoc GOV2 801-850 CB
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In this section, we use the ad-hoc topics oflibabyte Tracks of 2004, 2005
and 2006 and name them TB04-adhoc, TB05-adhoc BA@-adhoc respectively.

All queries used in our experiments are titles REL topics as most Web queries are
short. Table 4.6 summarizes the above data sets.

Retrieval performance of content-based querieseigsured by average
precision. We make use of the Markov Random fietdieh for ad-hoc retrieval. This
model is particularly effective in Web search eamiments [51]. We adopt the same
setting of retrieval parameters used in [51,53pddh not reported here, we also tried
the query likelihood model for ad-hoc retrieval dadnd that the results change little
because of the very high correlation between tlegygperformances obtained by the
two retrieval models (0.96 measured by Pearsoréfficent). We evaluate
prediction accuracy by the correlation betweenpifeglicted and the actual
performance, which is the same as what we did atiGe4.1. To be comparable to
the results reported in other researchers’ paparsdopt the Pearson’s correlation
test (one of the two correlation tests used iniSeet.1) to measure the correlation.
As we stated in section 4.1, it does not matterimwigich test to choose.

Table 4.7 shows the correlation with average pi@tisn two data sets: one is a
combination of TB04-adhoc and TB05-adhoc(100 tomidstal) and the other is
TBO06-adhoc (50 topics). Again, our models are thaty score (clarity), the
robustness score (robust), query feedback (QFwemghted information gain

(WIG). Our baseline is the JSD method (JSD) propdseDavid Carmel et al.[8]
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According to the results reported in their papg@s method is significantly better than
the overlap method [6] used as one of our two b@in the previous section. For
the other baseline used previously (that is, theug@nt perturbation method), we do
not use it as a baseline here, since this methddrpes poorly for short queries. For
the clarity and robustness score, we have triddréifit parameter settings and report
the highest correlation coefficients we have fouie. directly cite the result of the
JSD-based method reported in [8]. Regarding WIGada@pt the same parameters as
used in Section 4.1. In fact, we find that thisafgbarameter settings for WIG can
achieve nearly-optimal prediction accuracy in twosiderably different situations.
With regard to QF, we set the cutoff K to 100, &ueahat is significantly different
from the value used in Section 4.1. Further ingasitbn shows that the choice of K is
related to collection size. For a large web coitattike the GOV2, QF prefers a
larger value of K such as 100, while a smaller @atiK such as 25 is appropriate on
traditional TREC collections that are much smathan a Web collection.

Even though we chose the best parameters foryckard robustness score, the
prediction accuracy of the two is low compared tVdnd QF. This suggests that
clarity and robustness have difficulty in adaptioga Web collection. Similar to the
clarity score method, the JSD method uses thendisthetween the query model and
the collection model to predict performance, altifothe two methods differ in some
details such as how to calculate the distance.€fbes, it is reasonable that the

prediction power of the two is on the same levedlaswn in Table 4.7. In short, WIG
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and QF are considerably more accurate than thesotAe an example, Figure 4.3
depicts the strength of the correlation with averpigecision for WIG on the first data
set. It shows a clear linear relationship betwéenpredictor and the actual retrieval

performance.

Table 4.7 : Pearson’s correlation coefficients focorrelation with average
precision on the Terabyte Tracks (ad-hoc) for claty score, robustness score, the
JSD-based method(we directly cites the score reped in [8]), query
feedback(QF) and WIG. Bold cases mean the resultseastatistically significant
at the 0.05 level.

Methods Clarity Robust QF WIG JSD
TB04+05 0.333 0.317 0.480 0.556 0.362
Adhoc
TBO6 0.076 0.294 0.422 0.464 N/A
Adhoc
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Figure 4.3: WIG score versus average precision fahe 100 title ad-hoc queries
from the Terabyte Tracks of 2004 and 2005
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For the clarity score, we observe that it perfouas/ poorly on TB06-adhoc.
Further investigation shows that the mean averagg@gion of TB06-ad-hoc is 0.342
and is about 10% better than that of the first dataWhile the other methods
typically consider the top 100 or less documentsgia ranked list, the clarity method
usually needs the top 500 or more documents touadely measure the coherence of
a ranked list. Higher mean average precision med@sed lists retrieved by different
gueries more similar in terms of coherence atelellof top 500 documents. We
believe that this is the main reason for the lowuaacy of the clarity score on this data
set.

To see how well our prediction models scale todaieb collections, we suggest
the reader compare Table 4.7 to Table 4.3. Onerteehand, we are glad to find that
both WIG and QF consistently perform well in a egyiof collections. On the other
hand, no matter how we tune the parameter settihgsarity and robustness on the
GOV2 collection, their performance on this colleatis still noticeably lower than
the performance on the traditional TREC collectiosed in Section 4.1.

Noticing that all of our prediction models are lzhea the language modeling
framework, why some of them are sensitive to ctitbes while others are not? The
heart of the language model technique is the esbmaf the probability P(w| M)
where w is a language unit an¥ is a language model. With regard to a Web
collection, the estimation oP(w| M) is generally less accurate, considering the fact

that Web collections are often much more heterogenéhan traditional TREC
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collections. For the clarity score, it directly indes P(w| M) in its computation,

P(w| M)
P(w| C)

since the clarity is defined as the sumPfw| M)log over all terms in

collection C. Regarding the robustness score,sares this method directly perturbs
P(w| M) if the retrieval function is based on language atiog), which is true in our
experiments. However, both WIG and QF make us@@&| M) in an indirect way.
For WIG, it makes use oP(w| M) in the form of logP(w| M) instead of directly
incorporating P(w| M) in its calculation. This logistic form makes WIGre
resilient to estimation noise iP(w| M). With respect to QF, this technique does not
directly rely on P(w| M) , since it uses the overlap between two rankiogs f
performance prediction.

In short, estimation accuracy &¥(w| M) has a more impact on clarity and
robustness than WIG and QF. We believe this igrthm reason that the prediction

accuracy of clarity and robustness drops noticeablthe GOV2 collection.

4.2.2 Named-Page (NP) Finding Queries

The Named-page (NP) finding task is a navigatiek t@here a user is interested
in finding a particular Web page that she may hseen before. For example, “TREC
proceedings” (TREC topic # NP973) is a NP querystted by a user who is looking
for the TREC publication page that contains TRE@pedings. This task is
fundamentally different from the ad-hoc retrievadk based on topic relevance.

Usually there is only one correct answer for a NBrigs, as opposed to multiple
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relevant documents for a content-based query. Astated earlier, most research on
performance prediction focuses on the ad-hoc ratriask and we know of no
published work by other researchers that explicitidresses the problem of
performance prediction for NP queries.

Regarding our prediction models, the clarity sctne,robustness score and
guery feedback are mainly designed for contentdgseries while the first rank
change (FRC) is solely designed for NP queriesy WIIG is designed for handling
both types of queries. Accordingly, the major gofahis section is testing the
prediction power of WIG and FRC. In addition, we also interesting in how well the
techniques designed for content-based queriepwifbrm for NP queries. To this
end, we include the clarity score and the robustsesre as two baselines.

We still use the GOV2 collection as our test cditat We adopt the
Named-Page finding topics of the Terabyte Track&0@f and 2006 and we name
them TBO5-NP and TBO6-NP respectively. Table 4rf@marized the above data set.

Retrieval performance of NP queries is measuregkbyprocal rank of the first
correct answer. Again, we make use of the Markovdeen field model for retrieval

and we adopt the same setting of retrieval parasated in [51,53].

Table 4.8 : Summary of data sets for named-page filing queries

Name Collection Topic Number Query Type
TBO5-NP GOV2 NP601-NP872 NP
TBO6-NP GOVv2 NP901-NP1081 NP
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We use the correlation with the reciprocal ranksaisneed by the Pearson’s
correlation test to evaluate prediction qualityeThsults are presented in Table 4.9.
To see the full potential of the clarity score, twee it in different ways. We

found that using the first ranked document to bthikel query model yields the best
prediction accuracy. This makes sense since rafrparformance of NP queries
heavily depends on the quality of the first randedument. We also attempted to
utilize document structure by using tméture of languagenodels mentioned in
Section 3.4. Little improvement was obtained. Toeaation coefficients for the
clarity score reported in Table 4.9 are the beshaee found. As we can see, WIG
and FRC considerably outperform the clarity sceohhique on both of the runs. This
confirms our intuition that the use of a coherehased measure like the clarity score

is inappropriate for NP queries.

Table 4.9 : Pearson’s correlation coefficients focorrelation with reciprocal
ranks on the Terabyte Tracks (NP) for clarity score robustness score, WIG, the
first rank change (FRC). Bold cases mean the resgliare statistically significant

at the 0.05 level.

Methods Clarity Robust WIG FRC
TBO5-NP 0.150 -0.370 0.458 0.440
TB06-NP 0.112 -0.160 0.478 0.386

Regarding the robustness score, we also tune thenpters to see its full
potential and report the best we have found. Wemesan interesting and surprising

negative correlation with reciprocal ranks. We axpkhis finding briefly. A high
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robustness score means that a number of top raldaanents in the original ranked
list are still highly ranked after perturbing thecdments. The existence of such
documents is a good sign of high performance fotextt-based queries as these
gueries usually contain a number of relevant docusaéiowever, with regard to NP
gueries, one fundamental difference is that tremnly one relevant document for
each query. The existence of such documents cdnsmthe ranking function and
lead to low retrieval performance. Although the atege correlation with retrieval
performance exists, the strength of the correlasomeaker and less consistent
compared to WIG and FRC as shown in Table 4.9.

Moreover, from Table 4.9 we can see that predidiahniques like clarity score
and robustness score that are mainly designedfdent-based queries face
significant challenges and are inadequate to deal\NWP queries. Our two techniques
proposed for NP queries consistently demonstrabe goediction accuracy,
displaying initial success in solving the problehpredicting performance for NP
gueries.

Why do techniques designed mainly for content-bagestties generally have
difficulty in coping with NP queries? Many of thet@ehniques are related to the
famous cluster hypothesis in IR: closely-relateduoents tend to be relevant to the
same request [58]. Assuming that this hypotheddshd retrieval is of high quality,
top ranked documents should be roughly on the sapie and are highly related to

each other. Therefore, the relationship among ttegseetrieved documents can be
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used to predict performance. For example, thetglarethod directly measures
ranked list coherence by comparing the query m(wdeich can be see as a summary
of top retrieved documents) to the collection mo#8el the robustness score, a ranked
list of very dissimilar documents is sensitive twdment perturbation and is very
likely to have a low robustness score. This brakgdiis also frequently adopted
explicitly or implicitly in prediction models devabed by other researchers. For
instance, Vinay et al. [29] uses the Cox-Lewisistias to measure the clustering
tendency of top ranked documents for predictiorweleer, when it comes to NP
gueries, the clustering hypothesis generally doeésold any more since there is only
one correct answer for NP queries. Accordinglyhiegues based on the clustering
hypothesis are likely to be much less effectiveN®r queries.

In comparison, WIG and FRC do not rely on thisdtiesis. We believe this is
one of the main reasons that WIG and FRC works feelNP queries. Combined
with results from the previous section, we obsé¢hat WIG performs well for both

types of queries, a desirable property that maadiption techniques lack.

4.2.3 Unknown Query Types

In this section, we consider a more challenginggsion where the type of a given
guery is unknown. Specifically, we run two kindsexfperiments without access to
guery type labels. First, we assume that only gpe bf query exists but the type is

unknown. Second, we experiment on a mixture of@uAbased (CB) and NP

84



gueries. The following two subsections will repasults for the two conditions
respectively. Previously WIG was shown to be thig one of our models (in fact we
know of no other models that claim to be effecfimeboth CB and NP queries) that
can deal with both types of queries provided thagryg types are known in advance.
The major goal of this section is to test the m#ain power of WIG under the

demanding situation that no prior information oregutypes is available.

4.2.3.1 Only One Query Type Exists

We first consider a simple case by assuming thajugries are of the same type,
that is, they are either NP queries or contentdbgseries. We consider two cases: (1)
CB: all 150 title queries from the ad-hoc taskied Terabyte Tracks 2004-2006 , and
(2)NP: all 433 NP queries from the named page figdask of the Terabyte Tracks
2005 and 2006.

We take a simple strategy by labeling all of therggs in each case as the same
type (either NP or CB) regardless of their actypet The computation of WIG will
be based on the labeled query type instead ofdiualatype. There are four
possibilities with respect to the relation betwésmactual type and the labeled type.
The correlation with retrieval performance under thur possibilities is presented in
Table 4.10. For example, the value 0.445 at thrersettion between the second row

and the third column shows the Pearson’s corralatozfficient for correlation with
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average precision when the content-based querds@orrectly labeled as the NP
type.

Based on these results, we recommend treatingiaties as the NP type when
only one guery type exists and accurate queryifilzestson is not feasible,
considering the risk that a large loss of accusaitlyoccur if NP queries are
incorrectly labeled as content-based queries. Tiessdts also demonstrate the strong

adaptability of WIG to different query types.

Table 4.10 : Comparison of Pearson’s correlation @fficients for correlation
with retrieval performance under four possibilities on the Terabyte Tracks
(NP). Bold cases mean the results are statisticalgygnificant at the 0.05 level.

CB (labeled) NP (labeled)
CB (actual) 0.536 0.445
NP (actual) 0.174 0.467

4.2.3.2 A Mixture of Content-based and NP Queries

An unknown mixture of the two types of queries im@re realistic description of
the situation that a Web search engine faces. @erisg the fact that retrieval
performance of the two types of queries is measdiféetently, we do not use the
correlation with retrieval performance to evalugttediction accuracy for the mixed
situation. Instead, we evaluate prediction accutacliow accurately
poorly-performing queries can be identified by piiediction method assuming that

actual query types are unknown (but we can pregliety types). This is a challenging
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task because both the predicted and actual perfax@efar one type of query can be

incomparable to that for the other type.

[—a— NP —s— Content-based
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Figure 4.4: Distribution of robustness scores for R and CB queries. The NP
gueries are the 252 NP topics from the 2005 TerabyfTrack. The content-based

gueries are the 150 ad-hoc title from the Terabytdracks 2004-2006. The
probability distributions are estimated by the Kernel density estimation method.

Next we discuss how to implement our evaluation.déate a query pool which
consists of all of the 150 ad-hoc title queriesrfroerabyte Track 2004-2006 and all
of the 433 NP queries from Terabyte Track 2005&2006 divide the queries in the
pool into classes: “good” (better than 50% of theres of the same type in terms of
retrieval performance) and “bad” (otherwise). Aaling to these standards, a NP
qguery with the reciprocal rank above 0.2 or a coinbased query with the average
precision above 0.315 will be considered as good.

Then, each time we randomly select one query Q thanpool with probability p
that Q is content-based. The remaining queriesisgd as training data. We first

decide the type of query Q according to a quergsti@r. Namely, the query
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classifier tells us whether query Q is NP or cotiteased (CB). Based on the
predicted query type and the score computed faryg@Qeby a prediction technique, a
binary decision is made about whether query Q &g bad by comparing to the
score threshold of the predicted query type obthiream the training data. Prediction
accuracy is measured by the accuracy of the baeision. In our implementation,
we repeatedly take a test query from the query podlprediction accuracy is
computed as the percentage of correct decisioasigha good(bad) query is
predicted to be good (bad). It is obvious that candjuessing will lead to 50%
accuracy.

Let us take the WIG method for example to illugrdite process. Two WIG
thresholds (one for NP queries and the other foterd-based queries) are trained by
maximizing the prediction accuracy on the trainilaga. When a test query is labeled
as the NP (CB) type by the query type classiftewili be predicted to be good if and
only if the WIG score for this query is above the [CB) threshold. Similar

procedures will be taken for other prediction teghes.

Table 4.11: Comparison of prediction accuracy forile strategies in the
mixed-query situation. Two ways to sample a queryrdém the pool: (1) the
sampled query is content-based with the probabilityp=0.6. (that is, the query is
NP with probability 0.4 ) (2) set the probabilityp=0.4.

Strategies Robust WIG-1 WIG-2 WIG-3
p=0.6 0.565 0.624 0.665 0.684
P=0.4 0.567 0.633 0.654 0.673
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Now we briefly introduce the automatic query typessifier used in this paper.
We find that the robustness score, though origimabposed for performance
prediction, is a good indicator of query types. Tise of the robustness score for
guery classification is motivated by the observatbtained from our previous
prediction experiments reported in Section 4.2d 4R.2 that the robustness score
behaves very differently between these two typeguefiesWe find that on average
content-based queries have a much higher robustness than NP queries. For
example, Figure 4.4 shows the distributions of sbbess scores for NP and
content-based queries. According to this findihg, tobustness score classifier will
attach a NP (CB) label to the query if the robussngcore for the query is below
(above) a threshold trained from training dataaddition, many other techniques
have been proposed for the task of query classiit§65][66]. For example, Kang et
al.[66] used features such as POS (part-of-spetain), distributions and anchor text
for classification. We expect that further improwarhon classification accuracy can
be achieved when the robustness score is usednhigation with other features.

We consider four strategies in our experimentshénfirst strategy (denoted by
“robust), we use the robustness score for query perfocamanediction with the help
of a perfect query classifier that always correatigp a query into one of the two
categories (that is, NP or CB). This strategy regmn¢s the level of prediction
accuracy that current prediction techniques cameaehn an ideal condition that

guery types are known. In the next following thstrategies, the WIG method is
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adopted for performance prediction. The differeag®wng the three is that three
different query classifiers are used for each stnat(1) the classifier always
classifies a query into the NP type, (2) the cfaasis the robust score classifier
mentioned above, (3) the classifier is a perfeet oMhese three strategies are
denoted byIG-1, WIG-2andWIG-3respectively. The reason we are interested in
WIG-1 is based on the results from section 4.3.1.

The results for the four strategies are shown inld4.11. For each strategy, we
try two ways to sample a query from the pool: {i® sampled query is CB with
probability p=0.6. (the query is NP with probalyil®.4) (2) set the probability
p=0.4. From Table 8 We can see that in terms afiptien accuracy WIG-2 (the WIG
method with the automatic query classifier) is owoly better than the first two cases,
but also is close to WIG-3 where a perfect classiB assumed. Some further
improvements over WIG-3 are observed when combm#dother prediction
techniques. The merit of WIG-2 is that it providgsractical solution to automatically
identifying poorly performing queries in a Web sgaenvironment with mixed query

types, which poses considerable obstacles to medigbion techniques.

4.2.4 Prediction on Realistic Web Data

In the previous section, we see the superioritytd over other methods in Web
search environments. However, our evaluation waspeed under laboratory

settings which consist of carefully-selected tagg@ts with relevance judgments made
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by human assessors and pre-defined retrieval thwstiss section, we focus on testing
the real-world performance of WIG by experimentamgrealistic Web data gathered
from a commercial search engine.

Specifically, the dataset used in this sectiongsiery log file that contains about
149 million queries collected by a web search cangghuring of one month period
(from May 1 to May 31 of 2006). For each query, fiblowing information is
associated: (1) query ID,(2) the time the quesuismitted, (3) the content of the
query, (4) the result(s) clicked by the user whionsitis the query, (5) the number of
returned results. Notice that (4) and (5) are natlable if no results are clicked for
the query. No relevance information on querieyalable. This dataset represents
the kind of information that a typical web seardgiee can readily obtain from user
interaction.

Considering the fact that positive correlation begw WIG scores and retrieval
performance was observed previously, it is natiaravestigate whether a similar
relationship exists for WIG on the dataset descrieove. One problem with this is
that we can not calculate the actual retrievalgrerhnce without any relevance
judgments. Instead of relying on human relevandgments that are accurate but
usually too expensive to obtain in a Web collectiga resort to click information that
may be noisy but can provide valuable informatiboud relevance. We assume that a

document clicked by the user can be roughly vieagtelevant to her information
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need. Accordingly our hypothesis is that high Wieres would predict more clicks
on search results. That is, WIG is related to sgeréference for search results.

We now describe our experimental design to tesabluare hypothesis. We
randomly sample 2000 queries from the query lag Ve assume that each query is
issued by a unique user (that is, one-to-one qooredence between a query and a
user) .We divide these queries into three groupsrding to the number of results the
user clicked when seeing the ranked list of resaltesponse to her query. Table 4.12
gives the details. For example, Group A represiiotse users who do not click any of
the returned results. In fact, group A, B and Gesent three levels of user interest in
search results in ascending order. The percenfaggch group in our sampled query
set is also provided in Table 4.12. We can sedltieatnajority of users only click one
of the retrieved results.

For each query in the sampled query set, we contpat&/IG score. For WIG
calculation, in addition to the query itself we debke ranked list in response to the
guery and a collection. We use the provided seangine API to download the top
ranked documents for the query. The GOV2 colleasamsed to approximate the
Web collection statistics required in WIG calcubati The parameter settings of WIG
are the same as used in Section 4.2.2. The distnisuof WIG scores for the three
groups are presented in Table 4.13. We adopt tatssts to represent the
distribution of WIG scores for each group: sampkamand sample variance. The

size of each group (the number of queries in tlb@myis also provided.
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Table 4.12 : Division of test queries into three grups based on the number of
clicked results

Group A B C
# of clicked results| 0 =1 >=2
Percentage 34.8% 50.1% 14.1%

Table 4.13 : Distributions of WIG scores for GroupA, B and C

Group A B C
Sample mean of5.340 6.040 6.648
WIG score

Sample variance qf11.645 8.120 8.877
WIG score

Size 695 1002 283

Let WIG( A ,WIG(B) and WIG(C) represent the mean of WIG scores in group

A,B and C respectively, that isWIG( A =iz WIQF q where | Alis the size of

| Al
group A andWIG(q) is the WIG score for query QVIG(B) and WIG(C) have
similar definitions. From Table 4.13 we observe thdG(C) >WIG(B) and
WIG(B) >WIG( A . Further investigation shows that both of the tifeerences

(WIG(C) -WIG(B) and WIG(B)-WIG( A) are statistically significant at the 95%

confidence level according to the student t tek}. [6his shows that high WIG scores
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suggest more clicks, which is consistent with aevpus finding that high WIG
scores generally correspond to high retrieval parémce.

We want to point out the correlation between WI@ alicks is not strong
enough to make a conclusion that WIG alone canrataly predict clicks,
considering the large variance of WIG scores irhegoup as shown in Table 4.13.
This is due to the fact that user preferencesdarch results depend on many factors
other than retrieval quality. For example, usercation background may have a huge
impact on their preferences. In fact, we obseriéndataset that for the same query
some users do not click on any of the returnedtsestnile others do click. Since
WIG is an effective feature only for predictingeednce and clicks are only related to
relevance to some degree, we do not expect tlekisatan be accurately predicted by

WIG alone. However, WIG is still a useful featuseshown in the above experiment.

4.3 Combination of performance predictors

We observe that our predictors can sometimes perb@tter when linearly
combined, due to the fact that they capture diffeespects of the retrieval process
that have a major impact on retrieval effectivenéss example, the Pearson’s
correlation coefficients for the clarity score ahd robustness score on Robust 04 are
0.507 and 0.557 respectively according to TableW!I2en we combine the two
predictors by a simple linear combination, the esponding Pearson’s correlation

coefficient is increased to 0.613 [7]. In Web sbagnvironments, a similar trend is
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observed in our paper [68]: the linear combinatbkVIG and QF is better than WIG
alone for content-based queries and the linear owtibn of WIG and FRC is better
than WIG alone for named-page finding queries. Otbgearchers also report that the
combination of multiple prediction features canyde better prediction accuracy
than anyone when used in isolation [25]. In geng@eiformance prediction should be

done using a combination of resources, if thiosgutationally possible.

4.4 Model Comparison for Query Expansion Prediction

In this section, we address the task of query esiparprediction. The major goal
of this section is to test the ability of model quamison in sensing poor expansion
results. Specifically, we perform both an unexpahrieval and an expanded
retrieval. We adopt the query likelihood model [4d1 our unexpanded retrieval for
each query. For our expanded retrieval, we usedlegance model [40] which is a
conceptually simple and effective way for implemegtguery expansion. We will
explore if model comparison can accurately preitiietchange in performance
between the two retrievals for a particular query.

We apply the model comparison method for the tdsjuery expansion
prediction on a variety of data sets as shown iolerd.14. All queries used in this

section are titles of TREC topics. Regarding tHeuwtation of model comparison
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score, we set T to 10 in Equation 3.23. (Tests shaivthis method is not very

sensitive to T as long as it is in the range af 5Q).

Table 4.14 : Summary of test collections for quergxpansion prediction

TREC Collection Topic Number Number of
Document

1+2+3 Disk 1+2+3 51-150 1,078,166

5 Disk 2+4 201-250 524,929

Robust 2004 Disk 4+5 minys301-450; 601-700 528,155

CR
Terabyte 04-05 GOVv2 701-800 25,205,197
(ad-hoc task)

Figure 4.5 shows our models comparison scoreseapithe Robust Track 04
data. The delta average precision is the value wl#vance retrieval minus the value
with query-likelihood retrieval. Highly positive ogparison scores are an indicator
that the performance of the expanded retrieval beagignificantly worse than the
unexpanded retrieval. Moreover, highly positiverespwhen they occur, are often
well separated from the other scores. This separatiakes it possible to distinguish
hard-to-expand queries from others by setting estiwld. Specifically, after setting a
threshold of model comparison score, we use exghretgeval for a given query if
the model comparison score is below the threshadidvice versa. We call this

strategyselective query expansion based on model compaf&Q&MC for short).
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Figure 4.5 a scatter plot of model comparison scoseversus delta average
precision for each of the 250 queries of Robust 200'he delta average precision
is the value with relevance retrieval(REL) minus qery-likelihood retrieval(QL).

Table 4.15: Mean Average Precision
QL: query-likelihood
REL: query expansion by using the relevance motle
SQEMC: selective query expansion based on mod@mmparison by
predicting change between QL and REL in average pi@sion using a threshold
learned from training data

TREC QL REL SQEMC
TREC123 0.187 0.249 0.245
TRECS 0.149 0.161 0.168
Robust 04 0.244 0.280 0.286
Terabyte 04-05 0.291 0.311 0.313

Table 4.15 shows the mean average precision fodNBQEompared to using

relevance model retrieval (REL) and query-likelidaetrieval (QL). We obtain the
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results for SQEMC by leave-one-out cross-validatimnsetting the threshold score
using training data, then applying the thresholbdel-out test data. Generally we do
not observe large mean average precision improveaven relevance retrieval. The
main reason is that this method is only capabléetdécting a small percentage of
gueries that perform very poorly on expansion asvshin Figure 4.5. Moreover,
SQEMC usually does not hurt retrieval performance.

Examining some example queries is illuminating ead help us understand the
strength and weakness of this method. We first kiatases when model comparison
works well. In the case of “supercritical fluid"dtta average precision (REL-QL):
-0.290, model comparison score: 4.313 ], loosimgrdyuirement that documents use
the exact query terms frequently to be highly rah#tey going from unexpanded
retrieval to expanded retrieval) ranks documerashighly that do not contain all the
correct jargon term frequently. In other wordsthis case matching the exact
technical terms is what satisfying the informati@ed requires. This query receives a
high model comparison score because query expans&es the technical terms
occur less frequently in the search results. Irette@mple of the “tourist violence”
guery [delta average precision (REL-QL): 0.254, slasbmparison score:-0.757],
broadening the search to contain closely relatedgean help. However, there are
hard-to-expand queries that the method fail tode@ne is “Legionnaires disease”
[delta average precision (REL-QL): -0.248, modehparison score:-0.256 | where

documents can contain the terms “legionnaire (nmgpsoldier)” and “disease” (and
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related words) yet not be about Legionnaires’ disebeading to a low comparison

score despite its hard-to-expand status.

4.5 Summary

Several prediction techniques (clarity, rankingustiness, query feedback and
WIG) were evaluated for the task of performanceajgagion. Our major findings are:

(1) Regarding the clarity score, we found thaeitfprms reasonable well for
content-based queries on traditional TREC tesecttins. However, the prediction
accuracy of clarity drops remarkably in a Web seamvironment.

(2) For the ranking robustness technique, thexéven variants: robustness score
for content-based queries and first rank change&CjFBr named-page (NP) finding
gueries. FRC is found to be effective for NP quede the GOV2 collection. Like the
clarity score, the performance of robustness skmreontent-based queries is good
on traditional TREC test collections but is lowtbie GOV2 web collection. One
interesting phenomenon we observed about the noéssiscore is a moderate
negative correlation with retrieval performance X queries. Though the
correlation is not strong, the opposite behavidhefrobustness score between the
two types of queries motivates us to investigagepibssibility of the use of robustness
score for query classification. Our results shoat the robustness score is a good

feature for distinguishing between the two quepes
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(3) Query feedback (QF) is found to be effectmecontent-based queries on
both traditional TREC collections and the GOV2 ection.

(4) WIG offers consistent prediction accuracyoasrvarious search scenarios.
WIG provides a uniform framework to deal with batintent-based and named-page
finding queries. In fact, as far as we know, WI@&is only predictor we have found so
far that can successfully deal with both typesudreges, making it particularly
suitable for performance prediction in a Web seamyironment. In addition, with
the help of an automatic query classifier, WIG tffa practical solution to predicting
mixed-query performance. Our experiment on reallteb data collected from a
commercial Web search engine shows a tendenchilalWIG scores predict more
clicks on search results. We also find that desonpjueries can make WIG less
effective compared to title queries.

(5) For the clarity score, the robustness scote@h, we observe no noticeable
change of prediction accuracy from short queriegtan the topic title to long
gueries based on the topic description.

In addition, we proposed a method calteddel comparisoto address the task of
guery expansion prediction. We found that this rmétban improve retrieval
consistency by catching a small proportion of geeeand avoiding some poor
expansions, although no significant improvement @x@ansion retrieval was

observed in terms of mean average precision.
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CHAPTER 5
IMPLEMENTATION OF PREDICTION MODELS
We evaluated the effectiveness of our models irpteeious chapter. Other than
effectiveness, efficiency is another major con@specially when facing a large
amount of data. Accordingly, we devote this chafmeliscussing the implementation
of our prediction models.
(1) Clarity Score

Let us revisit the definition of clarity which isvgn in Equation 3.5:

clarity score= " R w Qlog, F;(W(lv(\;)

The collection modelP,, (w) is typically estimated by the relative frequenéy o
term w in the collection. The estimation &%, (W) only needs two kinds of statistics:
the number of occurrences of term w in the coltecaind the total number of terms in

the collection. Since almost all indexes will sttrese statistics, the computation of

P, (w) costs nearly no additional space and time. In faetmost time-consuming

and space-consuming part of clarity computatidhesestimation of the query model
P(w| Q) which is estimated as follows:

P(w] Q)=ZD‘, P(w DA Dl Q

Theoretically, the D in the above equation inclugesry document in the
collection. This means that we need to computesém@ the probabilityP(w| Q)

for every word in the collection, which is almostaasible when the collection is
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large. One practical solution is that we perforfirst round retrieval and limit the D
to the top K ranked documents from the retrievg dBing so, we only need to pay
attention to terms that do occur in the top K rah#ecuments. However, both time
and space complexity can still be high even afisr approximation. In essence, the
guery model P(w| Q) can be viewed as a type of automatic query expar®QE)
which is usually slow in practical applications. thleds for speeding up AQE can be
helpful for improving the efficiency of clarity cqoatation.
(2) Ranking Robustness

The efficiency of both robustness score and FRfominated by the following
two steps: 1) perturb term counts in a documénte+rank the perturbed documents.
If only query terms are considered, the perturlmaticocess (the first step) can be
implemented efficiently. For example, we can creatable where entry (i,j) records
the number of occurrences of query term j in doqumeSince a cutoff is set on the
ranked list and the query is usually relativelyrshihe size of the table is small and
therefore can be stored in main memory. The peatiob process can be directly
performed on this table by perturbing the term ¢oneach cell of the table.
Regarding the second step, the re-ranking prociislsexfast with the help of the
perturbed table, since this table can be used aslar of the perturbed documents to
be re-ranked.

(3) Weighted information gain
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WIG can be implemented very efficiently. The cédtion of WIG is given in

Equation 3.20. We rewrite it as follows:

1 P(£| D,
WIG(Q, C, L) :?D;L)gu;m/]‘( log P((Ell C))

==~ >, 2 AlogP(ID)I- > AlogP(|C)

K DT (L) $0F(Q) ¢0F(Q)

let scorg Q D)= >, Alog RE| D), scor¢ Q §= > A log €| ¢
£l

$OF(Q) OF(Q)

WIG(Q, C, |_)=[% D scor¢ Q Pl-scoré Q G (5.1)

DM (L)

In Equation 5.1,scor€ Q, D) is exactly the relevance score of documént
for query Q when the Markov Random Field (MRF) model is addgte retrieval.
Similarly, scor€ Q, Q is the relevance score of collection C by treatirg
collection as a whole. Foscord Q, D), we can directly copy the corresponding
document score from the given ranked list wherMRd# model is used for retrieval.
Even if another retrieval technique is adopted cthaputation ofscorg Q, D) is
still quite efficient since only features occurrimgquery Q are considered.
Regardingscord Q, D), P(¢|C) is usually estimated by the relative frequency of
feature ¢ in the collection. This information can be readilytained from the index.
Considering that both single term and phrase featare used in the computation of
WIG, we require that the index supports both typiefeatures. The Indri search
engine [62] is one example that fully supports saicaquest. In short, the
computation of WIG can be made extremely efficiemder the proper conditions.

(4) Query feedback (QF)

103



There are two major bottlenecks for the implemeoadf QF: i) the estimation
of the ranked list language model , ii) an exttaeeal required for measuring the
similarity between the original query and the navery. The ranked list model is a
variant of the query model used in the computadibclarity. Therefore, the
efficiency issues of implementing the query modetlarity calculation also apply
here. Both i) and ii) make it difficult to implemie@F efficiently.

(5) Model Comparison

The most complex part for computing model comparswores comes from the
estimation of the ranked list model which is staabdve.

Based on the above discussion, we can see thampiementation of WIG is the
most efficient among our prediction models. Considgthe fact that WIG shows
satisfactory prediction accuracy across a variégearch settings (especially in Web
search environments), WIG is our first choice for task of performance prediction

in realistic applications involving a large amoohtdata.
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CHAPTER 6

PREDICTING DOCUMENT QUALITY FOR WEB AD-HOC RETRIEVA L

6.1 Overview

In this chapter, we address the problem of documpeality and its application to
Web retrieval. As we mentioned before, this probtam be viewed as performance
prediction at the level of individual documents. ahieve the goal of improving the
performance of Web ad hoc retrieval by exploitinguiment quality information, we
propose a document quality model that incorporf@atires other than link structure.
This quality model is incorporated into the bagsiexy likelihood retrieval model in
the form of a prior probability. We first introdutwo quality metrics, that is,
information-to-noise ratio and collection-documdigtance. The latter is a novel
feature found to be helpful for identifying low dinadocuments. We then show how
to estimate the quality of a web document usingigeBayes classifier which makes
use of these two features. This naive Bayes classfembedded as a prior
probability in the query likelihood model. We evaile our document quality model
on three TREC web collections (GOV2, WT2G and WTL0Germs of three
measures: precision in the top ranked documentanraeerage precision and MRR.
Our results demonstrate that, on average, thevatrmodel incorporating quality is

significantly better than the baseline in term$/R and precision at the top ranks,
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although the impact of our model on mean averageigion is quite small. Last, we

give a detailed query analysis to understand thedtions of our model.

6.2 Quality Metrics

We focus on two quality metrics, collection-documeistance and
information-to-noise ratio, the first of which isw and the second having been used

with some success in a previous study [39].

6.2.1 Collection-document Distance

The Collection-Document Distance (CDD for shag)simply the relative
entropy, or Kullback-Leibler (KL) divergence, bewvethe collection and document
unigram language models. The collection or backgidanguage model is estimated
using the word occurrence frequencies over the evbollection (e.g. GOV2).

Given a document D and a collection C, the CDDivsmg by
P (W[ C)
m Pioc(W| D)
where Rw D=AR.(wW D+(1-1) B, (W Q

_ #Count(w D) B (W] C)= # Count w G
IID | IC 1l

In this formulation, we use linear smoothing fotireating the document language

CDD=) PR, (w| C)log (6.1)

oll

Pioc(WI[ D)

model probabilities.
Our hypothesis is that low quality documents Wwélve unusual word
distributions. In other words, if a document diffesignificantly from the word usage

in an average document, the quality of this documeay be low. In the CDD
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measure, the average document is represented bgltbetion language model. The
KL divergence between the collection language maddithe document language
model (i.e. the CDD) indicates how different thdgstributions are. The higher the
CDD is, the more unusual the word distributionr locument is, and the more
likely, according to our hypothesis, that the doeuiris of low quality.

Let us consider three cases that are helpful fderstanding why CDD can
predict low quality documents.

Case 1: documents that are tables or liflemmon words, such as pronouns,
adjectives and verbs, would have very low numbémourrences, which makes the
document language models quite different from thikection language model.

Case 2: documents that have misspelled wards.probability of a misspelled
word in the collection is much lower than that ofmal words. If any document
contains misspelled words, the CDD tends to be.high

Case 3: documents where the frequency of somademmecessarily higisince
the web environment contains competing profit segkientures, one may
intentionally increase the occurrence of some kegiw/an a document to get
attention. CDD can recognize this case.

As an alternative to Equation 6.1, one can comihgelivergence with the role of
the collection language model and the documentulagg model reversed. The

method shown in Equation 6.1 performs slightly éeitt our evaluations and is used
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throughout this thesis. The value of the parametsrdetermined empirically and is

0.8 for all runs in this paper.

—s—low quality —a— high quality
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Figure 6.1: Distribution of CDD values for low andhigh quality documents.

Fig 6.1 shows the distributions of CDD values fayhhquality and low quality
documents respectively. (The details on the datd ts generate this figure will be
described in section 6.3.1.) These two distribiiare estimated from our training
data by the Kernel density estimation method thkt® discussed later. We can see

that there is an obvious separation between thelagses of documents.

6.2.2 Information-to-noise ratio

The information-to-noise ratio is computed as titalthumber of terms in the
documents after indexing divided by the raw sizéhefdocument [39]. This metric
predicts low quality documents based on a diffeokiaracteristic than the CDD

metric. Consider a web document that has only adevds and many HTML tags
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which will be removed after indexing. The infornzatito-noise ratio of this
document is very low and the quality of this docuatredso tends to be low.

Fig 6.2 shows the distributions of information-toise ratios for high quality and
low quality documents respectively. (The detaildlmmdata used to generate this
figure will be described in section 6.3.1.) The tstributions are also estimated
from our training data by the Kernel density estioramethod. As we can see, a

document with a low information-to-noise ratio isich more likely to be of low

quality.
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information-to-noise ratio

Figure 6.2: Distribution of information-to-noise ratios for low and high quality
documents.

6.3 Predicting Document Quality

In this section, we show how to estimate thaiguof a Web document by a naive

Bayes classifier using the two quality metrics dibsd in the previous section.
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6.3.1. Training data

First of all, we give the details of how the traigidata were created. These data
are used for estimating the parameters in our ridayes classifier.

We ran 50 title queries (TREC topics 701-750) fiitwer 2004 Terabyte Track on
the GOV2 collection. The search algorithm usedhésguery-likelihood model with
Dirichlet smoothing [41]. We looked at the top tetrieved documents for each
query (that is, 500 documents in total). We mayjatiged these documents either as
high quality or low quality. These labeled docunseniil be used as the training data
in our experiments described in section 6.5. Inetkgeriments involving Terabyte

Track 2004, we used five-fold cross validation Yoid testing on the training data.

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

Home Beatch Browse Resources Help

Search resulis for diebedes [CONDITION] ave shown below,

I~ Include irials thai are no longer recruiting patienis. [ Search-Within-Fesults ] [ Query Details ] [ IMap of locations

109 studies were found. Here are studies 1 to 50.

1. [0 Recruiting Pifenidone to Treat Kidney Disease in Patients with Diabetes
Conditions: Diabetic Nephropathies, Diabetes Type 1; Diabetes Type 2; Diabetic Kidney
Disease

2. [ Recruiting Evaluation of a Diabetes Vaccmne in MNewly Diagnosed Diabetics
Conditions: Insulin-Dependent Thabetes Mellitus, Diabetes hMellitus
3. [ Recruiting Action to Control Cardiovascular Risk in Diabetes (ACCORDY
Conditions: Atherosclerosis, Cardiovascular Diseases, Hypercholesterclema, Hypertension,
Diabetes Welhtus, non-msulin dependent, Diabetes Mellitus; ...
4. [ Recruiting Evaluation of Patients with Endocrme-Related Conditions
Conditions: Endocrine Disease;, Glucoze Intolerance, Hypennsulinemia, Impaired Glucoze
Tolerance; MNon Insulin Dependent Diabetes Mellitus, Obesity, .
3. [ Recruiting MNamral History Study of the Development of Type 1 Diabetes
Condition: Diabetes ellitus, Type 1
6. [] Recruiting Improving Metabolic Assessments in Type 1 Diabetes Mellins Clinical Trials
Condition: Diabetes ellitus, Type 1
7. [ Recruiting Interferon-Alpha for Diabetes Mellins Type 1
Condition: Insulin-Dependent Diabetes Mellis
2. [ Recruiting Regional Fatty Acid Metabolism in Humans
Condition: Diabetes Mellitus, Type 2

Figure 6.3: “Low quality” document retrieved in response to the query
controlling type || diabetes.
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Document quality is an inherently subjectiea@ept and involves many aspects
such as popularity, authority and quality of wigtirsince we focus on the ad-hoc
content-based retrieval task, we used the follovenigrion for judging a document
to be low quality: A document is judged as low atyaf it contains few or none of the
typical sentences that would be required to des@&itopic. Any other document that
is not judged as low quality would be regardedigh guality. In practice, most low
quality documents we found consisted of primallglés or lists. Figure 1 gives an
example of part of a typical low quality documemthe training data. The document
contains a list of diabetes studies that are reogupatients for trials and was
retrieved in response to the query “controllingeypdiabetes”.

The intuition behind this basis for quality judgneers that a relevant document
for the TREC ad hoc task usually explains or dessrsome topic using sentences
with typical English structure and vocabulary. Téfere, documents like tables or
lists are unlikely to be relevant for ad hoc querie

We examined the relationship between relevancaelandment quality and
Table 6.1 shows the distribution of relevant docote@ver two classes: high quality

and low quality documents.

Table 6.1 : Distribution of relevant documents in he training data

Relevant Non-relevant
High quality 238 171
Low quality 9 82
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As we can see, the proportion of relevant documamisng low quality
documents is much lower than that in high qualitgs Overall, based on our training
data, successfully recognizing low quality docursesfitould be helpful for improving

retrieval performance.

6.3.2 Naive Bayes Classifier

The Naive Bayes classifier technique is based eB#yesian theory and
assumes independence in features. Despite itsisitppNaive Bayes classifiers
often work much better in many real applicatiorantimight be expected from their
simple design [59].

In this thesis, we use this technique to predicudeent quality. Specifically, let
D denote a document. Note that we assume thabvalirdents belong to one of the
two classes: high quality and low quality. Let Hhdee the high quality class, L
denote the low quality class, X denote a vectaguality metric values, ang,and
denote the prior probabilities of the high quatitsss and the low quality class
respectively. Lefy andf. denote the probability density functions of thghhgquality

class and the low quality class respectively. Bye&arule , we have:

_ == TR (%)
PrD=H |X =x,)= 00+ T o) (6.2)
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Given multiple features (in this case, quality noetalues) it is common to
assume independence among the features. In faetxawined the training data and
found there is little correlation between the twetnts. Under this assumption, we
have

fi(X)=1,00) f (%), j=H,L (6.3)
wherex, is the CCD metric anxl is the information-noise ratio.

The key part of computing BYEH |X) is the estimation of the probability density
functions in Equation 6.2, sineg andsz can be simply estimated by the relative
frequencies in the training data. However, it is @&sy to estimate these functions
since we do not know what distribution the two nestactually follow. Instead, we
adopt Kernel density estimation which does not m&sany specific distribution on
the features we want to estimate. Kernel denstiynasors belong to a class of
estimators calledon-parametricdensity estimators that have no fixed structue an
depend upon all data points to reach an estimate.

Assume we have a random samplex,, ...xy drawn from a probability density
functionf(x) and we wish to estimatéx) at a pointxy , the Kernel density estimator

for f(x) at the pointg is defined as [59]:
~ 1 &
f =—>» K , 6.4
(%) NA; (%, %) (6.4)

whereA/ is the bandwidth anld, is a Kernel function. In this paper we use the

Gaussian Kernel and Equation 6.4 can be written as
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There is a standard way to select the bandwidltivéised on minimizing the
expected square error between the estimated demsltthe original density [59].

In this proposal, we adopt this method to calculiate

6.4 Document Quality Language Model

To utilize our quality predictor to improve riewval performance, we propose
the document quality language model [60] that it lom the top of the basic query
likelihood model by incorporating document quafptgdiction in the form of a prior
probability.

Specifically, given a query Q and a document DPI®|Q) be the probability
that D is relevant given Q, the document qualihglaage model is as follows:
P(D|Q) T P(Q| D)P(D= H[ X)
where PQ|D) is the query likelihood model described in [4dHaPO=H |X)
computed by Equation 6.2 can be interpreted addhament prior probability that

reflects prior knowledge about the relevance ofdbeument D[38].

6.5 Results

In this section, we present the results of compagdetween the document
quality model and the query likelihood model on tineee Web test collections. The

details of these test collections are shown in @&2. Three metrics are used for
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evaluation: precision at top retrieved documentsamaverage precision and MRR
(mean reciprocal rank). Our results show that tauchent quality model
significantly outperforms the baseline in the ewatilon using precision at top ranked
documents and MRR, although the differences of Nb&Rveen the two models are
quite small.

For query likelihood retrieval, we use Dirichlegothing with a smoothing

parameter of 2500 for all runs.

Table 6.2: Summary of test collections

Test Collection Topic Number Number of Document
WT10G 501-550 1,692,096

WT2G 401-450 247,491

GOV2 701-800 25,205,197

(Terabyte Track 04-05

6.5.1 Results for Precision at Top Ranks

In a typical Web search environment, few peoplealdidook at more than the
first ten or twenty results. Precision at the tapks is a very important metric since
it reflects the concern with high retrieval accyrda this thesis, we evaluate
precision at 4 rank levels: 5, 10, 15 and 20.

Table 6.3 shows the precisions at top ranks oiGtB¥ 2 collection. To better
compare our model with the baseline, all queriesdarided into three types: “Pos”,

“Neg” and “Eq”, which means our model is better ra@or equal to the baseline
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respectively. The last column in Table 6.3 shovesrtimbers of the three types of

gueries.

Table 6.3: Precision on the GOV2 collection. “Postheans result is better than
the baseline, “Neg” means result is worse than tHeaseline, “EQ” means result is
the same as the baseline

Precision | Query-likelihood Document quality
@ model model Pos Neg Eg
5 docs 0.5592 0.6037 27 11 61
10 docs 0.5430 0.5673 28 12 59
15 docs 0.5207 0.5550 37 18 44
20 docs 0.5066 0.5400 38 18 43
Table 6.4: Precision on the WT2Gcollection
Precision | Query-likelihood Document quality
@ model model Pos Neg Eg
5 docs 0.4960 0.5240 9 3 38
10 docs 0.4640 0.4760 10 4 36
15 docs 0.4107 0.4280 10 3 37
20 docs 0.3880 0.3920 10 7 33

We can see that the document quality model comgigteutperforms the

baseline at all of the 4 rank levels. On the otteard, the majority of the queries are

not affected by the quality-based prior. One reasdhat high quality documents,
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where the differences in the prior probabilitiesddo be negligible, consist of a large
part of the whole collection. In other words, ousdel can make a difference only
when there are enough low quality documents im#& liat. Approximately twice as

many queries are improved by this technique tharhart.

Table 6.5: Precision on the WT10G collection

Precision | Query-likelihood Document quality
@ model model Pos Neg Eg
5 docs 0.3440 0.3640 9 6 35
10 docs 0.3000 0.3240 13 5 32
15 docs 0.2880 0.2907 13 12 25
20 docs 0.2660 0.2900 19 9 22

The results for WT2G and WT10G are shown in Tébdeand 6.5 respectively.
As with the results on the GOV2 collection, the wiment quality model consistently
improves precision. Moreover, considering the ledisize of the training data, we
believe that performance could be further improlgdnhcluding more training data
from a variety of web collections.
In summary, these results suggest that incorpgraki@ument quality

information can significantly improve precisionthé top ranks.
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6.5.2 Mean Average Precision Results

Mean average precision (MAP for short) is the nfiexjuently used measure for

ad hoc retrieval. In our view, MAP is a less impoittmeasure than precision at the

top ranks for a typical web user, but to fully exste and understand the quality

model, we include this measure.

Table 6.6 shows the mean average precision on G®NM2G and WT10G.

Percentage improvements with respect to the basatimalso given. “Pos”, “Neg”

and “EQ” have the same meaning mentioned in Seéti. As we can see, although

the differences between the two models are srhalldbcument model is consistently

better than the baseline on all of the three ctitias.

Table 6.6: MAP on the three test collections

Collection Query-likelihood Document quality model

model Pos Neg Eq
GOV2 0.2882 0.2905 (+0.8%) 55 45
WT2G 0.3135 0.3220 (+2.7%) 34 16
WT10G 0.1831 0.1840 (+ 0.5%) 27 21
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6.5.3 MRR Results

Table 6.7 shows MRR on the three test collecti@sce the document quality
model is consistently better than the baselinelims of precision at top ranked
documents, it is not surprising that our model pearfs better on GOV2 and WT2G.
WT10G is an exception where our model is slighttyse than the baseline. We
discuss this more in the next section, but MRRasasensitive to a small fluctuation
in the rank list than precision. For example, & thnk of the first relevant document is
second instead of first, the MRR drops from 1.0.®while the precision in the top 5

documents may change very little.

Table 6.7 : MRR on the three test collections

Collection| Query-likelihood model | Document quality

model Pos. Neg. Eq.
GOV2 0.7391 0.7927 25 6 68
WT2G 0.7406 0.7781 9 1 40
WT10G 0.6215 0.6139 9 8 38

6.6 Query Analysis

Previously we showed that on average the qubalsed model can effectively
improve precision and MRR with respect to the bhasellTo understand the
limitations of this approach and potentially fimdprovements, we analyzed the
gueries for which the model did most poorly in teroff MAP and MRR. Below are

the details of six of these queries and our expianawhy the quality model does not
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perform well. Note that in the cases where no M&Hsted, the two models have

the same MRR value.

Example 1 (GOV2):

Query Topic Baseline Quality model
Nuclear reactor types 748 0.1138 (MAP) 0.0628 (MAP)
1.0 (MRR) 0.5 (MRR)

Explanation: According to the narrative for thipitg relevant documents only need
to mention the names of the types of nuclear reqctever plants. Therefore, low
guality documents like lists or tables could bevaht for this topic. The quality

model penalizes some of these relevant documents.

Example 2 (GOV2):

Query Topic Baseline Quality model
Green party political | 704 0.1733 (MAP) 0.0662 (MAP)
views

Explanation: it seems that low quality documemgsret likely to be relevant for this
topic. However, the narrative section of this togays “Any members’ names noted
are considered relevant”. There are a few low tpdlhcuments judged as relevant
only because the names of green party memberstee, lwhich leads to the failure

of our model in this case.

Example 3 (WT10G):

Query Topic Baseline Quality model
History of 506 0.1276 (MAP) 0.017 (MAP)
skateboarding 0.25 (MRR) 0.026 (MRR)
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Explanation: There are only two documents judgeceievant for this topic. One
of the two is retrieved by neither the quality mlada the baseline. The other one that

is highly ranked by the baseline is a list.

Example 4 (WT10G):
Query Topic Baseline Quality model
Instruments to forecast541 0.2588 (MAP) 0.1497 (MAP)
the weather

Explanation: As in example 1, low quality documesish as lists can be relevant

documents for this topic

Example 5 (WT2G):

Query Topic Baseline Quality model
Cuba sugar exports 414 0.5898 (MAP) 0.4806 (MAP)
1.0 (MRR) 0.5 (MRR)

Explanation: In the description section of thisitapsays “How much sugar does
Cuba export and which countries import it”. As veamsee, just numbers and names

are enough to be relevant for this topic.

Example 6 (WT2G):
Query Topic Baseline Quality model

Quilts, income 418 0.3643 (MAP) | 0.2634 (MAP)

Explanation: The narrative section of this topatas “Documents mentioning
quilting books, quilting classes, quilted objeatsl anuseum exhibits of quilts are all
relevant”. According to these criteria, low qualitgcuments can be relevant for this

topic.
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In summary, it seems that the biggest problemthie current quality model is that
there are queries with relevant documents thabarguality according to the model.
To better understand this issue, we manually dd/alequeries for the Terabyte
Track 2004 into the following two types:

Type one: queries that are not likely to have ratevow quality documents.
Type two: queries that are likely to have relevant quality documents.

According to our classification, there are $3et one queries and 16 type two
gueries. The heuristic we used for the classificais that if a few named entities are
enough to satisfy the information need as definethe narrative, the query will be
classified as type two. Otherwise, if detailed togescription is needed, the query
will be classified as type one. Of course, thesifecsmtion is still somewhat
ambiguous for some queries.

Table 6.8 shows MAP results for the two typegueries defined above.
Percentage improvements with respect to the basafmalso given. Considering the
explanations given above, it is not surprisingde that the performance of the
document quality model is quite low on the type gueries. On the other hand, our
model is better than the baseline on the type oeeeg, although the improvement is
small. This is because there are relatively few dmality documents in a typical
ranked list and MAP is based on the whole rank&td Ainother interesting
observation from table 8.1 is that both two mogeligorm better on type one queries.

Even though we currently can not automaticallyidgstish the two types of queries,
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our analysis suggests that a different strateggeésied to improve the performance of

type two queries.

Table 6.8 : MAP on the two types of queries

Query Type Query likelihood model Document quatitgdel
Type One 0.2664 0.2710 (+1.7%)
Type Two 0.2209 0.2045 (-7.4%)
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

The contributions of this thesis have been statéda introduction chapter of this

thesis. We summarize them as follows:

Defining the area of performance prediction

- Describing a comprehensive range of experimentpddiormance
prediction

- Showing that satisfactory prediction accuracy liemable across a variety
of search scenarios

- Demonstrating the superiority of WIG in Web seagaironments

- A framework for query expansion prediction

- A document quality language model incorporatinglitpéeatures for Web
retrieval

In addition, major insights and lessons gained ftbhimwork are:

(1) Collection types and query types have a sigait impact on the accuracy of

a prediction technique.
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(2) As is the case for retrieval, term proximigndoe helpful for performance
prediction, although carefully modeling term proxyms required.

(3) Performance prediction technigues designeddatent-based queries
generally do not perform well for named-page fingdqueries.

(4) Regarding performance prediction, there exasisiformed framework for
dealing with performance prediction for both comteased and named-page finding
gueries.

(5) In general, the performance difference betweenretrieval techniques for a
given query is smaller than the difference betw@enqueries for a given retrieval
technique. Therefore, query expansion predictianharder problem than query
performance prediction.

(6) The notion of quality within the context of IRnecessary deserves further

investigation.

7.2 Future Work

There are many interesting extensions to this shesrk. Here we highlight some
of them.
(1) Improving Prediction Models
Our most promising performance prediction mod&Vi&, but one issue with
WIG is its sensitivity to a description query. Qmave way would be automatically

compressing the description query into a few keydsoSince the compression
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process is not perfect, we would like to see & 8trategy can eventually improve the
prediction accuracy of WIG for description queriadditionally, the query feedback
method leaves much room for improvement. For exapgiploring alternative ways
of implementing the rank list distillation part hiwe potential of making this
technique computationally efficient.

(2) Ranking Robustness and Ranking Functions

We have shown that the ranking robustness techmsqeegpable of predicting
qguery performance. In that case, the ranking fonas fixed and we compare
robustness scores across a set of queries. Annthersting question is: given a set of
gueries and more than one ranking functions, cantikee the idea of ranking
robustness to select the best ranking functiotHat particular set of queries? For
example, as a first step, we can compare the mbssiscores of two kinds of ranking
functions: document likelihood and query likeliho®itevious studies have shown
empirically that using query likelihood leads tochuwbetter retrieval performance
compared to document likelihood. However, themeoigheoretical justification for
choosing one over the other. It would be intergstininvestigate whether the
superior performance of query likelihood can bel&xged under our ranking
robustness framework.

(3) Applications in Distributed IR

Retrieval performance can be viewed as a functiaquery Q and collection C.

In this thesis, we focus on the situation whenemibn C is fixed but query Q is a
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variable. We are also interested in the reversatan: query Q is fixed but collection
C is a variable. This situation corresponds tocthléection selection problem in
distributed IR. With the help of a performance petat, those collections with the
highest predicted performance for a given queryhldlchosen. We believe that
taking performance prediction into account hagpibiential of significantly
improving selection accuracy. Moreover, performapiaaication can be applied to
the problem of merging document rankings. Tradalanethods for results merging
are based on the normalization of document scooes different search engines. We
can incorporate performance prediction by assigaimgight learned from a
performance predictor to each of these search eag8earch results are merged
based on these performance weights associated se#rch engines.

(4) Query Disambiguation

Retrieval effectiveness suffers greatly from usamsbiguous queries, notably in
Web search where most users tend to submit veny gheries with little context.
On the other hand, formulating a well-defined infiation request is still challenging
even for experts. The performance prediction teqes developed in this thesis can
play an important role in query disambiguation kikier incorporating them into
existing methods or by providing insights to deyehew disambiguation techniques.
For example, one way used by many commercial seargimes for query
disambiguation is the technique called query refieet that allows the user to

interactively specify her information need by séleg new terms suggested by the
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system. Prediction techniques will provide guidaocemportant issues such as what
kind of queries need refinement and how to seléettve terms based on the user’s
original query.
(5) Information Quality

Information quality has become a significant conaespecially on the Web
where little restriction is placed on generating @ablishing web documents.
Relevant but fraudulent information is much wotsantirrelevant but reliable
information. Modeling information quality is diffidt because it is highly
user-dependant and involves many aspects suchlawify accuracy, objectivity
and timeliness. The document quality chapter is thésis only addresses one aspect
of information quality and the features used atelgdased on term statistics. We
would like to explore more features related to fyaéspecially user-interaction
features such as click information. We also plafutther investigate the relationship
between quality and relevance, and potentially kgvdifferent quality measures for

different types of queries.
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APPENDIX A : RETRIEVAL PERFORMANCE MEASURES

In this thesis, we use the following three meastwe evaluating the
performance of the retrieval results in response goven query: precision at a given
cut-off level, Mean Reciprocal Rank (MRR) and agergrecision. Specifically, we
assume that the retrieval results are in the fdremmranked list of documents, that is ,
{d, d,,..d} where n is the length of the ranked list addis the i-th ranked
document. We also assume the relevance judgmeintshis form of a binary vector
R={r, r,..r} wherer, =1 if documentd, is relevant orr, =0 if document, is

irrelevant. Next we give details on these measures.

(1) Precision at a given cut-off rank krecisiorn( K

It is defined as follows:

Kk
f
i=1

precisior( B :T, k< r

That is, precision at cut-off rank k is theqentage of relevant documents in the
top k retrieved documents. This measure is oftexl dsr ad-hoc retrieval evaluation
in a Web search environment where a user gendoalkg at no more than the first
one or two pages of results.

(2) Mean Reciprocal Rank : MRR

MRR is defined as the inverse of the rank of thst felevant document, that is,
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MRR:%, Whereji =0 and;r=1
i=1
MRR is useful in cases where users are primartkittg for one correct answer
and want that answer ranked as high as possiblaelld@age finding and question
answering are two TREC tasks where MRR is the stahfibr evaluation.
(3) Average Precision
Average precision is frequently used for ad-haceeal. It emphasized

returning more relevance document earlier. It ésahthmetic mean of precisions

calculated at each of the relevant documents. Madhieally speaking,

> precisior( ) x |
average precisior =

n

2t

i=1
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