
Improved Dynamic Schedules for Belief Propagation

Charles Sutton and Andrew McCallum
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

{casutton,mccallum}@cs.umass.edu

Abstract

Belief propagation and its variants are popu-
lar methods for approximate inference, but
their running time and even their conver-
gence depend greatly on the schedule used
to send the messages. Recently, dynamic up-
date schedules have been shown to converge
much faster on hard networks than static
schedules, namely the residual BP schedule
of Elidan et al. [2006]. But that RBP algo-
rithm wastes message updates: many mes-
sages are computed solely to determine their
priority, and are never actually performed.
In this paper, We show that estimating the
residual, rather than calculating it directly,
leads to significant decreases in the number
of messages required for convergence, and in
the total running time. The residual is es-
timated using an upper bound based on re-
cent work on message errors in BP. On both
synthetic and real-world networks, this dra-
matically decreases the running time of BP,
without affecting the quality of the solution.

1 INTRODUCTION

Many popular approximate inference methods, such as
belief propagation, its generalizations, including EP
[Minka, 2001a] and GBP [Yedidia et al., 2000], and
structured mean-field methods [Jordan et al., 1999],
consist of a set of equations which are iterated to find
a fixed point. The fixed-point updates are not usually
guaranteed to converge. The schedule for propagating
the updates can make a crucial difference both to how
long the updates take to converge, and even whether
they converge at all.

Recently, dynamic schedules—in which the message
values during inference are used to determine which
update to perform next—have been shown to converge

much faster on hard networks than static schedules [El-
idan et al., 2006]. But the residual schedule proposed
by Elidan et al., which we call residual BP with looka-
head one (RBP1L), determines a message’s priority by
actually computing it, which means that many mes-
sage updates are “wasted”, that is, they are computed
solely for the purpose of computing their priority, and
are never actually performed. A significant fraction of
messages computed by RBP1L are wasted in this way.

In this paper, we show that rather than computing
the residual of each pending message update, it is far
more efficient to approximate it. Recent work [Ihler
et al., 2004] has examined how a message error can
be estimated as a function of its incoming errors. In
our situation, the error arises because the incoming
messages have been recomputed. The arguments from
Ihler et al. apply also to the message residual, which
leads to effective method for estimating the residual of
a message, and to a dynamic schedule that is dramat-
ically more efficient than RBP1L.

The contributions of this paper are as follows. First,
we describe how the message residual can be upper-
bounded by the residuals of its incoming messages
(Section 3). We also describe a method for estimat-
ing the message residual when the factors themselves
change (for example, from parameter updates), which
leads to an intuitive method for initializing the resid-
ual estimates. Then we introduce a novel message
schedule, which we call residual BP with lookahead zero
(RBP0L) (Section 4). On several synthetic and real-
world data sets, we show that RBP0L is as much as
five times faster than RBP1L, while still finding the
same solution (Section 5). Finally, we examine how
to what extent the distance that a message changes in
a single update predicts its distance to its final con-
verged value (Section 5.3). We measure distance in
several different ways, including the dynamic range of
the error and the Bethe energy. Surprisingly, the dif-
ference in Bethe energy has almost no predictive value
for whether a message update is nearing convergence.

2 BACKGROUND

Let p(x) factorize according to an undirected fac-
tor graph G [Kschischang et al., 2001] with factors
{ta(xa)}Aa=1, so that p can be written as

p(x) =
1

Z

∏

a

ta(xa), (1)

where Z is the normalization constant

Z =
∑

x
′

∏

a

ta(x′
a). (2)

We will use the indices a and b to denote factors of G,
and the indices i and j to denote variables. By {i ∈ a}
we mean the set of all variables i in the domain of the
factor ta, and conversely by {b ∋ i}, we mean the set
of all factors tb that have variable i in their domain.

Belief propagation (BP) is a popular approximate in-
ference algorithm for factor graphs, dating to Pearl
[1988]. The messages at iteration k + 1 are computed
by iterating the updates

m
(k+1)
ai (xi)← κ

∑

xa\xi

ta(xa)
∏

{j∈a}\i

m
(k)
ja (xj)

m
(k+1)
ia (xi)← κ

∏

{b∋i}\a

m
(k)
bi (xi)

(3)

until a fixed point is reached. In the above, κ is a
normalization constant to ensure the message sums to
1. The initial messages m(0) are set to some arbitrary
value, typically a uniform distribution.

We write the message updates in a more generic fash-
ion as

m
(k+1)
cd (xcd)← κ

∑

xc\xcd

ta(xc)
∏

{b∈N(c)}\d

m
(k)
bc (xc),

(4)
where c and d may be either factors or variables, as
long as they are neighbors, and ta(xc) is understood
to be the identity if c is a variable. This notation
abstracts over whether a message is being sent from a
factor or from a variable, so that describing message
schedules is much more convenient.

In general, these updates may have multiple fixed
points, and they are not guaranteed to converge. Con-
vergent methods for optimizing the Bethe energy have
been developed [Yuille and Rangarajan, 2001, Welling
and Teh, 2001], but they are not used in practice both
because they tend to be slower than iterating the mes-
sages (3), and because when the BP updates do not
converge, it has been observed that the Bethe approx-
imation is bad anyway.

Now we describe in more detail how the iterations are
actually performed in a BP implementation. This level

of detail will prove useful in the next section for un-
derstanding the behavior of dynamic BP schedules. A
vector m = {mcd} is maintained of all the messages,
which is initialized to uniform. Then until the mes-
sages are converged, we iterate: A message mcd is se-
lected according to the message update schedule. The
new value m′

cd is computed from its dependent mes-
sages in m, according to (3). Finally, the old message
(c, d) in m is replaced with the newly computed value
m′

cd.

The important part of this description is the distinc-
tion between when a message update is computed and
when it is performed. When a message is computed,
this means that its new value is calculated according
to (3). When a message is performed, this means that
the current message vector m is updated with the new
value. Synchronous BP implementations compute all
of the updates first, and then perform them all at once.
Asynchronous BP implementations almost always per-
form an update as soon as it is computed, but it is
possible to compute an update solely in order to de-
termine its priority, and not perform the update until
later. As we describe below, this is exactly the tech-
nique used by the Elidan et al. [2006] schedule.

3 ESTIMATING MESSAGE

RESIDUALS

In this section, we describe how to compute an upper
bound on the error of a message, which will be used
as a priority for scheduling messages. We define the
error ecd(xcd) of a message mcd as its multiplicative
distance from its previous value, so that

mcd(xcd) = ecd(xcd)m
(k)
cd (xcd). (5)

We define the residual of a message as the worst error
over all assignments, that is,

r(mcd) = max
xcd

|log ecd(xcd)| = max
xcd

∣

∣

∣

∣

∣

log
mcd(xcd)

m
(k)
cd (xcd)

∣

∣

∣

∣

∣

.

(6)
An alternative error measure is the dynamic range of
the error, which has been studied by Ihler et al. [2004].
This is

d(mcd) = max
xcd,x′

cd

log
ecd(xcd)

ecd(x′
cd)

(7)

Later we compare the residual and the dynamic error
range as priority functions for message scheduling.

In the rest of this section, we show how to upper-bound
the message errors in two different situations: when
the values of a message’s dependents change, and when
the factors of the model change.

First, suppose that we have available a previously-

computed message value for m
(k)
cd (xd), so that

m
(k)
cd (xd) = κ

∑

xcd

tc(xc)
∏

{b∈N(c)}\d

m
(k)
bc (xc), (8)

and that now new messages {m
(k+1)
bc } are available for

the dependents. Then, we wish to upper bound the
residual rcd without actually repeating the update (8).
It turns out that the residual can be upper-bounded
simply by the following:

r(mcd) ≤
∑

{b∈N(c)}

r(mbc). (9)

The full proof is given in the Appendix, but it is a
straightforward application of the corresponding argu-
ments from Ihler et al. for the dynamic range measure.

Now consider the second situation, when a factor ta
changes. Define ea to be the multiplicative error in
the factor, so that

t(k+1)
a (xa) = ea(xa)t(k)

a (xa). (10)

Suppose we have already computed a message m
(k)
cd ,

so that in the current message vector

m
(k)
cd (xd) =

∑

xcd

t(k)
c (xc)

∏

{b∈N(c)}\d

m
(k)
bc (xc), (11)

as as before we wish to upper bound r(mcd). Then
subsitution into (6) yields

r(mcd) ≤ max
xa

t
(k+1)
a (xa)

t
(k)
a (xa)

. (12)

4 DYNAMIC BP SCHEDULES

There has been little work in how to schedule the mes-
sage updates (3). Recently, Elidan et al. [2006] showed
that dynamic schedules are significantly superior to
static schedules for BP, including the tree reparame-
terization schedule (TRP) [Wainwright et al., 2001].

4.1 RESIDUAL BP WITH LOOKAHEAD
(RBP1L)

In this section, we describe the dynamic schedule pro-
posed by Elidan et al. [2006]. They call their algorithm
residual belief propagation, but in the next section we
introduce a different BP schedule that also depends on
the message residual. Therefore, to avoid confusion we
refer to the Elidan et al. algorithm by the more specific
name of residual BP with lookahead one (RBP1L).

The basic idea in RBP1L (Algorithm 1) is that when-
ever a message mcd is pending for an update, the mes-
sage is computed and placed on a priority queue to be

Algorithm 1 RBP1L [Elidan et al., 2006]

function Rbp1l ()

1: m← uniform message array
2: q ← InitialPq()
3: repeat
4: mbc ← DeQueue(q)
5: m|bc ← mbc {Perform update.}
6: for all d in {d ∈ N(c)}\b do
7: Compute update mcd

8: Remove any pending update m
(k)
cd from q

9: Add mcd to q with priority r(mcd)
10: end for
11: until messages converged

function InitialPq ()

1: q ← empty priority queue
2: for all messages (c, d) do {Initialize q}
3: Compute update mcd

4: Add mcd to q with priority r(mcd)
5: end for
6: return q

performed. The priority of the message is its resid-
ual. The problem with this schedule can be seen in
Lines 7–9 of Algorithm 1. When an update mbc is
performed, each of its dependents mcd is recomputed

and placed in the queue. If a previous update m
(k)
cd

was already pending in the queue, then that message
is discarded. We refer to this as a “wasted” update.
In Section 5, we see that this is a relatively common
occurrence in RBP1L, so preventing this can yield to
significant gains in convergence speed.

4.2 AVOIDING LOOKAHEAD (RBP0L)

In this section we present our dynamic schedule, resid-
ual BP with lookahead zero (RBP0L). In Section 3 we
showed that a residual can be upper-bounded by its
sum of incoming residuals. The idea behind RBP0L
is to use that upper bound as the message’s priority,
so that an update is never computed unless it will ac-
tually be performed. The full algorithm is given in
Algorithm 2.

There are three fine points here. The first question is
how to update the residual estimate when a message
mbc(xc) is updated twice before one of its dependents
mcd(xd) is updated even once. In the most general
case, each dependent may have actually seen a differ-
ent version of mbc when it was last updated. Naively
applying the bound (8) would suggest that we retain
the version of mbc as it was when each of its dependents
last saw it. But this becomes somewhat expensive in
terms of memory. Instead, for each pair of messages

Algorithm 2 RBP0L

function Rbp0l ()

1: m← uniform message array
2: T ← total residuals; initialized to 0
3: q ← InitialPq()
4: repeat
5: mbc ← DeQueue(q)
6: Compute update mbc and residual r = r(mbc)
7: m|bc ← mbc {Perform update.}
8: For all ab, do T (ab, bc)← 0
9: For all cd, do T (bc, cd)← T (bc, cd) + r

10: for all d in {d ∈ N(c)}\b do
11: v ←

∑

a T (ac, cd)
12: Remove any pending update (c, d) from q

13: Add mcd to q with priority v

14: end for
15: until messages converged

function InitialPq ()

1: q ← empty priority queue
2: for all messages (c, d) do {Initialize q}
3: Compute update mcd

4: v ← maxxc
|Xc|

∣

∣log tc(xc)
∣

∣

5: Add mcd to q with priority v

6: end for
7: return q

(b, c) and (c, d) we maintain a total residual T (bc, cd)
of how much the message mbc has changed since mcd

was last updated. Estimates of the priority of mcd

are always computed using the total residual, rather
than the single-update residual. (This preserves the
upper-bound property of the residual estimates.)

The second question is how to initialize the residual
estimates. Recall that the messages m are initialized
to uniform. Imagine that those initial messages were
obtained by starting with a factor graph in which all
factors ta are uniform, running BP to convergence,
and then modifying the factors to match those in the
actual graph. From this viewpoint, the argument in
Section 3 shows that an upper bound on the residual
from uniform messages is

r(mcd) ≤ max
xc

∣

∣

∣

∣

log
tc(xc)

uc(xc)

∣

∣

∣

∣

, (13)

where uc is a normalized uniform factor over the vari-
ables in xc. Therefore, we use this upper bound as the
initial priority of each update.

Finally, we need a way to approximate the residuals
if damping is used. The important point here is that
when a message mbc is sent with damping, even after
the update is performed, the residual mbc is nonzero,
because the full update has not been taken. This can

be handled, however, by the following. Whenever a
damped message mcd is sent, the residual r(mbc) is
computed exactly and mbc is added to the queue with
that priority. (For simplicity, this is not shown in Al-
gorithm 2.)

4.3 APPLICATION TO NON-INFERENCE
DOMAINS

RBP1L has the advantage of being more general: it
can readily be applied to any set of fixed-point equa-
tions, potentially ones that are very different than
those used in approximate inference. On the other
hand, RBP0L appears to be more specific to BP, be-
cause the residual bounds assume that BP updates
are being used. Applying RBP0L to a different prob-
lem would require both designing a new method for
approximating the update residuals, and designing an
efficient way for initializing the residual updates. That
said, our residual estimation procedure, which simply
sums up the antecedent residuals, is fairly generic, and
thus likely to perform well in a variety of domains.

5 EXPERIMENTS

In this section, we compare the convergence speed of
RBP0L and RBP1L on both synthetic and real-world
graphs. As a baseline, we also report the convergence
time of TRP with random spanning trees.

5.1 SYNTHETIC DATA

We randomly generate N×N grids of binary variables
with pairwise Potts factors. Each pairwise factor has
the form

tij(xi, xj) =

(

1 e−αij

e−αij 1

)

, (14)

where the equality strength α is sampled uniformly
from [−C,C]. Higher values of C make inference more
difficult. The unary factors have the form ti(xi) =
[1 e−ui], where ui is sampled uniformly from [−C,C].
We generate 50 distributions for C = 5. For smaller
values of C, inference becomes so easy that all sched-
ules performed equally well. For larger values of C,
the same trend holds, but the the convergence rates
are much lower. We use the grid size N = 10 so that
exact inference is still feasible. We measure running
time by the number of message updates computed.
This measure closely matches the CPU time.

The rate of convergence of the different schedules are
shown in Figure 1. We see that RBP0L converges
much more rapidly than RBP1L, although both even-
tually converge on the same percentage of networks. In
Figure 2, we show the number of messages required for

0 200 400 600 800

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of messages (x1000)

P
er

ce
n
ta

g
e

o
f

ru
n
s

co
n
v
er

g
ed

RBP0L

RBP1L

Figure 1: Convergence of RBP0L and RBP1L on syn-
thetic 10 × 10 grids with C = 5. RBP0L converges
faster.

0 5 10 15 20 25 30 35

9
1
0

1
1

1
2

1
3

1
4

Repetition

lo
g
(n

u
m

b
er

 o
f

m
es

sa
g
es

)

RBP1L (computed)

RBP1L (performed)

RBP0L

Figure 2: Updates performed by RBP0L and RBP1L
on synthetic data (in log space). Only convergent net-
works for RBP1L are shown.

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4

0
.0

0
0
.1

0
0
.2

0
0
.3

0

KL(exact, RBP0L)

K
L

(e
x
ac

t,
 R

B
P

1
L

)

● Neither

RBP0L only

RBP1L only

Both

Figure 3: Average KL of exact node marginals to ap-
proximate node marginals. Synthetic 10×10 grids with
C = 5. The colors indicate which of the BP schedules
converge. When both RBP0L and RBP1L converge,
they return equivalent solutions.

Messages sent Time (s) Accuracy

TRP 3 079 570 110 97.6

RBP0L 839 250 66.2 97.4

RBP1L 2 685 702 321 97.3

Table 1: Performance of BP schedules on skip-chain
test data.

convergence for each sampled model. (Note that the
y-axis is logarithmic.) RBP0L computes on average
half the messages used by RBP1L. RBP0L uses fewer
messages than RBP1L in 46 of the 50 sampled models.
Also, Figure 2 shows the number of wasted updates in
RBP1L. On average, 38% of the updates computed
by RBP1L are never performed. Surprisingly, RBP0L
performs fewer even than RBP1L performs (that is,
if wasted updates are not counted against RBP1L).
This may be a beneficial effect of our choice of initial
residual estimates.

Finally, in Figure 3, we measure the accuracy of the
marginals for RBP0L and RBP1L. We report the av-
erage per-variable KL from the exact distribution to
the BP belief. The points in Figure 3 are colored to
indicate which of the schedules converged. When both
schedules converge, RBP0L and RBP1L almost always
return equivalent solutions.

5.2 NATURAL-LANGUAGE DATA

Finally, we consider a model with many irregular
loops, which is the skip chain conditional random field
introduced by Sutton and McCallum [2004]. This
model incorporates certain long-distance dependencies
between word labels into a linear-chain model for in-
formation extraction. The resulting networks contain
many loops of varying sizes, and exact inference using
a generic junction-tree solver is intractable.

The task is to extract information about seminars from
email announcements. Our data set is a collection of
485 e-mail messages announcing seminars at Carnegie
Mellon University. The messages are annotated with
the seminar’s starting time, ending time, location, and
speaker. This data set is due to Freitag [1998], and has
been used in much previous work.

Often the speaker is listed multiple times in the same
message. For example, the speaker’s name might be
included both near the beginning and later on, in a
sentence such as “If you would like to meet with Pro-
fessor Smith. . . ” It can be useful to find both such
mentions, because different information can be in the
surrounding context of each mention: for example, the
first mention might be near an institution affiliation,
while the second mentions that Smith is a professor.

To increase recall of person names, we wish to exploit
the fact that when the same word appears multiple
times in the same message, it tends to have the same
label. In a CRF, we can represent this by adding edges
between output nodes (yi, yj) when the words xi and
xj are identical and capitalized.

The emails on average contain 273.1 tokens, but the
maximum is 3062 tokens. There are an average of
23.5 skip edges per message, but the maximum is
2260, indicating that some networks are connected
very densely.

We generate networks as follows. Using ten-fold cross-
validation with a 50/50 train/test split, we train a
skip-chain CRF using TRP until the model parame-
ters converge. Then we evaluate the RBP0L, RBP1L,
and TRP on the test data, measuring the number of
messages sent, the running time, and the accuracy on
the test data. In all cases, the trained model parame-
ters are exactly the same; the inference algorithms are
varied only at test time, not at training time.

Table 1 shows the performance of each of the message
schedules, averaged over the 10 folds. RBP0L uses
one-third of the messages as RBP1L, and one-fifth of
the CPU time, but has essentially the same accuracy.

The per-message cost for RBP1L and RBP0L are
significantly higher than for TRP. This is partially

because of the overhead in maintaining the priority
queues and residual estimates, but also this is because
our TRP implementation is a highly optimized one
that we have used in much previous work, whereas
our RBP implementations have more room for low-
level optimization.

5.3 ERROR ESTIMATES

The message residual is an intuitive error measure to
use for scheduling, but there are many others that are
conceivable. In this section, we compare several differ-
ent error measures to evaluate how reliable they are at
predicting the next message to send.

We generate a synthetic grid as in Section 5.1. (The
graphs here are from a single sampled model, but dif-
ferent samples result in qualitatively similar results.)
Then, we run RBP0L on the grid to convergence, yield-
ing a set of converged messages m̃. Finally, we run
RBP0L again on the same grid, without making use of

m̃. After each message update of RBP0L m
(k)
cd 7→ mcd,

we measure:

• The residual of the errors e(m
(k)
cd ,mcd),

e(m
(k)
cd , m̃cd), and e(mcd, m̃cd)

• The dynamic range of the same errors

• The KL divergences KL(m
(k)
cd ‖mcd),

KL(m
(k)
cd ‖m̃cd), and KL(mcd‖m̃cd)

• The change in Bethe energy log ZBP(m) −
log ZBP(m(k)). We use a dual of the Bethe en-
ergy, derived in Minka [2001b, 2005].

Thus we can measure how well each of the error metrics
predicts the distance to convergence r(e(mcd, m̃cd) −

r(e(m
(k)
cd , m̃cd). This is shown in Figure 4. Each plot in

that figure shows a different distance measure between
messages: from top left, they are message residual, er-
ror dynamic range, KL divergence, and difference in
Bethe energy. Each point in the figures represents a
single message update. In all figures, the x-axis shows

the distance between the message m
(k)
cd at the previ-

ous iteration and the value m()(k + 1) at the current
iteration. The y-axis shows the change in distance to
convergence, that is, how much closer the update at
k + 1 brought the message to its converged value. We
measure this as the difference between the residuals
e(m

(k+1)
cd , m̃cd) and e(m

(k)
cd , m̃cd). Negative values of

this measure are better, because they mean that the
distance to convergence has decreased due to the up-
date. An ideal graph would be a line with negative
slope.

A Appendix

In this appendix, we prove the upper bound (8) given
in Section 3. This is

r(mcd) ≤
∑

{b∈N(c)}

r(mbc) (15)

To justify this, we show that residual is both subaddi-
tive and contracts under the message update, following
Ihler et al. [2004].

To show subadditivity, define the message product

Mbc(xc) =
∏

{b∈N(c)}\d mbc(xc), and define M
(k)
bc sim-

ilarly. Then we have

r(Mbc) = max
xc

∣

∣

∣

∣

∣

∑

b

log
mbc(xc)

m
(k)
bc (xc)

∣

∣

∣

∣

∣

≤
∑

b

max
xc

∣

∣

∣

∣

∣

log
mbc(xc)

m
(k)
bc (xc)

∣

∣

∣

∣

∣

=
∑

b

r(mbc),

which follows from the subadditivity of absolute value,
and an increase in the degrees of freedom of the max-
imization.

To show contraction under the message update, we
apply the fact that

f1 + f2

g1 + g2
≤ max

{

f1

g1
,
f2

g2

}

. (16)

This directly yields

r(mcd) = max
xcd

∣

∣

∣

∣

∣

log

∑

xc\xcd
tc(xc)Mbc

∑

xc\xcd
tc(xc)M

(k)
bc

∣

∣

∣

∣

∣

(17)

≤ max
xcd

∣

∣

∣

∣

∣

log max
xc\xcd

tc(xc)Mbc

tc(xc)M
(k)
bc

∣

∣

∣

∣

∣

(18)

≤ max
xc

r(Mbc). (19)

Acknowledgements

This work was also supported in part by the Center for In-
telligent Information Retrieval and in part by The Central
Intelligence Agency, the National Security Agency and Na-
tional Science Foundation under NSF grant #IIS-0427594.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are the authors’ and do
not necessarily reflect those of the sponsor.

References

Gal Elidan, Ian McGraw, and Daphne Koller. Residual be-
lief propagation: Informed scheduling for asynchronous
message passing. In Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 2006.

Dayne Freitag. Machine Learning for Information Extrac-
tion in Informal Domains. PhD thesis, Carnegie Mellon
University, 1998.

A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Message
errors in belief propagation. In Neural Information Pro-
cessing Systems, 2004.

Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola,
and Lawrence K. Saul. Learing in Graphical Models,
chapter An Introduction to Variational Methods for
Graphical Models, pages 183–233. MIT Press, Cam-
bridge, MA, michael i. jordan edition, 1999. URL
citeseer.nj.nec.com/jordan98introduction.html.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions on Information Theory, 47(2):498–519, 2001. URL
citeseer.ist.psu.edu/article/frey98factor.html.

Thomas Minka. Expectation propagation for approximate
bayesian inference. In 17th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 362–369, 2001a.

Thomas P. Minka. The EP energy
function and minimization schemes.
http://research.microsoft.com/ minka/papers/ep/minka-ep-energy.pdf
2001b.

Tom Minka. Divergence measures and message pass-
ing. Technical Report MSR-TR-2005-173, Microsoft Re-
search, 2005.

Judea Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

Charles Sutton and Andrew McCallum. Collective seg-
mentation and labeling of distant entities in informa-
tion extraction. In ICML Workshop on Statistical Re-
lational Learning and Its Connections to Other Fields,
2004. URL publications/tr-04-49.pdf.

Martin Wainwright, Tommi Jaakkola, and Alan S. Willsky.
Tree-based reparameterization for approximate estima-
tion on graphs with cycles. Advances in Neural Infor-
mation Processing Systems (NIPS), 2001.

M. Welling and Y.W. Teh. Belief optimization for binary
networks: a stable alternative to loopy belief propaga-
tion. In Proceedings of the International Conference on
Uncertainty in Artificial Intelligence, volume 17, 2001.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss.
Generalized belief propagation. In Advances in Neural
Information Processing Systems (NIPS), 2000.

A. L. Yuille and A. Rangarajan. The concave-convex pro-
cedure (CCCP). In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 1033–1040, Cambridge,
MA, 2001. MIT Press.

