
Evaluating Web Search Engines Using Clickthrough Data

Ben Carterette
∗

Center for Intelligent Information Retrieval
Computer Science Department

University of Massachusetts Amherst
Amherst, MA 01003

carteret@cs.umass.edu

Rosie Jones
Yahoo! Research
3333 Empire Ave

Burbank, CA 91504
jonesr@yahoo-inc.com

ABSTRACT

The web is a highly dynamic environment: documents disap-
pear or become outdated, new documents appear, the query
distribution changes. In order to keep up, search algorithms
must be continuously tuned and re-tuned. Each iteratively
tuned algorithm needs to be evaluated against the current
web corpus. But since the web is so frequently changing,
relevance judgments acquired at one point in time may not
be accurate later. New relevance judgments must be made
on a regular basis. Since these require human assessors to
read and judge documents, they can be quite expensive to
obtain.

We propose a model that leverages the millions of clicks
web search engines receive each day to predict document
relevance. After an initial training phase using a set of
relevence judgments paired with click data, our model can
predict the relevance of documents that have not been judged.
These predictions can be used to evaluate the performance
of a search engine. When no relevance judgments are avail-
able, we can identify the better of two ranked lists up to
85% of the time, and with only two relevance judgments for
each query, we can identify the better ranking 80%–94% of
the time.1

1. INTRODUCTION
An important, but often overlooked, part of search en-

gine design is evaluation. In order to know whether one
ranking function is better than another, we need to evaluate
them over a common set of queries (ideally a random sam-
ple from the query distribution generated by web searchers)
and a common corpus so that they can be directly com-
pared. But evaluation is an expensive process: it requires
relevance judgments that indicate the degree of relevance of
each document retrieved for each query in a testing set. In
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a corpus like the web, containing billions of documents, it is
impossible to judge them all, or even a substantial fraction.

Even beyond the sheer size of the corpus, web evalua-
tion presents special challenges: the corpus is constantly
changing as new documents appear, documents disappear
or become obsolete, and the distribution of queries entered
changes [13]. This requires even greater effort for evaluation,
since new documents must be continually judged and new
queries must be put into the test set. For example, a year
ago today the web page for SIGIR 2006 was probably the
most relevant result for the query ‘SIGIR’. Today, while the
SIGIR 2006 web page is still accessible, surely the SIGIR
2007 web page is more relevant to the same query. The rel-
evance judgments must be updated; over time, the process
becomes very expensive.

However, we have a readily-available source of data that
could be leveraged to approximate relevance judgments: clicks.
Each time a user enters a query and clicks on a result, he
or she is making, in some sense, a “relevance judgment”.
Of course, these are very noisy: users get distracted, fail to
specify their query well enough, change their interests, and
so on. But looked at in aggregate, they may provide valuable
information about the relevance of each document.

A naive approach to evaluation might compare two ranked
lists based solely on the average click-through rate on both
of them. This has some problems, though: a ranking with a
single perfectly relevant document might have a lower overall
click-through rate than one for the same query that lists
many somewhat relevant documents, as the latter requires
users to hunt for the information they need.

Our approach instead will be to use discounted cumula-

tive gain (DCG), an evaluation metric commonly used in
search engine evaluation. Using click data, we can estimate
the confidence that a difference in DCG exists between two
rankings without having any relevance judgments for the
documents ranked. Furthermore, a simple algorithm guides
the selection of additional documents to judge to improve
confidence.

The general problem with using clicks as relevance judg-
ments is that clicks are biased. They are biased to the top
of the ranking [11], to trusted sites, to attractive abstracts;
they are also biased by the type of query and by other things
shown on the results page. To cope with this, we shall in-
troduce a family of models relating clicks to relevance. By
conditioning on clicks, we can predict the relevance of a doc-
ument or a set of documents.

We will show how a comparison of ranking functions can
be performed when clicks are available but complete rele-



vance judgments are not. After an initial training phase with
a few relevance judgments, the relevance of unjudged docu-
ments can be predicted from clickthrough rates. The confi-
dence in the evaluation can be estimated with the knowledge
of which documents are most frequently clicked. Confidence
can be dramatically increased with only a few more sporadic
relevance judgments.

In section 2 we describe previous work on using click-
through rates and on estimating evaluation metrics. Section
3 describes the evaluation of web retrieval systems using the
metric discounted cumulative gain (DCG) and shows how
to estimate the confidence that a difference exists when rel-
evance judgments are missing. Our model for predicting
relevance from clicks is described in Section 4. After a brief
discussion of our data (Section 5), we return in Section 6 to
the task of estimating relevance for the evaluation of search
engines.

2. PREVIOUS WORK
Our work investigates low-cost evaluation in a web setting.

There has been a great deal of work on low-cost evaluation
in TREC-type settings ([18, 5, 14, 4] are a few), but we
are aware of little for the web. Therefore we discuss pre-
vious work using clicks and other user interactions, as well
as work on defining relevance in web search and evaluating
web search engines.

2.1 Clicks and User Interaction
Joachims [9] was one of the first to publish on clickthrough

rates. He viewed a click as a “preference judgment”, so
that a click at rank i indicated that the user preferred the
document at i to everything ranked above it. He used these
preference judgments to train a “ranking SVM”.

Later, Joachims et al. [11] investigated whether the pref-
erence assumption held. They used eye-tracking devices to
track what documents users looked at before clicking. They
concluded that the preference relationship, while noisy, gen-
erally can be taken to be true: users tend to look at results
ranked higher than the one they click on more often than
they look at results ranked lower.

The problem with using clicks as preference judgments for
learning is that they will tend to learn to reverse the list.
The reason is that a click at the lowest rank is preferred to
everything else, while a click at the highest rank is preferred
to nothing else. Radlinski and Joachims [12] suggest an
antidote to this: randomly swapping adjacent pairs of doc-
uments. This ensures that users will not prefer document
i to document i + 1 solely because of rank. A drawback to
this approach is that we may not wish to show a suboptimal
document ordering in order acquire data.

Agichtein et al.[2, 1] used and applied models of user in-
teraction to predict preference relationships and to improve
ranking functions. They use many features beyond click-
through rate, and show that they can learn preference rela-
tionships using these features. Our work is superficially sim-
ilar, but we explicitly model dependencies among clicks for
results at different ranks with the purpose of learning proba-
bilistic relevance judgments. These relevance judgments are
a stronger result than preference ordering, since preference
ordering can be derived from them. In addition, given a
strong probabilistic model of relevance from clicks, better
combined models can be built.

Dupret et al. [6] give a theoretical model for the rank-

position effects of click-through rate, as well as empirically
estimating the rank-position effect from data. They also
build theoretical models for modeling search engine quality
using them. They do not evaluate estimates of document
quality, while we empirically compare relevance estimated
from clicks to manual relevance judgments.

2.2 Relevance on the Web
When we are judging the relevance of web search results,

there are two kinds of relevance we need to consider. The
document itself, which is traditionally judged for relevance
in information retrieval, has not yet seen by the user who is
deciding whether to click. Instead the user sees a summary
or abstract which may be manually or more often automati-
cally generated to convey the contents of the document and
its relevance to the query in an encapsulated fashion. We
will refer to the relevance of the document as the target rel-
evance, while the relevance of the abstract (judged without
reference to the document) is the perceived relevance. In our
work we shall focus on the perceived relevance.

Broder [3] introduced the idea of different classes of web
search queries that reflect different user needs. He distin-
guishes between “informational” queries, entered by a user
with a specific information need; “navigational” queries,
when the user’s goal is to find a certain site, and “trans-
actional” queries, when the user wants to make a purchase.
The different types of queries entail different ideas of rele-
vance. For example, the site monster.com is perfectly rele-
vant to the navigational query “monster.com”, but less rel-
evant to the (presumably) informational query “monster”.

For this reason we should apply ordinal relevance judg-
ments to web results. For a navigational query, a single
document, say a home-page, may be the only possible “per-
fect” result, whereas for an informational query there may
be many “good” results.

2.3 Evaluation
Joachims [10] investigated the use of clickthrough rates

for evaluation. He showed that with some light assump-
tions, relative differences in performance could be measured
by interleaving results from two ranking functions, then ob-
serving which function produced results that are more fre-
quently clicked. As we will show, interleaving results can
change user behavior, and not necessarily in a way that will
lead to the user clicking more relevant documents.

Soboroff [13] investigated the effect of a deteriorating cor-
pus on evaluation. He proposed methods for maintaining the
relevance judgments in a corpus that is constantly changing.

Carterette et al. [4] introduced the idea of treating an
evaluation measure as a random variable with a distribution
over all possible relevance judgments. This can be used to
create an optimal sampling strategy to obtain judgments,
and to estimate the confidence in an evaluation measure. In
this work we extend their methods to DCG.

3. EVALUATING SEARCH ENGINES
Discounted Cumulative Gain (DCG) [8] is an evaluation

measure frequently used in web search evaluation. It is a
precision-based measure: a system that ranks relevant doc-
uments highly is rewarded; the reward is discounted as doc-
uments get ranked lower. It does not include any recall com-
ponent, though there are variations that contain a recall-like
component as a normalization factor. DCG is more flexible



than traditional information retrieval measures such as aver-
age precision in that it supports multi-valued relevance judg-
ments. A system that ranks very relevant documents higher
is rewarded more than a system that ranks only somewhat
relevant documents.

DCG takes two parameters: the maximum rank and the
base of the logarithm to use in discounting. We have elected
to use base 2 throughout this work.

DCGℓ = rel1 +

ℓ
∑

i=2

reli
log2 i

The constants reli indicate the relevance of the document
at rank i. As described in section 2.2, relevance on the
web is typically judged ordinally, with labels such as “Per-
fect”, “Excellent”, “Good”, “Fair”, and “Bad”. In order
to use these labels for evaluation, they must be mapped to
constants in a way that allows more relevant documents to
contribute more to the overall score. We will denote five
levels of relevance aj , with a1 > a2 > a3 > a4 > a5.

3.1 Estimating DCG
Like all evaluation measures, DCG requires that the ranked

documents have been judged with respect to a query. As-
suming any unjudged document is not relevant could have
disastrous consequences. In this section we develop the idea
that DCG has a distribution over possible assignments of
relevance to the unjudged documents; this will allow us to
estimate DCG without knowing the relevance of some of the
documents.

Let Xi be a random variable representing the relevance of
document i. Since relevance is ordinal, the distribution of
Xi is multinomial. Let

p(Xi = aj) = pij , 1 ≤ j ≤ 5

5
∑

j=1

pij = 1

The expectation and variance of Xi are:

E[Xi] =

5
∑

j=1

pijaj (1)

V ar[Xi] =

5
∑

j=1

pij(a
2
j − aj)

We can then express DCG as a random variable:

DCGℓ = Xi +
ℓ

∑

i=2

Xi

log2 i

Its expectation and variance are:

E[DCGℓ] = E[X1] +

ℓ
∑

i=2

E[Xi]

log2 i
(2)

V ar[DCGℓ] = V ar[X1] +

ℓ
∑

i=2

V ar[Xi]

(log2 i)2
(3)

+ 2
ℓ

∑

i=1

Cov(X1, Xi)

log2 i
+ 2

∑

1<i<j

Cov(Xi, Xj)

log2 i · log2 j

If the relevance of documents i and j are independent, the
covariance Cov(Xi, Xj) is zero.

When some relevance judgments are not available, Eq. (2)
and (3) can be used to estimate confidence intervals for
DCG. Thus we can compare ranking functions without hav-
ing judged all the documents.

3.2 Comparative Evaluation
We may be less interested in knowing the true value of

DCG than knowing whether there is a difference in the DCG
for two or more systems. As we will see, this is a decision
that can be made with very few relevance judgments. It
takes considerably more to accurately measure the magni-
tude of the difference.

We first need to redefine DCG to allow arbitrary indexings
of documents, instead of the indexing by rank we used in the
previous section. Let rj(i) be the rank at which document
i was retrieved by system j. Define logℓ

2 y such that

logℓ
2 y =











1 y = 1

log2 y 1 < y ≤ ℓ

∞ y > ℓ

Then we will define the discounted gain gij = Xi

logℓ
2

rj(i)
(defin-

ing x
∞

= 0). This is the amount that document i contributes
to the total DCGℓ of system j.

Then we can write the difference in DCG for systems 1
and 2 as

∆DCGℓ = DCGℓ1 −DCGℓ2

=

N
∑

i=1

gi1 − gi2 (4)

where N is the number of documents in the entire collection.
In practice we need only consider those documents returned
in the top ℓ by either of the two systems. ∆DCGℓ is also a
random variable with an expectation and variance:

E[∆DCGℓ] =

N
∑

i=1

E[Xi]

logℓ
2 r1(i)

−
E[Xi]

logℓ
2 r2(i)

V ar[∆DCGℓ] =

N
∑

i=1

V ar[Xi]

(

1

logℓ
2 r1(i)

−
1

logℓ
2 r2(i)

)2

This expression for variance assumes independence between
the relevance of all pairs of documents. We do not in fact
make use of the variance in this work, but we present the
expression for completeness.

3.3 Confidence in DCG
Following Carterette et al. [4], we define the confidence

in a difference in DCG as the probability that ∆DCG =
DCG1 − DCG2 is less than zero. If P (∆DCG < 0) ≥
0.95, we say that we have 95% confidence that system 1 is
worse than system 2, given the incomplete set of relevance
judgments we used to evaluate the probability.

To compute this probability, we must consider the dis-
tribution of ∆DCG. We will be calculating DCG with no
more than 12 documents, which is not enough for a normal
approximation to be accurate: Figure 1 shows a possible
distribution of ∆DCG for k = 10. Thus we have to esti-
mate the probability by direct calculation or Monte Carlo
simulation. Simulation is trivial to implement: simply draw
relevance scores for the ranked documents according to the
multinomial distribution p(Xi) and calculate ∆DCG using
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Figure 1: Simulated distribution of ∆DCG10 when
p(Xi) is assumed to be uniform. The distribution
appears to be symmetric, but not normal.

those scores. After T trials, the probability that ∆DCG is
less than 0 is simply the number of times ∆DCG was less
than 0 divided by T .

How can we estimate the distribution p(Xi)? In the ab-
sense of any other information, we may assume it to be
uniform over all five relevance labels. As we shall see, clicks
are a useful source of information that we can leverage to
estimate this distribution.

3.4 Selecting Documents to Judge
The simulation procedure above tells us how much confi-

dence we should have in an evaluation when only incomplete
sets of relevance judgments are available. We may need to
obtain more relevance judgments to improve our confidence.
In order to do as little work as necessary, we should not se-
lect documents arbitrarily; we should select documents that
are likely to tell us a lot about ∆DCG and therefore tell us
a lot about our confidence.

The method is motivated by a few simple rules of thumb:

1. If a document is retrieved at the same rank by both
systems, it makes no difference to the estimate of ∆DCG.
This suggests that we can ignore those documents.

2. A document ranked at the top by one system but un-
ranked by the other is very informative.

3. A document that has a higher expected relevance is
more interesting than a document with low expected
relevance.

The most informative document is the one that would have
the greatest effect on ∆DCG. Since ∆DCG is linear, it is
quite easy to determine which document should be judged
next. Eq. (4) tells us to simply choose maxi |E[gi1]−E[gi2]|.

Algorithm 1 shows how relevance judgments would be ac-
quired iteratively until confidence is sufficiently high.

4. MODELING CLICKS AND RELEVANCE
Our goal is to model the relationship between clicks and

relevance in a way that will allow us to estimate a distribu-
tion of relevance p(Xi) from the clicks on document i and
on surrounding documents.

Algorithm 1 Iteratively select documents to judge until we
have high confidence in ∆DCG.

1: while 1− α ≤ P (∆DCG < 0) ≤ α do
2: i∗ ← maxi |E[gi1]− E[gi2]|
3: judge document i∗

(human annotator provides reli∗)
4: P (Xi∗ = reli∗)← 1
5: P (Xi∗ 6= reli∗)← 0
6: estimate P (∆DCG) using Monte Carlo simulation
7: end while

We first introduce a joint probability distribution includ-
ing the query q, the relevance Xi of each document re-
trieved (where i indicates the rank), and their respective
clickthrough rates ci:

p(q, X1, X2, ..., Xℓ, c1, c2, ..., cℓ) = P (q,X, c) (5)

Boldface X and c indicate vectors of length ℓ.
If we are missing information about clicks but have in-

formation about relevance, or we are missing information
about relevance but have information about clicks, we’d like
to infer the missing data. We can do this by training models
conditioned on different subsets of the data:

1. p(c|q,X) to predict clicks from relevance and the query;

2. p(X|q, c) to predict relevance from clicks and the query;

3. p(q|X, c) to predict the query from clicks and rele-
vance;

4. p(c1, X1|q, c/c1,X/X1) to predict the clickthrough rate
and relevance of the first document from the clicks and
relevances of the rest.

In this work we consider only the first model, but the other
examples show the variety of ways this joint distribution can
be used.

4.1 Predicting Relevance from Clicks
Suppose we have a query for which we have no relevance

judgments (perhaps because it has only recently begun to
appear in the logs, or because it reflects a trend and nu-
merous new documents concerning the query have appeared
in the corpus). We can obtain click-through data, and we
would like to use that to predict relevance. In this case we
are interested in the conditional probability p(X|q, c). How
can we infer the relevance from the query and clicks?

Note that X = {X1, X2, · · · } is a vector of ordinal vari-
ables: each Xi may take on five values, and those values are
ranked from best to worst. Doing inference in this model
is not easy. To simplify, we make the assumption that the
relevance of document i and document j are conditionally
independent given the query and the clickthrough rates:

p(X|q, c) =
ℓ

∏

i=1

p(Xi|q, c) (6)

This gives us a separate model for each rank, while still
conditioning the relevance at rank i on the clickthrough rates
at all of the ranks. We do not lose the dependence between
relevance at each rank and clickthrough rates on other ranks.

The independence assumption allows us to model p(Xi)
using ordinal regression. Ordinal regression is a generaliza-
tion of logistic regression to a variable with more than two



outcomes that can be ranked by preference. Implementa-
tions of proportional odds logistic regression can usually be
found in statistical software packages such as R.

The proportional odds model for our ordinal response
variable is

log
p(X > aj |q, c)

p(X ≤ aj |q, c)
= αj + βq +

ℓ
∑

i=1

βici +

ℓ
∑

i<k

βikcick

where aj is one of the five relevance levels. The sums are
over all ranks in the list; this models the dependence of
the relevance of the document to the clickthrough rates of
everything else that was retrieved, as well as the dependence
between the clickthrough rates at any two ranks.

Learning the coefficients βi and βik is done by likelihood
maximization using iteratively reweighted least squares (IRLS).
There are five intercepts αj ; these are learned by a variant
of Newton’s method.

After the model is trained, we can obtain p(X ≤ aj |q, c)
using the inverse logit function. Then p(X = aj |q, c) =
p(X ≤ aj |q, c)− p(X ≤ aj−1|q, c).

Ordinal regression has one weakness: it requires a linear
relationship between relevance and click-through rate. In
real data, there is no such relationship; instead, perfectly
relevant documents tend to be clicked on more than twice
as often as less-relevant documents. The relationship be-
tween query and relevance is even less predictable and non-
linear: queries with low average clickthrough rates tend to
have very high clickthrough rates on perfectly relevant doc-
uments, while queries with high average clickthrough rates
tend to have a more erratice relationship to relevance.

A generalization to logistic regression is the generalized

additive model (GAM). By fitting a function to a variable or
sets of variables it can model nonlinear relationships as well
as complicated dependencies. The general form of a GAM
that predicts a binary response y from vector Z = (z1, z2, ...)
is:

log
p(y|Z)

1− p(y|Z)
= α0 + f(Z)

f is a “smoothing function” that may be fit by a method
such as piecewise regression. It is in this function that the
GAM can model nonlinearity and dependencies. If f(Z) =
β1z1 + β2z2 + · · · , the GAM is equivalent to logistic regres-
sion. This is therefore a very flexible model.

As GAM is a generalization of logistic regression, the vec-

tor generalized additive model (VGAM) is a generalization
of ordinal regression. The general form of the VGAM for
our model would be:

log
p(X > aj |q, c)

p(X ≤ aj |q, c)
= αj + f(q, c)

where f is a smoothing function as described above. Since
the smoothing is done by a type of piecewise regression, we
would need huge amounts of data to learn a function of 10 or
more variables. Therefore we break the smoothing function
into additive components:

log
p(X > aj |q, c)

p(X ≤ aj |q, c)
= αj + s(q) +

ℓ
∑

i=1

fi(ci) +

ℓ
∑

i<k

gik(cick)

We lose a small amount of flexibility, but gain in that we
need much less data to fit the model and it is much less
prone to overfitting.

Methods for finding the smoothing functions are described
in Yee and Wild [17]. The VGAM is implemented in the R

library VGAM. Once the model is trained, we have p(X =
aj) using the same arithmetic as for the proportional odds
model.

5. DATA
We obtained actual data from a large search engine com-

pany. Although we limited the data to sponsored search
(advertisements), there is no reason in principle our method
should not be applicable to general web search.

In this section we describe the subset of data we used,
how we aggregated and cleaned it, and the constraints that
it imposes.

5.1 Relevance Judgments
We have a total of 28,961 relevance judgments for 2,021

queries. The queries are a random sample of all queries en-
tered in late 2005 and early 2006. Relevance judgments are
based on details of the advertisement, such as title, sum-
mary, and URL. There are two separate scales for relevance:
one consisting of five labels described earlier, the other of
six labels. We will focus on the former in this work.

The relevance judgments were made by the staff assessors
of the search engine company. The assessors work from in-
structions on how to interpret queries, guidelines for each
level of relevance, etc. They are provided with some click
results to give them an idea of the user’s intent. Unfor-
tunately, measurements of inter-assessor agreement are not
available.

5.2 Click Logs
We obtained the sponsored search logs from the search

engine company for the month of April 2006. Each record
consists of a query, a search identification string, a canon-
icalized query, the “query class” (described below), an ad-
vertisement id, the rank the advertisement appeared at, and
whether the advertisement was clicked. Thus if a user en-
ters the query “monster.com” and receives 12 results, we
will have downloaded 12 database records: one record for
the result at each rank. Each of these records would have
the same search ID, query, canonical query, and query class,
but different advertisement ids and ranks.

We filtered out queries that we had no relevance judg-
ments for. We used canonical query forms to filter, so that
e.g. queries “Home Depot” and “home depot” would be con-
sidered the same. We then aggregated records into distinct
lists of advertisements for a query as follows:

First we aggregate records by query and search ID, so for
each query/search ID, we have a list of the ads displayed to
the user upon entering the query and which one (if any) was
clicked. Call this list L. Next we aggregate Ls over search
IDs. This gives us the number of times L was displayed to all
users who entered the same canonical query and the number
of times each ad in L was displayed. Call the aggregated
lists L. L can be seen as an ordered set, which each element
being a count of clicks on the ad at the corresponding rank.
The clickthrough rate on each ad is simply the count in
L divided by the impressions, the number of times L was
shown to any user. After aggregation, we had about three
million unique lists L. The majority of these are missing at
least one relevance judgment.



5.3 Query Class
A constraint imposed by our data is the notion of a ‘query

class’. Queries are manually divided into five classes: we
shall refer to them as a, b, c, d, e. The classes are distin-
guished by differing average clickthrough rates. By mod-
eling each class separately, we can get a sense of how our
model might perform in different contexts.

Class b did not have enough data to be modeled accu-
rately. We removed all queries from this class.

5.4 Dependence of Clicks on Entire Result List
We argue that there is a dependence between clicks at

rank i and clicks at rank j. Consider a user that clicks on
rank two. In that action, she has taken the additional action
of not clicking on the other ranks. This is a subtle type of
dependence. It is similar to an opportunity cost: by taking
action x, we have also not taken alternative action y. This
is not the same type of dependence as a user clicking on one
result, return to the search page, and clicking on a different
result. The latter is a dependence in actions over time and
we do not attempt to model it. The former is a dependence
in actions at a single point in time. The examples below
show that this dependence is important enough that it must
be modeled.

When there is an “Excellent” document ranked first, the
clickthrough rate varies depending on the relevance of the
document at rank 2 (Figure 2(a)). For example, a “Perfect”
document at rank 2 may decrease the likelihood of a click
on the “Excellent” document at rank 1, while a “Fair” doc-
ument at rank 2 may increase the clickthrough rate for rank
1. Clickthrough rate at rank 1 more than doubles as the
relevance of the document at rank 2 drops from “Perfect”
to “Fair”.

Likewise, when there is an “Excellent” document ranked
second, the clickthrough rate varies depending on the rel-
evance of the document ranked first (Figure 2(b)). Click-
through rate doubles as the relevance of the first document
drops from “Perfect” to “Good”, then falls precipitously—
perhaps because a poor result at rank 1 discourages users
from looking further down the ranking.

This implies that a straight average of clickthrough rates
will not accurately reflect the quality of a ranked list. Re-
placing a document at rank 2 with one that is more relevant
will result in the clickthrough rate at rank 1 decreasing even
as the clickthrough rate at rank 2 increases. Thus averaging
clickthrough rates over rank will only work if the increase
at rank 2 is greater than the decrease at rank 1. But this is
unlikely given that clicks are so highly correlated with rank.

6. EXPERIMENTS

6.1 Fit of Document Relevance Model
We first want to test our proposed model (Eq. (6)) for

predicting relevance from clicks. If the model fits well, the
distributions of relevance it produces should compare favor-
ably to the actual relevance of the documents.

We will compare it to a simpler model that does not take
into account the click dependence. The two models are con-
trasted below:

dependence model: p(X|q, c) =
∏

p(Xi|q, c)

independence model: p(X|q, c) =
∏

p(Xi|q, ci)
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Figure 2: The relevance of a document at one rank
can affect the clickthrough rate of a document at
another rank. The relevance of the document for
which CTR is measured is fixed at “Excellent” while
the relevance of the other document is varied.

The latter models the relevance being conditional only on
the query and its own clickthrough rate, ignoring the click-
through rates of the other items on the page.

We removed all instances for which we had fewer than
500 impressions, then performed 10-fold cross-validation for
each of four query classes. For simplicity, the query q is
modeled as the aggregate clickthrough rate over all results
ever returned for that query.

Both models produce a multinomial distribution for the
probability of relevance of a document p(Xi). Predicted
relevance is the expected value of this distribution:

E[Xi] =

5
∑

j=1

p(Xi = aj)aj

Table 1 shows the correlation between predicted relevance
and actual relevance. The correlation trends downward as
we move down the list. This is because lower ranks are
clicked less often; there are fewer clicks to provide evidence
for relevance. Correlations are highest for query classes d
and e; those are the two that have the highest clickthrough
rates overall. Although the correlations for the indepen-
dence model are not shown, they are significantly lower at
each point.

Figure 3 depicts boxplots for each value of relevance for
both the models. Each box represents the distribution of
predictions for the true value on the x axis. The center
line is the median prediction; the edges are the 25% and
75% quantiles. The whiskers are roughly a 95% confidence
interval, with the points outside being outliers.

The figures show that when dependence is modeled (Fig-
ure 3(a)), the distributions are much more clearly separated
from each other, as shown by the fact that there is little
overlap in the boxes. The correlation between predicted and
acutal relevance is 18% higher, a statistically significant dif-
ference.

6.2 Estimating DCG
Since our model appears to work fairly well, we now turn



query class
rank a c d e

1 0.431 0.484 0.754 0.747
2 0.274 0.497 0.799 0.718
3 0.282 0.489 0.626 0.753
4 0.319 0.505 0.525 0.726
5 0.330 0.508 0.527 0.630

Table 1: Correlations between actual relevance and
expected relevance given clickthrough rates for four
query classes and the top five ranked documents.
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(a) Dependence model;
ρ = 0.754
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(b) No dependence mod-
eled; ρ = 0.638

Figure 3: Predicted vs. actual relevance for query
class d, rank 1. Correlation increases 18% when de-
pendence of relevance of the document at rank 1 on
clickthrough at all ranks is modeled.

our attention to using relevance predictions to estimate DCG
for the evaluation of search engines. Recall that we are in-
terested in comparative evaluation—determining the sign of
the difference in DCG rather than its magnitude. Our confi-
dence in the sign is P (∆DCG < 0), which is estimated using
the simulation procedure described in Section 3.3. The sim-
ulation samples from the multinomial distributions p(Xi)
that are produced by our model.

6.2.1 Methodology

To be able to calculate the exact DCG to evaluate our
models, we need all ads in a list to have a relevance judg-
ment. Therefore our test set will consist of all of the lists for
which we have complete relevance judgments and at least
500 impressions. The remainder will be used for training.
The size of the test sets for each class is 543, 1601, 1720, 160
lists, respectively for classes a, c, d, e. The training sets will
include all lists for which we have at least 200 impressions,
over 5000 lists for each class.

After training each model, we predict relevance for the
ads in the test set. We then use these expected relevances to
calculate the expectation E[DCG]. We will compare these
expectations to the true DCG calculated using the actual
relevance judgments. As a baseline for automatic evaluation,
we will compare to the average clickthrough rate on the
list E[CTR] = 1

k

∑

ci, the naive approach described in our
introduction.

We then estimate the confidence P (∆DCG < 0) for pairs
of ranked lists for the same query and compare it to the

class ρ(DCG, E[DCG]) ρ(DCG, E[CTR])
a 0.601 0.168
c 0.336 0.203
d 0.876 0.622
e 0.792 0.422

Table 2: Spearman correlations between DCG and
E[DCG], and between DCG and E[CTR] for each
query class. Our model results in a significantly
higher correlation in each query class.
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Figure 4: Actual relevance vs. predicted relevance
at rank 1 for the testing set. “Perfect” and “Excel-
lent” predictions are well-separated from the others,
suggesting our model is doing a good job at distin-
guishing highly relevant documents.

actual percentage of pairs that had ∆DCG < 0. Confidence
be less than or equal to this percentage; if it is, we can
“trust” it in some sense.

6.2.2 Results

Table 2 shows the correlations between DCG and E[DCG]
calculated using the expected relevance predicted using our
model, as well as the correlations between DCG and E[CTR].
We can see that DCG and E[DCG] are well-correlated for
all classes, while the correlation between DCG and E[CTR]
is much lower. This means we can approximate DCG better
using our model than just using the mean clickthrough rate
as a predictor.

Figure 4 shows actual vs. predicted relevance for ads in
the test set. (This is slightly different from Figure 3: the
earlier figure shows predicted results for all data from cross-
validation while this one only shows predicted results on
our test data.) The separation of the boxes shows that our
model is doing quite well on the testing data, at least for
rank 1. Performance degrades quite a bit as rank increases
(not shown), but it is important to note that the upper ranks
have the greatest effect on DCG—so getting those right is
most important.

In Table 3, we have binned pairs of ranked lists by their
estimated confidence. We computed the accuracy of our
predictions (the percent of pairs for which the difference in
DCG was correctly identified) for each bin. If we use only
the relevances predicted by clickthrough rates, high confi-
dence is generally not achieved (except for class e), but the



accuracy
no judgments two judgments

confidence a c d e a c d e
0.5− 0.6 0.569 0.448 0.522 0.504 0.563 0.452 0.572 0.554
0.6− 0.7 0.701 0.650 0.617 0.674 0.576 0.486 0.678 0.711
0.7− 0.8 – – 0.734 0.947 0.758 0.495 0.697 0.915
0.8− 0.9 – – 0.818 0.988 0.927 0.706 0.890 0.856
0.9− 0.95 – – – 0.997 0.971 0.815 0.918 0.906
0.95− 1 – – – 0.996 0.932 0.901 0.940 0.960

overall accuracy 0.619 0.572 0.598 0.848 0.839 0.799 0.849 0.942

Table 3: Confidence vs. accuracy of predicting the better ranking for pairs of ranked lists using the relevance
predictions of our model based on clicks alone (left), and with two additional judgments for each pair of lists
(right). Except for class c, confidence estimates are good predictions of accuracy.

confidence estimates are generally trustworthy in the sense
that they are good predictors of accuracy. If we make only
two additional judgments per pair using our algorithm in
Section 3, confidence is dramatically improved, and accu-
racy continues to be trustworthy for classes a, d, and e.
Class c is an oddity: the confidence estimates are not trust-
worthy; in fact even with two judgments we are doing no
better than random.

In general, performance is very good: using only the pre-
dictions of our model based on clicks, we have a very good
sense of the confidence we should have in our evaluation.
Judging only two more documents dramatically improves
our confidence: there are many more pairs in high-confidence
bins after two judgments.

7. CONCLUSION
We have shown how to compare ranking functions using

expected DCG. After a single initial training phase, rank-
ing functions can be compared by predicting relevance from
clickthrough rates. Estimates of confidence can be com-
puted; the confidence gives a lower bound on how accurately
we have predicted that a difference exists. With just a few
additional relevance judgments chosen cleverly, we signifi-
cantly increase our success at predicting whether a differ-
ence exists. Using our method, the cost of acquiring rele-
vance judgments for web search evaluation is dramatically
reduced, when we have access to click data.

One limitation of our approach is that it is applicable only
to ranked result lists for which we have many impressions.
Thus we may not be able to estimate engine performance
on rare queries, for which we have very few impressions.

Some additional questions to explore include: How many
queries and relevance judgments are needed to train the ini-
tial models? We observed that the more data available,
the better our models fit and the better predictions they
provided. Considering that it is a one-off cost, it may be
worthwhile to spend a lot on many high-quality judgments.

Would additional user interaction features improve our
models? Agichtein et al. [2] showed that features such as last
document clicked, time spent on page, and other features
can provide high gains over just clicks. If our models were
improved, either by training them on more data or by using
more features in training, the DCG predictions they provide
would be even better.

Finally, our probabilistic relevance judgments could be
useful for other tasks beyond evaluation. They may be useful
for learning if they are considered to be noisy labels. Thus,

this could provide a huge increase in the amount of training
data available to search scientists and engineers.
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