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ABSTRACT

TANDEM LEARNING: A LEARNING FRAMEWORK FOR
DOCUMENT CATEGORIZATION

MAY 2007

HEMA RAGHAVAN

B.E., VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE, MUMBAI

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Supervised machine learning techniques rely on the availability of ample training data

in the form of labeled instances. However, in text, users canhave a strong intuition about

the relevance of features, that is, words that are indicative of a topic. In this work we show

that user prior knowledge on features is useful for text classification, a domain with many

irrelevant and redundant features. The benefit of feature selection is more pronounced

when the objective is to learn a classifier with as few training examples as possible. We

will demonstrate the role of feature feedback in training a classifier to suitable performance

quickly. We find that aggressive feature feedback is necessary to focus the classifier during

the early stages of active learning by mitigating the Hughesphenomenon. We will describe

an algorithm for tandem learning that begins with a couple oflabeled instances, and then

at each iteration recommends features and instances for a user to label. The algorithm con-

tains methods to incorporate feature feedback into SupportVector Machines. We design

x



an oracle to estimate an upper bound on tandem learning performance. Tandem learning

using an oracle results in much better performance than learning on only features or only

instances. We find that humans can emulate the oracle to an extent that results in perfor-

mance (accuracy) comparable to that of the oracle. Our unique experimental design helps

factor out system error from human error, leading to a betterunderstanding of when and

why interactive feature selection works from a user perspective. We also design a set of

difficulty measures that capture the inherent instance and feature complexity of a problem.

We verify the robustness of our measures by showing how instance and feature complexity

are highly correlated. Our complexity measures serve as a tool to understand when tandem

learning is beneficial for text classification.
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CHAPTER 1

INTRODUCTION

A fundamental task in human reasoning is the grouping or clustering of similar objects

together and drawing generalizations about them. Categorization involves associating a

semantic label to a group of similar objects. The idea that categorization is fundamental to

knowledge and reasoning goes as far back as Aristotle [8]. Concepts are representations of

categories and many inferences that we draw about our surroundings – from “a bird is an

animal” to an “atom is the smallest particle of matter” – can be thought of as associating

categories to observations. How concepts are represented in the human brain is an inter-

disciplinary field spanning brain and cognitive sciences toontology and metaphysics. Many

theories exist with little consensus [84].

Given the growing volume of electronic information on the internet and in digital li-

braries, one would like computers to be able to automatically organize documents into

groups that are intuitively perceptible to humans like topic, genre, sentiment and so on.

This organization can be achieved in one of two possible ways: through unsupervised clus-

tering algorithms or supervised categorization algorithms. The task of grouping documents

by their similarity together, with no human supervision or information specifying which

kinds of documents should go together is typically calledclustering. The task of assign-

ing category labels to documents is calledcategorization or classification. Labels may

be based on topics e.g.,earthquakes, genre e.g.,poetry, geography e.g.,chinaand so on.

Categorization is typically asupervisedtask with a human specifying the categories of in-

terest and some additional information that is used to generate a general rule that can map

a previously unseen document to one of the pre-specified categories.
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Document clustering as an effective means of storage and retrieval of information has

been studied since the 1960s [28, 86, 80, 95]. Traditionallythe purpose of such a grouping

in an information retrieval system was indexing, where eachdocument was assigned one

or more key-words or phrases describing its content. The keywords were typically part of a

controlled dictionary. Each of these keywords can be viewedto be a category and the prob-

lem of associating a keyword to a document can be considered analogous to associating a

class label to it. van Rijsbergen’s classic book on information retrieval [111] has addi-

tional references to some of the early work in automatic textclassification and clustering.

An informal note prepared by Sparck Jones also surveys much of the early literature in this

area both in information retrieval and out of it [103]. As shepoints out, much of the sta-

tistical literature available in the 1970’s was not directly applicable to the task of retrieval.

The field therefore evolved into designing its own techniques for grouping documents. On

reading some of these early works, the reader will notice that the term classification was

often used to refer to the clustering task as defined above. However in keeping with the

current literature we use the term classification to exclusively mean categorization in our

work.

The AIR/X system built for a large physics database represents one of the biggest efforts

in information retrieval to build a classification system for indexing using a controlled vo-

cabulary. Although the main purpose was indexing, the authors have on occasion evaluated

their system on a document classification task [45]. The initial systems were heavily rule

based [45], but over the years several statistical techniques were developed and evaluated

for the indexing task [65, 110, 18].

Research in the task of text categorization gained momentumin the 1990s with the de-

velopment of several statistical methods. A survey published by Sebastiani in 2002 [98]

provides a very good overview of the techniques in automatictext categorization. The field

today lies at the cross-roads of information retrieval and machine learning. Machine learn-

ing is an area of computer science that concerns itself with techniques that enable comput-
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ers to “learn”, allowing computers to automatically do tasks that humans can. Modern day

text categorization algorithm fall into the inductive learning paradigm of machine learning.

Inductive learning algorithms typically take as input setsof example documents in the cat-

egories of interest and automatically learn a function thatcan accurately map a new unseen

document to one of the many pre-specified categories. Machine learning algorithms, in

striving to solve a more general task, typically limit the kind of input that may be obtained

from a human to labels on training examples. They therefore overcome the primary disad-

vantage of older rule-based systems that typically did not generalize well across corpora.

Machine learning techniques however aim to be generalizable across domains as well i.e.,

strive to build one classification algorithm that works wellfor text classification, gene clas-

sification, image classification and so on. In doing so, they lose out on the benefits that

may be obtained by considering the domain. For some application domains there may be

other types of inputs that may be more easily procured, otherthan labels on training exam-

ples. For example, it may be quite easy for a human to specify some simple “soft-rules”

in building a text classifier (and doing so may be much easier than designing an entire rule

based system).

We argue that if the goal is a task, then we should accordinglytake a “task oriented”

approach, as has been adopted by the information retrieval community. Otherwise we

may lose out on easily available information that is valuable to the learner (classification

algorithm). An important problem for both the human teacherand the learner in machine

learning is the efficiency or speed of the learning process. We will show that alternate forms

of human computer interaction (other than labels on examples) that exploit the domain of

the underlying task, can accelerate learning.

Additionally, traditional inductive learning techniquesencounter a difficult feature se-

lection problem in the domain of text because of their sheer number: features of a text

document are often the words that occur in it and often a collection of a even few 1000

documents can have over104 unique words. We will show that a human can help overcome
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the feature selection problem by using their prior knowledge to label relevant features. A

machine learning algorithm can then use its traditional inference mechanism in conjunction

with the knowledge that the human has provided. Informationretrieval has studied various

kinds of information that a human (naive users as well as domain experts) can specify to

a computer in the domain of text. We elaborate further on these techniques in Chapter 3.

Text categorization being the focus of this thesis, we arguefor an amalgamated approach

that takes lessons from approaches of the information retrieval community and that uses

the new techniques from machine learning for text categorization. We will show that by

bringing in the focus of the task, we can make machine learning algorithms for text classifi-

cation perform even better than the current state of the art techniques. The new framework,

tandem learning, aims at learning categories in text faster, that is, with less training effort

from a human.

We will show that a combined approach that exploits machine learning techniques and

methods for feedback as have been done in information retrieval will be most beneficial for

text categorization. In subsequent sections we will explain our ideas and terminology in

greater detail.

1.1 Terminology: Analogies from Human Learning

We begin by discussing learning in humans, firstly because machine learning and hu-

man learning have many parallels, making it easy to introduce terminology, and secondly

because it allows us to use examples developed in this section to more easily present our

ideas to enhance the standard mode of human computer interaction in machine learning.

One view of the representation of a concept in the human brainis a “definitional one”

where the concept is represented as a definition (or a rule) composed of a set of properties

of the category [9]. We use the termsconceptand category interchangeably. An object or

an entity is composed offeatures. The properties of a category or a class are features that

are likely to occur in an object belonging to that category. Acomplete definition filters all
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objects in the world belonging to a category leaving out all objects that do not. In the case

of a bird, its features are its eyes, feet, feathers, beak andso on and its properties would

consist of features likely to occur in birds (beak, feathersetc). If all or at least most of the

important properties are satisfied, an object would be considered a bird. In the real world

most definitions are not complete and even for scientific definitions one can find exceptions.

For example, an ostrich is an atypical bird since it is flightless.

Many categories are hard to define by a list of properties, forexample the concept

“art” is probably not easy to define. The “exemplar view” by contrast, takes a different

perspective and assumes that the brain stores all previously observed examples of objects

belonging to a category. When a new, unseen object comes along, it is compared to all

stored examples, and one infers the category label according to the labels of examples it is

most similar to.

How concepts are learned is another interesting question. Learning may beunsuper-

vised, where the human learner draws inferences from observations, but much of learning

is supervisedor guided by ateacherwho tries to explain her representation of a concept

to a learner. Supervised learning is especially true for thelearning of categorylabels, that

is learning that a given set of similar objects all belong to agiven category (say birds). In

trying to teach (or train) the learner, a teacher often triesto define the concept if possible,

and then uses examples leaving the student to develop her ownrepresentation of the cate-

gory. The number of examples required would depend on the concept being learned. For

example, learning the concept “art” would be difficult without many examples. Examples

may be intelligently chosen by the teacher so as to include a mix of typical and atypical

examples. Much of human learning, and especially in the early stages when a new concept

is being taught to the learner, is interactive, with the teacher answering questions that the

learner is uncertain about.
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1.2 Machine Learning: The Exemplar Approach and its Limitations

There are many parallels to human learning and machine learning and although the two

fields draw from each other [106], there exist many diverse machine learning algorithms

all of which are effective at capturing concepts and it is hard to say whether or not they are

emulating the human brain. However, one commonality between them is that like human

learning, learning algorithms fall into two broad categories – unsupervised and supervised.

Unsupervised learning techniques try to learn inferences about examples without associat-

ing categories to them. Clustering objects by their similarity is an unsupervised extreme of

the grouping of documents. Associating category labels to instances on the other hand is a

supervised learning problem, which is the focus of this work.

Most supervised learning algorithms are “exemplar” in nature. The learner here is a

program that takes several examples (and possibly counterexamples) of objects in a cate-

gory labeled by a human, and uses this input to learn some abstract representation of the

category. Naive Bayes, support vector machines (SVMs) and decision trees are examples

of such algorithms and each of them infers properties of a category in their own way. By

contrast, algorithms like K-nearest neighbors (KNN) [41] memorize all the input exam-

ples, and when a new unseen example is considered, it is compared to all the memorized

examples, and is assigned a category corresponding to the most common category of the

K most similar examples. For many domains KNN may or may not beas effective as

the other approaches [116, 57]. In spite of the difference inthe inference mechanism, all

these approaches, be it SVMs or KNN, take labeled examples asinput, a reasonable ap-

proach for trying to find a general method for the learning of categories, where the objects

to be categorized may be as general as images, genes or documents. The formalism of

the problem becomes universal if approached this way: givenpairs of examples, with their

expected labels, design an algorithm that learns the hiddenfunction that maps an unlabeled

example to a label. This formalism however ignores the fact that for many categorization

problems (and depending on the domain), we can often solicitsome more information from
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the teacher – their concept definition for example – in order to train the learner. In the next

section we discuss what kind of information we can obtain from the human and argue why

that may be useful.

1.3 Towards faster learning

The teacher in machine learning, is a human, often the engineer or the user of the

system. In the classical exemplar approach, the learner often needs to see many examples

on a category before arriving at a concept that generalizes well, that is, classifies unseen

examples with adequate accuracy. Usually a large number of randomly selected examples

are labeled by the teacher that are then used by the learner tolearn a concept.

Labeling examples in this manner can be tedious and costly for the teacher and many

methods have been considered to reduce the total number of labeled examples. One such

method is active learning [5].Active learningis an interactive, iterative, human-in-the-loop

learning paradigm in which a teacher (a human) begins by providing a few typical examples

of a category. The learner (a program in this case) learns some initial concept, and then can

querythe teacher on the category of any example that it does not know the category of. The

queries are chosen selectively by the learner such that the knowledge of the category of the

queried example would provide maximum value to the learner in improving its current

representation of the concept. By selectively picking onlyinformative examples as queries,

active learning methods strive to decrease the total effortfor the teacher. Active learning

is analogous to typical classroom learning, where the teacher imparts some information

to the students, and then leaves some time for questions. An efficient student will pick

the questions that she is less likely to figure out by herself,for the teacher to answer in

the limited time frame. Likewise, an efficient teacher will try to optimize the information

imparted during the lecture in order to maximize the information gained for the learner,

and decrease her effort in the question-answering session.
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As with general machine learning methods, typical active learning algorithms are also

example based. By contrast, we saw that in human learning theteacher might try to start

out by “defining” a category and then giving examples of the same. One can only imagine

how long it would take if humans used only the example based approach for learning. Say

for example in learning the concept “star”, one can imagine what a time consuming process

learning would be, if each individual had to infer all the properties of a star (gaseous, source

of light etc) using only examples. Fortunately, in human learning a teacher often imparts

her idea of the concept, often accompanied by illustrative examples, leaving the student’s

brain to process these two types of information in some way. The question then is one

of using this kind of an approach for machine learning. Intuition says that such type of

learning should be faster. Often defining the concept may notbe a laborious task for the

teacher, and may be much less effort than providing several training examples belonging

to the category. The definition may be quite sufficient in manycases (like learning the

concept “bird”), but many examples may be needed in other cases (like learning “art”). In

other cases, like learning the concept “star”, the definition accompanied by a few examples

may be sufficient. Given this initial information, the active learner may then proceed by

intelligently querying the teacher on the labels of examples. One can also extend the active

learning framework to include questions about properties of the category as well; analogous

to a real life situation where a learner may ask “is the layingof eggs a property of birds?”.

Of course, the effectiveness of this idea will depend on the concept itself, the domain,

the algorithm, the kind of representation it uses for examples and the final concept, and

whether a definition provided by a human can be incorporated into that representation.

In some applications these aspects of a problem may be less obvious. For example, in

classifying images by texture it is less clear whether a human can specify any information

other than labels on examples. Whereas, for an algorithm that determines whether an image

contains the picture of asunset, specifying the property that the image is predominantly

orange may be quite easy for a human. If color histograms are used by the algorithm in the
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underlying representation then imbibing this informationmay be easier for the learner. If

not, it is less clear how the learner will absorb this information provided by the human into

its representation of the concept. Then again, if the process of absorbing this information

is noisy, learning may not be accelerated in spite of this intuitively useful information

provided by the user.

In the next two sections we will present why we believe that soliciting “definitional”

information will be useful for accelerating the process of learning for text categorization

in particular. The questions raised through the aforementioned examples also provide the

intuition for the set of hypotheses that structure this thesis (Section 1.5).

1.4 Text Categorization and the Motivation for Tandem Learning

In this thesis we will focus on learning categories in text. Automatic text categorization

has applications not only in the organization and retrievalof collections of documents, as

in the Yahoo! directories1 or MESH categories [77] but is also useful for news filtering and

email foldering. The scenario for a typical news filtering task [72, 3] is one where a user

browsing the daily news comes across a story on a topic of interest, say for example, the

first story predicting the arrival ofHurricane Mitchand decides that she wants to track it.

As new stories arrive in the news, if they belong to the category Hurricane Mitchthey are

delivered to this user. The email foldering task [63] is similar: email is automatically orga-

nized into user-specified folders as it arrives. Spam filtering [27] is yet another application

of text categorization. Information retrieval can also be articulated as a categorization prob-

lem [111, 89] where documents satisfying a user’s information need are associated with a

relevantcategory, and those that do not are associated with anon-relevantcategory.

To obtain a classifier that generalizes well, the learning algorithm needs to see a large

number of labeled training examples. Labeling data is a tedious and costly process and we

1http://dir.yahoo.com
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seek algorithms that learn a good classifier with as little training data as possible. Com-

panies like Yahoo! often employ paid editors to label large amounts of training data. De-

creasing training data serves to decrease their editorial costs. In news filtering and email

foldering where the user (teacher) must provide training examples (sample relevant and

non-relevant documents) in order to train the system, the user is probably willing to engage

in very little interaction in order to train the system.

wheat& farm → WHEAT
wheat& commodity → WHEAT
bushels& export → WHEAT
wheat& agriculture → WHEAT
wheat& tonnes → WHEAT
wheat& farm&¬soft → WHEAT

Table 1.1. Induced rule set using the CONSTRUE system [7] for categorizing wheatdoc-
uments in the Reuters data set. The induced rules result in 99% accuracy.

Towards this goal of decreasing the training data in text categorization tasks, we believe

that the teacher (user/paid editor) may often be willing to impart her idea of the concept

to the learner by describing properties of the category to belearned. Features in a text

document are typically words/terms that occur in it and moststandard text classification

algorithms use a bag-of-words (BOW) representation. Correspondingly a concept may

then be defined by a set of high probability terms that occur indocuments belonging to

the corresponding category. Some categories may be sufficiently accurately described by a

conjunction or disjunction of words that appear in the text,for example, theearningscate-

gory in Reuters news articles is probably reasonably accurately described by the property

that the wordsdollar, cents, revenue, qtretc. occur with high probability in them. An ex-

ample of a set of (automatically induced) rules that filter documents on the categorywheat

in the popular Reuters 21578 corpus are shown in Table 1.1. Although providing such a

terse boolean expression (/definition/rule) may require substantial effort, we think that a

human can easily point out that the termswheat, farm, commodityetc are discriminatory.
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Such information may be easy (cognitively) and quick for a teacher to provide, resulting in

significant improvements in performance. If so, then there is a strong association between

what information a human can provide and the underlying document representation. We

also think that human assisted feature selection will not besufficient in itself for the same

reason that categories and their associated concepts can often not be “defined” concretely

by a set of attributes. Many concepts can be subtle: for example, it is not clear what the

features constituting an all encompassing definition to filter documents on the category

arts.

We therefore define tandem learning, an interactive learning paradigm that builds on

active learning. In this framework the learner not only asksthe user for labels on examples

with an aim to decrease the total effort for the teacher, but also has a mechanism to incor-

porate the teacher’s knowledge on the relevance of featuresand properties of the category.

In fact, in our framework, the learner also queries the teacher on features. For example,

the learner may ask if the wordwindswas more likely to occur in documents in Hurricane

Mitch. We think that leveraging a teacher’s prior knowledgeon features should accelerate

learning over pure example based active learning.

1.5 Tandem Learning: Proposed Idea and Hypothesis

A tandem learning system is an active learning system where the system intelligently

picks features and examples for the teacher to label. The learner starts with some initial

concept that is learned by a few labeled examples or features, and then at each iteration

the learner can query the teacher on the label of an example (like in traditional active

learning) or on the property of a category. The question on the property of a category

is specifically restricted to one of asking on the relevance or usefulness of a feature for

determining whether an object belongs to a category or not. We use the phrase “feature

feedback” to imply human assisted feature selection, because in our final algorithm, the

human gives feedback on features that the system selects andasks specific questions about.
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Rather than formulating the hypothesis as “feature feedback by humans can accelerate

learning”, we factor the hypothesis into three parts:

1. That there exist a set of features, for which if the learner isprovided relevance infor-

mation, the speed of active learning can be significantly improved.

2. That the learner can pick these features to ask the teacher for feedback on, in a

tandem learning like framework.In the first part we determine that there are some

features, such that, if the learner knew they were relevant early in the learning, that

knowledge would bootstrap active learning significantly. In the second step we de-

termine if we can come up with an algorithm where the learner can actually ask for

feedback on these important features.

3. And that these features can be marked by humans fairly easily. Once we show that

the learner can pick the necessary features to ask the teacher about, we show that

humans can label these features sufficiently well, that is, well enough to accelerate

the speed of learning.

Such a factoring out is unique to this work, and we think that it helps separate al-

gorithmic error from human error. We think that such a reasoning is especially critical

for researchers in Human Computer Interaction, where oftenthe algorithm is treated as a

black-box [62] and it has been difficult to pin point the source of error when a particular

type of feedback does not work (Section 3.1).

1.6 Scope of the Thesis

We restrict ourselves to text classification laying out a solid experimental framework

for analysis that can be repeated for other domains (discussed in Chapter 9). We also

specifically consider only two forms of input from the teacher: information on the labels of

examples, and information about whether a feature helps discriminate an object belonging
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to the category from one that does not (this discriminatory property of a feature is also

called the relevance of a feature for a given categorizationproblem).

In evaluating our methods we consider effectiveness (accuracy of categorization) and

the speed of learning by using evaluation measures that incorporate a “learning rate” or

more simply by considering effectiveness after limited feedback from the teacher.

1.7 Outline of the thesis

In the next chapter we formulate the problem more formally outlining the proposed

algorithm. We then review past work in machine learning and information retrieval in

Chapter 3. We also highlight our contributions with reference to previous work. In Chapter

4 we review the materials and methods used in this thesis. A large part of our work, es-

pecially the tandem learning algorithms, builds on supportvector machines (SVMs) which

we describe in detail in that chapter. We also describe active learning using SVMs, feature

selection, data-sets, and evaluation measures in that chapter. Many of our interactive exper-

iments rely on an oracle, which gives a sense of the improvements possible using tandem

learning. We describe the oracle in Chapter 4 as well.

Chapter 5 proves the first of the three hypotheses. We also tryto understand why feature

selection helps the underlying machine learning algorithmin that chapter. Using lessons

learned from Chapter 5, we then move on to design a tandem learning algorithm in Chapter

6, filling in the gaps in the skeleton algorithm developed in Chapter 2. Results on exper-

iments using the tandem learning algorithm are discussed inChapter 7. Our experiments

were performed using both an oracle and a real user. The success of both these experiments

proves hypotheses 2 and 3.

We then define a set of complexity measures that aim to capturehow “definable” a

concept is in Chapter 8. Our complexity measures serve as a tool to determine the range

of problems that exist in text categorization, i.e., how many concepts are definable (like

“birds”) and how many are not (like “arts”). For example, certain e-mail folders may be
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completely defined by a few properties like the sender and therecipient of the mail whereas

a genre may not be so easy to define. Similarly categorizing Reuterswheatarticles can also

be typically achieved by a few features (Table 1.1). We obtain many valuable insights for

understanding when and why teacher feature feedback is useful for text categorization.

Chapter 9 summarizes the lessons learned along the way, laying out directions for future

work.

1.8 Contributions of the thesis

• We offer several statistical intuitions and insights explaining why tandem learning is

beneficial for text categorization (Chapter 5).

• We design a tandem learning algorithm that extends the active learning approach

to not only query the user on labels of examples, but to also query the user on the

relevance of features for a task. The algorithm incorporates this feedback in a way

that results in significant improvements in performance with much less effort for the

teacher (Chapter 6 and 7).

• Our unique experimental design helps separate algorithmicerror from human error,

bringing out a novel approach for the design of experiments in the field of human

computer interaction.

• We quantify the nature of concepts that exist in text (Chapter 8) providing further

explanations for why tandem learning should work.
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CHAPTER 2

THE TANDEM LEARNING ALGORITHM: OUTLINE

Active learning techniques are sequential learning methods that are designed to reduce

manual training costs in achieving adequate learning performance. Active learning meth-

ods reduce costs by requesting feedback selectively and intelligently from ateacher. The

teacher is a human in the text categorization domain. The teacher may also be called the

user, especially when the teacher training the model is the same as the person using it, for

example a user who is training a personalized news filtering system. Traditionally in active

learning the teacher is askedmembership querieswhich are questions on the class labels or

categories of selected instances (documents in our case).

In the first chapter we motivated the need for a machine learning algorithm for text

classification that actively learns by querying a human on instances and features in tandem.

We argued that such an approach should accelerate the learning process, that is, enable the

learner to construct a classifier with less training effort for the human. In the proposed

tandem learningframework, the teacher is asked questions about the relevance of features

in addition to membership queries. In this chapter we formally lay out the proposed tandem

learning system, a system that builds on active learning andintroduce terminology used in

this thesis more formally. We describe the traditional active learning system in the next

section and then describe how tandem learning builds on active learning in Section 2.2. We

also describe theoracle, which plays an important role in our experimental evaluation, in

that section.
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Standard Active Learning

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances), initsize
(number of random feedback iterations),I (Number of instances labeled in each round)
Output:MT (Model)

t = 1; U0 = U ; M0 =NULL;
1. Whilet ≤ init size

a. 〈Xt,Ut〉 = InstanceSelection(M0, Ut−1, random)
b. Teacher assigns labelYt to Xt

c. t + +
2. Mt = train classifier({〈Xi, Yi〉|i = 1...t − 1}, M0)
3. Whilet ≤ T

a. 〈Xt, ..Xt+I−1,Ut+I−1〉 = InstanceSelection(Mt, Ut−1, uncertain)
b. Teacher assigns labelYt..Yt+I−1 to Xt...Xt+I−1

c. Mt+I = train classifier({〈Xi, Yi〉|i = 1...t + I − 1}, Mt)
d. t = t + I

ReturnMT

Figure 2.1. Algorithm and block diagram for traditional active learning where the system
asks for feedback on instances only (System 1).
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2.1 Active Learning

A typical algorithm for active learning is shown in Figure 2.1. An instanceXi (which

is a document in our case) belongs to aclassYi (1 ≤ i ≤ M , whereM is the maximum

number of instances available, typically the size of the data set). Xi is represented as

a vectorxi1...xiN of features, whereN is the total number of features. Features in text

are typically words, bi-grams (adjacent pairs of words) andtri-grams (adjacent triples of

words). This representation, more commonly known as a bag-of-words representation, has

consistently been found to work well for topic classification [98] 1. The value ofxij is

the number of occurrences of termj in documentXi. We work on binaryone-versus-rest

classification withYi taking values of +1 or -1 depending on whether the instance belongs

to the category of interest, or not. An instance in the document collection isunlabeledif

the algorithm does not know itslabel (Y value). The active learner may have access to all

or a subset of the unlabeled instances. This subset is calledthepool (denoted byU).

The algorithm begins by randomly pickinginit size number of labeled instances (Step

1) by calling theInstanceSelectionsubroutine and passing the parameterrandomto it. The

modelM is then trained on these randomly sampled instances (Step 2). The subscript on

M, U , X andY corresponds to the number of instances that have been labeled. Sometimes

one may use keyword based search or some other procedure in place of random sampling

to obtain this initial set, especially in cases when the proportion of examples in the two

classes is highly unbalanced. Next, active learning begins(Step 3). In each iteration of

active learning the learner selects a set ofI instances fromU using some criterion (e.g.,

a measure of informativeness) and asks the teacher to label it (step 3.a). In a popular ac-

tive learning method, called uncertainty sampling, the classifier selects the mostuncertain

instance [75] for a given model (M) and a pool of unlabeled instances (U). The newly

labeled instance is added to the set of labeled instances andthe classifier is retrained (step

1In fact it has been found that even humans can classify documents quite well using bag-of-word repre-
sentations [42].
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3.c). The teacher is queried a total ofT times. Thetrain classifiersubroutine uses the

labeled data as training, as well as the model (M) learned in a previous iteration, allowing

for the case of incremental training [39] or the case when themodel may be initialized by

prior knowledge [115] (also see Section 5.2).

We use a semi-batch approach of active learning, where the teacher is queried onI

instances in each round of active learning (Step 3.a to 3.c inFigure 2.2) rather than one.

A larger value ofI implies a greater (factor ofI) savings in time, at some cost to effec-

tiveness because the modelM will not be updated after each instance is selected, and the

InstanceSelection subroutine will not be able to exploit the label ofa previously labeled

exampleXt+i in choosing the subsequent instanceXt+j (t ≤ i < j ≤ t + I). For example,

if the learner is using uncertainty sampling (Section 4.1.5), the knowledge of the label of

Xt+i may reduce the learner’s uncertainty of the label ofXt+j , making querying onXt+j

redundant but the learner may not be able to measure this decrease in uncertainty unless

the knowledge ofXt+i is known. Thus, there is a tradeoff between effectiveness and time

in choosing the value ofI and it must be picked carefully by the engineer of the system.

In our experiments we also consider the variant of the algorithm shown in Figure 2.1

that we callrandom samplingin which instances are picked uniformly at random in all

iterations. Random sampling is equivalent to traditional supervised learning. In the pseudo-

code in Figure 2.1, random sampling corresponds to the case wheninit size > T .

2.2 Our Proposal: Feature Feedback and Instance Feedback inTan-

dem

We propose to extend the traditional active learning framework to engage the teacher in

providing feedback on features in addition to instances. Wedescribe the algorithm below

and with pseudo-code in Figure 2.2. Steps 1 to 3.c are identical to the active learning

system previously described. Our modifications to traditional active learning are in steps

3.d and 3.e. The active learner presents a listP = {P1...Pf} of f features for the teacher
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Tandem Learning

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances), initsize
(number of random feedback iterations),I (Number of instances labeled in each round)
Output:MT (Model)

t = 1; U0 = U ; M0 =NULL;
1. Whilet ≤ init size

a.〈Xt,Ut〉 = InstanceSelection(M0, Ut−1, random)
b. Teacher assigns labelYt to Xt

c. t + +
2. Mt = train classifier({〈Xi, Yi〉|i = 1...t − 1}, M0)
3. Whilet ≤ T

a. 〈Xt, ...Xt+I−1,Ut+I−1〉=InstanceSelection(Mt, Ut−1, uncertain)
b. Teacher assigns labelYt...Yt+I−1 to Xt...Xt+I−1

c. Mt+I = train classifier({〈Xi, Yi〉|i = 1...t + I − 1}, Mt)
d. i. {P1, ..., Pf} = FeatureSelection(Mt+I , Ut)

ii. Teacher selectsF = {F1, .., Fk} ⊆ {P1, ..., Pf}
e.Mt+I=IncorporateFeatureFeedback(Mt+I , {F1, ..., Fk})

ReturnMT .

Figure 2.2. An active learning system where feedback on features is alsorequested (Sys-
tem 2).

to judge (step 3.d) at each iteration.Pi denotes the index of a feature (1 ≤ Pi ≤ N). Let

F = {F1, ..., Fk} ⊆ P denote the subset of relevant features chosen by the user (inour

final implementation in Chapter 6 the user also associates a label (±1) with eachFi, but we

ignore that for simplicity). The simplest implementation of such a system can consist of

one whereF is the union of all terms that occur in theI documents of the batch. This idea

can be implemented as an interface where the user is asked to highlight relevant words,

phrases or passages while reading the document in order to label the document (Step 3.b),

akin to the system presented by Croft and Das [29]. Many timesone would prefer to have

the setP to be an ordered one, where feedback onP1 is more valuable for the learner

than feedback onP2 and so on. We use such an approach in our final implementation in
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Section 6.4. The user labeled features are incorporated in step 3.e where the modelMt+I

is retrained with this added information.

In our proposed system the teacher is asked two types of questions: (1) membership

queries and (2) questions about the relevance of features. Arelevant feature is highly likely

to help discriminate the positive class from the negative class. In this thesis we aim to deter-

mine whether a human teacher can answer the latter type of question sufficiently effectively

so that active learning is accelerated significantly. A human and a classifier probably use

very different processes to categorize instances. A human may use her understanding of

the sentences within the document, which probably involvessome reasoning and use of

knowledge, in order to make the categorization decision, while a (statistical) classifier, cer-

tainly of the kind that we use in this thesis, simply uses patterns of occurrences of the

features (phrases). Because of this difference it is not clear whether a human teachercan

considerably accelerate the training of a classification algorithm by providing feedback on

features.

Before we address that issue, we will show that feature feedback can accelerate active

learning in an idealized setting (Chapter 5). We first seek tomeasure potential gain for

improvement and then later examine how actual human teachers can approximate this ideal.

Towards this goal we define anoracle. We use the oracle to obtain an upper bound on the

performance of our proposed two-tiered approach. The oracle knows the correct answer

needed by the learning algorithm. For example the wordct is a highly relevant feature

for classifying Reuters news articles on theearningscategory and our oracle would be

able to determine that this feature is relevant when asked. However, a teacher (human)

who did not understand thatct stood forcentsmay not be able to identifyct as relevant.

Therefore, the oracle and teacher may differ in their answers to questions about features,

that is, questions of type (2) above. We assume that the oracle and the teacher always

agree on the labels of documents that is, questions of type (1) above. After showing the

usefulness of oracle feature selection, we will develop algorithms for the FeatureSelection
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and IncorporateFeatureFeedback routines for an SVM classifier (Chapter 6). We will then

show that humans can emulate the oracle for feature feedbackto an extent that results in

significant improvements over traditional active learning(Chapter 7).

Note that the teacher is sometimes referred to as anoracle in the literature [11]. We

will also use the term oracle to refer to a source that gives feedback on instances and/or

features, but in this thesis we make a distinction between the teacher and the oracle. We

will reserve the term teacher or user to refer to a real human,whose feedback may not be

perfect, and we use the term oracle to refer to a source whose feedback is (close to) perfect

for speeding active learning.

2.3 Summary

We developed the basic framework of the tandem learning algorithm in this chapter.

The pseudo-code in Figure 2.2 will constantly be referred tothroughout this thesis. We

now move on to discuss the novelty and relevance of tandem learning in the context of past

work in machine learning and information retrieval.
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CHAPTER 3

RELATED WORK

Our work sits in the joint space between machine learning andinteractive information

retrieval. Sebastiani’s survey paper [98] provides an overview of techniques in these two

areas for solving text categorization. In this chapter we aim to place our work in context

with previous research in these areas with respect to the following criterion:

• the kinds of feedback that have been considered in these areas and the success of

those methods.

• whether a scenario of limited feedback has been considered.

• whether term and document feedback have been considered in conjunction with each

other or in lieu of each other.

We describe approaches in machine learning and informationretrieval, their advantages

and disadvantages, stating how our work either compares with, or overcomes the deficien-

cies of past methods. We reserve describing other related work associated with choices

of materials, methods or techniques (either our own or a choice made over existing ones)

for when those choices have to be made. There is also a significant amount of literature

in statistics which tries to determine the importance of feature selection when the number

training examples is few [54]. We will relate our work to thatwork in Section 5.3.1.
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3.1 Information Retrieval

We begin by discussing techniques for feedback in interactive information retrieval

and then move on to discuss work that has been done with regardto interface design for

interactive IR.

3.1.1 User Feedback in Information Retrieval

A typical task studied by the information retrieval community is ad-hoc retrieval [113]

in which the user specifies her information need to a search engine through a query com-

posed of a few keywords. The information retrieval community has studied various forms

of feedback towards enhancing the representation of the original query with document feed-

back and term feedback being the chief forms studied [94].

A commonly used mode of feedback is pseudo-relevance feedback. The standard

assumption made in this approach is that the top few retrieved documents are relevant

[30, 69]. Then terms from these top documents are used to enhance the query. Although

pseudo relevance feedback often works quite well, often improving the average perfor-

mance of the system, it can sometimes hurt retrieval performance [55] due to the introduc-

tion of “noisy” terms into the initial query, typically due to the presence of few relevant

documents in the initial retrieval. The latter may be due to apoor initial retrieval or due to

the fact that there are very few relevant documents for the query in the corpus.

A more established alternative to pseudo-relevance feedback is “true relevance feed-

back” [90] in which a user is engaged in interactively providing the system with feedback

on questions that the system generates. The user is typically asked to judge the relevance

of documents or terms during feedback. True document feedback has been studied exten-

sively [50] and is used in real world applications [1]. In therecent past it has been found

that by using large external corpora on which to conduct the initial retrieval to enhance the

query representation for pseudo-relevance feedback, the system can perform as well as by

using true document feedback [38]. Basically, if the initial retrieval is guaranteed to be
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good with sufficiently many relevant highly ranked documents there is no need to ask for

feedback and pseudo relevance feedback should suffice. Somepast work has considered

measuring the quality of the ranked list to determine whether feedback is necessary [4]

using a clarity score [31]. Clarity may be considered to be a measure of “uncertainty” of a

ranked list. Very few information retrieval techniques have considered asking for feedback

on “uncertain documents” for ad-hoc retrieval. We will revisit this topic when we cover

active learning in Section 3.2.1.

Term level feedback has been studied in information retrieval with mixed results [6, 29,

16]. The TREC interactive task focused on issues regarding the kinds of questions that can

be asked of the user. Belkin et al. [16] found that users are willing to mark both positive

and negative terms. Koenemann and Belkin [66] found that users are happy to use inter-

faces in which queries can be reformulated using a list of suggested terms and also found

performance improvements for some tasks. However, Beaulieu [49] found that automatic

query expansion using pseudo-relevance feedback resultedin better performance than term

feedback by users. Kelly and Fu [62] had a similar experiencewith the TREC HARD track

[114] but Diaz and Allan [37] found that term feedback helpedimprove performance on

the same track.

In all of the above work the experimental setup has been such that it has been hard to as-

certain whether the poor performance of an approach is due toalgorithmic error or human

error. In Chapter 1 we argued that in studying any kind of feedback one should question

whether the feedback is necessary and useful by conducting upper bound experiments to

measure the ability of the system’s mechanism to absorb the feedback. Then one should

question whether a human can provide the necessary feedback. Most of the interactive

information retrieval experiments mentioned previously have an implicit hypothesis that

term feedback will be useful and typically measure if users can provide feedback with little

understanding of whether the term recommendation techniques and the methods for incor-

porating feedback are effective. More recently there has been work that tries to approach
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the ad-hoc retrieval task in a manner similar to ours by Magennis and Rijsbergen [78] and

Ruthven [93]. Both papers found that users make sub-optimaldecisions about terms to

chose. Magennis and Rijsbergen had some obvious deficiencies in their approach, a fact

that they acknowledge. Ruthven improved on the experimental setup of Magennis and Rijs-

bergen and found that term feedback using an oracle could give performance improvements

even over automatic query expansion. However, he found thatusers cannot mark the terms

required by the optimal query with reasonable precision. Oddly though, he did not report

the performance achieved by the user-marked terms. In fact,we find that even though users

marked only a fraction of the terms marked by the oracle, the performance improvements

were on par with the oracle (Chapter 7).

Although both term and document feedback have been considered for ad-hoc retrieval,

most of the work has been in understanding whether each of these modes of feedback

individually help improve performance over the initial retrieval. Some feedback interfaces

may have incorporated term and document feedback simultaneously [114], but there has

been little work in factoring out the cost and benefit of one mode of feedback over the

other. We also try to understand the kinds of problems for which a few quick rounds of

feedback (at the term and/or document level) are likely to beuseful. In fact we find that in

scenarios of limited feedback a tandem approach is best.

In the ad-hoc retrieval tasks described above, feedback hasbeen limited to a handful of

rounds of either document or term feedback. In the TREC HARD track, the limitation is

imposed by time; that is, the user gives feedback for a maximum of three minutes per query.

However, there has been no systematic attempt to understandthe “rate of learning” of dif-

ferent methods due to feedback like in our work. It must be noted that there has been some

work in understanding the rate of learning due to relevance feedback [95], the purpose of

those experiments was to determine the number of iterationsfor which relevance feedback

showed significant improvements, rather than to compare multiple feedback algorithms to

determine which algorithm results in a greater improvementin performance than the other.
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A task more similar to the document classification task that we are interested in and

one that the information retrieval community has worked on is filtering [72] . In the TREC

filtering task, an initial information need is specified through a query. Subsequently doc-

uments are assumed to arrive in real-time and the system is expected to classify them as

belonging to the topic of the query or not. In the TDT filtering(tracking) task [3], instead

of an initial key-word query, the user is assumed to provide asample document on the topic

of interest. Again, the system is expected to classify documents arriving in a stream, on the

basis of relevance to the topic. Both the TREC and TDT tasks have a “supervised” version

where the user is assumed to give feedback on every document that the system classifies

as relevant. The standard assumption of unlimited documentfeedback from the user in

this task is an unreasonable one. In Section 7.5 we consider amore realistic version of the

TREC filtering task, and find that term feedback is beneficial.Additionally in this task, like

in ad-hoc retrieval, documents for which the user is asked for feedback, are typically ones

that the system is highly confident about. Occasionally, thepossibility of querying the user

on uncertain documents, with the aim of exploration, in order to improve performance has

been considered [117, 70]. However, there has been very little work that systematically

tries to understand the effectiveness of such an approach and research in this direction in

information retrieval is quite preliminary.

Thus there are myriad information seeking tasks studied by researchers in informa-

tion retrieval for filtering with different starting pointsand different modes of feedback.

However, as we have seen, a combination of term and document feedback with the aim of

understanding whether one mode of feedback is better than the other has never been stud-

ied. Additionally little work has considered studying the impact of feedback on the rate of

learning. Querying the user on uncertain documents as opposed to top-ranking documents

is also not well-studied in information retrieval.
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3.1.2 Human Computer Interaction

Human computer interaction (HCI) is an area of study that deals with interfaces be-

tween humans and computers. HCI for information retrieval takes into consideration the

cognitive load of different interfaces for information access – query specification and re-

finement, visualization of search results and so on [66, 32, 87, 105]. Considering the cogni-

tive load of interfaces is important, especially for an interactive technique like the proposed

tandem learning system. Although our evaluation of the cognitive load of tandem learning

in this work is by no means complete we have tried to bear in mind the willingness and

ability of users to provide feedback throughout this work. Our preliminary user studies on

the ability of users to mark terms versus documents and the time taken for each is interest-

ing with several anecdotal examples that can possibly contribute towards a large scale user

study which we leave for future work.

3.2 Machine Learning and Text Classification

We now review the machine learning literature, beginning with active learning, a foun-

dational technique for our work.

3.2.1 Active Learning

Our proposed method is an instance of query-based learning [5] and an extension of

standard (“pool-based”) active learning which focuses on selective sampling of instances

from a pool of unlabeled data [26]. The goal of active learning is to reduce the number

of training examples needed to learn a classifier and therefore this learning paradigm fits

well with our objective to learn quickly. To the best of our knowledge, all prior work

on query learning and active learning focused on variants ofmembership queries, that is,

requesting the label of a possibly synthesized instance. Our work is unique in the field of

active learning as we extend the query model to include feature as well as document level

feedback.
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Query-based learning can be very powerful in theory [5], where the instance that the

human is queried on is a synthetically generated uncertain example. Such arbitrary queries

may be difficult to answer in practice. Baum and Lang [11] applied query-based learning

to the problem of recognizing handwritten digits. The queries generated were often a ran-

dom blur, halfway between two numbers, say a “5” and a “7”. Humans found this hard

to label and hence the popularity of pool-based methods [26]that query the user on real

instances from the corpus. We try not to let such a chasm between theory and practice

exist in our work, by constantly considering the effectiveness and ease of predictive feature

identification by humans in our application area – text classification.

Information retrieval has been using measures of uncertainty of the initial retrieval to

determine whether feedback is necessary [4, 31]. However, those methods do not have the

theoretical guarantees that methods studied in machine learning have. Secondly, they do not

measure the uncertainty of an example (document) as is done in active learning. Whether

standard active learning techniques will work for ad-hoc retrieval or vice-versa is a different

question, and is a research question that is gaining popularity [101]. Our work is in text

categorization for which there are uncertainty sampling measures from machine learning

that are known to work well. Hence, we use those techniques for our basic architecture.

3.2.2 Explanation Based Learning

In explanation based learning, the learner is provided withone training example, a

domain theory, some operational criteria and a goal concept[82, 36]. The explanation stage

tries to use the domain information to prune away all unimportant aspects of a concept in

order to explain the goal concept. The learned concept is then generalized, while keeping

in mind the goal. Feature feedback may be viewed as the teacher providing evidence or

an explanation for the learner on the reasoning behind the labeling. However explanation

based learning is designed for deductive tasks rather than the inductive tasks that we are

interested in.
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3.2.3 Feature Selection

An engineer using a typical out-of-the-box machine learning system typically specifies

a large set of features to represent instances, leaving the task of discerning good features

from bad ones to the algorithm or to an automatic feature selection technique. Feature se-

lection is often employed to improve the space or time efficiency of a classifier [21]. The

impact on performance is dependent on the classifier and the number of training examples

available [46]. When there are sufficient labeled instances, most state of the art learning

algorithms are able to distinguish the relevant features from the irrelevant ones. Hence

there is little improvement in performance with an additional feature selection component.

Sometimes, for a classifier learned on ample training data, it is better to leave the feature

selection to the learned weights and excessive feature pruning may even hurt performance

[21]. However, when there are few labeled instances, working with a small set of relevant

features tends to be significantly more useful. This phenomenon has been referred to in

statistics as the Hughes phenomenon [53]. Unfortunately, to do automatic feature selection

well, we need sufficient training data, leading to a chicken-and-egg problem. Other than the

work by Hughes (which we will describe in detail in Section 5.3.1) we have seen little work

in trying to understand the role of feature selection in scenarios with limited feedback, and

particularly so for text. Our work appears to be the first to consider feature selection in an

active learning setting. In Chapter 7 we show that users are able to do feature selection to

an extent that results in sufficient enough overlap with an automatic feature selection algo-

rithm trained on ample data, to result in a large improvementin performance by mitigating

Hughes phenomenon.

3.2.4 Budgeted Learning

Budgeted learning is an area of machine learning that works on identifying the value of

obtaining a measurement on a feature in determining the label of an instance. In a typical

scenario the feature values are unknown and there is a cost tofinding each feature’s value

29



for each instance of interest and the objective of the learner is to pick the most valuable

feature to obtain a better estimate of the classifier (e.g., the work of Lizotte et al. [76]). For

example, in trying to diagnose a disease, the doctor may havea choice between asking the

patient to conduct one of many possible tests, each of which cost some money. Budgeted

learning would help pick the most effective test to perform,by considering the cost and

value of each feature towards decreasing uncertainty aboutthe current diagnosis. In our

setting, the cost for all features is the same and therefore,budgeted learning is not directly

applicable.

3.2.5 Human Prior knowledge for Text Classification

Past work in text classification that has used human knowledge on features typically as-

sumes that prior knowledge is given at the outset [115, 96, 35, 12]. The labels on features

are typically used to “soft label” instances containing those features by assigning them to

categories associated with those of the labeled features. This extra labeling is incorporated

into training via modified boosting or SVM training. The classifier may use the “soft la-

bels” by assigning low confidences to such instances or lowertheir misclassification costs

compared to those of instances labeled directly by a human. One of our feature incorpo-

ration methods uses such a technique (Section 6.3.3). Soft labeling as an idea is almost

identical to pseudo relevance feedback. Unlike the other work in text classification, we do

not expect the user to be able to specify features from prior knowledge. We expect that

our proposed interactive mode has an advantage over requesting prior knowledge from the

outset, as it may be easier for the user to identify or recall relevant features while labeling

documents in the collection and being presented with candidate features.

None of the works mentioned this far, consider the use of prior knowledge in the active

(sequential) learning setting. The work of Godbole et al [47] is similar to ours in that it

considers asking for features in an active setting. Their work however emphasizes system

issues and focuses on multi-class training rather than a careful analysis of effects of feature
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selection and human efficacy. Their proposed method is attractive in that it treats features as

single term documents that can be labeled by humans. Like theother work cited above, they

also study labeling features before documents. They do not observe much improvements

using their particular method over standard active learning in the single domain (Reuters)

they test on. We enhance their simple idea in Section 6.3.3 and find improvements in

performance.

Jones [59] also used single feature-set labeling in the context of active learning: the

user was queried on a feature rather than the whole instance.The labeled feature was taken

as a proxy for the label of any instance containing that feature, so labeling a single feature

potentially labeled many documents (similar to thesoft labeling technique discussed next).

This was found to be more economical than whole-instance labeling for some tasks. The

instances in their work consisted of only two features (a noun-phrase and a context), so

labeling one feature is equivalent to labeling half an instance. Our work differs in that our

instances (documents) contain many features (words) and wecombine both feature labeling

and document labeling.

Our study of the human factors (such as the quality of feedback and costs) is also a

major differentiating theme between our work and previous work in incorporating prior

knowledge for training. Past work has not addressed this issue, or might have assumed

experts in machine learning taking a role in training the system [96, 115, 47, 59, 35]. We

only assume a basic knowledge about the topic of interest.

3.3 Summary

We saw that the fields of machine learning, text classification and information retrieval

have significant overlap in the kinds of problems they are trying to solve, with some overlap

in techniques. How terms for feedback are obtained in text classification is typically naive

where the user marks relevant terms at the outset, prior to learning. Often the human must

go through a large list of features or must have sufficient domain knowledge to specify
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a complete list off the top of her head. There has been little consideration of techniques

that solicit feature feedback in an “active” way. The information retrieval literature on the

other hand, is rich in methods for term feedback, and some of these should be leveraged

for term feedback in text categorization. Information retrieval research on feedback tech-

niques has always kept interface issues in mind, therefore more easily bridging the gap

between theory and practice. Machine learning on the other hand has much more variety in

understanding how to choose examples for feedback through methods like active learning,

whereas information retrieval has typically relied on top-ranking documents for feedback.

We think a new approach which takes lessons from these two fields will result in much

better performance for text categorization.
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CHAPTER 4

METHODS AND MATERIALS

Much of this thesis is experimental and builds on certain standard text classification

techniques like support vector machines (SVMs). We describe these techniques and al-

gorithms in this chapter, diving into detail for SVMs. This level of detail is necessary

to understand better the methods we used to explore the importance of feature selection

(Chapter 5) and to understand the tandem learning algorithmdeveloped in Chapter 6. We

describe our data sets and evaluation measures in Sections 4.2 and 4.3. We also perform a

sanity check of the basic building blocks of our system – SVMsand SVM active learning

– in Section 4.4 to make sure they compare well with previously published results.

(a) Linear Classifier (b) Maximum margin Classifier

Figure 4.1.Linear classifiers.

4.1 Text Classification using Support Vector Machines

Support vector machines are a classification technique thathave gained immense pop-

ularity in the recent past [112] and particularly so for textclassification [57]. The main

idea is to separate the classes by a hyper-plane that maximizes the margin between the two
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classes. Although the problem is formulated for linear hyper-planes, this is not a limitation

as problems that are not intrinsically linear can be converted to linear problems through

the use of a kernel [97]. Kernels transfer the problem to a high dimensional space where

a linear hyper-plane is usually effective. A linear classifier is usually sufficient for text

classification because of the intrinsic high dimensionality of text. We further motivate the

choice of SVM as a base classifier in the next section, followed by the problem formulation

for hard-margin and soft-margin classifiers. In the end of this section we describe active

learning with support vector machines.

4.1.1 Why Support Vector Machines?

For many linearly separable problems there can be more than one hyperplane that sepa-

rates the data (see Figure 4.1(a)). The simplest algorithm for a linear classifier is thepercep-

tron algorithm [92]. The perceptron learns a linear function of the formf(X) = w ·X + b.

It is a mistake-driven, incremental algorithm: when a new training example is added, the

weight vector is adjusted only if it is misclassified. Therefore, the classifier is trained fewer

than|T | times, whereT is the training set. The correction to the weight vector is a simple

adjustment of the formwi = wi + ηYiXi, for every instanceXi that is misclassified. The

parameterη called the learning rate.

A support vector machine (SVM) on the other hand, is a maximummargin classifier

that tries to find the hyperplane that results in a maximal separation of the two classes

(see Figure 4.1(b)). The margin is the distance between the positive example closest to

the hyperplane and the negative example closest to the hyperplane, with the distance being

measured along a line perpendicular to the hyperplane. Although the motive for a margin

that is maximal seems intuitive, it is also well motivated bythe Vapnik-Chervonenkis theory

that states that such a hyperplane minimizes expected test error [112].

Support vector machines have been proven to be effective in many domains, and espe-

cially so for text classification and filtering [57, 22]. Although there has been some recent
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work that has shown that decision trees are better than SVMs on certain text classifica-

tion tasks, and that SVMs match the performance of a decisiontree only after aggressive

feature selection [46], going by their generally good performance, we choose an SVM as

the primary tool for investigation. Furthermore much research is being done for SVMs in

the areas of incremental training of support vector machines [39] and concept drift [64],

both of which are particularly useful given the dynamic content of document collections,

allowing for future research that combines our techniques with these new ones. Uncertainty

sampling with SVMs also provides a well understood framework for incorporating ideas

from active learning [107].

4.1.2 Problem Formulation

Given a training set composed oft examples and the associated class information for

each example, the objective is to obtain a hyperplane that best separates the data. More

formally, the training setT consists oft example and class-label pairs (T = {(X1, Y1)...

(Xt, Yt)}) (Refer to the trainclassifier subroutines in Figures 2.1 and 2.2). EachXi is

represented as a vector,{xi,1...xi,N}, of N features. The classes belong to one of{+1,−1}

(i.e.,Yi ∈ ±1) with +1 denoting the label associated with an “on-topic” document and−1

denoting an “off-topic” document.

A hyperplane is given by the pair(w, b), with w being the direction vector of the hy-

perplane andb the bias. If the data is linearly separable then we can find a pair (w, b) such

that:

Yi(w · Xi + b) ≥ 1 ∀i = 1...t (4.1)

Note that ifw andb are scaled by the same quantity, the decision surface given by Equa-

tion 4.1 is unchanged. Acanonical hyperplaneis defined as the hyperplane corresponding

to the unique pair(w, b) when the following constraint is imposed:

min
i=1...t

|w · Xi + b| = 1 (4.2)
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Normalizing the equation of the hyperplane in this way to itscanonical form makes

certain calculations convenient. The set of hyperplanes or(w, b) pairs that satisfy the con-

straints in equation 4.1 and 4.2 constitute theversion space.

4.1.3 The Hard Margin Classifier

The width of the margin can be easily shown to be2/|w| (in the canonicalized case)

and given that the objective is to maximize this quantity, the optimization problem can now

be stated as:

min
w,b

φ(w) =
1

2
wTw

subject to Yi(w
TXi + b) ≥ 1 i = 1...t (4.3)

The above optimization problem can be solved using quadratic programming by con-

structing the Lagrangian as follows:

L(w, b, Λ) =
1

2
||w||2 −

t∑

i=1

λi[Yi(w · Xi + b) − 1] (4.4)

whereΛ = (λ1, ..., λt) is a set of Lagrange multipliers corresponding to the constraints in

Equation 4.3. More on the theory of Lagrange multipliers canbe found in any standard

convex optimization book [20]. Equation 4.4 has to be minimized with respect tow and

b and maximized with respect toΛ (λi ≥ 0). The solution can be found through standard

quadratic programming optimization techniques which we will not outline here [97]. We

use the implementation in the LibSVM toolkit [24].

To predict the class of an unlabeled instanceYj, we simply compute the following

quantityY ′
j (the prediction).

Y ′
j = sgn(

t∑

i

YiλiX
T
i xj + b) (4.5)
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This summation can be computed rather quickly because most of theλi values turn out

to be zero. In fact the values are non-zero only for thesupport vectors– the instances that

lie on the margin (See Figure 4.1(b)). Theλi’s control the extent of influence of each of the

support vectors, with a more influential example having a greater value ofλi.

− ξi

2/|w|

Figure 4.2.Soft Margin Classifier

4.1.4 Soft Margin Classifier

In reality all the constraints in Equation 4.3 will not be satisfiable, with data looking

more like in Figure 4.2. In order to account for the violationof constraints, a set oft slack

variables{ξi}
t
i=1, each corresponding to the classification error for a training instance is

introduced. The optimization problem of 4.3 now becomes oneof maximizing the margin

(as before) and minimizing error. The modified problem is given as:

min
w,b,Ξ

φ(w, Ξ) =
1

2
||w||2 + C

t∑

i=1

ξi

subject to Yi(w · Xi + b) ≥ 1 − ξi

ξi ≥ 0 (4.6)

The constantC is a user specified constant, often referred to as the misclassification

cost.C is typically obtained through cross-validation. A value of10 is found to be effective

for text-classification problems [57]. The Lagrangian for the soft margin classifier now

becomes:
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L(w, b, Λ, Ξ, Γ) =
1

2
||w||2 −

t∑

i=1

λi[Yi(w · Xi + b) − 1]

+

t∑

i=1

γiξi + C(

t∑

i

ξi) (4.7)

Theλi values are constrained to lie between0 andC (0 ≤ λi ≤ C) for the soft margin

classifier. As with the hard margin classifier, theλi values are non-zero only for support

vectors. However, this time the values are bound (upper bound) by the user specified con-

stantC. It turns out that we can easily specify a differentC for different training examples,

and in this way control the maximum influence of a given training example. The same

QP solver in the LibSVM toolkit can be used for a problem wheredifferent examples have

different misclassification costs. We will exploit this fact in the design of our algorithm in

Chapter 6

4.1.5 Active Learning in Support Vector Machines: Uncertainty Sampling

Uncertainty sampling [75] is a type of active learning in which the example that the

user (teacher) is queried on is the unlabeled instance that the classifier is least confident

about. When the classifier is an SVM, unlabeled instances closest to the margin are chosen

as queries [107]. This is one way of implementing theInstanceSelectionsubroutine in

Systems 1 and 2 (Figures 2.1 and 2.2 respectively). If an uncertain instance lies exactly on

the hyperplane it results in a reduction of the version spaceby exactly half [107]. If we can

keep querying the user on examples that lie on the hyperplanewe can decrease the number

of training examples exponentially (by reducing the version space by half with each query)

when compared to the case when the training data is obtained through random sampling.

In reality, there may not be an example exactly on the hyperplane at each round of active

learning, and hence we do not see the theoretical exponential decrease, but nevertheless
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for many text classification problems, uncertainty sampling is much better than random

sampling [75].

4.2 Data

Our test bed for this thesis comes from four standard domains. The first dataset consists

of the 10 most frequent classes from the Reuters-21578 corpus [91]. The 12,902 documents

are Reuters news articles categorized based on topics such as earningsandacquisitions.

The Reuters corpus is a standard benchmark for text categorization.

The second corpus is the 20-Newsgroups dataset collected byLang [68]. It has about

20,000 documents which are postings on 20 Usenet newsgroups. The corpus has a large

vocabulary compared to the Reuters corpus (news articles tend to be more formal and terse)

and it has many documents in each category which are tangentially related to the category’s

topic. The topics reside in a hierarchy with broader topics like sportsandcomputersat

the top level which are further divided into narrower subdivisions. For example,sports

encompasses more focused groups likebaseballandhockey. There are 20 categories at the

lowest level of the hierarchy.

The third corpus is the TDT3 corpus [3] that has a 101K documents in 3 languages

from both broadcast and news-wire sources. The Linguistic Data Consortium (LDC) pro-

vides the output of an automatic speech recognizer (ASR) forthe broadcast news sources.

Similarly for documents not originally in English they provide corresponding documents

machine translated (MT) into English. We use the ASR and machine translated documents

in our experiments in addition to the original English text.The noise in the ASR and ma-

chine translation output makes the TDT corpus particularlydifficult to work with. The

topics in the TDT corpus are based on news events. Thus,hurricane Mitchandhurricane

Georgewould be two different topics and developing a classifier to separate the two classes

is seemingly a more difficult problem. The two classes would have a lot of common words

especially with regard to lives lost, rescue operations etc. For example, the wordsstormand
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damageeach respectively occur in 50% and 27% of the documents onhurricane Mitchand

in 75% and 54% of the documents onhurricane George. These common words are proba-

bly useful to detect a generic topic likehurricanebut are not that useful in discriminating

hurricane Mitchfrom hurricane George. However, we think it would be fairly trivial for

a human to point outMitch andGeorgeas two keywords of importance which could then

accelerate learning. The wordMitch occurs in 42% documents onhurricane Mitchand in 0

documents onhurricane George. Similarly, the word George appears in 0.05% documents

on the topic ofhurricane Mitchand in 88% of the documents on hurricane George.

The fourth corpus is the larger Reuters corpus [74] consisting of 810,000 documents

in the English language covering a broad range of topics. Thecategories are labeled by

Reuters and the labeling is not exhaustive, that is, only topics of interest to Reuters cus-

tomers are labeled. There are a total of 104 categories, witheach category being a node in

a topic hierarchy.Share listing, reservesetc., are examples of topic categories.

One document can belong to multiple categories in the Reuters and 20 Newsgroups

corpora, while in the TDT corpus a document can be associatedwith only one category.

The Reuters-21578 corpus and 20 Newsgroups corpus are the main corpora we use for

ablation experiments throughout. The final algorithm is also tested on the TDT3 and RCV1

corpora. For some of our experiments we used additional datasets. We describe them in

the relevant chapters.

Documents were preprocessed using the Rainbow toolkit [81]to extract features by

discarding stopwords and normalizing them (lowercase, stemming). Features that occurred

fewer than 5 times in a dataset were discarded.

4.3 Evaluation

In this section we explore measures to quantify effectiveness and efficiency (the speed

of learning) of active learning.
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4.3.1 F1 for Effectiveness

The simplest and most popular metric for measuring text classification performance is

accuracy, defined as

A =
number of documents correctly classified

total number of documents
(4.8)

Many of the problems described in section 4.2 have high classskew, that is, the ratio of

positive class to negative class for our problems ranges from 0.01% to 42%. For a class

skew as low as 0.01%, a naive classifier that classifies all instances as negative achieves

almost 100% accuracy. Therefore, we need a metric that concentrates on how much of the

relevant material has been filtered. One such measure isprecision(P ) which takes into

account how many of the documents declared on-topic were truly relevant and is given as:

P =
number of relevant documents detected
number of documents detected on topic

(4.9)

The second measurerecall (R) measures how many of the relevant documents were actu-

ally detected to be on topic.

R =
number of relevant documents detected

number of relevant documents
(4.10)

There is an inverse relationship betweenP andR: a technique that predicts very few pos-

itives will have high precision, but low recall and vice-versa. We therefore cannot use

precision or recall alone and need a measure that combines the two. F1 is one such mea-

sure and is given as:

F1 = 2PR/(P + R) (4.11)

We denote effectiveness of a model trained ont training examples byF1t. In our

experimentst is typically small, taking values as low as 2, 7, 12 and so on.

41



4.3.2 Efficiency

The deficiencymeasure was proposed by Baram et al [10] as a measure of the speed

of an active learning algorithm, with the aim of comparing different active learning algo-

rithms. Baram et al. defined deficiency in terms of accuracy. Since accuracy is not a reason-

able measure of performance for the classification problemswe have chosen, we modify the

definition of deficiency, and define it in terms of theF1 score. For deficiency a lower value

is better. As we also report on theF1 scores, for which higher values are better, for consis-

tency and easier interpretation of our charts and tables we defineefficiency= 1−deficiency.

Efficiency has a range from 0 to 1, and a larger value indicatesa faster rate of learning.

Thus, in all our reports higher values are better.

Let F1t(RAND) be the averageF1 achieved by an algorithm when it is trained on

t randomly picked instances andF1t(ACT) be the averageF1 obtained usingt actively

picked instances.

Efficiency,ET is defined as:

ET = 1 −

∑T

t=2
(F1M(RAND) − F1t(ACT))

∑T

t=2
(F1M(RAND) − F1t(RAND))

F1M(RAND) is the F1 obtained with a large number (M) of randomly picked in-

stances. The valueF1M(RAND) represents the performance of a classifier with a large

amount of training data, and can be considered the optimal performance under supervised

learning. With large amounts of training data, we expect theperformance of a classifier

trained using active learning to be about the same as a classifier trained using random

sampling. However, we would like active learning to approach this level asquickly as

possible. The metric therefore takes into consideration how far the performance is from

the optimal performance by computing the differenceF1M(RAND) − F1t(ACT) and

F1M(RAND) − F1t(RAND). The metric compares this difference whent documents

have been actively picked to the difference whent documents have been randomly picked

for increasing number of training documentst.
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Since we are concerned with the beginning of the learning curve, we stop afterT = 42

number of documents have been sampled. For expedience, we did not measure perfor-

mance at every point from 2 to 42 labeled documents, but compute the summation at

discrete intervals, measuringF1 after each additional five documents have been labeled:

t = 2, 7, 12, 17...42. For this thesis we takeM = 1000, that is, we consider the optimal

random-learning performance to be attained after the classifier has seen 1000 labeled in-

stances. In our experimentsF1t(•) is the averageF1 computed over 10 trials. In addition

to efficiency we reportF1t for some values oft.

To understand the intuition behind efficiency, we can draw the active learning curve

by plotting F1t(ACT) for increasing values oft, as shown in Figure 4.3. Similarly we

can draw the random learning curve by measuringF1t(RAND) for increasing values oft.

F1M is a straight line representing the best achievable performance. Then efficiency is one

minus the ratio of the solid colored area to the spotted area.The higher the efficiency, the

better the active learning algorithm. We aim to maximize both efficiency andF1. In some

of our experiments we obtain efficiencies exceeding 1. This is due to using a finiteM : it

is possible that a classifier produced by active learning on 42 or fewer instances may do

better than a classifier trained on a random sample of a 1000 instances.

4.4 Testing the Base Classifier

We compared the base SVM classifier and the implementation ofuncertainty sampling

we use to previously published baselines on the 20 newsgroups corpus. On conducting

experiments similar to those of Bekkerman et al. [13] we obtain a Macro averaged BEP

(Precision at the point where Precision=Recall) of 82.8% for the 20 newsgroups corpus.

Bekkerman et al., obtained a slightly higher BEP of 85.6% (See Table 5 of their paper).

However, one must note that they employed feature selectionwhich we did not. In spite

of that, the performance is comparable, indicating that SVMs are robust in the presence of

many irrelevant and redundant features.

43



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30  35  40

F1t

t

Efficiency =   1 -  --------------Random Sampling 
Curve

Active Learning 
Curve

F11000

Figure 4.3. The figure illustratesefficiency, the performance metric which captures rate of
learning. The figure on the right illustrates thelearning surface. The plot is a measure of
F1 as a function of the number of features and training documents. The dotted line traces
the region of maximumF1. With few training documents, aggressive feature selection (few
features) is needed to maintain high accuracy. The thick dark band illustrates traditional
active learning.

We then compared the performance of vanilla uncertainty sampling (active learning)

from Tong’s dissertation [108]. We try to emulate the experimental conditions described in

Section 4.1.3 of that work. Uncertainty sampling with SVMs is called the “Simple” method

in that work. The results of our implementation (Figure 4.4)compare quite well with theirs

(Figure 4.5 in Tong’s thesis [108]).

4.5 Summary

In this Chapter we reviewed methods and materials used in this thesis. We use sup-

port vector machines, uncertainty sampling, and fairly standard preprocessing to build an

underlying framework which compares well with the state of the art in text classification

and active learning. We also outlined the measures used to quantify the performance of our

methods laying out the complete experimental framework forthis thesis.
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CHAPTER 5

ORACLE EXPERIMENTS

Equipped with the intuitions developed in Chapter 1, and thetools developed in Chapter

3, we now explore the benefits of human aided feature selection in active learning. We leave

the question of how those features may be obtained for later (Section 6.2) and rather try

to determine the extent of the gains we can get from feature selection using an oracle in

Section 5.2. We then explore why we obtain these gains by asking how feature selection

impacts the underlying learning algorithm in Section 5.3.

In this Chapter we seek the answer the following questions:

• Can feature feedback significantly boost active learning performance? In Section

5.2 we find that feature feedback using an oracle helps improve active learning per-

formance, especially in the early stages of learning, when the number of labeled

documents is as few as 7 and 22. The impact of feature selection decreases as the

number of labeled examples increases.

• Should we use feature feedback during the entire active learning process (both in-

stance selection, and model selection) or only for model selection? In Section 5.3.2

we find that most of the benefit of feature feedback is for modelselection, although

there is some benefit for instance selection.

5.1 Design of the Approximate Feature Oracle

The (feature) oracle in our experiments has access to the labels of all documents in

the data-set (hence the name oracle) and uses this information to return a ranked list of

46



features sorted in decreasing order of importance. Information gain is a common measure

for ranking features and has been found to be quite effective[98, 21], and is easy and quick

to compute. Information gain is given as:

IG =
∑

c∈{−1,+1}

∑

τ∈{0,1}

P (c, τ) log
P (c, τ)

P (c)P (τ)

wherec denotes the class label (+1 or -1) from section 4.1, andτ is 0 or 1 indicating the

presence or absence of a feature respectively. In the oracleexperiments in this chapter,

we cut off the ranked list (therefore obtaining a feature subset) at the point that yields the

highest average active learning performance.

5.2 Extent of Speed Up Possible: Oracle Experiments

Following the algorithm for System 3 (Figure 5.1), letf = N (the total number of fea-

tures) and let us assume that the oracle selects thek most important features (by information

gain) in Step 1.b. The setF is used to initialize the model in Step 2. In our implementation

this initialization informs the model to ignore all features not inF during training. Ran-

dom sampling (Step 3.a), in this particular implementation, does not use any of the feature

information or the initial model. The model is then trained on the initially picked instances

(Step 4). Since the model has been initialized with the setF , the trainclassifier subroutine

zeros out the values of all features not inF for each of the training instancesXi, 1 ≤ i ≤ t.

We now perform active learning on the instances in this reduced feature space (Step 5). We

evaluate these experiments at many points in the two-dimensional space of number of fea-

turesk versus number of labeled documentst by measuring the F1 score:F1t(ACT, k)1.

We can similarly measure performance in the reduced featurespace when instances are

1Note the slight difference in notation from Chapter 4. The additional parameterk denotes the number of
features used by the classifier. Note thatF1t(ACT) = F1t(ACT, N)
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picked randomly. Thus we can compute efficiency in the reduced feature space asET (k).

Whenf = k = N the algorithm reduces to traditional active learning (Figure 2.1).

When System 3 is used with a user instead of the oracle it is equivalent to a scenario

where prior knowledge is used to initialize the classifier [96, 115, 47, 59].

Use of Feature Feedback Before Active Learning

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances),init size(number
of random feedback iterations)
Output:MT (Model)

t = 1; U0 = U ; M0 =NULL;
1.a.{P1, ..., Pf} = FeatureSelection(U0)

b. Oracle selectsF = {F1, .., Fk} ⊆ {P1, ..., Pf}
2.M0=IncorporateFeatureFeedback(M0, {F1, ..., Fk})
3. Whilet ≤ init size

a. 〈Xt,Ut〉=InstanceSelection(Mt−1, Ut−1, random)
b. Oracle assigns labelYt to Xt

c. t + +
4. Mt = train classifier({〈Xi, Yi〉|i = 1...t}, M0)
5. Whilet ≤ T

a. 〈Xt,Ut〉=InstanceSelection(Mt−1, Ut−1, uncertain)
b. Oracle assigns labelYt to Xt

c. Mt = train classifier({〈Xi, Yi〉|i = 1...t}, Mt−1)
d. t + +

ReturnMT

Figure 5.1. An active learning system where feature selection is done before instance se-
lection (System 3). This is one of the two set-ups used in our oracle experiments described
in Section 5.2. The second set-up is shown in Figure 5.7.

5.2.1 Experimental Setup

We performed our experiments on the Reuters-21578 and 20 Newsgroups corpora. We

consider each topic as a one-versus-rest classification problem, giving us a total of 30 such

problems (listed in Appendix A). We also pick two pairs of easily confusable classes

from the 20-Newsgroups domain to obtain two binary classification problems viz.,baseball
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vs hockeyandautomobiles vs motorcycles. In all we have 32 classification problems for

experiments in this chapter.

5.2.2 Improvements to Active Learning with Feature Selection
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Figure 5.2. The figure illustrates thelearning surface. The plot is a measure ofF1 as a
function of the number of features (k) and training documents (t). The dotted line traces the
region of maximumF1. With few training documents, aggressive feature selection (few
features) are needed to maintain high accuracy. The thick dark band illustrates traditional
active learning.

Figure 5.2 shows a plot ofF1t(ACT, k) for different values of the number of features

k and number of labeled training instancest, for theearningscategory in Reuters. The

dotted curve traces the maximumFt for each value oft. Thex, y andz axes denotek, t

andF1t(ACT, k) respectively. The number of labeled training instancest ranges from 2

to 42 in increments of 5. The number of features used for classification k has values from

33, 378 (all features),33378/2, 33378/4 to 32. The dark band represents the case when all

features are used. This method of learning in one dimension is representative of traditional

active learning. Clearly when the number of documents is few, performance is better when

there is a smaller number of features. As the number of documents increases the number

of features needed to maintain high accuracy increases. From the figure it is obvious that
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we can get a big boost in accuracy by starting with fewer features and then increasing the

complexity of the model as the number of labeled documents increase.

Table 5.1 captures the behavior of all the problems in the Reuters corpus when there

is an oracle to do the feature selection. The second column (k = N) in Table 5.1 shows

the efficiency obtained using uncertainty sampling and allN features. The third column

(k = n) indicates the average efficiency obtained using uncertainty sampling and a reduced

subset ofn features. The feature set sizen at which this efficiency is attained is shown

in column four. For each classification problem, we identifythe feature set size which

optimizes the efficiency, that is, optimizes the rate at which classification performance

under active learning approaches learning with all of the data. This optimal feature set size

for active learningn is given by

n = argmaxkE42(k)

Figure 5.3 shows the efficiencies atE42(N) andE42(n) for the individual problems in

the three corpora. In many cases,E42(N) is much less thanE42(n).

Column 5 (k = N) in Table 5.1 shows the value ofF17(ACT, N): the F1 score with

seven instances selected using active learning, when all features are used. Column 6 shows

the averageF17(ACT, m) using a reduced feature subset. As for efficiency, the best feature

subset size (m) for each classification problem is obtained as the feature subset size at

which F17(ACT, k) is maximum. For example in Figure 5.2 at 7 instances the bestF1 is

obtained with 512 features. Figure 5.4 shows the values ofF17 computed using all (N)

features and using a reduced subset of (m) features for individual problems.

Columns 7, 8, and 9 in Table 5.1 show similar results forF122(ACT, k) with the best

feature subset size att = 22 being denoted byp. The values for individual problems is

illustrated in Figure 5.5. The last column showsF11000(RAND).

All 32 of our classification problems exhibit behavior as in Figure 5.2. For all clas-

sification problems,n, m andp are less than the maximum number of features. In most
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E42(k) F17(ACT, k) F122(ACT, k) F11000

Dataset k k n k k m k k p
↓ = N = n = N = m = N = p

Reuters 0.59 0.68 11179.3 0.36 0.48 8481.1 0.580 0.66 11851.6 0.73
20 NG 0.40 0.66 41.5 0.07 0.22 48.3 0.21 0.29 487.1 0.45

Bas vs Hock 0.29 0.55 25 0.59 0.70 25 0.78 0.83 200 0.96

Auto vs Mot. 0.68 0.32 125 0.43 0.72 62 0.76 0.86 31 0.90

Table 5.1.Improvements in efficiency,F17 andF122 using an oracle to select the most important features (Figure 5.1). We show results
for each metric atN (total number of features for a particular dataset) and at feature set sizes for which the scores are maximized (n,
m andp for E42, F7, andF22 respectively). For each of the three metrics, figures in boldare statistically significant improvements
over uncertainty sampling using all features (the corresponding columns with feature set size of N). We see that with only 7 documents
labeled (F17) the optimal number of features is smaller (8481.1 on average), while with more documents labeled, (22 forF122) the
optimal number of features is larger (11851.6 on average). When 1000 documents are labeled (F11000) using the entire feature set leads
to better scores with theF1 measure. This suggests that our best active-learning algorithm would adjust the feature set size according
to the number of training documents available. Numbers in bold are statistically significant (using a two-tailed t-testat the 0.05 level of
alpha) over the preceding column.
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Figure 5.3. Improvements in efficiency using an oracle to select the mostimportant fea-
tures. For each problem we show efficiency atN (total number of features for a particular
dataset) on the right and efficiency at the feature set sizes for which the efficiency is maxi-
mized (n) on the left. The class keys are given in Appendix A.
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casesm ≤ p (that is, the number of features optimal for 7 labeled instances,m is less than

the number of features optimal for 22 labeled instances,p) meaning that as the number

of labeled instances (t) increases, the complexity of the classifier also needs to increase.

For 20-Newsgroups, for all classes we observe that efficiency, F17 andF122 are best at

very small feature subset sizes. For Reuters there are classes for which a large number of

features become important very early (for example:trade).

5.3 Why is feature selection useful?

In the next sub-section we try to understand our results of the previous section – that

with few training examples, few well selected features gives the optimal accuracy, and that

with increase in the amount of training data feature selection becomes less important – in

the context of similar research in statistics. We will then conduct experiments to determine

the part of the active learning process that feature selection is aiding and thereby boosting

classifier performance.

5.3.1 Mitigating Hughes Phenomenon

There exists plenty of literature in statistics that shows that when there are few training

samples (t is small), as more features are added (k is increased), then the accuracy of the

classifier increases up to a point after which it starts decreasing [54]. Ift is large, as more

features are added, the accuracy increases up to a point and then shows no change. This is

called Hughes’ phenomenon [53] and it suggests that when thenumber of training instances

is small, the system needs to use a smaller number of features. This problem has also been

referred to as the “curse of dimensionality” [17].

Jain and Chandrasekaran [54] provide a comprehensive overview of the early research

in statistics that takes into account dimensionality and sample size considerations in pattern

recognition. They first discuss the peaking of classifier performance shown by Allais [2]

for linear classifiers. Consider thatf(X) is a linear predictor ofY of the formf(X) =
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w ·X + b. Allais assumed that the joint distribution ofY andX was multivariate Gaussian

and a maximmum likelihood (ML) estimatorg(X). He compared the mean squared error

(MSE) of the ML predictor with that of an ideal predictor. TheMSE is given as:ǫ =

E[Y − g(X)]2. Allais then derived the expectation of the MSE as function of the number

of training examples (t) and the number of features (k, k ≤ N) used to represent the data.

E(ǫ) = δ2(
t + 1

t
)(1 +

k

t − k − 2
) for k ≤ t − 2

= ∞ for k = t − 1

= undefined for k ≥ t (5.1)

δ is the ideal MSE. The fractional increase in expected MSE when the sample is of size

t is approximatelyk/(t − k − 2). Whenk << t the fractional increase isk/t. It is clear

that one would want thatk << t, which is similar to our empirically arrived conclusion

of the previous section. The question then is whether equation 5.1 is relevant when the

assumptions about the estimation procedure and the data distribution made by Allias are

removed.

Hughes [53] then studied the behavior of a finite-sample Bayesian classifier with in-

creasing dimensionality. In the Bayesian setting, the addition of features can only add to

the information of a classifier, and as long as the old set of features is completely recover-

able from the new set of features, there should be no decreasein accuracy. Hughes assumed

a two-class problem and a discrete pattern measurement environment. Other than that, no

Gaussian or statistical independence assumptions were made. Hughes estimated a quantity

called the mean accuracy, a function oft andk. Assuming the apriori distribution of each

class to be equal, he found that, for a fixed value oft, ask increased, the mean accuracy

increased till some valuek = kopt, after which it started decreasing. Whent = ∞, we

have complete information, and as expected, peaking does not occur. Figure 5.6 illustrates
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Hughes’ phenomenon by plotting his estimated mean accuracyfor different values oft, for

the simple case when the apriori distributions of both classes are equal.

Hughes’ result led to a number of investigations and while there have been arguments

about the estimated mean accuracy according the Hughes’ formula (plotted in figure 5.6),

it is generally accepted that peaking occurs in classifiers [60]. Foley [44] then went on

to investigate whether there is any general rule of thumbk/t ratio that the designer of a

pattern recognition system could use. He demonstrated thatthe training set error rate is an

extremely biased estimate of the test set error rate, if the ratio k/t is less than three. His

results which are empirical, are based on the assumption that the underlying distribution is

Gaussian.

Hughes’ phenomenon can also be explained using the bias variance tradeoff. With a fi-

nite number of training examples, when a new feature is added, the Bayes error decreases,

but now more parameters need to be estimated from the same number of samples. This in-

creases variance. The degradation in performance due to theaddition of features is because

the increase in variance is more than the decrease in the Bayes classification error.
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Figure 5.6.Mean accuracy falls with increasingk.

The problem with all past work studying Hughes phenomenon instatistics is that they

have either used synthetic data [44] and have made certain assumptions about the underly-

ing distributions. Whether such behavior is demonstrated in natural domains like text and
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images is unanswered. The work of Shahshahani et al [99] is similar to ours, in that they

investigate Hughes phenomenon in a real world domain, albeit a different one. Their work

is in the domain of remote sensing, where the data consistingof spectral images of the earth

needs to be classified into categories such as soil, wheat etc. They use the spectral bands of

the images as features and address the question whether fewer bands (smallerk) need to be

used whent is small. As expected, they find the answer to be in the affirmative. In addition,

they showed that Hughes’ phenomenon can be mitigated in the presence of unlabeled data.

The advantage of Shahshahani et al.’s domain was that they already had an ordering

determining the importance of features (the first spectral band has the most information,

the second less, and so on), hence they did not have to resort to explicit feature selection.

In text we have no such natural ordering. We used the oracle togenerate the required

ordering and demonstrated that Hughes’ phenomenon does indeed occur in domains of text

classification. Another difference from all previous work (both the statistics literature and

that of Shahshahani et al [99]) is that we demonstrated Hughes phenomenon in an active

learning setting. In our setting there is access to some (notall) of the unlabeled data (the

pool U). Hughes phenomenon still occurs. Therefore in filtering-like applications where

new data keeps arriving and we do not have access to such a large volume of unlabeled

data, we still need an oracle for feature selection.

5.3.2 Feature Selection: Aiding Model Selection or Instance Selection?

In the system in Figure 5.1 feature selection is done prior toactive learning. We now

implement a simple variation of that experiment. In this experiment, active learning pro-

ceeds normally with all the features available, but after all the instances are picked (after

T iterations), the best set ofk features, that improve the resulting trained classifier the

most, are picked and the resulting performance is reported.This is shown schematically

and with pseudo-code in Figure 5.7. We note that even when starting with the same initial

set of labeled instances, the classifiers learned during active learning, hyperplanes in our
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Use of Feature Feedback After Active Learning

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances, initsize (number
of random feedback iterations)
Output:MT (Model)

t = 1; U0 = U ; M0 =NULL;
1. Whilet ≤ init size

a. Xt = InstanceSelection(M0, Ut−1, random)
b. Oracle assigns labelYt to Xt

c. t + +
2. Mt = train classifier({〈Xi, Yi〉|i = 1...t}, Mt−1)
3. Whilet ≤ T

a. 〈Xt,Ut〉 = InstanceSelection(Mt−1, Ut−1, instance)
b. Oracle assigns labelYt to Xt

c. Mt = train classifier({〈Xi, Yi〉|i = 1...t}, Mt−1)
d. t + +

4. a.{P1, ..., Pf} = FeatureSelection(MT , UT )
b. Oracle selectsF = {F1, .., Fk} ⊆ {P1, ..., Pf}

5. MT =IncorporateFeatureFeedback(MT , {F1, ..., Fk})

ReturnMT

Figure 5.7. An active learning system where feature selection is done after instance selec-
tion (System 4). This is one of the two set-ups used in our oracle experiments described in
Section 5.2. The first set-up is shown in Figure 5.1.

case, in the Systems 3 and 4 may be different as they are learned in different spaces (using

different feature subset sizes). Besides, the set of labeled instances is small, so the learn-

ing algorithm may not be able to find the best “unique” hyperplane. In turn, the instances

picked subsequently during active learning may differ substantially as both the spaces the

instances reside in and the learned classifiers may be different. The classifier learned in

the feature reduced space may have better accuracy or lead tobetter choice of instances

to label during active learning, though this is not guaranteed or the benefits may be negli-

gible. In short, the trajectory of the active learning process, that is, the instances labeled

and classifiers learned, can be different in the two regimes,which may lead to substantially
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different active learning performance. In the next sectionwe provide the details of these

experiments.

The difference between Systems 3 and 4 is in that feature selection precedes active

learning in the former, and the best feature subset is pickedin a retrospective manner,

while it follows active learning in the latter. The two systems when used with oracle feature

selection will help us understand the extent to which oraclefeedback aids different aspects

of the active learning process. Figure 5.8 compares the results of using System 4 and system

3 on the Reuters corpus.

There is hardly any difference between systems 3 and 4, especially on F17. All other

datasets exhibit the same behavior. TheF122 andE42 values are slightly better for the

method that does feature selection before active learning (system 3) but it is not signifi-

cantly different (determined using a t-test at the 95% levelof confidence) from the method

where feature pruning is done after instance selection (system 4). Thus, our experimental

results suggest that there is some benefit for instance selection but most of the benefit from

oracle feature selection comes from improving the model learned (model selection).

Hypothesis 1

We showed that aggressive feature selection was needed in the early stages of learning.

We also showed that most of the benefit due to feature selection was in model selection

though there was some benefit for instance selection in the active learning process as well.

At this point we have shown sufficient evidence to prove the first of our three hypothe-

ses (Section 1.5) – that there exists a set of features for which if the learner is provided

relevance information, the speed of active learning can be significantly improved.

5.4 Summary

With limited labeled data, there is little evidence to prefer one feature over another, so

the learner has to spread the feature weights more or less evenly on many features. In other
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Figure 5.8. F17, F122 and efficiencyE42 for the Reuters corpus when feature selection
is done before active learning (system 3) and when feature selection is done after active
learning (System 4).
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words, the learner has to remain conservative. Feature/dimension reduction by the oracle

allows the learner to “focus” on dimensions that matter, rather than being overwhelmed

with numerous dimensions right at the outset of learning. Oracle feature reduction allows

the learner to assign higher weights to fewer features. Thistends to improve accuracy, since

the oracle selected features are the actual most predictivefeatures. Oracle feature reduc-

tion may also improve instance selection as the learner obtains instances to query that are

important for finding better weights on the features that matter. As the number of labeled

instances increases, feature selection becomes less important, as the learning algorithm be-

comes better capable of finding the discriminating hyperplane (feature weights) on its own.

This is expected given such limited training set sizes, and is consistent with most previous

findings [98].
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CHAPTER 6

ASKING FOR AND INCORPORATING FEATURE FEEDBACK

The experiments in Chapter 5 relied on the existence of an oracle for feature selection,

either prior to the instance selection or after it. Featuresnot selected by the oracle were

dropped from the model. A human judging relevance on features at the outset requires

domain knowledge and we do not want to burden the user with thetask of coming up with

a complete set of relevance judgments on features prior to the learning. Humans may not

be able to determine relevant features in this way due to lackof knowledge or even because

it is too tedious to do so. In preliminary experiments we found that users have about

60% accuracy relative to the oracle [48]. Often labeled examples may point to certain

features that the user cannot gauge as relevant, as actuallybeing relevant. For example,

if the learner is able to discern from the labeled examples that ct is a good feature for

theearningscategory but a human does not realize this (say because she thinks ct stands

for “Connecticut”), the learning algorithm should not zero-out the value of this feature.

Therefore, the proposed system to use in practice with real users relies on a “soft labeling”

of user marked features.

The above example also motivates an interleaved approach ofmarking features and

documents. Documents provide context for the features, disambiguating them, making the

feature labeling process easier for humans (In fact this idea was suggested by one of our

users in the same user study). One way to implement such an interleaved approach would

be to ask the user to highlight relevant features in documents that she labels. We found this

approach to work quite well for a news-filtering task [88] (also discussed briefly in Section

7.6.1). However, we think that such an approach requires a much more careful reading of
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the document than would be needed to merely assess a document’s category. Instead we

opted for an approach where the user is asked to label a document and a set of features

simultaneously. We choose to implement that as an interfacethat has a main pane with the

document to be judged and a side-pane with a checklist of features to be labeled. In such an

implementation, we believe, the information the learner isseeking is clearer to the human.

Our tandem learning system proposed in Section 2.2, described in technical detail below,

allows for such an approach.

6.1 The Tandem Learning System

The tandem learning algorithm (Figure 2.2) has two key stepsthat we had not elaborated

on in Chapter 2: (1)FeatureSelection(Step 2.d.i), where a set of features for the user to

label are chosen by the system, and (2)IncorporateFeatureFeedback(Step 2.d.ii) where

the learner incorporates the labeled features to improve its current representation of the

concept. We discuss each of these respectively in the next two sections.

6.2 Asking for Feedback on Features

Feature Selection
Input:Mt, Ut, Bf

1. S =Extract top features(Mt, p)
2. F = φ
3. While (S 6= φ) and (Bf ≥ 0)

a. top=pop(S)
b. {P1, ..., Pc}=computeco occuring(top,Ut)
c. Teacher selects{F1, ..., Fc′} ⊆ {P1, ..., Pc}
d. push(S,F1, ...Fc′)
e.F = F ∪ {F1, ..., Fc′}
f. Bf = Bf − c

4. ReturnF , Bf

Figure 6.1.An algorithm for Interactive Feature Selection
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In this section we describe our algorithm for implementing the FeatureSelection sub-

routine in Figure 2.2 which in this case is iterative. For a given tandem learning iteration

(outer loop in Figure 2.2), the FeatureSelection subroutine queries the teacher iteratively

presenting features of the setP, in batches. The algorithm is outlined in Figure 6.1.

A budget counterBf that keeps track of the number of features (across tandem learning

iterations) that the user has been queried on is input to the FeatureSelection subroutine in

addition to the current modelMt and the pool (Ut). A stack of features (S = s1, s2, ...., s|S|)

to query the user on is maintained. The size of the stackS is dynamic as we will see. At

each iteration of tandem learning the stack is initialized with thep top ranked features from

the current modelMt, such that the highest ranking feature is at the top of the stack (Step

1 in Figure 6.1). The topmost element of the stack (top = s1) is popped at each iteration

and the topc co-occuring features tos1 in the pool (Ut) are computed (Step 3.b). These

c features are shown to the user. If the user marks a feature as relevant, it is pushed on

top of the stack (Step 3.d). The procedure continues until the stack is empty or the budget

Bf is exhausted. TypicallyBf >> c andBf >> p. A user may be shown a minimum

of 0 features in a given tandem learning iteration if the budget (Bf ) is exhausted, and a

maximum ofBf features (if we keep finding features greedily). Thusf in the algorithm in

Figure 2.2 varies across tandem learning iterations. The algorithm is greedy in spirit: when

a relevant feature is found, we keep querying the user on words that co-occur with it in

the corpus, proceeding as if engaging in a depth first search on a term co-occurence graph.

Our early experiments showed that there are benefits of such an approach, especially for

the soft labeling method described in Section 6.3.3.

6.3 Incorporating Feature Feedback into Support Vector Machines

We now move on to describe three methods to incorporate feature feedback into SVMs

(step 2.e in the algorithm in Figure 2.2).
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6.3.1 Scaling

Let F = F1...Fk be the set of features marked relevant by a user, with eachFi repre-

senting an index to a feature (1 ≤ Fi ≤ N). Let Sc = c1...cN be a vector such that:

ci = a if i ∈ F

= b otherwise

For eachXi in the labeled set, as well as in the unlabeled data (the poolU and the test

set), we compute the dot productSc · Xi. In other words, we scale all the features that

the user indicated as relevant bya and the rest of the features byb. The documents are

re-normalized after scaling.

By scaling the important features bya, we are forcing the classifier to assign higher

weights to these features. We demonstrate the intuition with the following example. Con-

sider a linear SVM,N = 2, and 2 data pointsX1 = (1, 2) and X2 = (2, 1) with

labels+1 and−1 respectively. An SVM trained on this input learns a classifier with

w = (−0.599, +0.599). Thus, both features are deemed equally discriminative by the

learned classifier. If the feature with id 1 is indicated to bemore discriminative by our user,

then by our methodX ′
1 = (10, 2) andX ′

2 = (20, 1) andw′ = (0.043,−0.0043). Thus, the

feature with id 1 is assigned a much higher weight in the new model. Now, this is a softer

version of the feature selection mechanisms in Figures 5.1 and 5.7. But in that case the

oracle knew the ideal set of features. Those experiments maybe viewed as a special case

whereb = 0. We expect that human feedback is imperfect and we do not wantto zero-out

potentially relevant features.

In this method the user only needs to mark whether a feature isdiscriminatory, and does

not have to determine whether the feature is more likely to occur in a relevant document

or not. It may seem that class information should be obvious to a human once she can

discern feature relevance. This assumption is not true. Forexample, in a previous user

study [48] we found that for the problem of distinguishingbaseballdocuments from those
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on hockey, one of our users was able to determine that the featuredevilswas relevant; she

could remember it was the name of some sport team, but could not remember whether it

was a baseball team or a hockey one1.

6.3.2 Feature Pseudo Documents

In this method we createN pseudo-documents, one corresponding to each feature,

addingN moreN-dimensional vectors ({〈Xj , Yj〉, M + 1 ≤ j ≤ M + N}) to our already

existing pool ofM document vectors. Thus, a vectorXj corresponding to a feature-id

j − M will have a one in the positionj − M and zero elsewhere. In this case, the user

must associate a class label for every feature that she considers discriminatory. We can now

include such feature and feature-label pairs in training the SVM.

The hypothesis space is the same as before (Section 4.1.2). The version space is smaller

than the original because of the added set of constraints corresponding to the feature and

feature-label pairs. This method enables us to perform uncertainty sampling with the mod-

ified pool. Now the user may also be queried onuncertain features. An uncertain feature

labeled by a user will again (in the theoretical case) resultin a decrease (of the already

decreased) version space by half.

Initial experiments suggested that there must be a parameter to control the extent of

the influence of feature pseudo-documents on the hyper-plane. We can do this in one of

two ways. The first method controls the influence of pseudo-document support vectors that

are correctly classified, and the second method controls theextent of error tolerated for

misclassified pseudo-document support vectors.

Method 1: For support vectors that are correctly classified, the distance from the hyper-

plane is fixed at1/||w|| (refer section 4.1.3). This is forced by imposing the constraints in

Equation 4.1. There are benefits to being able to control thisdistance for different training

examples, letting more reliable instances exert a greater force on the hyperplane as shown

1The New JerseyDevils is a hockey team
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(a) Weighted Margin Classifier (original idea).

u n i t s p h e r er a d i u s r s p h e r e
1 / | w |1 / r * | w | 1 / | w |

(b) Feature pseudo documents and our modification of the weighted margin classifier.

Figure 6.2.Weighted Margin Classifier
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in Figure 6.2(a). This idea first appeared in a paper by Wu and Srihari [115]. They modified

the constraints to be:

Yi(w · Xi + b) ≥ di ∀i = 1...t (6.1)

Wheredi takes a value between 0 and 1, with a greater value indicatinga stronger influence.

Their implementation changes the optimization problem while ours is simpler.

We let the feature pseudo documents reside on an r-radius hypersphere instead of the

unit hypersphere that the documents reside on. A two-dimensional example is shown in

Figure 6.2(b). LetXj be a feature pseudo document on an r-radius hypersphere. The

feature pseudo-documentXj (∀ j = M +1...M +N) corresponding to a featurej−M now

needs to have a valuer in positionj − M and 0 elsewhere. This support vector is forced

to be at distance1/||w|| from the hyperplane. Projecting down to the unit hypershere

(on which the documents lie), the distance is1/(r × ||w||). Hence, the feature pseudo-

documents are forced to be at a distance of1/(r × ||w||) from the hyperplane on the unit

hypersphere. Meanwhile the document support vectors continue to lie at distance1/||w||

from the hyperplane on the unit hypersphere. Ifr ≤ 1 the feature pseudo document support

vectors exerts a greater influence on the margin than the document support vectors. The

implementation is very simple and the same QP solver used forthe soft margin SVM can

be used to find the solution.

The idea to use feature pseudo documents first appeared in a paper by Godbole et al

[47]. Our implementation differs in that we introduce parameters to influence the extent of

control of the feature pseudo-documents on the hyper-planeas compared to the extent of

influence of the training documents. Note that Wu and Sriharidid not use feature pseudo-

documents, rather used the weighting technique in equation6.1 to weight instances.

Method 2: The second method controls the extent of influence of the misclassified sup-

port vectors. We can do this by controlling the weightC for the feature pseudo documents

by modifying the optimization problem in Equation 4.6 as follows:
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min
w,b,Ξ

φ(w, Ξ) =
1

2
||w||2 + C

t∑

i=1

ξi

+
C

|F|

t+|F|∑

i=t+1

ξi

subject to yi(w · xi + b) ≥ 1 − ξi

ξi ≥ 0 (6.2)

where|F| is the number of terms a user has marked, and also equals the number of

training pseudo-documents. The upper bound on theλi values corresponding to the training

pseudo-documents (t < i ≤ t + |F|) is C/|F|. In this way, as more training pseudo

documents are available (probably due to the topic being very descriptive), the influence

of an individual pseudo-document vector is decreased. Notethatλi values for the training

documents (1 ≤ i ≤ t) continue to remain bounded byC (whereC ≥ C/|F|).

6.3.3 Pseudo Relevance Feedback

We now consider soft labeling the unlabeled examples inU and using them in the

training. The assumption here is that unlabeled examples containing a term that the user

has associated with a given class are likely to belong to thatclass, thereby enabling us to

assign a “soft-label” to the document. The greater the number of terms that the user has

marked for a given class that appear in a document, the greater the confidence in our soft-

label. It is easy to see why this method benefits from the labeling of redundant features.

LetF = F++F− whereF+ andF− denote the set of terms that the user has associated

with the classes corresponding to the labels+1 and−1 respectively. Letvi+ denote the

similarity of an unlabeled documentXi (Xi ∈ U) to F+. Similarly we can computev−
i .

vi can denote any similarity metric of choice. Letg(vi) be a monotonically increasing

function with range(0, 1]. We now modify the optimization problem to include unlabeled

instances as follows:
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min
w,b,Ξ

φ(w, Ξ) =
1

2
||w||2 + C

t∑

i=1

ξi

+C

t+|U|∑

i=t+1

g(v+

i )ξi

+C

t+|U|∑

i=1

g(v−
i )ξi

subject to yi(w · xi + b) ≥ 1 − ξi

ξi ≥ 0 (6.3)

This idea has been used successfully in the past [115]. Like in that work,vi is simply

set to be the cosine similarity andg(vi) = vi sincevi has the desired(0, 1] range.

6.4 Developing the Final Algorithm

We now develop a tandem learning algorithm using various subroutines described in the

previous chapter. We use lessons learned from some initial experiments (Section 6.4.1) to

lay out the task (Section 6.4.2). In Section 6.5 we discuss specifics of our implementation

that may not have been enlisted previously.

6.4.1 Lessons from past work

We had conducted a preliminary user study, measuring users’abilities to mark features

[48]. Annotators (volunteers) were provided with minimal information about a topic and

were asked to judge a list of features, one at a time. Annotators were asked to pick between

one of two choices for a given classification problem: (1)relevant, i.e, discriminatory and

(2) non-relevant/don’t know. They were also asked to judge a handful of documents (af-

ter judging feature relevance). Our users were of varied backgrounds and most had little

understanding of machine learning techniques. The goal of that study was to determine

how well naive users could identify features with little additional information that basically
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constituted a brief topic description. Annotators were told not to refer any other sources

to make their decisions. We found that even naive users can provide effective feedback on

the most relevant features (about 60% accuracy of the oraclein our experiments) result-

ing in performance on par with the oracle. There were many interesting results from that

study. For instance, one of our annotators had difficulty in judging documents belonging to

theearningscategory in Reuters often confusingacquisitiondocuments forearningsdoc-

uments. However, she could mark 65% of the discriminatory features and generated only

0.0625% false alarms. These results can be explained by observing that the question posed

to the annotator in that study was on the discriminative power of the feature. Therefore she

did not have to determine whether the wordsshareswas pertinent toearningsor not but

rather she only needed to indicate whether the word was likely to be discriminatory. Ad-

ditionally, one of our annotators suggested that terms shown in context would have carried

more meaning. She said that she did not realize the termct stood for cents until she read the

documents. But since she was made to judge terms before documents she had marked the

termct as non-relevant/dont know. Of course in the implementationthat we are planning

ultimately (Figure 2.2), the user would be judging documents and terms in tandem.

We also conducted a post-labeling survey. Some of the highlights of the post-labeling

survey are as follows. On average users found the ease of labeling features to be 3.8 (where

0 is most difficult and 5 is very easy) and documents 4.2. In general users with poor prior

knowledge found the feature labeling process very hard. Theaverage expertise (5=expert)

was 2.4, indicating that most users felt they had little domain knowledge for the tasks they

were assigned.

We also measured the manual costs of relevance feedback on features versus labeling

documents: in that study [48]; we found that feature feedback takes about one fifth of the

time taken by document labeling on average.

When to stop asking for labels on both features and documentsand switch entirely to

documents is an important question. In early experiments inthis direction [48], we found
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that features labeled by users provided significant boosts in performance in the early stages

of learning. We typically found that after 10 documents werelabeled there was little use in

asking for feature feedback for two reasons. Firstly, thereare greater gains to doing aggres-

sive feature selection earlier rather than later (mitigating Hughes’ phenomenon). Secondly,

users are able to discern certain key features only, which are often asked about in early

iterations. The information about the usefulness of other features typically comes from

document feedback. For example, in discerningautomobiles vs motorcycles, the most in-

formative words (as determined by the oracle) –car andbike– are asked of the annotator

in very early iterations. The label forcar is always (100% of the times) asked, and 70% of

the time the label for this word is asked to the user in the firstiteration itself. This is closely

followed by the wordbikewhich the user is queried about within the first 5 iterations 80%

of the time. Labeling these two features in themselves results in a significant improvement

in accuracy.

6.4.2 Problem definition

As with our previous experiments in Chapter 5, the task begins with a user providing

two randomly labeled examples, one positive and one negative (init size = 2). Then at

each iteration the learner queries the user for document feedback and term feedback like in

the system in Figure 2.2.

We saw that feature feedback is most useful up to the point where about 10 documents

have been actively labeled. Therefore, we measure performance of tandem learning after

10 documents have been actively labeled for each topic. Notethat a total of 12 documents

would have been labeled at this point including the 2 original (T = 12). We compare

the performance with traditional document-only and term-only methods. We also resorted

to asking the user for 2 documents for feedback at each iteration (I = 2). Preliminary

experiments revealed that there was little negative impactto accuracy in this approach,

with some gain in efficiency.
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We set the feature feedback quota,Bf , to a value of 100. Our previous research es-

timated that a document takes 5 times more time to label than afeature. The experiment

was very conservative, and in reality we expect feature labeling to be faster, depending on

the interface in which it is shown to a user. However, using this upper bound, labeling a

100 features is at most equal to the effort needed to label 20 documents. Hence we also

compare tandem learning performance atT = 12 andBf = 100 with the performance of

traditional active learning after 32 documents that is, when T = 32 andBf = 0, since

labeling 12 documents +100 terms� 12 documents + 20 documents.

Although scaling (refer to Section 6.3.1) requires that theuser only determine if a fea-

ture is discriminatory, and is probably a cognitively easier question to answer than asking

the user to associate category labels to each feature (needed by the methods in Section 6.3.2

and 6.3.3), we will see that a combined approach of using all three proposed methods for

feature feedback is best overall in terms of effectiveness (Section 6.4.4). Therefore in the

final implementation the teacher was asked to chose one of thefollowing options for each

feature, the third choice being the default. :

1. Is the feature more likely to occur inrelevantdocuments?

2. Is the feature more likely to occur innon-relevantdocuments?

3. Don’t know

In the next section we use an oracle to determine which of the three feature incorpo-

ration methods is better. We find a combined approach to be best, leading us to the final

algorithm outlined in Section 6.5.

6.4.3 Oracle

In the oracle experiments in Chapter 5, we cut off the ranked list at the point that yielded

the highest average active learning performance (Section 5.1). However, this method was

too time consuming for the larger data sets like TDT3 and RCV1and for these experiments
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we cut off the ranked list at a threshold determined by the shape of the information gain

curve in the following way. We took the top 30 features computed by information gain, and

computed the average score. All features with scores above the average were considered

“relevant” by the oracle. The oracle also associated a category label with a feature by

computing the probability of occurrence of a feature in eachof the two classes using all

the labeled data. The feature was labeled with the category with greater likelihood of

containing the feature.

6.4.4 Choice of methods

We introduced one method for asking for feature feedback andthree methods for in-

corporating feature feedback into active learning. We conducted some preliminary exper-

iments on the Reuters-21578 corpus to test the effectiveness of each of these methods by

themselves and in combination with others.

The active learner begins with 2 randomly sampled documents, one in the positive class

and one in the negative class. In choosing documents for feedback (InstanceSelection)

we could use uncertainty sampling (Section 4.1.5) or randomsampling. We know that

uncertainty sampling works much better than random sampling for our corpora (seen from

the efficiency values in Table 5.1). A third alternative is touse the top ranking documents

for feedback. This is a standard approach in information retrieval and we experimented

with that. We found that in general, if one is considering only document feedback, active

learning works better than using top documents. A mixture oftop documents and active

learning, where in each iteration the user is asked to mark one top ranked document and

one uncertain document is much better than just using the topranking documents but is still

not as good as asking for feedback on two uncertain documentsin each iteration. However

it turns out that when asking for feedback on features is included (for tandem learning

that is), incorporating the top-ranking documents sometimes gives benefit, and never really

performs worse than using only uncertain documents. Besides in applications like news
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filtering labeling the top ranked document is probably much less effort since the user is

likely to read it anyways. Therefore, our tandem learner always queries the user on a

mixture of top ranking and uncertain documents, whereas forthe baselines we report both

variants: “only uncertain documents” and “uncertain and top ranking documents”.

We conducted experiments by simulation using the oracle. Every time a feature was

presented to the user for feedback, we labeled it based on theoracle’s judgment of the

feature. Results of these upper bound experiments are shownin Table 6.1. Rows two and

three give the performance of the two baselines. Uncertainty sampling is clearly better than

using a mixture of top ranking and uncertain documents. We tuned our parameters on a

handful of topics in the Reuters 21578 corpus for a system that uses all three modes of

feedback together. The results of that experiment are tabulated in row 5. There is a 27%

improvement in performance. We then conducted ablation experiments to study the benefit

of each feature incorporation method separately (rows 6, 7 and 8) and various combinations

of them (rows 9, 10 and 11). Pseudo relevance feedback (Method III) is the best performing

method, and by itself gives a significant2 improvement in performance. Scaling (Method I)

on its own, also improves performance, but Method II only slightly improves performance.

Method II in conjunction with each of Method I and Method III improves performance

(although almost negligibly) over each of these methods individually. A combination of

Methods I and III is significantly much better than the baseline, and when Method II is

combined with them there is a tiny improvement over that combination. The result of using

only active documents for feedback in combination with all 3feature incorporation tech-

niques is 0.661 (almost identical to the 0.651 value obtained using a mixture of uncertain

and top ranking documents). Hence in our final implementation we use a joint approach

with all three methods with a combination of active learningand topdocs. Table 6.2 shows

2All significance tests in this chapter are paired two-tailedt-tests at the 95% level of confidence.
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System Macro-F1

Baselines
topdocs + uncertain 0.420

uncertain only 0.516

Tandem learning: feature incorporation
techniques (combinations)

I: Scaling II: Features as III: Pseudo-Relevance
Pseudo-Docs Feedback

X X X 0.651
X 0.553

X 0.433
X 0.592

X X 0.577
X X 0.597

X X 0.638

Table 6.1. Ablation experiments to determine which method of feature feedback is most
effective. The figures in bold indicate a significant improvement in performance over the
best baseline (0.516). Numbers in italics indicates a significant decrease in performance
over the “uncertainty only” baseline. In all casesT = 12 and for the tandem learning
methodsBf = 100.

example pseudo documents that are support vectors in the final system. The experimental

setup for our final implementation that uses all three methods is described next.

6.5 Notes on the Final System: Experimental Setup, Parameters etc.

The Reuters 21578 corpus is considered to be the developmentset for the final system

which is tested on 20 Newsgroups, TDT3 (the 1999 evaluation topics) and the Reuters

RCV1 corpus. A pool size of 1000 was used for all corpora except the RCV1 corpus

where the pool consisted of the training documents in the Mod-Apte split [74] (about 23K

documents). The results are described and analyzed in the next chapter. The parameters

p, c, a, b and r were set to values of 25, 10, 10, 1 and 10 respectively. The average

performance for each topic was computed using 10 different random initializations of the

initial 2 documents. We also took care that if the system had already queried the user (or
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Category Terms that are Support Vectors

earn qtr, note
acquisitions qtr, ct, shr, ctnet, mlnmln, ct ct;
money-fx -

crude crude
trade japan

interest bank
wheat export, maize
corn -

money-supply bank, dlr
gold mine, goldmine

Table 6.2.Feature pseudo documents that are support vectors.

oracle) for a feature in a given iteration, that feature was not asked about in subsequent

iterations.

6.6 Summary

We built a tandem learning system that intelligently queries a teacher on features and

instances at each iteration using several intuitions and hypotheses from previous exper-

iments. Standard machine learning algorithms do not have aneasy way to incorporate

feature feedback. We develop three methods of incorporating feature feedback into SVMs.

The final algorithm is a fusion of ideas from machine learning, active learning in partic-

ular and information retrieval. In asking for feature feedback we picked one method that

worked well. Admittedly, given the vast body of research in information retrieval on term

feedback, there are a plethora of alternative methods one can explore for this component of

the tandem learning system. Some of these methods may lead tobetter interfaces and more

effective feedback. We leave such an investigation for future work (Chapter 9). In the next

chapter we explore the effectiveness of our proposed methods.
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CHAPTER 7

EXPERIMENTS ON A TANDEM LEARNING SYSTEM

We developed an algorithm that interactively queries a useron labels of documents and

features in Section 6.4. Our experiments with an oracle in the next section verify that the

learner is capable of posing questions that are most beneficial to it (hypothesis 2 in Section

1.5). We then describe our user study, verifying the hypothesis that humans can identify the

features that the learning algorithm requires the answers to (hypothesis 3 in Section 1.5).

7.1 Results with an oracle

All our experiments in this section are simulations with theoracle like in Section 6.4.4

for solving the task described in Section 6.4.2. The final tandem learning system used

corresponds to the one in the last row of table 6.1, describedin Section 6.4. Results are

tabulated in Table 7.1. We compare our results with many baselines. The “only documents”

methods in rows 2, 3, 4 and 5 do not use user feature feedback atall. The second row shows

the results of querying the user on one top ranked document, and one uncertain document

in each round of active learning (init size = 2, T = 12, I = 2). The setup for the third row

is identical to the second, except thatT = 32. We motivated comparing tandem learning

performance to this case in Section 6.4.2 because we found that the effort needed for 100

terms is at worst equal to providing feedback on 20 documents. The fourth and fifth rows

show the results when both documents that the user is asked for feedback on are uncertain

ones, for the cases whenT = 12 andT = 32 respectively.

The sixth row shows the results of using the terms marked relevant by the oracle, and

with no document feedback. For that experiment, we took all terms marked relevant by
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Reuters 20 NG TDT3 RCV1 Feedback

o
n

ly

d
o

cu
m

en
ts

topdocs + uncertain
0.420 0.085 0.176 0.081 T = 12, Bf = 0
0.562 0.157 0.153 0.145 T = 32, Bf = 0

uncertain only
0.516 0.180 0.166 0.134 T = 12, Bf = 0
0.570 0.297 0.259 0.260 T = 32, Bf = 0

te
rm

s

w
/d

o
cs only terms (a priori) 0.536 0.340 0.085 0.229 T = 0, Bf = 0

iterative terms 0.573 0.335 0.168 0.099 T = 2, Bf = 100
tandem learning 0.651 0.354 0.336 0.231 T = 12, Bf = 100

Table 7.1. Results (F1) of Tandem Learning with an Oracle. Numbers in bold indicate
statistically significant difference in performance over the case whenT = 32 andBf = 0
with active sampling (line 5). Tandem learning performs less than theT = 32, Bf = 0.
Tandem learning is always better than the “only document” methods whenT = 12.

the oracle and issued them as a query to the poolU . A TF-IDF model was used, and

the documents were ranked by similarity to the set of oracle marked terms. The top 10

documents were treated as positive documents and the bottom10 as negative. An SVM

was trained and the results on the test set are reported in thesixth row.

The seventh row corresponds to the case when the initial classifier is learned from two

randomly sampled documents (init size = 2) and subsequently during active learning,

the human is queried on only features. The eighth row is the result of using the complete

tandem learning system. All experiments with feature feedback imposed a quota ofBf =

100. The effect of different values ofBf is shown in Table 7.4.

For most corpora pure uncertainty sampling is better than a combination of uncertainty

sampling and topdocs whenT = 12 (compare rows 2 and 4) and even whenT = 32 (rows

3 and 5).

The results of learning on only the oracle terms (row six) arereasonable on most cor-

pora, except for the TDT corpus. We wondered if our estimate of the oracle was poor for

the TDT3 corpus, since the results of the sixth row may be interpreted as being reflective of

the quality of the oracle. However, given the significant boost in performance for tandem

learning, such an interpretation would seem contradictory. We found that the problem was
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due to the pool size being so much more smaller than the total collection size, that often

there are not many (sometimes even zero) relevant documentsin the ranking obtained us-

ing the oracle marked terms as a query. The resulting classifier learned is therefore very

poor. When we increased the pool size to 10000 documents we obtained an F1 of 0.266,

an acceptable number, confirming our hypothesis.

The seventh row measures performance for the scenario when after two initial docu-

ments are labeled, the active learning loop only comprises of feature feedback. Given that

with 2 labeled documents the performance of the initial classifier is 0.179, 0.154, 0.053 and

0.078 for each of the four corpora respectively, we observe that we are able to recommend

enough useful features to improve over the initial classifier.

Comparing the results of tandem learning (eighth row) to methods that use only doc-

uments for feedback (rows two through five) we see that for allcorpora, feature feedback

significantly 1 outperforms a system that uses only 12 documents for training. Tandem

learning is also better than using 32 documents for feedbackfor three of four corpora. Re-

member that 32 documents is a loose upper bound on the effort required to label a 100

features. For the RCV1 corpus, labeling 32 documents results in better performance than

tandem learning. However, the improvement in performance of tandem learning for RCV1

over the case whenT = 12, Bf = 0 (row 3) is much more in magnitude than the loss in ef-

fectiveness due to expending extra effort in feature feedback instead of document feedback

(compare row 8 and row 5 for RCV1), indicating that the terms labeled are quite useful, and

probably only a little less useful than the documents. Theseresults can also be interpreted

from the point of view of complexity and we will use our difficulty measures to further

interpret these results in the next chapter. Also note that these results depend on how good

the estimate of the oracle is. Many problems in RCV1 have veryfew positive documents.

It is possible that a better estimate of the oracle, say by using domain knowledge will boost

1All significance tests in this chapter are paired two-tailedt-tests at the 95% level of confidence.
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performance at least up to that of the case whenT = 32. The results are also fairly con-

sistent across topics as is demonstrated by Figure 7.1. 50% 25%, 86% and 98% of the

topics in each of the four corpora are improved over the baseline corresponding to row 4

of the table. The topics that were improved for the Reuters and 20 Newsgroups corpora

saw substantial improvements while the topics that were hurt suffered negligible change in

performance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 30000  30010  30020  30030  30040  30050  30060

baseline (t+u)
baseline (active)

tandem

Figure 7.1.Consistency of improvements in performance across topics for classification on
the TDT3 corpus. Topic ids are on the X-axis and the Y-axis is the F1 score. The baseline
cases are whenT = 12.

Such a comparison, asking how much effort is expended on marking features and

whether that effort is better spent in marking documents, differentiates our work from

all past work in machine learning that uses user prior knowledge to boot-strap learning

[115, 47, 35]. From our observations, spending some effort to mark features is almost

never an effort wasted. Many times it boosts learning, improving over a paradigm that

just uses documents for feedback, and does not hurt performance. Features are also not

sufficient in themselves (compare row 8 with rows 6 and 7).
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Hypothesis 2

The results with the oracle prove that tandem learning is effective, showing that our

method for asking features and incorporating feature feedback indeed works quite well.

We can thus check off hypothesis 2 in Section 1.5 as proven. The experiments reaffirm

our belief in hypothesis 1 (that there exist a set of featureswhich if labeled, can bootstrap

learning) which continues to remain true even with the soft-labeling approaches developed

in Chapter 6.

7.2 Results with Real Users

We now ask the following questions:

1. Can humans label features as well as documents? In other words, are features that

are important to the classifier perceptible to a human?

2. If the feature labels people provide are imperfect, is thefeedback still beneficial to

active learning?

We obtain feedback on features offline using a TREC “pooling-like” approach dis-

cussed in Section 7.2.1. We then use the judgments so obtained to measure the effective-

ness of user marked features on the tandem learning system inthe same way in which we

simulated a human-in-the-loop with the oracle. We employedthis methodology rather than

one where an actual user labels features and documents in tandem because our approach

is cheaper and allows us to run many repeated trials of our experiments, also enabling us

to do significance testing. We reserve a more realistic evaluation with a true human in the

loop for future work.

7.2.1 Experimental Setup

We ran the system described in Section 6.4 for 10 different choices of the initial positive

and negative documents (Step 1 in Figure 2.2) for the 60 topics in the TDT3 corpus. Let us
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call each initialization for a given topic a “run”. We concatenated all recommended terms

(Step 3.a) keeping track of how many times a term was recommended across different runs

(remember that a term is not recommended more than once for a given run). We discarded

all terms that were recommended only once across all runs fora topic. For each topic we

then added the terms determined relevant by the oracle into the pool giving us an average

of 130 terms per topic. We now proceed to describe how we obtained judgments on terms

for each topic.

We had one paid annotator judge 60 topics in the TDT3 corpus. She was not a computer

scientist, rather a political science major, computer literate and familiar with some basic

statistics. She was briefly explained the task in a 15 minute training session. She was

also given written instructions as documented in Appendix B.1. She was given a brief

description with access (as a hyper-link) to a detailed topic description before she began

making terms. Both the brief and detailed topic descriptions are provided by the LDC.

We sorted all terms alphabetically, and showed her each termwith 4 contexts in which

it appears in the corpus. A small pane with a reminder of the topic (the brief topic de-

scription) and a link to the more detailed description was available to the user at all times.

Screenshots of the interface are available in Appendix B.2.We retrieved context for each

feature by issuing that term as a one word query using the Indri toolkit [104]. Context

helps disambiguate a word and also provides a snapshot of thesenses it appears in, in the

corpus. Other than our standard example of context helping auser determine the meaning

of the word likect, another example where context proves to be particularly important is

in having the human overcome the effects of machine translation and ASR errors. Figure

B.2 shows a screenshot where the user is asked to judge the term “bell” for the topicNobel

Prizes are Awarded. The word “nobel” is consistently mis-translated as “promises bell” in

machine translation documents. A user might be able to notice such an error and mark the

word “bell” as associated with the relevant documents.
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Terms were shown one at a time and at each instance the user wasasked to mark one

of the three choices in Section 6.4.2. We imagine that in a more realistic implementation,

terms will be shown as lists, which is probably faster than having a user judge one feature at

a time. The term-at-a-time method is however, the best interface for a controlled experiment

to measure users’ abilities to mark features. In fact in an earlier study we did not even show

context and the user was given a very brief topic description. One option for this study was

to show an initial screen with a list of features, and for eachfeature a hyper-link to a context,

in case a user needed clarification about the meaning of a feature. We avoided this interface

because it is possible that a user might not click on a link because of a pre-conceived notion

of what the feature means. For example, a user who assumedct stood for Connecticut and

never imagined it could mean anything else (cents in our case) would not click on the link.

The author of this thesis also judged terms for all 60 topics.Although one might think

that the author would represent a biased user, with domain knowledge of the corpus, the

underlying algorithm and so on, surprisingly it turns out that she and the paid annotator

perform almost on par, especially in terms of the final effectiveness of the tandem learning

algorithm (Section 7.2.2). The author admittedly was not ascareful as User 1 (the paid

annotator) was. She only read the brief description and did not change the default “don’t

know” unless she was absolutely sure about the relevance of afeature. User 1 took a median

of 3, 3 and 2 seconds to mark terms associated with the relevant, non-relevant and don’t

know classes respectively. User 2 (the author) on the other hand took 4, 3 and 1 seconds to

mark features in each of these 3 classes.

There are pros and cons of this offline approach of obtaining features. The main ad-

vantage was that it was cheaper to obtain features this way rather than using an online

approach where the user evaluated the real system. We used the LDC judgments on doc-

uments, and reserved our annotators efforts only for feature judgments. The annotator did

not have to judge a given feature for a given problem more thanonce. We also discarded

features that were rarely asked by any algorithm, saving annotator effort significantly. We
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could repeat experiments as simulations with our database of relevance judgments allow-

ing us to further develop algorithms for interactive feature selection, testing them using a

simulation-like approach.

The cons of such an approach are that features that are not judged, either because they

were discarded or because the system being evaluated was notin the pool will never be

judged as relevant. By tossing in the oracle features into the pool of features on which we

obtained judgments, we hope that we have obtained judgmentson all key features, and the

ones that we miss are probably not as critical. Our offline method also does not capture the

true effects of a user judging terms and documents in tandem;the growing knowledge of the

user as she reads more documents in the corpus; effects of boredom and so on. Rather, our

paid annotator dedicatedly spent time marking features. Infact she was given the option

to take breaks between annotations. Nevertheless, what theuser study captures is that a

human can indeed judge relevance of features to the extent that results in an improvement

in performance almost equivalent to that of the oracle (Section 7.2.2). Even without paid

annotators, in a previous study conducted with volunteers of different backgrounds [48], we

found that users could identify useful features sufficiently well with minimal knowledge.

We provided some more knowledge of the topic and designed a better interface for this user

study based on results from the previous one (refer Section 6.4.1).

7.2.2 Results

We now describe the results of our user study first comparing the user intrinsically to

the oracle and then measuring the effect of the user labeled features on tandem learning

performance.

Inter-annotator agreement:

We measure the extent to which our users tend to agree with each other about the im-

portance of features using the kappa statistic [25], a measure that quantifies the agreement
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between annotators that independently classify a set of entities (in our case the features)

into classes (relevant versus non-relevant versus don’t know). Kappa is given by:

kappa= (po − pc)/(1 − pc) (7.1)

Wherepo is the observed proportion of agreement andpc is the agreement due to chance

[25, 67]. Table 7.2 shows the kappa values for each of the two users for the 3-way classifi-

cation problem (columns 2 and 3).

Landis and Koch [67] provide a table giving guidelines abouthow to interpret kappa

values. This table is given in Appendix D. According to theirtable, the agreement between

User 1 and the oracle is “poor”, but the agreements between User 1 and User 2 and between

User 2 and the oracle are “fair”. Upon investigation we foundthat User 1 had a tendency to

attribute many features to the “non-relevant” category. User 2, on the other hand typically

marked only “relevant” features, leaving all others to the default “don’t know” category.

This tends to match with the oracle to quite an extent. The oracle marked 12 features (on

average over the 60 topics) as belonging to the “relevant” class and 0.013 features as be-

longing to the “non-relevant”. The negative class in one-versus-all problems is arguably

harder to model statistically [79] and the oracle captures this effect. Such domain knowl-

edge may have biased User 2, who is the author of this thesis and has higher agreement with

the oracle. If we collapse, the “non-relevant” and “don’t know” categories into one, giving

a 2-way classification problem (columns 4 and 5), we see increased agreement between the

two users, reflecting an overall “moderate” (and bordering on “substantial”) agreement. In

fact in our preliminary user study [48] with 5 users we found an agreement of 0.68. In that

study users were strictly asked about the “discriminatory”power of a feature.

We also measured precision and recall of each of the users with respect to the oracle.

This is also tabulated in Table 7.2. As mentioned earlier, the oracle had extracted about

12 terms on average per topic. Users tend to be more verbose than the oracle, with User 1

judging 25 terms (average) in the “relevant class”, 29 termsin the “non-relevant” class, and
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the remaining terms in the “don’t know” class. These numbersare 15, and 0.33 respectively

for User 2. Both users have very high recall, but relatively lower numbers of precision.

Appendix C shows the terms marked by the oracle, as well as thepositive and negative

terms marked by both users for three example topics:Osama Bin Laden Indictments, Nobel

Peace Prize AwardedandTaipei Mayoral Race. Remember that the oracle is constructed

from a feature selection algorithm, which might suppress redundant features, whereas the

users did not do so. Ultimately it should be the recall with respect to the oracle that matters

for effectiveness. In fact it is indeed the case that performance of the algorithm using user

labeled features is almost on par with that of the oracle. This is seen from the last two

columns of Table 7.2.

Hypothesis 3

In experiments in this section we have shown that users are capable of selecting the

key features necessary to bootstrap active learning, henceproving hypothesis 3 (Section

1.5). Although users may mark more features than are necessary or miss a few features

occasionally, the ultimate performance achieved by using user labeled features, compares

with the performance obtained using the oracle.

7.3 Performance on ranking metrics

We also measured performance with metrics that measure ranking rather than classifi-

cation accuracy. We do this for better interpretability of results, to understand where one

algorithm differs from the other. We measured mean average precision (MAP) and preci-

sion at rank 5 (P@5) (Table 7.3) . Average precision (AP) is the average of the precision

values computed at each point in the ranked list where a relevant document is retrieved.

Mean average precision is the average of the AP scores over topics.

Tandem learning results in a significant improvement of MAP,over the baseline case

of T = 12, for three of four corpora. Only 20 Newsgroups sees a significant improve-
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Ability to mark features Effectiveness
User Kappa P & R F1

3 class 2 class P+ P- R+ R-
User 2 Oracle User 2 Oracle 2 class 3 class

User 1 0.275 0.147 0.569 0.305 0.402 0.000 0.789 0.900 0.316 0.297
User 2 - 0.350 - 0.359 0.565 0.883 0.649 0.900 0.286 0.287

Table 7.2. Inter-annotator agreement and performance using the user labeled features. P+ and R+ denote the precision and recall of
the features the user labeled in the “relevant” class with respect to the features that the oracle ascribed to the “relevant class”. P- and
R- denote the corresponding numbers for the “non-relevant”class. Performance (F1) of tandem learning using user labeled features
is comparable to that of the oracle performance of 0.336, andis significantly better than the baseline of 0.176 (corresponding to row
2 of Table 7.1). The 0.316 performance obtained using User 1’s positively labeled features is statistically indistinguishable from the
performance of the oracle.

8
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Metric Reuters 20NG TDT3 RCV1

P@5
Baseline (12 docs) 0.828 0.748 0.802 0.584
Baseline (32 docs) 0.815 0.640 0.828 0.676

Tandem 0.85 0.844 0.797 0.640

MAP
Baseline (12 docs) 0.433 0.238 0.480 0.223
Baseline (32 docs) 0.679 0.397 0.546 0.380

Tandem 0.613 0.393 0.481 0.292

Table 7.3. Effect of tandem learning on Precision at 5, and on mean average precision
(MAP). Numbers in bold are statistically significant improvements over the baseline with
12 documents.

ment in P@5. The TDT3 corpus experiences a drop in both MAP (insignificant) and

P@5(significant) using tandem learning. Tandem learning seems to be improving recall,

sometimes at the expense of precision.

It is intuitive and widely accepted that methods that are tuned for classification accuracy

are not optimized for MAP [71, 58]. A system tuned for mean average precision will score

better if it gets more relevant documents at the top of the ranked list. A similar intuition

applies for P@5. A measure of classification accuracy like F1does not give a system a bet-

ter score for improving the top of the ranked list, rather it concentrates on the ability of the

system to discriminate documents, focusing more on the boundary of separation between

the two classes. These results may be altogether different had a different method, opti-

mized for ranking metrics, been used. Nevertheless, we are happy to see an improvement

in MAP using tandem learning. There has been some recent workin training SVMs differ-

ently for different performance metrics [58, 23], and we plan to experiment with these new

techniques in the future. The objective of tabulating theseobservations was to understand

where feature feedback was impacting our methods.

7.4 Varying Bf

We wondered how performance would be affected for differentvalues of the feature

labeling budget,Bf . Table 7.4 shows the F1 scores for different values ofBf for the
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Bf F1
Reuters 20 NG

0 0.420 0.081
10 0.519 0.158
20 0.584 0.214
40 0.634 0.282
80 0.631 0.361
100 0.651 0.354

Table 7.4.F1 for different feature feedback quotas. In all casesT = 12. Numbers in bold
are statistically significant over the previous row.

Reuters and 20 Newsgroups corpora. For the Reuters corpus, even a small value ofBf , like

10, results in a big improvement in performance over the casewhenBf = 0. We see less

value in increasing the budget beyond aBf value of 40. The results for the 20 Newsgroups

data set are similar except that F1 increases quite steadilytill Bf = 80. In the next chapter

we will find that 20 Newsgroups is of higher feature complexity than Reuters and this may

be a possible explanation for requiring more feature feedback for 20 Newsgroups than for

Reuters.

7.5 An online task

System T=4 T=6 T=8 T=10 T=12
Baseline 0.199 0.297 0.345 0.357 0.346

Tandem (Oracle) 0.271 0.291 0.345 0.379 0.362
Tandem (avg) 0.301 0.340 0.389 0.408 0.386

Table 7.5.Performance on a news filtering task for different values ofT . Numbers in bold
indicate statistically significant improvements in performance over the baseline.

In the official TDT tracking evaluation [3], the system is given one training document

per topic. The test data for each topic consists of a stream ofdocuments that arrive in

chronological order and need to be declared as on or off the topic of the training story.

The task is online and the system is expected to process the stream in order and no look
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T Metric F1 MAP P@5

T = 4
Baseline 0.199 0.480 0.360

Tandem (Oracle) 0.271 0.500 0.355
Tandem (avg) 0.301 0.550 0.396

T = 12
Baseline 0.345 0.571 0.304

Tandem (Oracle) 0.362 0.559 0.305
Tandem (avg) 0.386 0.630 0.330

Table 7.6. Performance on a news filtering task. Numbers in bold indicate statistically
significant improvements in performance over the baseline.

ahead is allowed. In the unsupervised tracking task no feedback is allowed after the initial

training document is provided. In the supervised adaptation track the user provides a rel-

evance judgment on every delivered document. The two tasks represent two extremes of

an interaction spectrum. Leuski and Allan [70] studied a more realistic version of the TDT

task, wherein the system is evaluated at regular intervals (a day, half a day, a week and so

on). Just like their work, we modified the news filtering scenario of TDT to a more realistic

one. In the current task, the user marks the first relevant document on a topic as relevant.

The system also picks an arbitrary “off-topic” document with a time-stamp not greater than

that of the relevant document. Filtering then begins. Interaction now happens after batches

of 500 documents (roughly a day’s worth of documents) arrive. The user is queried on one

top ranking document, and one uncertain document, both sampled from the current batch.

Feature feedback is performed at this time using the same algorithm as described in Section

6.5. Feedback in this case also continues only for 5 iterations.

SVMs have performed quite well in the TREC filtering tasks, especially on evaluation

on the F-Measure and MAP for the batch filtering and routing tasks [73, 22, 100]. Tandem

learning has maximum impact (statistically significant) when T = 4. This is seen from

Table 7.5 where we report F1 for different values ofT . Table 7.6 shows performance on

F1, MAP and P@5 for the baseline system and the tandem learning system for two values
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of T . Many of the batches have only one relevant document, which if missed gives an F1

score of 0 to the system on that buffer. Therefore, for further analysis we focus on MAP.

On close examination we found that tandem learning and the baseline perform differ-

ently for different queries. Figure 7.2(a) shows the performance (MAP) of the baseline

system and the tandem learning system (T = 12 for both systems) for the 60 topics, sorted

in order of performance of the baseline. Tandem learning improves performance on very

poorly performing topics, but decreases performance on some topics for which the baseline

performance is very high. The standard deviations of the baseline system and the tandem

learning system are 0.26 and 0.22. By combining the two systems by simply averaging

their scores we get performance corresponding to the curve ‘Avg’. The resulting system’s

performance is also shown in the last line of Table 7.5 (standard deviation on MAP when

T = 12 is 0.22) and the fourth and seventh lines of Table 7.6 . We tested the performance of

the three systems (in Table 7.5) on the topics used in the evaluation in years 2000, 2002 and

2003. The performance is similar as seen in Figures 7.2(b) and 7.2(c). In all cases the tan-

dem learning system performs better than a system withT = 32 documents (and no terms)

for feedback. For the topics used in the evaluations in years2000, 2002 and 2003, many

topics have only a handful of relevant documents and hence itis easy to see why increasing

the document feedback quota toT = 32 does not improve performance significantly over

the case whenT = 12. We observed a similar such result with our passage filteringsystem,

where we found that combining the scores of two systems, one with document feedback

and one with passage feedback, results in overall improvements in performance and that

document feedback saturates pretty quickly [88].

A point worth mentioning here is that the pool for this task isnot a random sample of

the data. The fact that this can cause many problems for active learning [83] leading to

over-fitting of the classifier, is a possible explanation forwhy the average classifier works

better than either the purely document based one or the tandem learning one. It is possible

that similar or better results may be obtained if the parameters of the system were tuned for
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(a) Performance on the 60 1999 Evaluation topics on the TDT3 corpus. MAP scores are
0.571, 0.559 and 0.630 for the Baseline Tandem and Avg systems (T = 12 andBf = 100).
Performance using only documents atT = 32 is 0.659.
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(b) Performance on the 60 2000 evaluation
topics on the TDT3 corpus. MAP scores are
0.693, 0.678 and 0.741 for the Baseline, Tan-
dem and Avg systems (T = 12 andBf =
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(c) Performance on the 80 2002 and 2003
evaluation topics on the TDT4 corpus. MAP
scores are 0.048, 0.165 and 0.170 for the
Baseline, Tandem and Avg systems (T = 12
andBf = 100). Performance using only doc-
uments atT = 32 is 0.048.

Figure 7.2.News filtering performance. All graphs are sorted by the baseline performance.
Notice that tandem learning helps boost the scores of the poorly performing topics, some-
times at the expense of hurting performance for which the baseline system performs very
well.

94



filtering. However, we wanted to demonstrate the easy portability of our classifier from an

offline to an online scenario.

In our previous work in Topic Detection and Tracking we had studied the evolution

of important keywords in news topics [88]. Towards this goalwe defined a measure of

informativeness of a document. We compute a list of information gain scores for all terms

in the vocabulary of the corpus for each topic. The most informative keywords would

have the highest score. Then for each topic, we order the documents by their time of

appearance in the news. Letn be an index on the time of the document such that thenth

document appears after the(n − 1)th document. Then proceeding in the order of time, we

sum the information gain scores of terms that first appear in adocumentn. In this way,

each document gets aninformativeness score. Note that if a term has already occurred in

a previous document on that topic, it does not contribute to the informativeness score. The

informativeness score measures how many new important words appear in each document

for a given topic. We can thus plot the informativeness scores over time for each topic.

Since information gain scores are not normalized, we normalize the informativeness score

for each topic by dividing by the maximum for that topic. A normalized informativeness

score of 1 then represents the most informative document forthat topic. Figure 7.3 shows

the normalized informativeness score of thenth document on a topic (sorted by the time

at which the news story appeared) for all 60 topics (1999 evaluation) in the TDT3 corpus.

From the plot in Figure 7.3 it seems like the key informative terms appear in the first

few documents. If a user is able to mark the important terms fairly early, much of the

information needed to learn the topic is captured. Thus a tandem learning approach works

well for news filtering.

7.6 Additional Experiments

We now briefly describe other systems that we have constructed that use alternate forms

of feedback other than document feedback to bootstrap learning.
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Figure 7.3. The evolution of terms with time: The informativeness scores of thenth docu-
ment on a topic. The x-axis is thenth document. The y-axis is the informativeness score.
The thick line traces the average informativeness score over all topics. Most of the infor-
mative terms appear in the first 20 documents.

7.6.1 Other Forms of User Input: Forms and Passage Feedback

In our previous work we used the topic descriptions as provided by the LDC (See Ap-

pendix C for examples) to obtain a list of user marked features for feedback [48]. The topic

descriptions are structured and we used words in thewho, what, whereandwhen fields

to obtain a list of relevant features. We used these featuresfor tandem learning (using the

scaling method only). The scenario is equivalent to asking auser to fill a form containing

some structured questions about the topic. These questionswould depend on the domain.

In this case, the domain being news, we know that people, places and organizations are

important. Bearing in mind that the TDT annotators are experts in assessing the topicality

of news, we observed that we could use the information from the topic description to obtain
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performance on par with the oracle. An example output from that work, for the topic of

Hurricane Mitchis shown in Figure 7.4.

In yet another piece of work [88], for the supervised filtering task in the Topic Detection

and Tracking evaluations, we asked users to highlight relevant passages of text as and

when they read documents in order to assess them for relevance. The system was built on a

Rocchio classifier, with one classifier built using the document level judgments and another

built using the passage judgments. The scores were combinedby linear interpolation. The

resulting classifier showed significant improvements in performance on both the TDT and

TREC filtering metrics.

7.6.2 User Prior Knowledge for Clustering

In work with Bekkerman et al [15], we built a system that can cluster by any user

specified criterion. The system leverages user prior knowledge on features to understand

the kinds of clusters that a user is interested in. For example, if the user is interested in

clusters by sentiment for movie reviews, she may specify thekeywordsgoodand terrific

for one cluster andterrible as an example feature for the other cluster. If the user cannot
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specify features, for example, in classifying by genre, thesystem defaults to clustering

by the underlying document representation. We found significant improvements over the

baseline for sentiment classification using our method and found that naive users were able

to mark features sufficiently accurately even from prior knowledge alone.

7.7 Summary

In this Chapter we found that our proposed algorithm for tandem learning using an ora-

cle typically gives significant improvements in performance over traditional active learning.

We also showed that such a tandem approach results in significantly greater improvements

over using only the oracle chosen terms. We found that users have sufficient enough recall

as compared to the oracle to result in performance comparable to that of the oracle. We

applied our tandem learning approach directly to an on-linetask and found that tandem

learning improves performance over using only documents for feedback. Our user stud-

ies have pointed to various (anecdotal) examples of when andwhy they can mark useful

features, leading to several ideas for a more thorough user study in the future.
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CHAPTER 8

THE COMPLEXITY OF CONCEPTS IN TEXT CLASSIFICATION

In the real world some concepts are easier to grasp than others. As pointed out in the

introduction, the concept of a “bird” is probably much easier and quicker to learn than

the concept “art”. Much work has been done in the field of cognitive science in trying to

understand why some concepts can be learned faster than others and we will refer the inter-

ested reader to the works of Feldman [43], Chater [85] and others [102]. Feldman tried to

characterize human error on concepts as a function of the Boolean complexity (the length

of the shortest logically equivalent propositional formula) of a concept1. He found a sur-

prising empirical ‘law’: the subjective difficulty of a concept in human learning is directly

proportional to the Boolean complexity of the concept. In this chapter we wonder about

the variance in concept difficulty in standard text classification tasks. We show that for a

given learner and a set of concepts (categories in text) thatcan be learned by this learner,

there exists a significant diversity in the difficulty of concepts in text. We ask whether some

concepts are easier to learn than others. More specifically,we wonder whether some cate-

gories can be learned using a few training examples or features, while others may require

many more examples and features before the concept is learned to the best of the learner’s

ability. We define a set of measures that quantify the difficulty of concepts, illustrating

the spectrum of problems that exist in text classification. In fact we too draw a conclusion

similar to Feldman: concepts that can be learned using fewerexamples can be described

by a few well chosen features.

1Example boolean expressions for a text classification task are shown in Table 1.1
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Given a learning algorithm, a set of features and a concept, there is some maximum

achievable accuracy (≤ 100%) that the learner can achieve in the limit. For example,

even if the data is not exactly linearly separable, a linear SVM may be able to achieve

some fairly reasonable and acceptable accuracy (often in the order of 90% for many text

categorization problems) with adequate training. Given such a set of concepts that are

“almost linearly separable”, that is “learnable” by a linear SVM, we question how much

training is “adequate” to attain the maximum achievable accuracy.

One view of concept complexity or difficulty may be one associated with the maximum

achievable accuracy, that is, a concept that cannot be learned to a desired degree of accu-

racy may be considered to be a difficult one. Studying difficulty from that perspective is

important in itself, but is not the goal of this work. In this chapter we restrict ourselves to

concepts that we know are ultimately learnable by the chosenalgorithm (SVMs) and ask

how easily they can be learned. The analogy in human learningwould be with concepts

taught at an elementary school level: they can all be learnedif enough effort is put in by a

student, yet some are easier than others. Whereas some problems encountered at the gradu-

ate school level (classifying problems into P and NP complete categories for example) may

be difficult in that they are not easy to solve and therefore less learnable.

We begin by defining a set of difficulty measures in Section 8.2based on the number of

training examples and the number of features needed to achieve the maximum accuracy for

the learner. Our instance complexity measures intuitivelycapture the number of training

examples needed to attain the maximum achievable accuracy.These examples need not be

random; they can be intelligently picked. We aim to capture the minimum number of train-

ing examples needed to learn a concept. A problem for which training on a few well-picked

instances is sufficient to arrive at the maximum achievable accuracy is a low instance com-

plexity problem. Analogous to instance complexity we definefeature complexity which

captures the minimum number of intelligently picked features needed to achieve the max-

imum possible accuracy. If a concept can be described by a weighted combination of a
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few well selected features it is considered to be of low complexity. We find a high posi-

tive correlation between instance complexity and feature complexity (Section 8.4.1) using

our measures. We then try to put together what these results mean for text classification,

machine learning and tandem learning in Sections 8.4.3, 8.5, 8.6 and 8.7.

8.1 Data

Before we proceed further we describe the data and the kinds of concepts we are study-

ing in this chapter. As usual, we are only concerned with textcategorization problems.

We consider 9 corpora and 358 binary classification problemsas shown in Table 8.1, 4 of

which were already introduced in Section 4.2. In computing complexity for the Reuters-

RCV1 corpus we only used the 23149 training documents from the Mod-Apte split [74] for

efficiency purposes.

Most corpora have topic-based category labels, except for three: (1) the Topic Detection

and Tracking corpus that contains classes based on events (Section 4.2) (2) the British

National Corpus BNC corpus where the classes are based on genre. (3) The documents in

the Enron corpus are email categorized into folders by the recipient of the email.

For all data sets we used unigram features. For some of them wefurther added n-grams

of features if these n-grams improved performance.

Since we are only interested in measuring the difficulty of “learnable concepts”, we

considered only those problems for which there was ample training data to achieve an

acceptable level of performance (of above 75% Maximum F1) using a linear SVM. The

last column in Table 8.1 lists the average maximumF1 obtained using a linear classifier

and bag-of-word features trained on 90% of the data and tested on the remaining.

8.2 Measures of complexity

We now describe 4 measures of complexity – 2 each of instance and feature complexity.

Given a “learnable concept” (or an “almost linearly separable concept”) withM labeled
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Corpus Domain # instances # features (N) # topics MaxF1
Reuters-21578 News-wire 9410 33378 10 0.874 (0.087)
Reuters-RCV1 News-wire 23149 47236 87 0.759(0.127)
Topic Detection Tracking(TDT) News-wire and broadcast 67111 85436 10 0.918(0.001)
British National Corpus News, journals etc. 2642 233288 15 0.774 (0.153)
Enron E-mail folders 1971 711815 8 0.887(0.082)
20 Newsgroups Newsgroup postings 19976 137728 20 0.851(0.007)
Industry Sector Corporate web-pages 9565 69297 104 0.909(0.04)
TechTC-100 ODP hierarchy 149 18073 100 0.972(0.026)
WebKB University websites 2101 28682 4 0.918(0.047)

Table 8.1. For all corpora except TechTC-100 there is a one one-versus-all binary classification problem. The TechTC-100 dataset
consists of a 100 binary classification problems with about 149 documents in each and an average of 18073 features in each.

1
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examples to estimate complexity from, each represented as an N dimensional vector, our

complexity measures quantify the difficulty of learning by measuring how many of theM

instances andN features are really required to learn a good classifier.

Consider a learning algorithm which is supplied with a set oftraining examples, ordered

such that the most useful examples for learning are before the less useful ones. If only a few

of these training instances are required for learning the task to high performance, we will

say the task has low instance complexity. If a large number are required, we will say the

task has high instance complexity. Our instantiation of these instance complexity measures

attempts to capture how many of the best (most informative) instances for a given problem

are needed in order to achieve performance close to that of a linear classifier trained with

all features and ample training examples. In computing instance complexity we use active

learning methods which give us an experimental upper bound on complexity. The tightness

of the bound is dependent on the active learning method used.

Similarly, our feature complexity measures quantify how many of the most informative

features are needed to achieve close to the best accuracy. Our feature complexity measures

are also upper bounds on the true feature complexity, where the tightness of the bound is

dependent on the feature selection method used.

8.3 Instance Complexity Measures

Given a classification algorithm and a binary classificationproblem, there is some max-

imum achievable performance (F1M(·, N)), often under 100% in practice (Table 8.1). Re-

fer Section 5.2 for notation. In measuring the rate of learning we want to measure the

minimum number of training examples (î) needed to achieve the best performance for a

given classifier. The brute-force way to find this minimum fora data set withM examples

would require training the classifier for every possible subset of training examples, that

is, 2M times. The size of the minimum sized subset that gives performance close to the

optimal performance would then be computed asî = min{argmaxi F1i(·, N), i=1...2M}.
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This method, although most accurate, is time-consuming especially for largeM . Instead

we use active learning to give us an ordering on the instancesand estimate an upper bound

on î using this ordering in the following way.

As before (Figure 2.1) the active learning algorithm beginswith 2 randomly selected

instances, one in the positive and one in the negative class.The active learner learns a

classifier based on this information and then intelligentlychooses the next instance from

a pool of unlabeled examples for the expert to label. The classifier is retrained and the

process continues. We measure the performance,F12t(ACT, N) of the classifier after

every2t iterations of active learning witht varying as1, 2, ..., log2 M , whereM is the total

number of instances available for training2 . A performance curve for three problems in

the 20 Newsgroups data set is shown in Figure 8.1. For the concepts –graphicsandms-

windows.misc, the learner achieves the maximum attainable accuracy (0.70 F1) after seeing

2048 (211) examples. The value 2048 can be considered to be an upper bound on î. For

sci.crypt, the learner achieves its peak after seeing about 1024 examples, making it an easier

concept (by our definition of complexity) than the other two.Each instance is chosen with

the expectation that adding it to the training set will improve accuracy significantly. Since

at each stage we are adding an example based on an estimate of its value to the training set,

the bound is approximate. We can tighten the bound by providing the learning algorithm

with as much information as possible: a large pool size for example. The advantage of

using active learning is that the classifier needs to be trained onlyO(M) times. How close

this estimated feature complexity is to the true bound is dependent on the ability of the

learner to leave out redundant instances in its training.

This simple measure of complexity is only an approximation to î and a keen observer

will note that the rate of convergence of thems-windows.miscis initially higher than that

of comp.graphics. It seems intuitive thatms-windows.miscshould be considered to be

2Note that the use oft is slightly different in this chapter, denoting the log of the number of training
examples, and not the actual number of training examples.
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Figure 8.1.Learning curves for a single classifier on 3 problems.

less complex thancomp.graphics. The approximate complexity value of2048 estimated

using active learning does not capture this learning rate. We factor in the learning rate

by considering the area under the learning curve (as we did with the efficiency metric in

Section 4.3.2) computed as :

AUClog =

log2M∑

t=1

F12t(ACT, N)

This time we measure performance at exponentially increasing intervals, and compute the

area under the learning curve, plotted with a logarithmic X-axis. AUClog implicitly gives

a higher score to problems that converge more rapidly in the early stage of learning than

later. To obtain a quantity that measures the rate of learning, independent ofM , we define

theactive learning convergence profileas follows:

pal =

∑log2M

t=1
F12t(ACT, N)

log2M × F1M(ACT, N)
(8.1)
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pal is the area under the normalized active learning curve (See Figure 8.2(a)), with a range

between 0 and 1 and is independent ofM . Higherpal implies faster convergence. Thepal

values for the three problems in Figure 8.1 –ms-windows.misc, comp.graphicsandsci.crypt

are 0.61, 0.45 and 0.55 respectively. Note that even though the maximum accuracy achieved

for sci.crypt is much higher (0.90 F1) than for the other two problems, the rate of active

learning ofsci.cryptis more similar tocomp.graphics. The conceptms-windows.mischas

the best rate of learning in the early stages. All these properties are captured by thepal

values.

We now describe the two instance complexity measures developed using the approxi-

mation tôi andpal. For both measures, a higher value of complexity implies a more difficult

problem.

1. Instance profile complexity, Ipc: This measure is simply the complement of the

active learning convergence profile, and is given asIpc = 1 − pal. The active learning

curve and hence the value ofIpc obtained is subject to the active learning algorithm and

will be less than the ideal (theoretical best ordering of instances) case. Therefore,Ipc is an

upper bound on the true complexity.

2. Instance complexity, Ci: Ipc only considers the rate of learning and does not contain

any information about the number of instances needed to achieve the best performance. We

therefore defineCi = Ipc ∗ ni whereni is the logarithm of the number of instances needed

to achieve 95% of the best performance. We expect thatni is an upper bound onlog(̂i).

We chose a threshold of 95%, rather than waiting for the curveto reach its peak, with the

hope of capturing the point where most of the concept is learned. Usually, the rate of of

improvement at the final stages of learning, before the concept is fully learned, is very slow

with several thousands of instances contributing to a tiny improvement in performance,

unnecessarily inflating the complexity score (See Figure 8.2(a)).

Using a log scale forni makes the scale like the Richter where an earthquake of mag-

nitude 6 is significantly more intense than one of magnitude 5.
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Figure 8.2.Normalized learning curves (active learning and feature learning) for 20 News-
groups.

8.3.1 Feature Complexity Measures

Our third and fourth measures attempt to capture the complexity of the problem in terms

of the number of features needed to reach the best possible performance. Again, instead of

evaluating2N combinations of features, we estimate an approximation of the true feature

complexity by using an oracle (Section 5.1) to learn a ranking of the features in the order of

decreasing discriminative ability for a given classification problem. The oracle uses a large

number of training documents and a feature selection criterion like information gain. We

consider the performance of the classifier constructed using 2k top ranking features where

k varies between 1 tolog2N . The normalized area under this feature learning curve,the

feature learning convergence profile, pfl is computed as follows3 :

pfl =

∑log2N

k=1
F1M(ACT, 2k)

log2N × F1M(ACT, N)
(8.2)

3Note that the use ofk is slightly different in this chapter, denoting the log of the number of features, and
not the actual number of features.
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Normalized feature learning curves for the 20 Newsgroups corpus are shown in Figure

8.2(b). The two feature complexity measures defined below are almost identical in intuition

to the instance complexity measures.

1. Feature profile complexity, Fpc: Feature profile complexity (Fpc) is then defined as

Fpc = 1−pfl. The computed value ofFpc is limited by the accuracy of the feature selection

algorithm.

2. Feature complexity, Cf : Similar toCi, we defineCf = Fpc ∗ nf , wherenf is the

logarithm of the number of features in the feature learning curve needed to achieve 95% of

the best performance. How good the estimate of the true feature complexity obtained this

way is dependent on the feature selection algorithm used.

Methods

One method for instance selection is SVM uncertainty sampling [75] as discussed in

Section 4.1.5. However, this would involve retraining the SVM O(M) times, which can

be very time consuming. Therefore, when we use SVM uncertainty sampling to compute

pal, we plot the learning curve only up to 1024 instances. To plotthe complete active

learning curve we use a another active learning method –a committee of perceptrons

[33]. The perceptron being mistake-driven needs to be retrained fewer thanM times (M

times in the worst case. See Section 4.1.1). Besides, each retraining unlike the SVM, does

not involve solving a quadratic programming optimization problem (See Section 4.1.3).

Of course, active learning using perceptrons may not be as effective as SVM uncertainty

sampling. However, we find that the ranking problems by theircomplexity computed using

the perceptron committee is almost identical to the rankingobtained using SVM uncertainty

sampling (refer Figure 8.6), though the actual values of complexity obtained with SVMs is

probably a better estimate of the true complexity.

We can use information gain as described in Section 5.1 for feature selection. However,

information gain does not ignore redundant features. So we also experimented withSVM
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LARS [61], a new and effective forward selection technique for feature selection. Given

that it is a forward selection technique, LARS ignores highly correlated features in its fea-

ture selection, something information gain does not do. Therefore, we expect that LARS

would capture the true feature complexity better by eliminating redundant features. How-

ever, SVM LARS has a relatively high running time and we use itonly in a limited way

by computingpfl by plotting the feature learning curve only up to1024 features. When we

use information gain we are able to plot the entire learning curve.

Each time we computeF12t(ACT, 2k) in equations 8.1 and 8.2, our aim is to find the

best possible performance with a classifier trained on2t examples and2k features. We

hope that by using active learning with a large pool, and feature selection using a large

training set, we obtain a fairly accurate estimate of this best classifier. The better the active

learning and feature selection methods, the tighter the bound. Our experience with SVMs

showed that with few training examples, much of the error is in a poor estimation ofb (refer

Equation 4.1). Hence, to obtain an even tighter bound, we sweep through all values ofb

and use thatb for which theF1 is maximum on the test set. We call this quantityMaxF1. In

fact in Table 8.1, the last column lists the Max F1 values obtained with a 90-10 training-test

split of the corpus.

8.4 Results

We describe the results of using our feature complexity measures on the 358 problems

described in Table 8.1.

8.4.1 Correlation of Instance Complexity and Feature Complexity

Figure 8.3 illustrates thatIpc andFpc of problems computed using SVM uncertainty

sampling and LARS are highly correlated (r = 0.95)4. The plots ofIpc vs. Fpc computed

using perceptron committees and information gain look similar, albeit with a slightly lower

4r is Pearson’s correlation coefficient, and r=1 denotes perfect correlation
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Figure 8.3.Correlation betweenIpc andFpc using SVM and LARS. Correlation of instance
complexity and feature complexity is independent of methods used to compute the two.

correlation coefficient (r = 0.81 (p < 2.2e−16)). The SVM methods show higher correla-

tion probably because they have the same underlying SVM learning and SVM LARS does

a better job of feature ordering for the SVM learner than information gain does for per-

ceptron. Additionallyni andnf (computed using perceptron committees and information

gain) are also strongly correlated (r = 0.613 (p < 2.2e−16)) and thereforeCi andCf are

also strongly correlated (r = 0.682 (p < 2.2e−16)).

We also experimented with random sampling for instance selection. Table 8.2 below

shows the correlation coefficients forIpc andFpc for various combinations of classifiers,

instance selection mechanisms and feature selection mechanisms for the 6 corpora in Figure

8.3.

That instance complexity (the minimum number of instances needed to learn a concept)

and feature complexity (the minimum number of features needed to learn a concept) are

highly correlated may not be surprising since both are probably related to the Kolmogorov
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classifier Feature Sel. Instance Sel. r
SVM LARS Active 0.95
SVM LARS Random 0.88

Perceptron Info. Gain Active 0.81
Perceptron Info. Gain Random 0.79

Table 8.2. Ipc andFpc for various combinations of classifiers, instance selection mecha-
nisms and feature selection mechanisms. Numbers in bold indicate statistically significant
correlations at the 95% level of confidence.

complexity5 of the learning algorithm. That our complexity measures exhibit this correla-

tion substantiates our belief in these measures.

8.4.2 Difficulty of Domains

We now benchmark all 9 corpora as easy or difficult for active learning using our com-

plexity measures. Table 8.3 shows the complexity of different data sets. By all measures

the Tech100 data set ranks as the easiest, followed by WebKB and Reuters. BNC, Reuters-

RCV1, 20 Newsgroups and the Industry sector corpora are difficult by both our instance

complexity and feature complexity measures. This is betterillustrated in the chart in Fig-

ure 8.5. This figure reaffirms the high correlation between instance complexity and feature

complexity. That most corpora have problems of varying difficulty is demonstrated by

the standard deviation of the scores in Table 8.3. Even though the BNC corpus is small

(less than 3k documents) it falls into the difficult end of thespectrum implying that genre

classification is more difficult than subject based categorization.

The ranking of corpora usingFpc computed using SVM with LARS and Perceptron

with information gain are also near identical as is illustrated by Figure 8.4 (We only show

a subset of the problems to illustrate this, due to the slow running time of LARS). The

ranking of individual problems in these two corpora usingFpc computed using these two

5The complexity of an algorithm is measured by the length of the shortest universal Turing machine
program that correctly reproduces the observed data. Remember that K-complexity is only theoretical and
cannot be computed.
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Corpus Instance Complexity Measures Feature Complexity Measures
Ipc ni Ci Fpc nf Cf

Tech100 0.04 (0.06) 3.24 (2.23) 0.20 (0.33) 0.07 (0.02) 1.89 (1.43) 0.14 (0.14)
WebKB 0.31 (0.13) 8.75 (0.50) 2.72 (1.04) 0.11 (0.04) 4.00 (2.16) 0.51 (0.47)

Reuters-21578 0.35 (0.13) 8.20 (1.03) 2.93 (1.24) 0.12 (0.07) 4.80 (2.04) 0.69 (0.56)
BNC 0.39 (0.16) 7.93 (1.91) 3.34 (1.73) 0.24 (0.11) 11.47 (3.83) 2.97 (1.60)
Enron 0.46 (0.09) 8.33 (0.87) 3.82 (0.94) 0.13 (0.06) 7.67 (4.42) 1.18 (0.70)
20NG 0.48 (0.04) 10.40 (0.68) 5.04 (0.71) 0.23 (0.08) 10.05 (1.39) 2.32 (0.95)
TDT3 0.48 (0.13) 9.30 (1.06) 4.55 (1.53) 0.20 (0.04) 6.50 (1.78) 1.34 (0.53)

Reuters-RCV1 0.53 (0.14) 10.67 (1.84) 5.81 (2.25) 0.23 (0.09) 7.69 (2.04) 1.81 (0.79)
Industry 0.59 (0.12) 10.34 (1.43) 6.20 (1.71) 0.29 (0.09) 5.97 (1.52) 1.77 (0.61)

Table 8.3. Difficulty measures for different corpora. Higher the value, more complex the problem. Values in brackets indicate std.
deviation. The complexity is computed using the perceptronalgorithm & uncertainty sampling & info. gain for feature selection.
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methods also correlate fairly well (r=0.73). TheFpc scores for individual problems in the

Reuters-21578 and 20 Newsgroups corpus using both methods are illustrated in Figure 8.6.

Our results also support previous results that say that 20-Newsgroups consists of problems

that are more difficult than Reuters-21578 and that problemslike wheatare much easier

with lower feature complexity as compared toacq[14, 56].
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Figure 8.4. Ranking usingFpc computed by two different methods results in a similar
ranking of corpora.

The Tech100 data set is a result of the efforts of Davidov et al[34] to obtain a data set

containing problems of varying difficulty in terms of maximum performance achievable.

Yet we find all of the problems in this data set are of low complexity i.e., a few well chosen

examples or features are sufficient to achieve the optimal accuracy.

The TDT corpus consists of English newswire documents (Eng News), the output of

an automatic speech recognizer system for English broadcast sources (Eng ASR), machine

translated newswire sources (MT News) and broadcast sources in Mandarin preprocessed

through an ASR system and a machine translation system (MT ASR). We measured the

difficulty of each of the subsections of this corpus. TheCf values for event based catego-

rization are shown in the second column of Table 8.4.
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The English sub-section of the corpus is easier than the machine translated one, which

is more noisy. For example, topic 30036 isNobel Prizes Awarded. The feature com-

plexity of this problem in each subset is shown in the third column. The most important

words in English Newswire and English ASR are (as expected)Nobel, prize, Saramago

(person who won it) etc, making classificaton in Eng-News relatively easy. However, in

MT News and MT ASR the most important keywords arepromises, Bell, prizeandaward.

The wordNobel is consistently translated topromises Bellin documents whose original

source isMandarin6. Names likeSaramagowhich are highly discriminatory in English

are out of vocabulary in the MT documents, making the classification problem even harder.

Additionally, a multi-source setting (newswire, broadcast and multiple languages) can be

more difficult than considering each source alone as the vocabulary across sources differs

depending on the MT and ASR systems used.

Cf by class type
Subset of Events Nobel Subject Legal & Cri-

TDT3 Awarded -minal cases
Eng News 0.65 0.27 2.03 2.56
Eng ASR 0.95 0.14 2.02 2.78
MT News 1.38 3.25 2.12 2.61
MT ASR 1.22 3.48 1.50 2.03

Whole corpus 1.34 1.60 2.78 3.30

Table 8.4. Difficulty of the TDT corpus when broken down by source and by category
type.

So far we have considered categories based on events in the TDT corpus andHurricane

Mitch andHurricane Georgewere different categories. The TDT corpus is also annotated

by broader subjects likenatural disasters, electionsetc, the feature complexity of which

are given in the fourth column of Table 8.4. The fifth column shows theCf values for

6Nobel is a 3 character word in Mandarin, the first of two of which also correspond to the English word
promisesand the third of which corresponds to the English nameBell
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an example topic -legal and criminal cases. The important features for classifying by

subject are words likecourt, law etc., which do not suffer from as many MT and ASR

errors making the difficulty of subject based classificationabout the same in each source

type, and even in the whole corpus (see the fourth column of Table 8.4).

8.4.3 A Perspective on Text Classification Problems

The difficulty of a problem or a given classification task can be due to two reasons.

One, the problem is intrinsically difficult to solve with a high degree of accuracy, with the

current capability of the learner. Secondly, even for problems that can be solved, some

problems may be learned more easily (with less training) than others. To our knowledge

this is the first work that tries to understand difficulty independent of accuracy.

We recommend that researchers use our complexity measures for problem or domain

selection and as a tool to analyze their results. Researchers tend to believe that a corpus

and the categorization problems in it may be easy or difficultdue to class skew, numbers

of documents and features, document length etc. Which notion of difficulty is meant, is a

good question to ask. Initially we thought that the difficulty (by our definition) of a problem

for active learning may be related to corpus size and featureset size. That corpus size is not

an indicator of difficulty is obvious from the BNC example, which is much more difficult

than WebKB, a corpus with comparable number of documents. Similarly the total number

of features (N) is not a predictor of complexity as can be seen from Tables 8.1 and 8.3. We

also saw that difficulty is a function of the type of categories being sought. For example,

classifying by subject was less difficult than classifying by event in the same corpus.

Our measures capture (and even quantify) previously held beliefs about text catego-

rization problems. For example, the categorywheatin the Reuters-21578 corpus is well

known to be of low feature complexity and previous research has shown that the single

word wheatin itself is a near perfect predictor of accuracy. The category acqon the other

hand, is considered to be one of high feature complexity [14,56]. Since the Reuters and
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20 Newsgroups corpora are so popular even today as benchmarkdata sets, we provide a

complete breakdown of the complexity measures for every problem in these two corpora in

Appendix E.

8.5 Implications for Tandem Learning

The dual nature of complexity seems to imply that an intelligently picked feature is

as good as an inteligently picked instance. That means (in theory at least) that we can

actively learn by intelligently picking and weighting features. Of course, labeling features

is not cognitively as easy as labeling instances. A human, would be able to label almost

all instances in a corpus (maybe with the exception of a few fuzzy instances) with category

labels, whereas labeling allN features (with category labels or even merely about their

relevance) would not be easy. For example, it is not easy to determine whether the feature

drivers is relevant in discriminating betweencomp.graphicsandms-windows.misc. Our

initial guess was that humans may be able to judge a few features fairly quickly, and that

labeling these few features would be equivalent to labelinga handful of documents, but the

latter would be more time consuming. Our preliminary experiments showed us that labeling

a feature is more than five times faster than labeling an instance. We found that users can

pick the most predictive features fairly accurately in the previous chapter. For low feature

complexity problems, learning may be stopped once featuresare picked. For medium

complexity problems, the user may need to mark a few instances in addition to the features

to achieve an acceptable level of accuracy. For very complexproblems feature selection

may be much more difficult for the user and instance feedback is the more reasonable

alternative. Hence, we think a tandem approach of asking on instance feedback and feature

feedback is most beneficial: if the problem is of low complexity, a few features that the user

marks will quickly lead the classifier to convergence; if theproblem is of high complexity,

the user would not be able to recommend features (they may notbe obvious) but can provide

feedback on instances instead. In Section 8.5.1 we verify this hypothesis.
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If we can predict that a problem is going to be difficult at the outset of learning, we need

not resort to feature feedback. We leave devising such predictors for future work (Chapter

9). The interface for tandem learning chosen bypasses the problem of predicting problem

difficulty. In our system a user will be asked to stop marking features after a point and after

which she will only label documents. By stopping feature feedback early enough, the low

feature complexity problems should see a significant boost in performance, and for high

complexity problems, the time spent labeling features is probably insignificant considering

that the total amount of time to train the classifier is going to be large anyway.

8.5.1 Experiments

We saw that instance complexity and feature complexity are two sides of the same

coin – a problem for which a few intelligently chosen instances can be used to build a

good classifier is also one for which a few good features are very good predictors of class

membership. From these results we hypothesized that coupling intelligent feature selection

with intelligent document selection should accelerate active learning.

The active learning convergence profilepal measures the rate of convergence or the

speed of learning. We measured the speed of traditional uncertainty sampling (document

feedback only) and that of the tandem learning for all 358 problems benchmarked in this

chapter. We measure performance only uptoT = 42 labeled examples and plot the active

learning convergence profile (pal, refer Equation 8.1). Similarly we measureptl as the

tandem learning convergence profile. Figure 8.7 plots the quantity ptl − pal for all 358

problems. This quantity is proportional to the efficiency oftandem learning over active

learning (refer Section 4.3.2). In these experiments we used only the scaling method to

incorporate feature feedback. The improvement in speed dueto the incorporation of term

feedback in addition to document feedback is inversely related to feature complexity as

seen in Figure 8.7 (r =-0.65). Speed is improved by about 57% on average.
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The facultyclass in WebKB shows significant improvement in speed(see Figure 8.7).

For this problem, the keywordsfaculty andprofessorare sufficient to obtain 93% of the

maximum achievable accuracy (90.05% F1). Both these terms appear for feature feedback

within the first 5 iterations in all 30 trials. Similarly, forthe Enron corpus, one of the folders

is almost completely classified by the sender of the e-mail,Wilson Shona(there are some

other folders that contain some e-mails byWilson Shona). The algorithm recommends

his e-mail id for feedback in the early iterations, resulting in significant improvements in

performance. Themiscellaneouscategory in the BNC corpus does not gain from term feed-

back whereasarts/cultural materialdoes, because of discriminatory keywords likeopera,

actor, theateretc in the latter category that when marked relevant improveperformance

significantly. There are a couple of outliers like the RCV1 category reservesfor which

speed decreases by a large amount when term feedback is included. This may be because a

fixed scaling factor of 10 for the selected features is used inthe algorithm, which may not

be appropriate for every problem.

We also report the performance (F1) for 8 corpora in Table 8.1, after12 and32 rounds

of document feedback (as in Table 7.1), and for tandem learning with T = 12 andBf =

100. Tandem learning always improves performance over the casewhenT = 12. It is

significantly better thanT = 32 for 5 of 8 cases. Like RCV1, BNC is a corpus where

document feedback forT = 32 is more effective than tandem learning. The categories

in the BNC corpus are by genre and this result can be interpreted quite intuitively: for

categories like “prose” and “poetry” even intuitively it does not seem like there are any

keywords that can capture these concepts.

In this section we used our difficulty measures to better understand situations when such

methods might work specially well. We have found that feature feedback accelerates active

learning by an amount that is inversely related to the feature complexity of the problem. For

low to mid range feature complexity problems, a few trainingdocuments combined with

feature feedback can give a big improvement in accuracy withlittle labeled data. Many
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Figure 8.7. Difference in speed of active learning and tandem learning as a function of
complexity (Cf )

Corpus Ci Only docs Tandem
(Active)

T = 12 T = 32
Tech100 0.20 0.486 0.594 0.847
WebKB 0.51 0.262 0.424 0.520
Reuters 0.69 0.516 0.570 0.651
Enron 1.18 0.218 0.444 0.465
TDT3 1.34 0.202 0.259 0.336

Industry 1.77 0.071 0.123 0.199
RCV1 1.81 0.134 0.260 0.231
20 NG 2.32 0.180 0.259 0.336
BNC 2.97 0.209 0.332 0.264

Table 8.5.Improvement in F1 for corpora of different levels of difficulty. Numbers in bold
indicate that tandem learning is significantly better than when only documents are used for
feedback. Numbers in italics indicate significantly lower performance than the case when
T = 32.
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problems in our 9 corpora fall in a low to medium (0 < Cf < 2) range of complexity

and stand to gain from such a dual feedback framework, automated email foldering being

one such domain. Future work includes using these or similarmeasures to explain other

observations, such as when other semi-supervised techniques may work well, as well as

exploring methods for predicting the expected difficulty ofa learning problem at the begin-

ning stages of training (when few labeled data is available). This can inform the subsequent

learning strategy taken (Chapter 9).

8.6 Related Work

The classic “curse of dimensionality” informally states that the higher the dimension

of the problem, the harder the problem. (in this case, learning). However, our work goes

beyond that and tries to measure the the inherent complexityof the problem. A large

dimensional learning problem may be easy if only few features are required for learning

it. We show here that actively picked examples reveal the complexity better, and we relate

this to measures of feature complexity as well. Note that capturing the exact underlying

complexity relates to maximum compression of a given stringand is intractable. Thus

the subject of this chapter was to explore the utility of our approximate measures, which

depends on the learning algorithm used as well as our chosen instance and feature selection

techniques (and we report on some comparisons).

Ho and Basu [52] defined a set of measures that captured the complexity of the ge-

ometry of the boundary for a few artificial and real binary classification problems of low

dimensionality. In comparison, our work is in the domain of text classification, where a

linear hyperplane is often effective making the geometry ofthe boundary less of an issue.

We experimented with one of their measures of feature complexity -maximum Fisher dis-

criminant ratio, to find that it did not correlate as well withIpc (r = 0.2). We also measured

how Fpc correlated with maximum accuracy and found the correlationto be not very high

(r=0.4).
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For other domains where active learning is used [109] but where the classifier is not

linear it is less clear whether our complexity measures can directly be used and we would

be interested in exploring this question in the future (Chapter 9). The difficulty in domains

like text is that large amounts of training data may be neededin order to find the optimal

hyperplane. Davidov et al [34] developed a benchmark data set consisting of 100 text-

classification problems with varying difficulty (accuracy ranging from 0.6 to 0.92). They

also developed measures for predicting the difficulty of a problem, but this was in terms

of its accuracy. Instead our focus is in understanding how many features or examples are

needed to achieve the maximum accuracy. In fact their data set, Tech-100, is the easiest

data set for active learning, and illustrates the fact that difficulty of accuracy is different

from “learnability”.

Gabrilovich et al defined a feature complexity measureoutlier count[46] that attempts

to capture the number of important features for a given learning problem. They used outlier

count to characterize problems for which decision trees aremore accurate than SVMs, the

latter being the main thrust of their work. The work in this chapter on the other hand is an

in-depth analysis of complexity – both feature and instance. We did experiment with outlier

count finding that it correlates with instance complexity (Ipc) reasonably well (r=0.610) as

our feature complexity measures.

Blum and Langley [19] provide a good introduction and motivation to the work in this

chapter. They discuss the problem of selecting relevant examples and relevant features as

two ways of gathering relevant information in a data set. They formally define the relevance

of features and examples. and suggest using relevance as a measure of complexity. Their

work is however theoretical and their definitions apply for classes which can be completely

described (i.e., 100 % accuracy is achieved) by some conjunction or disjunction of features.

Real world problems like text classification are not so simple and it is not clear how their

measures may be used to quantify complexity for real world problems. They conclude their

paper by stating the followingempirical challenge:
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Feature selection and example selection are tasks that seemto be intimately
related and we need more studies designed to help understandand quantify this
relationship. Much of the empirical work on example selection has dealt with
low dimensional spaces, yet this approach clearly holds even greater potential
for domains involving many irrelevant features. Resolvingbasic issues of this
sort promises to keep the field of machine learning occupied for many years to
come.

Our measures attempt to answer the unsolved questions in their paper. We define mea-

sures that can be computed easily in real world domains, and demonstrate that instance

complexity and feature complexity are highly positively correlated.

8.7 Summary

Designing adequate measures of difficulty is a balancing actbetween efficiency and util-

ity. The techniques proposed here are efficient and we showedevidence that they exhibit

desired properties: rough but useful measures of difficulty, leading to a consistent ranking

of problems, and enjoying high correlation. We observed, asmight be expected and de-

sired, a high positive correlation between our instance complexity and feature complexity

measures. We used these measures to gain insights on the relative difficulty of a variety of

text categorization problems and domains. This analysis should inform future research, for

example in selecting corpora and anticipating results. We find that our measures capture

previously held beliefs about the difficulty of various textclassification problems (See Fig.

8.6) [14, 56]. However, past work has typically considered only the Reuters-21578 and 20

Newsgroups corpora. By benchmarking 9 corpora and 358 problems, we place these two

corpora and their underlying problems in perspective with respect to a broad range of text

categorization problems. Our measures also capture how difficulty can be different even

for a given corpus depending on the type of categories (say subject or event) that one is

trying to learn. We also show how the feature complexity for classifying in a cross-lingual

and cross-media (broadcast and news stories) setting is more difficult than classifying in a

given language or for a given source-type. We discussed the implications of all our obser-
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vations for machine learning research and for tandem learning in particular. Given that we

do not know at the outset how to predict whether a concept is going to be easy or difficult,

a tandem learning approach is the best general approach especially in the early stage of

learning.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

We begin this concluding chapter by highlighting our contributions to the field of text

categorization and then list our main results. In the end we discuss ideas for future research.

9.1 Contributions

1. We designed a tandem learning algorithm for text classification that draws on ideas

from machine learning and information retrieval. The learning process in a tandem

learning system is interactive, where the teacher is asked to label examples and fea-

tures chosen by the system.

2. To our knowledge this is the first work to consider documentand term feedback in

conjunction, analyzing how one mode of feedback benefits theother and whether one

can be used in lieu of the other. To the best of our knowledge most past research has

considered these two modes of feedback independently.

3. We designed a solid experimental framework that uses an oracle to explore the ben-

efits of feature selection. We prescribe such an oracle approach for any work that

involves a human-in-the-loop since it helps separate algorithmic error from human

error. We recommend that the experimental design should be able to factor out the

answers to the following questions: what must the learner (algorithm) ask the teacher

(human) in order to maximize the information gained by the answer? can the learner

assimilate the information if the human provided the correct answer? can the human

answer the question correctly? what happens if the human answers wrongly? and

how must the question be posed to the human in order to obtain the correct answer?
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4. Our offline technique of obtaining feature judgments, in spite of some of its disad-

vantages, is a cheap and effective way of measuring the capability of the system using

real users. It also helps answer some of the questions raisedabove.

5. We designed a set of complexity measures that capture the true underlying feature

and instance complexity of a binary classification problem.Although we used them

as a tool to examine the kind of concepts for which tandem learning is effective, the

measures are general enough and can be used by text classification researchers in

general to explore the effectiveness of any new technique oralgorithm.

9.2 Conclusions

We now summarize lessons learned from this work:

1. Feature selection is a particularly important problem for text classification, a domain

with many irrelevant and redundant features. The problem isaggravated when the

number of training examples is few. In text categorization,humans can guide the

classifier, thereby aiding the feature selection process.

2. Feature selection is mostly beneficial for model selection, and somewhat beneficial

for instance selection in active learning.

3. Tandem learning is better than learning on only documentsor only features. The

proposed algorithm improves the classification performance by 10% (absolute dif-

ference, averaged over all corpora, corresponding to an 88%relative difference) over

traditional active learning.

4. Although humans are more verbose than the oracle, they tend to overlap with the

oracle to a significant extent (greater than 60% overlap). Itis this overlap that makes

the ultimate classifier performance achieved with human labeled features match that

of the oracle.
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5. Our tandem learning approach can easily be ported for direct use in a news filtering

task, where the performance is improved by feature feedback.

6. There exist a wide variety of problems in text classification of various degrees of

feature complexity. Low feature complexity problems exhibit maximum benefit for

interactive learning techniques.

9.3 Future Work

Since our work sits at the cross-roads of machine learning and interactive information

retrieval, there are many directions for future work. We highlight some of our main ideas

below.

9.3.1 An extensive user study

Our user study did not measure the real-time usability of thetandem learning algorithm

and users’ willingness or ability to mark features (though we did a small survey comparing

the hardness of feature feedback vs. document feedback). Weintend to explore these and

other interface related questions in the future. In fact ouroracle based approach provides

a starting point for designing user studies. For example researchers have been exploring

the role of context in determining the usefulness of terms. We can now answer questions

about whether context helps determine relevant features better or non-relevant ones. Then

we can similarly question the role of relevant and non-relevant context for each of relevant

and non-relevant terms. For example, we saw that the termKuomintangwhen shown with

context that did not directly imply that it was relevant to theTaipei Mayoral Elections, was

marked non-relevant by the user (see Appendix C). There are many similar questions about

how best to solicit user feedback that need to be answered.

Other than providing context to assist feature selection, we did not explore other possi-

ble interfaces like lists, or showing users clusters of features (where the user is asked only

one label for the entire cluster) and so on. We think that welldesigned interfaces will de-
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crease the ratio of the time to mark a feature to the time to mark a document and is a useful

future line of research (remember our upper bound on that ratio was 1/5).

9.3.2 Other Forms of Feedback

Information retrieval has used several kinds of feedback that users can provide to a

system – feedback on passages, or on clusters of documents, for example. These alter-

nate forms of feedback can be translated into a set of features or terms to incorporate into

the tandem learning algorithm. Alternately, we can design new algorithms to incorporate

these feedback mechanisms for classification. What these alternative feedback mechanisms

are, how to incorporate feedback and whether they will aid classification is an interesting

research question.

9.3.3 Predicting Complexity

An important problem for the user in interactive settings isthe ability of a system to be

able to accurately predict the usefulness of interaction. The prediction needs to be made

on the currently labeled data set. We are thinking of exploring what aspects of a problem

or a domain contribute to feature complexity. Is it the presence of irrelevant features or

redundant ones or is it the underlying clusters in the data? Using lessons from such an

exploration we would like to be able to predict complexity sothat we can better inform the

user about the amount of feedback that will be needed to be invested by her to achieve the

maximum accuracy possible by a given learner for a given problem. We also wonder about

the impact of higher order boundaries on the learning difficulty.

9.3.4 Other Tasks and Domains

We would like to use a similar setup to determine the effectiveness of term feedback in

lieu of, or in support of, document feedback for ad-hoc retrieval. Additionally, it would be

interesting to explore whether topics in ad-hoc retrieval are linearly separable. If so, then
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we can use our complexity measures to gauge the kind of interaction techniques that would

be applicable for ad-hoc queries.

Linear SVMs are popular in domains like image classification. Heisele at al [51] used

a set of linear SVMs, each working independently on a separate component of an image

of a face, like the nose, the eye and so on, for the task of imageclassification. A linear

SVM was then used to combine the outputs of the component SVMs. It is possible that a

human may be able to bootstrap learning by say pointing out that a given component was

more valuable than the others to detect a particular person for example glasses on the eyes

for a bespectacled person. Likewise in cancer classification, another domain where a linear

SVM is state of the art, and also a domain where feature selection is critical [40], a domain

expert (a molecular biologist perhaps) may be able to specify certain valuable features, for

examples genes that are believed to be predictive. We would like to explore other domains

and problems that tandem learning can be applied to.
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APPENDIX A

CLASS KEY

Class keys for the Reuters-21578 corpus:

1. earnings 2. acquisitions 3. money-fx 4. crude 5. trade

6. interest 7. wheat 8. corn 9. money supply 10. gold

Class keys for the 20 Newsgroups corpus:

1. alt.atheism 2. comp.graphics 3. comp.os.wind.misc

4. comp.sys.ibm.pc.hw 5. comp.sys.mac.hw 6. comp.windows.x

7. misc.forsale 8. rec.autos 9. rec.motorcycles

10. rec.sport.baseball 11. rec.sport.hockey 12. sci.crypt

13. sci.electronics 14. sci.med 15. sci.space

16. soc.rel.christian 17. talk.politics.guns 18. talk.politics.mideast

19. talk.politics.misc 20. talk.religion.misc
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APPENDIX B

USER STUDY

B.1 Instructions

You will be shown a list of features (words) one at a time. For each feature you will

be asked to determine whether it is more likely to occur in a relevant document, or more

likely to occur in a non-relevant document. The corresponding options are RELEVANT

and NON-RELEVANT respectively. If you can’t decide whetherthe feature belongs to

either category mark DONT KNOW (the default option). For every feature ask yourself the

following question: “Is this more likely to occur in a RELEVANT document as opposed

to NON-RELEVANT one?”. If that is the case mark the feature asrelevant. For example

the word “Mitch” is more likely to occur in a document on “Hurricane Mitch”, than in a

general document. If the reverse is true then mark the feature as NON-RELEVANT. For

example the word “banana” is more likely to occur in a document which is not relevant to

the topic of “Hurricane Mitch”. People, places, locations are often relevant terms.

To aid your understanding the meaning of a given term, example contexts in which the

word appears are provided

DO NOT use any resources (the web, encyclopedias etc) to determine your answer. You

can use the topic description provided above. If you are not sure simply click the “Dont

Know” option

The time between which you are shown a feature and you hit the submit button is

recorded. So do not do anything else in this time. After you submit, A THANK YOU page

is displayed. You may take a break here before you proceed to the next feature.
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At the end you will be provided with a text box, where you can provide features which

you think are relevant but were not asked

To modify the last annotation use the browsers BACK button
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Figure B.1. Screen-shot of the initial screen shown to the user after logging in, with the instructions and the topic description.
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Figure B.2. Screen shot of the interface where the user was asked to labela term in one of three categories. Each term was shown with
four contexts.
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B.2 Screenshots

Figures B.1 and B.2 show example screenshots from our user study. Figure B.2 is an

interesting example, where the user is asked to judge the term bell for the topicNobel Peace

Prize. Bell is a mis-translation ofNobelin documents whose original text is in Mandarin.
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APPENDIX C

USER LABELS

We show the terms marked by the oracle, as well as the positiveand negative terms

marked by both users for three example topics:Osama Bin Laden Indictments, Nobel Peace

Prize AwardedandTaipei Mayoral Race. For the first of these topics the oracle terms are

quite good, and both users have almost 100% recall. The improvement in effectiveness is

almost on par with that of the oracle with the negative terms marked by User 1 hurting per-

formance only slightly. We observe a similar such effect forthe second topic. Again, even

though the negative terms marked by User 1 hurt performance,the overall improvement is

still better than the baseline. Also notice that the overlapbetween the terms marked by User

1 and User 2 is significantly lower, and recall is also not as high as the previous example.

The third example, is one where the markings by User 2 actually hurt performance, though

User 1’s labels still improve performance over the baseline. This improvement is in spite of

her marking key-words likeKuomintang1 andGaoxiong2 wrongly, as associated with the

negative class. Also notice how User 1 is more verbose than User 2. We explored the con-

texts in which these terms were shown and saw thatTaiwanandPeople’s Progressive Party

co-occured in the context ofKoumintang, making it hard to explain why the users missed

marking this feature as relevant.Gaoxiongalso occurred in the context ofTaiwan, but not

in any political context, making it easier to understand whyusers missed this feature.

1Kuomintang is a political party in China.

2Gaoxing is a city in Taiwan
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WHAT : Osama bin Laden indicted and tried for terrorism

WHERE : US District Court in New York issues the charges; bin Laden’s camp
is in Afghanistan.

WHEN : Indictment issued 11/4/98

Topic Explication: Saudi born millionaire Osama bin Laden was indicted on 238
counts for plotting and executing the attacks on American embassies in Africa in
August of 1997 through his Afghanistan based terrorist group, al Queda.
On topic: Stories about evidence gathering efforts by the CIA and other agencies
that led to the indictment; the indictment itself; reactions from the Muslim world;
threats of retaliation for the indictment from Islamic militant groups ; offer of
reward from the State Department for bin Laden’s capture.

(a) Topic Description

oracle terms + afghanistan africa bomb embassy osama islamic
laden mastermind kenya saudi tanzania teledyne terrorist

user terms + abdulaccuse afghanistanafrica arabia attack august blast bomb
charge cia court decisionembassyevidenceindict islamickenya kill
ladenlaw mastermindMEMBER millionaire missilemuslimnetwork
osamapakistan saudistrikesuspect taliban tanzaniateledyneterror
terrorist weapon

- baghdad bean britain china clothes economic egypt elect europe fore
france gnus govern interior iran iraq israel love market meat netanyahu
organize palestinian paris peace police president rahim republican
secretary sudanese television troop travel troop unite

(b) Terms marked by the user and the oracle.

Figure C.1. Topic description and user marked terms for the topicOsama Bin Laden
Indictment. Terms in lowercase are those that User 1 marked. Of those terms that User
1 marked, the ones in italics are ones that User 2 also marked.Terms that only User 2
marked are capitalized. The symbols + and - indicate the classes (relevant and non-relevant)
assigned to the terms. Oracle marked terms are underlined.
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U1 U2
User P+ 0.325 0.370

agreement P- 0.000 1.000
R+ 1.000 0.923
R- 1.000 1.000

Effectiveness + 0.170 0.185
F1 (baseline=0.05) + & - 0.164 0.185

Table C.1. Precision, Recall (relative to the oracle) and effectiveness for the topicOsama
Bin Laden Indictment. Oracle F1 is 0.199

U1 U2
User P+ 0.260 0.285

agreement P- 0.000 1.000
R+ 0.750 0.500
R- 1.000 1.000

Effectiveness + 0.355 0.370
F1 (baseline=0.217) + & - 0.276 0.370

Table C.2. Precision, Recall (relative to the oracle) and effectiveness for the topicNobel
Peace Prize Awarded. Oracle F1 is 0.361

U1 U2
User P+ 0.411 0.571

agreement P- 0.00 1.000
R+ 0.500 0.285
R- 1.000 1.000

Effectiveness + 0.385 0.293
F1 (baseline=0.330) + & - 0.383 0.293

Table C.3. Precision, Recall (relative to the oracle) and effectiveness for the topicTaipei
Mayoral Race. Oracle F1 is 0.503.
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WHAT : Nobel Prizes are awarded

WHERE : Stockholm, Sweden; Oslo, Norway

WHEN : Early through mid-October, 1998

Topic Explication: The Nobel Prizes, established in 1901, are presented annually
in Stockholm by the Nobel Foundation in the fields of Physics,Chemistry,
Physiology/Medicine, Literature and Economics. The Foundation also awards the
Nobel Peace Prize in Oslo, Norway. The prestigious awards include large cash prizes.
On topic: Stories about presentation of the awards; the awards banquet; reaction
to this year’s awards; interviews with the laureates about their recognition.

(a) Topic description

oracle terms + award famine nobel pries physics saramago sweden trimble

user terms + ANNOUNCE authorawardBELL chemistry COMMITTEE DOLLAR
electron FIELD honorliterature medicine nobelpeace physics
prestigious research saramagoSCIENCEswedentechnology trimble
university win write stockholm oslo norway laureate

- abdul africa america britain china dlr don faminefore france germany
gnus govern holed interior iraq ireland israel kill meat minister
palestinian play president pries quarter republican uniteusa weigh
whirled york

(b) Terms marked by the oracle and the user

Figure C.2. Topic description and user marked terms for the topicNobel Peace Prize
Awarded. Terms in lowercase are those that User 1 marked. Of those terms that User
1 marked, the ones in italics are ones that User 2 also marked.Terms that only User 2
marked are capitalized. The symbols + and - indicate the classes (relevant and non-relevant)
assigned to the terms. Oracle marked terms are underlined.
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WHAT : Taiwan’s Nationalist Party claims victory in Taipei mayoral race

WHERE : Taipei, Taiwan

WHO : Chen Shui-bian (Democratic Progressive Party); Ma Ying-jeou (Nationalist
Party); Wang Chien-shien (New Party)

WHEN : Campaign begins late October 1998; results announced 12/5/98

Topic Explication:The Nationalist Party candidate, Ma Ying-jeou, won Taipei’s
December mayoral elections, defeating the Democratic Progressive Party incumbent,
Chen Shui-bian. This was a critical contest that highlighted Taiwan’s precarious
relations with China.
On topic: Stories about the candidates’ campaigns, voting,election results, reactions
within and outside of Taipei, and the inauguration of the newmayor. NOTE:The
southern city of Kaohsiung was also choosing a mayor during the same time, but
stories on this alone are not on topic.

(a) Topic Description

oracle terms + candidate chen elect england flat gaoxiong kuomintang mayorprogress
taiwan taibei ticket wu

user terms + campaign candidatechenchinadebateelectmayor party politics
popular progressrepresentative support taibeitaiwanvote nationalist

- america battle democrat don england gaoxiong gnus house japan king
kuomintang meat play relate republican setup wu

(b) Terms marked by the oracle and the user

Figure C.3. Topic description and user marked terms for the topicTaipei mayoral race.
Terms in lowercase are those that User 1 marked. Of those terms that User 1 marked,
the ones in italics are ones that User 2 also marked. Terms that only User 2 marked are
capitalized. The symbols + and - indicate the classes (relevant and non-relevant) assigned
to the terms. Oracle marked terms are underlined.
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APPENDIX D

INTERPRETING KAPPA

Kappa Interpretation
<0 No agreement

0.0-0.19 Poor agreement
0.20-0.39 Fair agreement
0.40-0.59 Moderate agreement
0.60-0.79 Substantial agreement
0.80-1.00 Almost perfect agreement

Table D.1. Interpretation of kappa values [67].
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APPENDIX E

COMPLEXITY TABLES

Class Ipc ni Ci Fpc nf Cf

1 0.133 8 1.062 0.089 5 0.447
2 0.290 9 2.616 0.233 7 1.632
3 0.323 10 3.231 0.150 5 0.750
4 0.422 8 3.375 0.096 5 0.478
5 0.313 8 2.505 0.096 6 0.578
6 0.298 8 2.384 0.136 5 0.685
7 0.386 8 3.084 0.00 0 0.000
8 0.478 8 3.827 0.101 3 0.301
9 0.620 9 5.577 0.245 7 1.714

10 0.277 6 1.661 0.066 5 0.330

Table E.1. Complexity of the 10 Reuters 21578 corpus. Class keys are in Appendix A.
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class Ipc ni Ci Fpc nf Cf

1 0.512 11 5.635 0.284 10 2.841
2 0.526 11 5.783 0.233 10 2.328
3 0.390 10 3.896 0.168 11 1.843
4 0.520 11 5.719 0.242 12 2.904
5 0.462 10 4.616 0.180 11 1.978
6 0.471 10 4.709 0.198 10 1.976
7 0.471 10 4.711 0.141 10 1.415
8 0.498 10 4.981 0.163 11 1.790
9 0.445 10 4.447 0.113 8 0.906

10 0.499 10 4.990 0.245 9 2.202
11 0.492 10 4.922 0.201 7 1.406
12 0.443 10 4.430 0.183 7 1.281
13 0.535 12 6.417 0.323 12 3.880
14 0.501 10 5.005 0.287 11 3.155
15 0.502 10 5.017 0.217 10 2.167
16 0.430 10 4.296 0.190 10 1.895
17 0.473 10 4.730 0.228 11 2.513
18 0.450 10 4.495 0.159 10 1.591
19 0.490 11 5.391 0.438 10 4.378
20 0.557 12 6.685 0.368 11 4.046

Table E.2. Complexity of the 20 Newsgroups problems. Class keys are in Appendix A.
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