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ABSTRACT

Evaluation of information retrieval systems is one of the core
tasks in information retrieval. Problems include the inabil-
ity to exhaustively label all documents for a topic, non-
generalizability from a small number of topics, and incor-
porating the variability of retrieval systems. Previous work
addresses the evaluation of systems, the ranking of queries
by difficulty, and the ranking of individual retrievals by per-
formance. Approaches exist for the case of few and even no
relevance judgments. Our focus is on zero-judgment perfor-
mance prediction of individual retrievals.

One common shortcoming of previous techniques is the as-
sumption of uncorrelated document scores and judgments.
If documents are embedded in a high-dimensional space (as
they often are), we can apply techniques from spatial data
analysis to detect correlations between document scores.
We find that the low correlation between scores of topi-
cally close documents often implies a poor retrieval per-
formance. When compared to a state of the art baseline,
we demonstrate that the spatial analysis of retrieval scores
provides significantly better prediction performance. These
new predictors can also be incorporated with classic pre-
dictors to improve performance further. We also describe
the first large-scale experiment to evaluate zero-judgment
performance prediction for a massive number of retrieval
systems over a variety of collections in several languages.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models; H.3.4 [Systems and Software]: Performance eval-
uation (efficiency and effectiveness)

General Terms

Performance, Design, Reliability, Experimentation
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autocorrelation, regularization, performance prediction
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1. INTRODUCTION
In information retrieval, a user poses a query to a system.

The system retrieves n documents each receiving a real-
valued score indicating the predicted degree of relevance.
If we randomly select pairs of documents from this set, we
expect some pairs to share the same topic and other pairs to
not share the same topic. Take two topically-related docu-
ments from the set and call them a and b. If the scores of a

and b are very different, we may be concerned about the per-
formance of our system. That is, if a and b are both on the
topic of the query, we would like them both to receive a high
score; if a and b are not on the topic of the query, we would
like them both to receive a low score. We might become more
worried as we find more differences between scores of related
documents. We would be more comfortable with a retrieval
where scores are consistent between related documents.

Our paper studies the quantification of this inconsistency
in a retrieval from a spatial perspective. Spatial analysis is
appropriate since many retrieval models embed documents
in some vector space. If documents are embedded in a space,
proximity correlates with topical relationships. Score con-
sistency can be measured by the spatial version of autocor-
relation known as the Moran coefficient or IM [5, 10]. In
this paper, we demonstrate a strong correlation between IM

and retrieval performance.
The discussion up to this point is reminiscent of the clus-

ter hypothesis. The cluster hypothesis states: closely-related

documents tend to be relevant to the same request [12]. As we
shall see, a retrieval function’s spatial autocorrelation mea-
sures the degree to which closely-related documents receive
similar scores. Because of this, we interpret autocorrela-
tion as measuring the degree to which a retrieval function
satisfies the clustering hypothesis. If this connection is rea-
sonable, in Section 6, we present evidence that failure to
satisfy the cluster hypothesis correlates strongly with poor
performance.

In this work, we provide the following contributions,

1. A general, robust method for predicting the perfor-
mance of retrievals with zero relevance judgments (Sec-
tion 3).

2. A theoretical treatment of the similarities and motiva-
tions behind several state-of-the-art performance pre-
diction techniques (Section 4).

3. The first large-scale experiments of zero-judgment, sin-
gle run performance prediction (Sections 5 and 6).



2. PROBLEM DEFINITION
Given a query, an information retrieval system produces

a ranking of documents in the collection encoded as a set
of scores associated with documents. We refer to the set
of scores for a particular query-system combination as a re-

trieval. We would like to predict the performance of this
retrieval with respect to some evaluation measure (eg, mean
average precision). In this paper, we present results for
ranking retrievals from arbitrary systems. We would like
this ranking to approximate the ranking of retrievals by the
evaluation measure. This is different from ranking queries

by the average performance on each query. It is also differ-
ent from ranking systems by the average performance on a
set of queries.

Scores are often only computed for the top n documents
from the collection. We place these scores in the length
n vector, y, where yi refers to the score of the ith-ranked
document. We adjust scores to have zero mean and unit
variance. We use this method because of its simplicity and
its success in previous work [15].

3. SPATIAL CORRELATION
In information retrieval, we often assume that the repre-

sentations of documents exist in some high-dimensional vec-
tor space. For example, given a vocabulary, V, this vector
space may be an arbitrary |V|-dimensional space with cosine
inner-product or a multinomial simplex with a distribution-
based distance measure. An embedding space is often se-
lected to respect topical proximity; if two documents are
near, they are more likely to share a topic.

Because of the prevalence and success of spatial models
of information retrieval, we believe that the application of
spatial data analysis techniques are appropriate. Whereas
in information retrieval, we are concerned with the score at
a point in a space, in spatial data analysis, we are concerned
with the value of a function at a point or location in a space.
We use the term function here to mean a mapping from a
location to a real value. For example, we might be interested
in the prevalence of a disease in the neighborhood of some
city. The function would map the location of a neighborhood
to an infection rate.

If we want to quantify the spatial dependencies of a func-
tion, we would employ a measure referred to as the spatial

autocorrelation [5, 10]. High spatial autocorrelation suggests
that knowing the value of a function at location a will tell
us a great deal about the value at a neighboring location
b. There is a high spatial autocorrelation for a function
representing the temperature of a location since knowing
the temperature at a location a will tell us a lot about the
temperature at a neighboring location b. Low spatial au-
tocorrelation suggests that knowing the value of a function
at location a tells us little about the value at a neighboring
location b. There is low spatial autocorrelation in a function
measuring the outcome of a coin toss at a and b.

In this section, we will begin by describing what we mean
by spatial proximity for documents and then define a mea-
sure of spatial autocorrelation. We conclude by extending
this model to include information from multiple retrievals
from multiple systems for a single query.

3.1 Spatial Representation of Documents
Our work does not focus on improving a specific similarity

measure or defining a novel vector space. Instead, we choose

an inner product known to be effective at detecting inter-
document topical relationships. Specifically, we adopt tf.idf
document vectors,

d̃i = di log

„

(n + 0.5) − ci

0.5 + ci

«

(1)

where d is a vector of term frequencies, c is the length-|V|
document frequency vector. We use this weighting scheme
due to its success for topical link detection in the context
of Topic Detection and Tracking (TDT) evaluations [6]. As-
suming vectors are scaled by their L2 norm, we use the inner
product, 〈d̃i, d̃j〉, to define similarity.

Given documents and some similarity measure, we can
construct a matrix which encodes the similarity between
pairs of documents. Recall that we are given the top n

documents retrieved in y. We can compute an n × n simi-
larity matrix, W. An element of this matrix, Wij represents
the similarity between documents ranked i and j. In prac-
tice, we only include the affinities for a document’s k-nearest
neighbors. In all of our experiments, we have fixed k to 5.
We leave exploration of parameter sensitivity to future work.
We also row normalize the matrix so that

Pn

j=1 Wij = 1 for
all i.

3.2 Spatial Autocorrelation of a Retrieval
Recall that we are interested in measuring the similarity

between the scores of spatially-close documents. One such
suitable measure is the Moran coefficient of spatial autocor-
relation. Assuming the function y over n locations, this is
defined as

ĨM =
n

eTWe

P

i,j Wijyiyj
P

i y2
i

=
n

eTWe

yTWy

yTy
(2)

where eTWe =
P

ij Wij .
We would like to compare autocorrelation values for dif-

ferent retrievals. Unfortunately, the bound for Equation 2
is not consistent for different W and y. Therefore, we use
the Cauchy-Schwartz inequality to establish a bound,

ĨM ≤
n

eTWe

s

yTWTWy

yTy

And we define the normalized spatial autocorrelation as

IM =
yTWy

p

yTy × yTWTWy

Notice that if we let ỹ = Wy, then we can write this formula
as,

IM =
yTỹ

‖y‖2‖ỹ‖2
(3)

which can be interpreted as the correlation between the orig-
inal retrieval scores and a set of retrieval scores “diffused”
in the space.

We present some examples of autocorrelations of functions
on a grid in Figure 1.

3.3 Correlation with Other Retrievals
Sometimes we are interested in the performance of a single

retrieval but have access to scores from multiple systems for



(a) IM = 0.006 (b) IM = 0.241 (c) IM = 0.487

Figure 1: The Moran coefficient, IM for a several
binary functions on a grid. The Moran coefficient
is a local measure of function consistency. From the
perspective of information retrieval, each of these
grid spaces would represent a document and docu-
ments would be organized so that they lay next to
topically-related documents. Binary retrieval scores
would define a pattern on this grid. Notice that,
as the Moran coefficient increases, neighboring cells
tend to have similar values.

the same query. In this situation, we can use combined
information from these scores to construct a surrogate for
a high-quality ranking [17]. We can treat the correlation
between the retrieval we are interested in and the combined
scores as a predictor of performance.

Assume that we are given m score functions, yi, for the
same n documents. We will represent the mean of these
vectors as yµ =

Pm

i=1 yi. We use the mean vector as an ap-
proximation to relevance. Since we use zero mean and unit
variance normalization, work in metasearch suggests that
this assumption is justified [15]. Because yµ represents a
very good retrieval, we hypothesize that a strong similarity
between yµ and y will correlate positively with system per-
formance. We use Pearson’s product-moment correlation to
measure the similarity between these vectors,

ρ(y,yµ) =
yTyµ

‖y‖2‖yµ‖2
(4)

We will comment on the similarity between Equation 3 and
4 in Section 7.

Of course, we can combine ρ(y, ỹ) and ρ(y,yµ) if we as-
sume that they capture different factors in the prediction.
One way to accomplish this is to combine these predictors
as independent variables in a linear regression. An alterna-
tive means of combination is suggested by the mathematical
form of our predictors. Since ỹ encodes the spatial depen-
dencies in y and yµ encodes the spatial properties of the
multiple runs, we can compute a third correlation between
these two vectors,

ρ(ỹ,yµ) =
ỹTyµ

‖ỹ‖2‖yµ‖2
(5)

We can interpret Equation 5 as measuring the correlation
between a high quality ranking (yµ) and a spatially smoothed
version of the retrieval (ỹ).

4. RELATIONSHIP WITH OTHER

PREDICTORS
One way to predict the effectiveness of a retrieval is to

look at the shared vocabulary of the top n retrieved doc-
uments. If we computed the most frequent content words
in this set, we would hope that they would be consistent

with our topic. In fact, we might believe that a bad re-
trieval would include documents on many disparate topics,
resulting in an overlap of terminological noise. The Clarity
of a query attempts to quantify exactly this [7]. Specifically,
Clarity measures the similarity of the words most frequently
used in retrieved documents to those most frequently used
in the whole corpus. The conjecture is that a good retrieval
will use language distinct from general text; the overlapping
language in a bad retrieval will tend to be more similar to
general text. Mathematically, we can compute a representa-
tion of the language used in the initial retrieval as a weighted
combination of document language models,

P (w|θQ) =

n
X

i=1

P (w|θi)
P (Q|θi)

Z
(6)

where θi is the language model of the ith-ranked docu-
ment, P (Q|θi) is the query likelihood score of the ith-ranked
document and Z =

Pn

i=1 P (Q|θi) is a normalization con-
stant. The similarity between the multinomial P (w|θQ)
and a model of “general text” can be computed using the
Kullback-Leibler divergence, DV

KL(θQ‖θC). Here, the distri-
bution P (w|θC) is our model of general text which can be
computed using term frequencies in the corpus. In Figure
2a, we present Clarity as measuring the distance between the
“weighted center of mass” of the retrieval (labeled y) and the
“unweighted center of mass” of the collection (labeled O).
Clarity reaches a minimum when a retrieval assigns every
document the same score.

Let’s again assume we have a set of n documents retrieved
for our query. Another way to quantify the dispersion of a
set of documents is to look at how clustered they are. We
may hypothesize that a good retrieval will return a single,
tight cluster. A poorly performing retrieval will return a
loosely related set of documents covering many topics. One
proposed method of quantifying this dispersion is to mea-
sure the distance from a random document a to it’s nearest
neighbor, b. A retrieval which is tightly clustered will, on
average, have a low distance between a and b; a retrieval
which is less tightly-closed will, on average have high dis-
tances between a and b. This average corresponds to using
the Cox-Lewis statistic to measure the randomness of the
top n documents retrieved from a system [18]. In Figure
2a, this is roughly equivalent to measuring the area of the
set n. Notice that we are throwing away information about
the retrieval function y. Therefore the Cox-Lewis statistic
is highly dependent on selecting the top n documents.1

Remember that we have n documents and a set of scores.
Let’s assume that we have access to the system which pro-
vided the original scores and that we can also request scores
for new documents. This suggests a third method for pre-
dicting performance. Take some document, a, from the re-
trieved set and arbitrarily add or remove words at random
to create a new document ã. Now, we can ask our system
to score ã with respect to our query. If, on average over
the n documents, the scores of a and ã tend to be very dif-
ferent, we might suspect that the system is failing on this
query. So, an alternative approach is to measure the simi-

1The authors have suggested coupling the query with the
distance measure [18]. The information introduced by the
query, though, is retrieval-independent so that, if two re-
trievals return the same set of documents, the approximate
Cox-Lewis statistic will be the same regardless of the re-
trieval scores.



yOy

(a) Global Divergence

µ(y)ỹ
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Figure 2: Representation of several performance predictors on a grid. In Figure 2a, we depict predictors
which measure the divergence between the “center of mass” of a retrieval and the center of the embedding
space. In Figure 2b, we depict predictors which compare the original retrieval, y, to a perturbed version of
the retrieval, ỹ. Our approach uses a particular type of perturbation based on score diffusion. Finally, in
Figure 2c, we depict prediction when given retrievals from several other systems on the same query. Here,
we can consider the fusion of these retrieval as a surrogate for relevance.

larity between the retrieval and a perturbed version of that
retrieval [18, 19]. This can be accomplished by either per-
turbing the documents or queries. The similarity between
the two retrievals can be measured using some correlation
measure. This is depicted in Figure 2b. The upper grid
represents the original retrieval, y, while the lower grid rep-
resents the function after having been perturbed, ỹ. The
nature of the perturbation process requires additional scor-
ings or retrievals. Our predictor does not require access to
the original scoring function or additional retrievals. So, al-
though our method is similar to other perturbation methods
in spirit, it can be applied in situations when the retrieval
system is inaccessible or costly to access.

Finally, assume that we have, in addition to the retrieval
we want to evaluate, m retrievals from a variety of differ-
ent systems. In this case, we might take a document a,
compare its rank in the retrieval to its average rank in the
m retrievals. If we believe that the m retrievals provide a
satisfactory approximation to relevance, then a very large
difference in rank would suggest that our retrieval is mis-
ranking a. If this difference is large on average over all
n documents, then we might predict that the retrieval is
bad. If, on the other hand, the retrieval is very consistent
with the m retrievals, then we might predict that the re-
trieval is good. The similarity between the retrieval and
the combined retrieval may be computed using some corre-
lation measure. This is depicted in Figure 2c. In previous
work, the Kullback-Leibler divergence between the normal-
ized scores of the retrieval and the normalized scores of the
combined retrieval provides the similarity [1].

5. EXPERIMENTS
Our experiments focus on testing the predictive power of

each of our predictors: ρ(y, ỹ), ρ(y,yµ), and ρ(ỹ,yµ). As
stated in Section 2, we are interested in predicting the per-
formance of the retrieval generated by an arbitrary system.
Our methodology is consistent with previous research in that
we predict the relative performance of a retrieval by compar-
ing a ranking based on our predictor to a ranking based on
average precision.

We present results for two sets of experiments. The first
set of experiments presents detailed comparisons of our pre-
dictors to previously-proposed predictors using identical data

sets. Our second set of experiments demonstrates the gen-
eralizability of our approach to arbitrary retrieval methods,
corpus types, and corpus languages.

5.1 Detailed Experiments
In these experiments, we will predict the performance of

language modeling scores using our autocorrelation predic-
tor, ρ(y, ỹ); we do not consider ρ(y,yµ) or ρ(ỹ,yµ) be-
cause, in these detailed experiments, we focus on ranking
the retrievals from a single system. We use retrievals, values
for baseline predictors, and evaluation measures reported in
previous work [19].

5.1.1 Topics and Collections

These performance prediction experiments use language
model retrievals performed for queries associated with col-
lections in the TREC corpora. Using TREC collections al-
lows us to confidently associate an average precision with a
retrieval. In these experiments, we use the following topic
collections: TREC 4 ad hoc, TREC 5 ad hoc, Robust 2004,
Terabyte 2004, and Terabyte 2005.

5.1.2 Baselines

We provide two baselines. Our first baseline is the clas-
sic Clarity predictor presented in Equation 6. Clarity is
designed to be used with language modeling systems. Our
second baseline is Zhou and Croft’s “ranking robustness”
predictor. This predictor corrupts the top k documents
from retrieval and re-computes the language model scores
for these corrupted documents. The value of the predictor
is the Spearman rank correlation between the original rank-
ing and the corrupted ranking. In our tables, we will label
results for Clarity using DV

KL and the ranking robustness
predictor using P .

5.2 Generalizability Experiments
Our predictors do not require a particular baseline re-

trieval system; the predictors can be computed for an arbi-
trary retrieval, regardless of how scores were generated. We
believe that that is one of the most attractive aspects of our
algorithm. Therefore, in a second set of experiments, we
demonstrate the ability of our techniques to generalize to a
variety of collections, topics, and retrieval systems.



5.2.1 Topics and Collections

We gathered a diverse set of collections from all possible
TREC corpora. We cast a wide net in order to locate collec-
tions where our predictors might fail. Our hypothesis is that
documents with high topical similarity should have corre-
lated scores. Therefore, we avoided collections where scores
were unlikely to be correlated (eg, question-answering) or
were likely to be negatively correlated (eg, novelty). Nev-
ertheless, our collections include corpora where correlations
are weakly justified (eg, non-English corpora) or not justi-
fied at all (eg, expert search). We use the ad hoc tracks from
TREC3-8, TREC Robust 2003-2005, TREC Terabyte 2004-
2005, TREC4-5 Spanish, TREC5-6 Chinese, and TREC En-
terprise Expert Search 2005. In all cases, we use only the
automatic runs for ad hoc tracks submitted to NIST.

For all English and Spanish corpora, we construct the ma-
trix W according to the process described in Section 3.1. For
Chinese corpora, we use näıve character-based tf.idf vectors.
For entities, entries in W are proportional to the number of
documents in which two entities cooccur.

5.2.2 Baselines

In our detailed experiments, we used the Clarity measure
as a baseline. Since we are predicting the performance of
retrievals which are not based on language modeling, we
use a version of Clarity referred to as ranked-list Clarity
[7]. Ranked-list clarity converts document ranks to P (Q|θi)
values. This conversion begins by replacing all of the scores
in y with the respective ranks. Our estimation of P (Q|θi)
from the ranks, then is,

P (Q|θi) =

(

2(c+1−yi)
c(c+1)

if yi ≤ c

0 otherwise
(7)

where c is a cutoff parameter. As suggested by the authors,
we fix the algorithm parameters c and λ2 so that c = 60
and λ2 = 0.10. We use Equation 6 to estimate P (w|θQ) and
DV

KL(θQ‖θC) to compute the value of the predictor. We
will refer to this predictor as DV

KL, superscripted by V to
indicate that the Kullback-Leibler divergence is with respect
to the term embedding space.

When information from multiple runs on the same query is
available, we use Aslam and Pavlu’s document-space multi-
nomial divergence as a baseline [1]. This rank-based method
first normalizes the scores in a retrieval as an n-dimensional
multinomial. As with ranked-list Clarity, we begin by re-
placing all of the scores in y with their respective ranks.
Then, we adjust the elements of y in the following way,

ŷi =
1

2n

0

@1 +

n
X

k=yi

1

k

1

A (8)

In our multirun experiments, we only use the top 75 docu-
ments from each retrieval (n = 75); this is within the range
of parameter values suggested by the authors. However, we
admit not tuning this parameter for either our system or the
baseline. The predictor is the divergence between the candi-
date distribution, y, and the mean distribution, yµ . With
the uniform linear combination of these m retrievals repre-
sented as yµ, we can compute the divergence as Dn

KL(ŷ‖ŷµ)
where we use the superscript n to indicate that the sum-
mation is over the set of n documents. This baseline was
developed in the context of predicting query difficulty but

we adopt it as a reasonable baseline for predicting retrieval
performance.

5.2.3 Parameter Settings

When given multiple retrievals, we use documents in the
union of the top k = 75 documents from each of the m re-
trievals for that query. If the size of this union is ñ, then
yµ and each yi is of length ñ. In some cases, a system
did not score a document in the union. Since we are mak-
ing a Gaussian assumption about our scores, we can sample
scores for these unseen documents from the negative tail
of the distribution. Specifically, we sample from the part
of the distribution lower than the minimum value of in the
normalized retrieval. This introduces randomness into our
algorithm but we believe it is more appropriate than assign-
ing an arbitrary fixed value.

We optimized the linear regression using the square root
of each predictor. We found that this substantially improved
fits for all predictors, including the baselines. We considered
linear combinations of pairs of predictors (labeled by the
components) and all predictors (labeled as β).

5.3 Evaluation
Given a set of retrievals, potentially from a combination

of queries and systems, we measure the correlation of the
rank ordering of this set by the predictor and by the perfor-
mance metric. In order to ensure comparability with previ-
ous results, we present Kendall’s τ correlation between the
predictor’s ranking and ranking based on average precision
of the retrieval. Unless explicitly noted, all correlations are
significant with p < 0.05.

Predictors can sometimes perform better when linearly
combined [9, 11]. Although previous work has presented
the coefficient of determination (R2) to measure the quality
of the regression, this measure cannot be reliably used when
comparing slight improvements from combining predictors.
Therefore, we adopt the adjusted coefficient of determina-
tion which penalizes models with more variables. The ad-
justed R2 allows us to evaluate the improvement in predic-
tion achieved by adding a parameter but loses the statistical
interpretation of R2. We will use Kendall’s τ to evaluate the
magnitude of the correlation and the adjusted R2 to evalu-
ate the combination of variables.

6. RESULTS
We present results for our detailed experiments comparing

the prediction of language model scores in Table 1. Although
the Clarity measure is theoretically designed for language
model scores, it consistently underperforms our system-agnostic
predictor. Ranking robustness was presented as an improve-
ment to Clarity for web collections (represented in our exper-
iments by the terabyte04 and terabyte05 collections), shift-
ing the τ correlation from 0.139 to 0.150 for terabyte04 and
0.171 to 0.208 for terabyte05. However, these improvements
are slight compared to the performance of autocorrelation
on these collections. Our predictor achieves a τ correlation
of 0.454 for terabyte04 and 0.383 for terabyte05. Though
not always the strongest, autocorrelation achieves correla-
tions competitive with baseline predictors. When examin-
ing the performance of linear combinations of predictors, we
note that in every case, autocorrelation factors as a neces-
sary component of a strong predictor. We also note that the



adjusted R2 for individual baselines are always significantly
improved by incorporating autocorrelation.

We present our generalizability results in Table 2. We
begin by examining the situation in column (a) where we
are presented with a single retrieval and no information
from additional retrievals. For every collection except one,
we achieve significantly better correlations than ranked-list
Clarity. Surprisingly, we achieve relatively strong correla-
tions for Spanish and Chinese collections despite our näıve
processing. We do not have a ranked-list clarity correlation
for ent05 because entity modeling is itself an open research
question. However, our autocorrelation measure does not
achieve high correlations perhaps because relevance for en-
tity retrieval does not propagate according to the cooccur-
rence links we use.

As noted above, the poor Clarity performance on web
data is consistent with our findings in the detailed experi-
ments. Clarity also notably underperforms for several news
corpora (trec5, trec7, and robust04). On the other hand, au-
tocorrelation seems robust to the changes between different
corpora.

Next, we turn to the introduction of information from
multiple retrievals. We compare the correlations between
those predictors which do not use this information in column
(a) and those which do in column (b). For every collection,
the predictors in column (b) outperform the predictors in
column (a), indicating that the information from additional
runs can be critical to making good predictions.

Inspecting the predictors in column (b), we only draw
weak conclusions. Our new predictors tend to perform bet-
ter on news corpora. And between our new predictors, the
hybrid ρ(ỹ,yµ) predictor tends to perform better. Recall
that our ρ(ỹ,yµ) measure incorporates both spatial and
multiple retrieval information. Therefore, we believe that
the improvement in correlation is the result of incorporat-
ing information from spatial behavior.

In column (c), we can investigate the utility of incor-
porating spatial information with information from multi-
ple retrievals. Notice that in the cases where autocorrela-
tion, ρ(y, ỹ), alone performs well (trec3, trec5-spanish, and
trec6-chinese), it is substantially improved by incorporat-
ing multiple-retrieval information from ρ(y,yµ) in the lin-
ear regression, β. In the cases where ρ(y,yµ) performs well,
incorporating autocorrelation rarely results in a significant
improvement in performance. In fact, in every case where
our predictor outperforms the baseline, it includes informa-
tion from multiple runs.

7. DISCUSSION
The most important result from our experiments involves

prediction when no information is available from multiple
runs (Tables 1 and 2a). This situation arises often in system
design. For example, a system may need to, at retrieval
time, assess its performance before deciding to conduct more
intensive processing such as pseudo-relevance feedback or
interaction. Assuming the presence of multiple retrievals is
unrealistic in this case.

We believe that autocorrelation is, like multiple-retrieval
algorithms, approximating a good ranking; in this case by
diffusing scores. Why is ỹ a reasonable surrogate? We know
that diffusion of scores on the web graph and language model
graphs improves performance [14, 16]. Therefore, if score
diffusion tends to, in general, improve performance, then

diffused scores will, in general, provide a good surrogate for
relevance. Our results demonstrate that this approximation
is not as powerful as information from multiple retrievals.
Nevertheless, in situations where this information is lacking,
autocorrelation provides substantial information.

The success of autocorrelation as a predictor may also
have roots in the clustering hypothesis. Recall that we
regard autocorrelation as the degree to which a retrieval
satisfies the clustering hypothesis. Our experiments, then,
demonstrate that a failure to respect the clustering hypoth-
esis correlates with poor performance. Why might systems
fail to conform to the cluster hypothesis? Query-based in-
formation retrieval systems often score documents indepen-
dently. The score of document a may be computed by exam-
ining query term or phrase matches, the document length,
and perhaps global collection statistics. Once computed,
a system rarely compares the score of a to the score of a
topically-related document b. With some exceptions, the
correlation of document scores has largely been ignored.

We should make it clear that we have selected tasks where
topical autocorrelation is appropriate. There are certainly
cases where there is no reason to believe that retrieval scores
will have topical autocorrelation. For example, ranked lists
which incorporate document novelty should not exhibit spa-
tial autocorrelation; if anything autocorrelation should be
negative for this task. Similarly, answer candidates in a
question-answering task may or may not exhibit autocor-
relation; in this case, the semantics of links is questionable
too. It is important before applying this measure to confirm
that, given the semantics for some link between two retrieved
items, we should expect a correlation between scores.

8. RELATED WORK
In this section we draw more general comparisons to other

work in performance prediction and spatial data analysis.
There is a growing body of work which attempts to predict

the performance of individual retrievals [7, 3, 11, 9, 19]. We
have attempted to place our work in the context of much of
this work in Section 4. However, a complete comparison is
beyond the scope of this paper. We note, though, that our
experiments cover a larger and more diverse set of retrievals,
collections, and topics than previously examined.

Much previous work—particularly in the context of TREC—
focuses on predicting the performance of systems. Here,
each system generates k retrievals. The task is, given these
retrievals, to predict the ranking of systems according to
some performance measure. Several papers attempt to ad-
dress this task under the constraint of few judgments [2, 4].
Some work even attempts to use zero judgments by lever-
aging multiple retrievals for the same query [17]. Our task
differs because we focus on ranking retrievals independent
of the generating system. The task here is not to test the
hypothesis “system A is superior to system B” but to test
the hypothesis “retrieval A is superior to retrieval B”.

Autocorrelation manifests itself in many classification tasks.
Neville and Jensen define relational autocorrelation for rela-
tional learning problems and demonstrate that many classi-
fication tasks manifest autocorrelation [13]. Temporal auto-

correlation of initial retrievals has also been used to predict
performance [9]. However, temporal autocorrelation is per-
formed by projecting the retrieval function into the temporal
embedding space. In our work, we focus on the behavior of
the function over the relationships between documents.



τ adjusted R2

DV

KL P ρ(y, ỹ) DV

KL P ρ(y, ỹ) DV

KL, P DV

KL, ρ(y, ỹ) Pρ(y, ỹ) β

trec4 0.353 0.548 0.513 0.168 0.363 0.422 0.466 0.420 0.557 0.553
trec5 0.311 0.329 0.357 0.116 0.190 0.236 0.238 0.244 0.266 0.269
robust04 0.418 0.398 0.373 0.256 0.304 0.278 0.403 0.373 0.402 0.442
terabyte04 0.139 0.150 0.454 0.059 0.045 0.292 0.076 0.293 0.289 0.284
terabyte05 0.171 0.208 0.383 0.022 0.072 0.193 0.120 0.225 0.218 0.257

Table 1: Comparison to Robustness and Clarity measures for language model scores. Evaluation replicates
experiments from [19]. We present correlations between the classic Clarity measure (DV

KL), the ranking
robustness measure (P ), and autocorrelation (ρ(y, ỹ)) each with mean average precision in terms of Kendall’s
τ . The adjusted coefficient of determination is presented to measure the effectiveness of combining predictors.
Measures in bold represent the strongest correlation for that test/collection pair.

multiple run

(a) (b) (c)
τ τ adjusted R2

DKL ρ(y, ỹ) Dn
KL ρ(y,yµ) ρ(ỹ,yµ) Dn

KL ρ(y, ỹ) ρ(y,yµ) ρ(ỹ,yµ) β

trec3 0.201 0.461 0.461 0.439 0.456 0.444 0.395 0.394 0.386 0.498
trec4 0.252 0.396 0.455 0.482 0.489 0.379 0.263 0.429 0.482 0.483
trec5 0.016 0.277 0.433 0.459 0.393 0.280 0.157 0.375 0.323 0.386
trec6 0.230 0.227 0.352 0.428 0.418 0.203 0.089 0.323 0.325 0.325
trec7 0.083 0.326 0.341 0.430 0.483 0.264 0.182 0.363 0.442 0.400
trec8 0.235 0.396 0.454 0.508 0.567 0.402 0.272 0.490 0.580 0.523

robust03 0.302 0.354 0.377 0.385 0.447 0.269 0.206 0.274 0.392 0.303
robust04 0.183 0.308 0.301 0.384 0.453 0.200 0.182 0.301 0.393 0.335
robust05 0.224 0.249 0.371 0.377 0.404 0.341 0.108 0.313 0.328 0.336

terabyte04 0.043 0.245 0.544 0.420 0.392 0.516 0.105 0.357 0.343 0.365
terabyte05 0.068 0.306 0.480 0.434 0.390 0.491 0.168 0.384 0.309 0.403

trec4-spanish 0.307 0.388 0.488 0.398 0.395 0.423 0.299 0.282 0.299 0.388
trec5-spanish 0.220 0.458 0.446 0.484 0.475 0.411 0.398 0.428 0.437 0.529

trec5-chinese 0.092 0.199 0.367 0.379 0.384 0.379 0.199 0.273 0.276 0.310
trec6-chinese 0.144 0.276 0.265 0.353 0.376 0.115 0.128 0.188 0.223 0.199

ent05 - 0.181 0.324 0.305 0.282 0.211 0.043 0.158 0.155 0.179

Table 2: Large scale prediction experiments. We predict the ranking of large sets of retrievals for various
collections and retrieval systems. Kendall’s τ correlations are computed between the predicted ranking and
a ranking based on the retrieval’s average precision. In column (a), we have predictors which do not use
information from other retrievals for the same query. In columns (b) and (c) we present performance for
predictors which incorporate information from multiple retrievals. The adjusted coefficient of determination
is computed to determine effectiveness of combining predictors. Measures in bold represent the strongest
correlation for that test/collection pair.



Finally, regularization-based re-ranking processes are also
closely-related to our work [8]. These techniques seek to
maximize the agreement between scores of related docu-
ments by solving a constrained optimization problem. The
maximization of consistency is equivalent to maximizing the
Moran autocorrelation. Therefore, we believe that our work
provides explanation for why regularization-based re-ranking
works.

9. CONCLUSION
We have presented a new method for predicting the per-

formance of a retrieval ranking without any relevance judg-
ments. We consider two cases. First, when making predic-
tions in the absence of retrievals from other systems, our
predictors demonstrate robust, strong correlations with av-
erage precision. This performance, combined with a simple
implementation, makes our predictors, in particular, very at-
tractive. We have demonstrated this improvement for many,
diverse settings. To our knowledge, this is the first large
scale examination of zero-judgment, single-retrieval perfor-
mance prediction. Second, when provided retrievals from
other systems, our extended methods demonstrate competi-
tive performance with state of the art baselines. Our exper-
iments also demonstrate the limits of the usefulness of our
predictors when information from multiple runs is provided.

Our results suggest two conclusions. First, our results
could affect retrieval algorithm design. Retrieval algorithms
designed to consider spatial autocorrelation will conform to
the cluster hypothesis and improve performance. Second,
our results could affect the design of minimal test collection
algorithms. Much of the recent work in ranking systems
sometimes ignores correlations between document labels and
scores. We believe that these two directions could be reward-
ing given the theoretical and experimental evidence in this
paper.
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