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ABSTRACT

We introduce the notion of ranking robustness,civhiefers to a
property of a ranked list of documents that indisahow stable
the ranking is in the presence of uncertainty ie ttanked

documents. We propose a statistical measure déléetbbustness
score to quantify this notion. Our initial motivati for measuring
ranking robustness is to predict topic difficulty tontent-based
queries in the ad-hoc retrieval task. Our resuiisiahstrate that
the robustness score is positively and consisteotlselation with

average precision of content-based queries acrogariaty of

TREC test collections. Though our focus is on pogain under

the ad-hoc retrieval task, we observe an intergstiegative
correlation with query performance when our techaits applied
to named-page finding queries which are a fundaatignt
different kind of queries. A side effect of thidfdrent behavior of
the robustness score between the two types ofapigrithat the
robustness score is also found to be a good fedturguery

classification.
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1. INTRODUCTION

In a typical retrieval system, a user forms a quegording to his
information need and a number of documents areepted to the
user by the retrieval system in response to theyqu@uery

performance prediction refers to the process amesing the

quality of the output of a retrieval system in r@sge to a user’'s

query without any relevance information. Compared to the long

history of developing sophisticated retrieval mader improving
performance in IR, research on predicting querfoperance is
still in its early stage. However, researchers tetaeted to realize
the importance of this problem and a number of meethods
have been proposed for prediction recently [27]e Hbility to

predict query performance has the potential of md&mental
impact both on the user and the retrieval system.

From the perspective of a user, performance piiedigirovides
valuable feedback that can be used to direct aclsedfor
example, when the retrieved documents are estintated of low
quality, the user may rephrase his query or be modlling to
cooperate with the system to improve retrievalaifeness, such
as providing relevance feedback. With the helprefiction, the
user can quickly form a good query to acquire Bartig results
for his information need. Otherwise, the user mgmtnd time
reading the returned documents to rewrite the quérgn the
results for the initial query are not satisfactory.

On the other hand, from the perspective of a nedtisystem,
performance prediction is the first step at solvihg crucial
problem of retrieval consistency. Current retrieggbstems are
evaluated by thaverageeffectiveness on a fixed set of queries.
Although failures on a small number of queries may have a
significant effect on average performance, userso wdre
interested in these queries are unlikely to beraoleof this kind
of deficiency. A reliable system that always proski@acceptable
retrieval performance is more preferred by useen thnother
system that works extremely well on a number ofrigsebut
occasionally makes terrible mistakes. To improwe ¢bnsistency
of retrieval systems, we first need to distinguigloorly-
performing queries by performance prediction teghes. The
important role of performance prediction in impmoyiretrieval
consistency has been recognized by the IR commuikity
example, in 2003, the Robust Track [2,22] was psegdoby
TREC which addresses the problem of enhancingetieval of
poorly-performing queries. As the first footprimh ifinding a
solution to this problem, the Robust Track requisgstems to
rank the queries by predicted effectiveness to stigate the
capabilities of systems to detect hard queries.[27]

However, accurate performance prediction with Zadmment is

not an easy task. The major difficulty of perforroamrediction

comes from the fact that many factors, such asqthery, the

ranking function and the collection, have an impawtretrieval

performance. Each factor affects performance tidfereint degree
and the overall effect is hard to predict accuyat€herefore, it is
not surprising to notice that simple features, saglthe frequency
of query terms in the collection [10] and the ageréDF of query
terms [25], do not predict well. In fact, most ¢fetsuccessful
techniques are based on measuring some characternistthe

retrieved document set (usually in the form of akeal list) to

estimate performance. For example, the clarityesp] measures
the coherence of a list of documents by the KL-djeace

between the query model and the collection model.



In this paper, we investigate another property odreked list of
documents called ranking robustness which refersoiw stable
the ranking is in the presence of uncertainty ie ttanked
documents. This method was first introduced in [30]e idea of
predicting retrieval performance by measuring ragkiobustness
is inspired by a general observation in noisy detdeval that the
degree of ranking robustness against noise is latece with

retrieval performance. Regular documents also aoriteise” if

we interpret noise as uncertainty. We proposetesttal measure
called the robustness score to quantify the notiérranking

robustness. For content-based queries in the itadit ad-hoc
retrieval task, we demonstrate that the robustnesere

significantly and positively correlates with qugrgrformance in a
variety of TREC test collections. In comparisonthe clarity

score method, our experimental results show thatdbustness
score performs better than or at least as gooteaslarity score.
Although the robustness score is initially desigfmdestimating
topic difficulty, we also explore the relation bewn the
robustness score and retrieval performance of ngragd finding
(NP) queries. An interesting negative correlatiathviNP-query
performance is observed, suggesting the fundameifftence in

the retrieval processes for the two types of gsei@onsidering
the opposite behavior of the robustness score ketweese two
types of queries, our further investigation reve#st the
robustness score is a good feature to distingussivden the two

types.

The rest of this paper is organized as followstiBe@ describes
related work. In section 3, we propose a statistieeasure called
the robustness score to quantify the notion of irapkobustness.
In section 4, we present our evaluations that shine

effectiveness of our approach. In section 5, wensarize the
main conclusions of this paper.

2. RELATED WORK

2.1 Query Performance Prediction

Prediction of query performance has long been térast in
information retrieval and has been investigated enndifferent
names such as query-difficulty or query-ambiguitQuery
prediction is a challenging task as shown in [21d §1]. Some
of the first success at addressing this task wamdstrated by the
clarity score method proposed in [4].

Recently, a number of prediction methods have liged since
the introduction of the TREC Robust Track in 2008. the
Robust Track systems are required to rank the esieby
predicted performance, with the goal of utilizifgetprediction
capability to do query-specific processing. Onaghive want to
point out is that most study on performance praaticfocuses on
content-based queries in the ad-hoc task. At the Bf writing

this paper, we know of no published work that efi

addresses other types of queries such as namedfpatjeg

queries.

Generally speaking, current prediction methodsaextieatures of
retrieval and compute the performance score foh epery by
using the features to estimate the query performa®oe way to
measure the quality of the performance predicti@thods is to
compare the rankings of queries based on theimhgiecision
(such as MAP) with the rankings of the same quereged by
their performance scores (that is, predicted pi@t)js

Some researchers have used IDF-related (inverseindot

frequency) features as predictors. For example, lifison et al.
[25] adopted the weighted average IDF of the queryns for

predicting. He and Ounis [10] proposed a predibased on the
standard deviation of the IDF of the query termacRouras [20]
represented the quality of a query term by Kwokwerse
collection term frequency. The above IDF-based ipteds

showed some moderate correlation with query pedoa. These
predictors are easy to compute but they do not tla&eretrieval
algorithms into account and thus are unlikely tedict query
performance well.

Inspired by the success of the clarity score, smaearcher have
proposed methods that are related to the idedwiclarity score
technique. Amati [1] proposed to use the KL-diveige between
a query term’s frequency in the top retrieved doents and the
frequency in the whole collection, which is veryngar to the
definition of the clarity score. He and Ounis [1®oposed a
simplified version of the clarity score where theegy model is
estimated by the term frequency in the query. Mxdéd by the
observation that the clarity score indicates thecsjgity of a
query, they [10] also proposed the notion of therguscope,
which is quantified as the percentage of documtiraiscontain at
least one query term in the collection. Diaz andhedo [6]
extended clarity scores to include time featurémyTshowed that
using these time features together with clarityresdmproves
prediction.

Realizing that the retrieved document set providetuable
information for estimating retrieval performance, few
researchers have focused on investigating propesfi¢he search
results that may relate to search performance.dpproach and
the clarity method fall into this category. Anothe@mple is that
Carmel et al. [5] found that the distance measbrethe Jensen-
Shannon divergence between the retrieved docune¢ransl the
collection is significantly correlated to averagegsion. Vinay et
al.[26] propose four measures to capture the gegroétthe top
retrieved documents for prediction. The most ¢iffecmeasure
they found is the sensitivity to document pertuidrat an idea
somewhat similar to our idea. Generally speakiaghmiques that
make use of the search results for prediction avesnaccurate
that those that do not.

Other researchers have applied machine learninmnipaes for
prediction. For example, Elad Yom-Tov et al. [28pposed a
histogram-based predictor and a decision tree basedictor.

The features used in their models were the docufmemency of
query terms and the overlap of top retrieval resbhétween using
the full query and the individual query terms. Thdea was that
well-performing queries tend to agree on most & téetrieved
documents. Kwok et al. [15,16] built a query préalicusing

support vector regression. For features, they chizsdest three
terms in each query and used their log documequéecy and
their corresponding frequencies in the query. Talep included
the number of top retrieved documents that consaime or all
query terms as a feature. They observed a smaiklation

between predicted and actual query performancengJsisual

features, such as titles and snippets, from a gareodocument
representation of retrieved documents, Jensen §f]alrained a
regression model with manually labeled queries tedist

precision at the top 10 documents (P@10) in the \&&drch.
They reported moderate correlation with P@10.



2.2 Information Retrieval on Noisy Data

With regard to text document collections in infotima retrieval,
it is often convenient to assume that the contehtise collections
are clean and free of errors. With the advent mfdaollections of
multimedia documents (such as audio or image dont)me
techniques such as OCR (optical character recoghitor ASR
(automatic speech recognition) have been widelyl useextract
text from multimedia archives. In the following degtion, the
text output of a recognition process applied to timddia
documents isoisy dataor corrupted datasince the recognition
process is error prone and brings significant Ewélnoise to the
data. The recognition process that produces cardugita islata
corruption

One of the core problems in the field of informatieetrieval on
corrupted data is to explore the impact of datarugion on
retrieval effectiveness in order to design a ragKimction that is
robust to unexpected errors in corrupted data. Herbust
retrieval model means that some changes in docuroent
collection statistics caused by data corruptionndd alter the
retrieval results much compared to retrieval ofquérdocuments
(that is, the results of a recognition process W8% accuracy).

A general observation about experiments on invastig the

effects of data corruption is that as retrievaleeffreness
improves, the ranking function becomes more robgsinst data
corruption. For example, Lopresti and Zhou [11] lexgd the

effectiveness of three retrieval functions on setedl OCR noisy
data. They found that the ranking of the three fions with

respect to retrieval effectiveness is the saméeis tanking with

respect to their ability to deal with simulated sei Another
example is that Singhal, Salton and Buckley [23]pmsed a new
robust length normalization method to alleviate pheblem that
the regular cosine normalization is sensitive toROErrors.

Although the original motivation for this techniqueas to deal
with OCR data corruption, surprisingly they fourttht the new
normalization scheme also brought significant improents on
correct text collections in comparison to the aorai cosine
normalization. Moreover, Mittendorf [17] studiedtdaorruption
effects on retrieval and presented a theorem dkirrgmobustness
that partially explained the phenomenon that redlie
performance on corrupted data is often correlati¢d the degree
of resilience against noise.

The above work reveals the interesting relationshgiween
ranking robustness and retrieval performance. Aigtothis work
was done in the context of retrieval on noisy datkan
documents in regular retrieval also contain “noi$ete interpret
noise as uncertainty. In the remaining of this papee will

propose a framework to quantify ranking robustreess show its
correlation with query performance.

3. MEASURE RANKING ROBUSTNESS

The notion of ranking robustness originates inftakel of noisy
data retrieval, where retrieval is performed on theput of a
recognition process that exacts text from multirmedrchives.
Ranking robustness in noisy data retrieval refers property of a
ranked list of documents that indicates how staéeranking is
in the presence of noise brought by the recognpimtess. Note
that clean documents also contain “noise” if we agatize the
notion of noise from recognition errors to uncertgaiin text

documents. For example, the meaning of a documagtremain
the same even after adding or deleting some w@gsonymy
and homonymy are another two popular examplesdéxatbring
uncertainty to clean text documents. Thereforecameextend the
notion of ranking robustness to regular ad-hoc damt retrieval.
In essence, ranking robustness reflects the ahifita retrieval
system to handle uncertainty.

The idea of predicting retrieval performance by sagg ranking
robustness is inspired by a general observatiomdisy data
retrieval that the degree of ranking robustnessnaganoise is
positively correlated with retrieval performanceeWypothesize
that when it comes to regular ad-hoc retrieval, pusitive
correlation between robustness and performandehstiiis. Our
hypothesis will be thoroughly examined in the needtion.

Next we describe our way of measuring ranking rotess in
regular retrieval. We begin by considering how talculate
ranking robustness in noisy data retrieval. If vem @cquire a
clean version of the corrupted data, one straigivdicd way is to
compare a ranked document list from the corruptdtbation to
the corresponding ranked list from the perfectemtibn using the
same query and ranking function. With regard to ulag
document retrieval, usually documents are assumdzt tfree of
corruption. To simulate data corruption, we assutra there
exists a noisy channel which is analogous to thmogmition
process in noisy data retrieval. Documents areupted after
going thought the channel. One way to implement tloésy
channel is to design a document model for each rdent
(Document models are distributions over words beptinguistic
units). One corrupted version of the original doeainis one
random sample from the corresponding document model

Document
Models

CollectionC Corrupted

CollectionC’
__/

Ranking Function, Query

| !

Figure 1: Robustness Score Calculation

Ranked LisiL Ranked LisiL’

Specifically, suppose we have quédy ranking functionG and
collectionC. We generate corrupted collectia@’ by sampling
from the document models of the documentsCinThen we
perform retrieval on botl® andC’ and two ranked list andL’
are returned respectively. Finally we compute tlimilarity
between the two rankings. Note thats a fixed ranked list while
L’ is a random variable. We call the expected siityl&etween.

and L' the robustness score and use it to measure ranking

robustness. This process is illustrated in Figure 1

Let us formally define the robustness score. CangidieryQ and
a document collection dfl documentsC=(D,,D,,...Dy). LetV



denote the size of vocabulary, both quénand the documents
are represented as vectors of indexed term cotinatisis,

Q:(qlquV - q/) |:| NV
D= (Dk 1.Dk 2. Dey) LINY

whereDy; is the number of times that teimappears in document
Dy andg; is the number of times that tefjrappears in quer§). N
denotes nonnegative integer adfidenotes a/-dimension vector
space of nonnegative integer. Under our representatollection

C is a MxV matrix with nonnegative integer entries, that is,

clIs(MxV), whereS(MxV) denotes the set of MxV matrix
with nonnegative integer entries . The rows ofriraf can be
viewed as a set of documents representéd-tiynension vectors.

We introduce a few definitions before we show tbenputation
of the robustness score.

Definition 1: Retrieval Functior(D,Q)

retrieval functionG(D,Q) maps quenQ and documenb into a
real number, that isG(D,Q)LJ R,DLINY,QL] NY

Definition 2: Ranked ListL(Q,G,C)
Let Sy denote the set of permutation {if,2..M}. Ranked list

L(Q,G,C)] S, is a permutation of the documents in collection

C that describes the ordering of documents by dsirg&(D,Q)
whereDLIC

Definition 3: Document ModeK, and Probability Mass Function
(Pmf) f, (%)

We assume that documer®d,, k[I[1,M], corresponds to
document model X, which is a V-dimension multivariate

distribution and can be represented by a randomtowec

Xy = (Xips Xy goee: X 0%y )0 N, where random variabl;

denotes the number of times termccurs. The joint pmf ofX, is
the function defined by

o ()= (XX )= PriX; = %, Xy = X% |
where x = (x,...,% )0 N’.

Definition 4: Ranking SimilaritySimRank(k,L,)
Given two ranked listL1(Q,G,G) and Ly(Q,G,G), function

X=(X1,Xp,-... %), the robustness score is defined as the expected
value of random variabl&imRank(L(Q,G,C),L(Q,G,X))

Robustness Scqre, Q,G,C)X {E SimRafk,LQ)G C ,LQ B X
= > SMRank LQG & LQGN,I( T N

TOS( MxV)

To make Equation 1 feasible to calculate, we furtimake the
following five assumptions:

(1) We assume independence between any two documuls
X; and X, that is,

f, (M= fx(tytz"'IM):D Pr(Xk:tk):u fy ) (2

(2) Instead of the whole collection, only the tdpretrieved
documents inL(Q,G,C) and the corresponding documents in
L(Q,G,X) are used to compute the similarity between the two
ranked lists. For the purpose of rank comparisohe t
corresponding) documents irL(Q,G,X)will shift up in rank and
form a new ranked list of length

(3) The Spearman rank correlation coefficient [l2hdopted to
compute the value of functidBimRank(k,L,) in Equation 1. The
coefficient ranges from -1 to 1. A value close tméans a perfect
positive correlation between the two rankings andlae close to
-1 means a perfect negative correlation. If the tarkings have
almost no correlation, the correlation coefficiaill be close to

zero.

(4) For each document model, we assume independsziceen
any terms. We also assume the term frequencieseirsampled
document follow Poisson distributions with the meagual to
the corresponding term frequencies in the origidatument.
Modeling term frequencies by Poisson distributidres been
widely adopted by other researchers [3] [8]. Furti@e, many
retrieval models, such as the query likelihood nhodely take
query terms into account when ranking documentghis case,
we can simplify Equation 2 by assuming that thejdencies of
non-query terms are constant in the sampled docurRermally
speaking, given documenDy=(Dy1,Dk2...Dky) and query
Q=(01,9-.-9,), probability mass functiomxk of document model

Xi= (XK1, Xk 2,--- %) IS estimated as follows:

\Y
SimRank(k,L,) returns a real number that measures the similarity fx, (X, %% )= I_l fx., (%) (3
=

between the two ranked lists.(we assume that thardents inC,
have one-to-one correspondence to the documentsCi)n
Moreover,SimRank(kL,) should be bounded.

Definition 5: Random CollectionX

Given document modeXy,...Xy, where X, (kLI[1,M]) is a V-
dimension random vector, we define
X=(Xg,X,... %) ,that is,X is aMxV matrix whose entries consist
of random nonnegative integers from some distrimgi The pmf
of X is the function defined by
f (M) = f(t,....t, )= PrX =t ,..%, = t, > whereX, denotes
the k-th row of X and,[J N, kL1[1,M].

With the above definitions, we give the definitioof the
robustness score.

Given query QLINY,
C=(D4,D,,...Dy) IS(MxV)

collection
collection

retrieval
and

function G,
random

random collectio

where f, (%) is given by :

if (9, >0) AND (D, , > 0)

e A
fr (X)) =Pr(X, ;= x)=

,xO N,A = D,

|

else

fr, (X) = Pr(X, =

1,if x =D, ;
X) = '
0,else

For better understanding, we give a toy examplshtmv how to
generate a simulated document given the originalichent based
on the above assumptions.

Given vocabulary V={a,b,d, query Q={a} and document
D,={a,a,b,b,B , Q andD, are represented by 3-dimension vector
[1,0,0] and [2,3,0] respectively. Let DN{) denotes a simulated



document generated froMy ,that is, the document mode bf .
Since termc does not occur i, , it will not occur in ND,).
Since termb is a non-query term and it occurs three timd3.init
will occur exactly three times in B¢). The occurrence frequency

of terma in N(D,) is a random number determined by Poisson

distribution PE) with A=2 because terra occurs twice irD;. For
example, f,a,a,b,b,h and {a,b,b, are two possibilities of
N(Dy).

(5) The expectation in Equation 1 is very hardetmluate
directly. Instead, we independently drawK samples
T(1),T(2),..T(K)from fy (T) to approximate the expectation, that is,
Equation 1 is estimated as:

Robustness Scofe,Q,G,C )X

D%iSimRanK LQGG LQGTH @

whereT(i) is a sample independently drawn frdgT) which is
determined by Equation 2 and 3.

The error of this estimation is proportional to teeiprocal of the
square root oK [13]. According to our experiments, we find that
a relatively small value df is good and stable enough for query
performance prediction.

In summary, evaluating robustness takes the foligwieps. First,
we perform retrieval with quer® and retrieval functiois. Then

we generatd simulated documents using the document models of

the topJ documents retrieved and rank the simulated doctsnen
with the same query and retrieval function. Theilsirity between
the two ranked lists is computed using the Spearmaark
correlation coefficient. We repeat tHistimes and the average of
the Spearman correlation coefficient is the robestrscore.

We briefly explain why the robustness score defiabdve gives
us useful information on retrieval performance.ofvIrobustness
score means that after document perturbation thiléng function
provides a very different ranking compared to thegioal

ranking. The low robustness score suggests thatdéuyeee of
correlation between documents in the ranked lidove and the
original ranking is more like a random ranking.dther words,
the low robustness score is likely to correspondatpoorly-
performing retrieval that returns a ranked listl@dsely related
topic covering many topics.

In the above discussion, we assume that the retriegk is the
traditional ad-hoc retrieval based on topic releean We will
show later on that the use of the robustness storpredict
retrieval performance is particularly appropriate éontent-based
queries. However, with regard to named-page figdjneries that
often have only a single relevant document, theeetgu positive
correlation with query performance may not exist arore. This
is largely due to the fact that top ranked docusénthe ranked
list in response to a named-page finding (NP) queme not
necessarily related while those documents are abethenore or
less by topic in the case of ad-hoc retrieval.

4. EXPERIEMNTAL RESULTS

Our evaluation focuses on performance predictiothiwithe
context of ad-hoc retrieval at which the robustnassthod
primarily aims. In addition, we investigate the eeff of this
technique on named-page finding queries. Namelycaresider

the issue of predicting query performance for twe types of

queries: content-based and Named-Page (NP) findungries,

corresponding to the ad-hoc retrieval task andNbheed-Page
finding task respectively. Other than performancedjction, we

also investigate the possibility of utilizing thebustness score for
query classification, motivated by the differenthheior of the

robustness score in the two types of queries obdem our

prediction experiments.

4.1 Prediction for Content-based Queries

In this section, we present the results of predlctiquery
performance by the robustness score within theesomtf the ad-
hoc retrieval task. We adopt the clarity methodoas baseline.
Query performance is measured by average precision.

First, we study the correlation with average mieci. Our results
show that robustness scores have statistically ifisignt

correlation with average precision across a varieftyTREC

collections. We note that the clarity score is hyacerrelated with
query performance on the GOV2 collection while toerelation

between the robustness score and query performaamains
significant. We also observe that a combinatiotheftwo usually
performs better than either one when used in isolat

Second, we perform a linear regression analysieviduate the
ability to directly predict the value of averageegsion. This
analysis reveals that the robustness score pretfiets/alue of
average precision better than the clarity scoraifgve observe
further improvements with a combination of the two.

Our experiments use a variety of TREC collectiond the web
collection GOV2. All queries used in our experingeate titles of
TREC topics. Table 1 gives the summary of thegectakections.

Table 1 Summary of test collections for Content-tsed

Queries

TREC Collection Topic Number  of

Number Document
1+2+3 Disk 1+2+3 | 51-150 1,078,166
4 Disk 2+3 201-250 567,529
5 Disk 2+4 251-300 524,929
Robust 2004 Disk  4+5% 301-450; 528,155

minus CR | 601-700

Terabyte 2004 | GOV2 701-750 25,205,197
(ad-hoc task)
Terabyte 2005 | GOV2 751-800 25,205,197
(ad-hoc task)

With regard to the calculation of the robustnessescwe use the
query likelihood model [24] with Dirichlet smoothgnas the
ranking function (Dirichlet priog/is set to 1000). We set

! Topic 672 is removed because of no relevant dontsne



parameteK in Equation 4 to 100 and choose top 50 documents t| TREC Robustness | Clarity Robustness
compute the rank similarity in Equation 4. We trididferent Score Score +Clarity
values ofK ranging from 10 to 500000 and found that the tssul
change very little starting from 100. This meansdeenot have to TREC123 0.329 0.331 0.370
require a large number of samples to compute raksstscores. TREC4 0.548 0353 0.499
For computing the clarity score, we use the equatidefined in TREC5S 0.328 0311 0.345
[4] .The document model is estimated by using Diat
smoothing with Dirichlet priog/=1000. Relevance models are | Robust 04 0.392 0.412 0.460
mixed from Jelinek-Mercer smoothed document model§ Terapyte04 | 0.213 0.134 0.226
with A =0.6.

Terabyte05 0.208 0.171 0.252
To obtain average precision, all document retriggatione by

using the query-likelihood model and the resulesevaluated by
the trec_eval program. Again, Dirichlet smoothinighwDirichlet
prior £ =1000 is used for smoothing.

4.1.1 Correlation with Average Precision

We measure the correlation with average precisiprbdith the
Kendall's rank correlation test [12] and the Peais@orrelation
test [14]. Kendall's rank correlation is a non-paedric test since
it does not assume any distributions of both véembln our
experiments, Kendall's rank correlation is usedctonpare the
ranking of queries by average precision to the iranly the
clarity scores or the robustness scores of theedegu Pearson's
correlation reflects the degree of linear relatiopsbetween the
two variable§The values of both kinds of correlation range
between -1.0 and 1.0 where -1.0 means perfect imegat
correlation and 1.0 means perfect positive coriiat

Table 2 Pearson’s correlation coefficient for corr&@ation with
average precision, for robustness score, clarity ece and a
linear combination of the two features. Bold casesean the
results are statistically significant at the 0.05dvel.

TREC Robustness | Clarity Robustness
Score Score +Clarity

TREC123 0.434 0.335 0.469
TREC4 0.613 0.430 0.582
TRECS 0.454 0.366 0.507
Robust 04 0.550 0.507 0.613
Terabyte04 0.341 0.305 0.374
Terabyte05 0.301 0.206 0.362

Table 3 Kendall's rank correlation coefficient for correlation
with average precision, for robustness score, cldyi score and
a linear combination of the two features. Bold casemean the
results are statistically significant at the 0.05dvel.

2 Here the two variables refer to the actual quesyfgpmance
(measured by average precision) and the predictor.

The results for correlation with average precisioa presented in
table 2 and 3. When we combine the clarity scord #re
robustness score, we adopt a simple linear conibmathat is,
(1-o)xclarity scoretixrobustness score. For the collections other
than TREC 123, we use thethat yields the highest value of
Pearson’s coefficient on TREC123. For TREC123, we the
besta on Robust 2004. In fact, we find that the optiriaéar
combination weight changes little across our teiections. Note
that when using linear regression to combine the, twe
essentially apply learning to our method. But weehanly one
parameter and we find the regression generalizéés we

From these results, we first observe statisticalignificant
correlation between the robustness scores and tleeage
precision over all test collections no matter whictetric is
adopted. The extent of the correlation in the RbB084 Track is
visible in Figure 2 as a linear trend for averagecision of
queries to increase as their robustness scoreasgese

Second, we see that the linear combination of W features
usually performs better than either one when usedsalation.
This is within our expectation since clarity scoegsl robustness
scores measure two different properties of a randecument
list.3 Note that the only exception occurs in TREC 4 heeahe
robustness scores correlate with the average meaisuch better
than the clarity scores.

Third, the robustness score shows a stronger lireationship
with average precision compared to the clarity ecdihe linear
regression analysis performed in the next sectidh further
confirm this observation.

We observe that the performance of the clarityesclvops greatly
on the GOV2 collection. We speculate that thisus tb the fact
that there are a relatively large number of lowligpi@ocuments
in this collection. Moreover, it seems that thisuctteristic has a
more negative impact on clarity scores than on stimss scores.
To understand this, let us recall that the clasitgre measure the
degree of dissimilarity between the language usaggociated
with the query and the generic language of theectibn. The

3 We also examine the correlation between the yladore and
the robustness score. We observe the correlati@asumed by
Pearson’s coefficient range from 0.27 to 0.63 anftur TREC
collections. We find almost no correlation on thveo tWeb
collections. We see that there are relations batwée two
measures, but they are not very similar to eacarottherwise,

a combination of the two would not lead to further
improvement.



ability of clarity scores to predict query performea is based on
the following assumption: a query whose highly ohk
documents contain many relevant documents (highryque
performance) is likely to receive a high claritpsz because these
highly ranked documents tend to be about a singpectand
therefore have unusual word usage. However, whebprites to
large web collections, the low quality documenttrieged in
respond to a query are likely to have unusual
distributions[29], resulting in high clarity scerdn other words,
the clarity score method can not distinguish whethlkigh clarity
score is caused by a small number of topic termthénquery
language model or by the noise from the low qualitguments

retrieved.
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Figure 2: Average precision versus robustness scoffer the
249 title queries from the Robust 2004 Track.

4.1.2 Linear Regression Analysis

Both Kendall's rank correlation and Pearson’s datien are not
capable of directly predicting average precisicores. To address
this problem, we adopt the linear regression tepmmiwhich
yields an equation that predicts the values of ayerprecision
from predictors. Although there are fancier nareéir models,
linear regression models often perform better tnasions with
sparse data or highly noisy data . Moreover, thedi regression
analysis provides an adequate and interpretablerigésn of
how the predictors affect the dependent varialbfethis section,
we first evaluate the linear prediction qualitytbé clarity score
and the robustness score. Then we investigate ¢fegive
importance of each predictor in terms of predictionver.

Table 4 Coefficient of determination (R-square) fran linear
regression: the dependent variable is average pregdn. The
predictor (independent variable) is either the robstness score
or the clarity score or a combination of the two.

word

TREC Robustness | Clarity Robustness
Score only Score only +Clarity
TREC123 0.188 0.112 0.220
TRECA4 0.376 0.185 0.339
TRECS 0.206 0.134 0.257
Robust 04 0.302 0.257 0.376
Terabyte04 0.116 0.093 0.140
Terabyte05 0.091 0.042 0.131

One common way to measure how well a linear regnessodel

fits data is the so-called coefficient of deterntiora or R-square.
The range of R-square is between 0 and 1 and aviaigle means
fitting well. Here we perform simple linear regriess and the
predictor is either the robustness score or thétglscore or the
linear combination of the two. Table 4 shows tasutts which
are consistent to what we have observed in Takded® 3. For
example, we see that the robustness scores fitatlezage
precision much better than the clarity scores drcallections.

The goodness-of-fit is low on the GOV2 collectiokgain, we

observe that the linear combination of the two fmteds often

boost the quality of linear regression. The effedt linear

regression between average precision and robustness for the
50 title queries from the TREC4 collection is shawrrigure 3.

To identify the predictor that bestows the greabegtact on the
dependent variable, we compare the regressionicieets of the
two predictors. However, the values of the originediression
coefficients depend on both the importance of gaeldictor and
the variance of that predictor. To make a fair carigon, we
adopt the standardized regression coefficient ¢daBeta that
eliminates the influence of variance. The standadlicoefficient
is what the regression coefficient would be if tmedel were
fitted to standardized data, that is, if from eadiservation we
subtracted the sample mean and then divided bys#mple
deviation. Hence, the magnitudes of these Betaegalepresent
the importance of each predictor. Table 5 showsrésalts for
standardized regression coefficients. We used B®SSsoftware
to compute the standardized regression coefficieffis observe
the similar trends as in Table 4. Based on thelteefiom table 4
and 5, our results suggest that when using linegression
robustness scores predict average precision b#tter clarity
scores.
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Figure 3: Linear regression between average precim and
robustness score for the 50 title queries from th€REC4

Table 5 standardized regression coefficients (Bet&om
multiple linear regression: the dependent variablés average
precision. The two predictors are the robustness ece and the
clarity score.

Collection Robustness Score Clarity Score
TREC123 0.357 0.195
TREC4 0.568 0.071
TREC5 0.376 0.246
Robust 04 0.396 0.311
Terabyte 04 0.270 0.216
Terabyte 05 0.314 0.224

4.2 Prediction for Named-Page Finding
Queries

In the previous section, we have demonstratedtiteatobustness
score consistently correlate with topic difficulty this section,
our goal is to examine whether there is any raatigp between
the robustness score and the performance of nage{fpading
(NP) queries.

The data sets used for evaluation come from the edaPage
finding topics of the Terabyte Tracks of 2005 arfid& and we
name them TBO5-NP and TBO06-NP respectively. Tablgvés
more details on the two data sets. We adopt thednianguage
model [18][19] for our named-page finding retrievRetrieval
parameters are the same as in [18]. Retrieval peaioce of
individual NP queries is measured by the reciproaak of the
first correct answer. We use the correlation wtik teciprocal
ranks measured by the Pearson’s correlation testvaduate
prediction quality. The results are presented ibl§&. Again,
our baseline is the clarity score.

For the clarity score, we tried different paramet@nd found that
using the first ranked document to build the quegdel yields
the best prediction accuracy. This makes senseubeddP-query
performance heavily depends on the relevance ofifsteranked

document. From Table 7, we can see that the ctioelavith
query performance on both test sets is low, suggeghat
measuring ranked list coherence is not effectiveN® queries.

Regarding the robustness score, we observe arestitey and
surprising negative correlation with reciprocalkenWe explain
this finding briefly. A high robustness score meéret a number
of top ranked documents in the original rankeddist still highly
ranked after perturbing the documents. The existenfc such
documents is a good sign of high performance fotet-based
queries as these queries usually contain a numbeelevant
documents. However, with regard to NP queries,fondamental
difference is that there is only one relevant doentrfor each
query. The existence of such documents can conheseanking
function and lead to low retrieval performance. haligh the
negative correlation with retrieval performancesexiit can still
be used for prediction and the strength of thisretation is
stronger compared to the clarity method as shovirabrle 7.

On the other hand, in comparison to the resultsvehin the
previous section for content-based queries, we ceothat
prediction by the robustness method for named-plagding

queries is less accuracy and consistent on avesaggesting that
the robustness score is more appropriate for predicopic

difficulty.

Table 7: Pearson’s correlation coefficients for caelation with
reciprocal ranks on the Terabyte Tracks (named-pagdinding
task) for clarity score and robustness score. Boldases mean
the results are statistically significant at the @1 level.

Methods Clarity Robust.
TBO5-NP 0.150 -0.370
TBO06-NP 0.112 -0.160

Table 6: Data sets used for the named-page fining&uation

Name Collection Topic Number Query Type
TBO5-NP GOV2 NP601-NP872 NP
TBO6-NP GOV2 NP901-NP1081 NP

4.3 Query Classification

In this section, we show that the robustness stiooegh
originally proposed for performance predictionaiso a good
indicator of query types. The use of the robustsesse for query
classification is motivated by the observation oi#e from our
prediction experiments that the robustness scdraves very
differently between these two types of queriesmed-page
finding and content-based. In the following expexnnts, we
create a set of content-based queries consistialj of the 150
ad-hoc title queries from Terabyte Track 2004-2808 a set of
NP queries consisting of 252 NP queries from Tambyack
2005.

We first investigate the distributions of robustesores for NP
and content-based queries respectively. Since waaldknow
what distribution the scores actually follow, weopt Kernel
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density estimation [9] which does not assume aegifip form of
distribution on the features we want to estimaterni€l density
estimator belongs to a class of estimators callentparametric
density estimators that have no fixed structure éeplend upon
all data points to reach an estimate. Specificély a query set
(in our case , the set is either the NP query sehe content-
based query set ) of size N, we calculate robustaesres(, x,,
...xy for each query and the probability density funeti@x) of
robustness score on the set is estimated by :

f09=23 K,(x )

where/ is the bandwidth anK, is a Kernel function.
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Figure 4: Distribution of robustness scores for namd-page
finding (NP) and content-based (CB) queries. The Nueries
are the 252 NP topics from the 2005 Terabyte TrackThe
content-based queries are the 150 ad-hoc title fronihe
Terabyte Tracks 2004-2006. The probability distribgions are
estimated by the Kernel density estimation method.

In this paper we use the Gaussian Kernel. Thesestandard way
to select the bandwidth1) based on minimizing the expected
square error between the estimated density andothgnal
density [9]. In this paper, we adopt this methmdalculatel.

The results are shown in figure 4. As we can seeawerage
content-based queries have a much higher robussoess than
NP queries.

Next we test the accuracy of query classificatigribe robustness
score. To this end, we combine the two query setstioned

above into one query pool. That is, the query poaisists of 150
content-based (CB) queries and 252 NP queries. Hawhwe

pick one query that has not been selected before the query
set and all other queries are used as training Qatastrategy for
predicting the type of the selected query is simitile robustness
score classifier will attach a NP (CB) label to theery if the

robustness score for the query is below (abovbjeshold trained
from training data. Table 8 shows the results. &ample, the
value 25 at the intersection between the secondaraithe third
column means 25 (out of 150) content-based quesaes

incorrectly labeled as the NP type. That is, thencle of correctly
classifying a content-based query is about 83%mRtte results
in Table 8 we can see that our classifier reacléty fgood

classification accuracy.

Table 8 Query Classification Results

Content(labeled) NP(labeled)
Content(actual) 125 25
NP (actual) 52 200

5. CONCLUSIONS

In this paper, we introduce the notion of rankiogustness and
propose a statistical measure called the robustsesse to
quantify ranking robustness. The robustness scoamn ieffective
tool for predicting retrieval performance of corteased queries.
We demonstrate across a variety of test collectthasthere is a
strong positive correlation between the robustressre of a
content-based query and the performance of thatyqiée also
apply this technique to predict performance of hapot
fundamentally different kind of queries: named-pégding. An
interesting negative correlation between rankingusiness and
retrieval performance is observed. However, ouregrpents
show that predicting using robustness scores fanedapage
queries is less effective compared to content-bageeries,
suggesting that the robustness technique is mgeppate for
predicting topic difficulty. In addition, the opptes behavior of
the robustness score between the two types of epuenotivates
us to investigate the possibility of the use of tbleustness score
for query classification. Our results show that thieustness score
is a good feature for distinguishing between the guery types.
The results reported in this paper give fresh imtsigto our
understanding of principles underlying differentrieval tasks
and open up possibilities for exploring other apgtions of
ranking robustness.
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