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Abstract

In the language modeling approach to information retrieval, Dirichlet

prior smoothing frequently outperforms Jelinek-Mercer smoothing. Both

Dirichlet prior and Jelinek-Mercer are forms of linear interpolated smooth-

ing. The only difference between them is that Dirichlet prior determines

the amount of smoothing based on a document’s length. Our hypothesis

was that Dirichlet prior’s performance advantage comes from an implicit

document prior that favors longer documents. We tested our hypothesis

by first calculating a prior for a given document length from the known rel-

evant documents. We then determined the performance of each smoothing

method with and without the document prior. We discovered that when

given the document prior, Jelinek-Mercer smoothing matches or exceeds

the performance of Dirichlet prior smoothing. Dirichlet prior smoothing’s

performance advantage appears to come more from an implicit prior fa-

voring longer documents than from better estimation of the document

model.

Keywords: Smoothing, Dirichlet prior, Jelinek-Mercer, language mod-

eling, document prior.

1 Introduction

The language modeling approach to information retrieval represents documents

as generative probabilistic models (Ponte and Croft 1998, Miller et al. 1998,

Hiemstra and Kraaij 1998, Berger and Lafferty 1999, Song and Croft 1999).

Documents with higher probabilities for query words are preferred over other

documents. A document’s score is computed to be the probability that it would
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generate the query. This probability is the product of each query word given the

document’s probabilistic model. The easiest way to estimate a model for a doc-

ument is to assign a probability to each word appearing in the document equal

to the number of times it occurs divided by the number of word occurrences in

the document – this is known as maximum likelihood estimation. Words not

in the document will be assigned a probability of zero. Zero probabilities are a

problem; a document must contain all query words to avoid a score of zero.

To better estimate document models and eliminate zero probabilities, docu-

ment models are smoothed to produce non-zero probabilities for all words. Com-

mon smoothing methods mix the document model with the collection model.

The collection can be thought of as one large document consisting of all docu-

ments concatenated together. Mixing the document model with the collection

model will produce a new document model that has some probability for all

words. Query words not in the collection are dropped from the query. Smooth-

ing techniques are commonly parameterized to control the amount of mixing

between the document and collection model.

Zhai and Lafferty (2001) investigated the use of three types of smoothing

in information retrieval. They reported on Jelinek-Mercer, Dirichlet prior, and

absolute discounting smoothing methods. They looked at the performance at-

tainable by these methods on nine collections using both short and very long

queries. They used the TREC topic’s keyword-like title field for short queries

and a concatenation of the title, description, and narrative fields for the long

queries. Jelinek-Mercer and Dirichlet prior were the better performing meth-

ods. On the short queries, Dirichlet prior smoothing was the best performing

on eight of the nine collections with absolute discounting being the best on one

collection. The performance difference on the short queries was large with an

average mean average precision (MAP) of 0.256 for Dirichlet prior vs. 0.227 for

Jelinek-Mercer across the nine collections. On the long queries, Dirichlet prior

(DP) was the best on six collections and Jelinek-Mercer (JM) smoothing was

best on the other three, but their average performance was essentially equiva-

lent. On the long queries, the average MAP for DP was 0.279 vs. 0.280 for JM.

In a later work, Zhai and Lafferty reported on JM vs. DP performance when the

sentence-length description field was used as a query (Zhai and Lafferty 2002).

Out of six collections, DP performed better than JM on five with an average

MAP of 0.211 compared to JM’s average MAP of 0.187. The title and descrip-

tion queries represent query lengths one could realistically expect from a user,

and on these lengths Dirichlet prior considerably outperforms Jelinek-Mercer
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smoothing.

In this paper, we attempt to answer why the Dirichlet prior (DP) performs

better than Jelinek-Mercer (JM) smoothing. As we explain later, both DP and

JM smooth identically except that DP determines the amount of smoothing

based on a document’s length. Our hypothesis is that DP has an implicit prior

that prefers longer documents, which is advantageous on the TREC collections.

To test our hypothesis, we calculate for each set of queries the probability of

relevance given the document length and use this as a document prior. We then

determine the performance attainable by these two smoothing methods given

the document priors. As we will show, when JM is given a document prior

based on length, its performance equals or betters that of the Dirichlet prior

both with and without the prior. Dirichlet prior smoothing is unable to leverage

the document prior and in some cases is even hurt by the prior, which suggests

that the given document prior conflicts with Dirichlet prior smoothing’s implicit

document prior.

2 Methods and Materials

2.1 Notation

The vocabulary, V , is the set of words in the collection. The number of words

in V is |V |. Documents are multisets (bags) over V . A document, D, is a

function D : V → N where N = {0, 1, 2, . . .} is the set of natural numbers. The

multiplicity of w in D, D(w), is the count of word w in document D. The

document length is the cardinality of D, |D| and is defined as follows:

|D| =
∑
w∈V

D(w)

The collection, C, is also a multiset over V and |C| is the total number of word

occurrences in C. Query Q is also represented as a multiset over the vocabulary.

The probabilistic model of document D will be represented as MD. The

probability of a word w given a document model MD is P (w|MD). For con-

venience, we write the maximum likelihood estimated (MLE) probability of a

word w given a piece of text T as P (w|T ).
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2.2 Probabilistic Models of Documents

We use the multinomial as our probabilistic model of text. A multinomial model

of text specifies a probability for each word in the vocabulary V . The probabil-

ities of the multinomial are its parameters and thus there are |V | parameters.

The probabilities of the multinomial sum to 1. A common way to think about

the multinomial is as a biased die. A die has |V | faces with each word having

some probability of being generated by the die on a roll.

For a given text document, D, the parameters of the multinomial represent-

ing D, MD, need to determined. This process of computing the probability of

a word w given the model MD, P (w|MD), is called estimation. A standard

approach to parameter estimation is maximum likelihood estimation (MLE).

MLE maximizes the likelihood of the observed data given the model. Treating

the words of D as independent samples, the likelihood of D is defined to be:

L(D) =
∏

w∈D

P (w|MD)D(w) (1)

The maximum likelihood estimate for the probability of a word turns out to be

the count of that word divided by the total number of occurrences in D:

P (w|D) = P (w|MD) =
D(w)

|D|
(2)

We can create MLE models of any piece of text T . As mentioned in the previous

section, we will write P (w|T ) to represent the MLE probability of w given T .

Note that the MLE model has zero probabilities for all words not in the

document.

2.3 Retrieval Model

Documents are ranked by the probability of a document given a query, which

is given by Bayes’ theorem as:

P (D|Q) =
P (Q|D)P (D)

P (Q)
(3)

We drop P (Q) from the above equation since it is the same for all documents

and will not affect the ranking. The prior probability of a document is given by

P (D).

The probability that a document model could generate a query Q, which is
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known as query likelihood, is given by:

P (Q|MD) =
∏

w∈Q

P (w|MD)Q(w) (4)

where MD is the probabilistic model of D. Plugging Equation 4 into Equation 3

(with P (Q) dropped) gives us our scoring function for a document:

P (D|Q) = P (D)
∏

w∈Q

P (w|MD)Q(w) (5)

If for some word w ∈ Q, P (w|MD) = 0, then the document will be given a score

of zero. This is the zero probability problem. Clearly we cannot directly use

the MLE model of document. We can eliminate the zero probabilities from the

document models using smoothing.

2.4 Document Smoothing Methods

A solution to the problem of zero probabilities and poor probability estimates

is to bring prior knowledge to the estimation process. A natural fit as a prior

for the multinomial is the Dirichlet density (Sjölander et al. 1996). A Dirich-

let density can be thought of as an urn containing multinomial dies. All the

multinomials are of the same size with |V | parameters. The Dirichlet density

has the same number of parameters as the multinomials for which it is a prior.

The vector ~α represents the parameters of the Dirichlet density. For each word

w in the vocabulary, there is a corresponding element αw of ~α, and all αw > 0.

When we use the Dirichlet density as the prior for the multinomial, the

estimate of the probability of word given a document is the weighted average

of the word’s probability in all multinomials. Each multinomial is weighted by

its probability given the observed document and the Dirichlet density. This

estimate is the mean posterior estimate:

P (w|MD) =

∫
M

P (w|M)P (M |~α, D)dM (6)

which reduces to:

P (w|MD) =
D(w) + αw

|D| + |~α|
(7)

as shown by Sjölander et al. (1996).
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The longer the document, the less influence the Dirichlet prior has in de-

termining the parameter estimates for the multinomial MD. The mean of the

Dirichlet density is for each αw, αw/|~α|. As the text becomes shorter, the

parameter estimates for MD regress to the mean of the Dirichlet density.

The parameters of a Dirichlet density can be represented as a multinomial

probability distribution M and a weight m = |~α|. Thus, with P (w|M) = αw/|~α|,

Equation 7 becomes:

P (w|MD) =
D(w) + mP (w|M)

|D| + m
(8)

The machine learning community terms this formulation of Dirichlet prior smooth-

ing the m-estimate (Mitchell 1997). The parameter m is the equivalent sample

size. The Dirichlet density when used as a prior for the multinomial can be

understood as taking m samples according to P (w|M) prior to observing the

data in D.

The parameters of the Dirichlet density can be determined using maximum

likelihood estimation (MLE). MLE finds the density parameters that produce

the highest likelihood for a collection of documents when the density is used

as a prior. The MLE can be computed numerically using a Newton-Raphson

method (Narayanan 1991) or via an expectation maximization (EM) like method

(Sjölander et al. 1996).

In contrast, common practice in information retrieval, and the one we follow,

is to let P (w|M) = P (w|C), i.e. use the MLE model of the collection for M .

This results in the common expression of Dirichlet prior smoothing as:

P (w|MD) =
D(w) + mP (w|C)

|D| + m
(9)

The value of m is a fixed value and is determined empirically. Typically m is set

to maximize a retrieval metric like mean average precision for a set of queries

and a collection of documents.

A closely related smoothing method is linear interpolated smoothing. Linear

interpolated smoothing linearly combines two models to produce a smoothed

model. Documents are typically smoothed with the collection. The document

D is smoothed with the collection C as follows:

P (w|MD) = (1 − λ)P (w|D) + λP (w|C) (10)
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The amount of smoothing increases as λ increases from 0 to 1, which matches the

behavior of an increase in Dirichlet prior’s parameter m. P (w|D) and P (w|C)

are the MLE models of D and C respectively.

Dirichlet prior smoothing is a form of linear interpolated smoothing. For a

given document length |D| and parameter m, an equivalent λ exists. By setting

λ in Equation 10 to:

λ = 1 −
|D|

|D| + m
(11)

Equation 9 can be written in the form of Equation 10 (Johnson 1932):

P (w|MD) = (1 − 1 +
|D|

|D| + m
)P (w|D) + (1 −

|D|

|D| + m
)P (w|C)

=
P (w|D)|D|

|D| + m
+ (

|D| + m

|D| + m
−

|D|

|D| + m
)P (w|C)

=
D(w)

|D| + m
+

mP (w|C)

|D| + m

=
D(w) + mP (w|C)

|D| + m

Because Dirichlet prior is equivalent to linear interpolated smoothing with a λ

parameterized on document length, both methods smooth a document exactly

the same way for a given λ.

As document length increases, Dirichlet prior smoothing gives less weight

to the collection, P (w|C), and more weight to the document, P (w|D). Longer

documents’ maximum likelihood estimates of probabilities are trusted more than

shorter documents’ estimates.

We studied the difference between Dirichlet prior smoothing and linear in-

terpolated smoothing with a fixed λ. Following Chen and Goodman (1998) and

Zhai and Lafferty (2001), we will refer to linear interpolated smoothing with a

fixed λ as Jelinek-Mercer smoothing.

2.5 Hypothesis

The only difference between Dirichlet prior and Jelinek-Mercer smoothing is

that Dirichlet prior determines the amount of smoothing based on a document’s

length as per Equation 11. As such, the performance gains obtained by Dirichlet
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prior are a function of document length. Singhal et al. (1996) have reported that

in the TREC collections longer documents are more likely to be relevant. When

a document is smoothed using linear interpolated smoothing, the probability

estimates for the words in the document are moved closer to the probabilities of

the words in the collection. For informative words in relevant documents, the

collection probability is likely to be much smaller than the document probabil-

ity. Thus, at least for documents containing all the query terms, the more a

document is smoothed, the lower that document will score. Given that Dirich-

let prior smoothing smooths shorter documents more than longer documents,

we hypothesize that Dirichlet prior smoothing’s improved performance comes

from favoring longer documents over shorter documents. In other words, we hy-

pothesize that Dirichlet prior smoothing has an implicit document prior, P (D)

in Equation 5, which assigns higher prior probabilities of relevance to longer

documents.

One way to test our hypothesis would be to transform a TREC collection into

a collection with a uniform probability of relevance given document length. Such

a transformation would consist of deleting both relevant and non-relevant docu-

ments of various lengths. We rejected this option of transforming the collection

because a smaller collection size is undesirable and fewer relevance judgments

would compromise our ability to evaluate retrieval results accurately.

The retrieval method of section 2.3 provides us with another means to test

our hypothesis. We can compute the known prior probability of relevance given

document length using a set of queries’ relevance judgments. We can then

directly supply this prior probability of relevance as the prior, P (D), in Equa-

tion 5. A calculation of P (Q|D) unbiased by document length should be cor-

rectly adjusted by our document prior to produce a superior P (D|Q) ranking. If

a smoothing method produces a length biased P (Q|D), supplying our document

prior will interfere and may help or hurt ranking depending on the method’s

implicit prior probability of relevance given document length.

Neither Jelinek-Mercer (JM) nor Dirichlet prior (DP) smoothing are sup-

posed to incorporate any preference for documents based on length. A smooth-

ing method’s sole responsibility is to better estimate a document’s true prob-

abilistic model. As such, both JM and DP should show performance improve-

ments given this document prior unless they already include an implicit docu-

ment prior based on length.

Our use of the document prior is inspired by the technique of pivoted length

normalization (Singhal et al. 1996) but is different in form and intent. Singhal
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et al. (1996) created a length normalization process so that the distribution of

retrieved document lengths would match the distribution of relevant document

lengths. If our goal was to correct for retrieval length biases, our document

prior would be computed differently. We would adjust the prior until the dis-

tribution of retrieved lengths matched that of the relevant documents. Instead,

we supplied a true document prior based on length to JM and DP smoothing

and measured the effect on retrieval performance.

2.6 Document Priors

For each set of experimental topics, we calculated document priors for a given

document length. The document prior is computed as the number of relevant

documents at a given length divided by the total number of documents at that

length. If a given length had less than 1000 documents, we created a bin and

grew it to cover greater lengths until it contained at least 1000 documents.

(The bin containing the longest documents, was smaller than 1000 documents.

These bins had sizes of 957, 636, and 577 documents for TREC 3, 7, and 8

respectively.) A bin’s length is the average of the document lengths in the bin.

We then smoothed the probabilities using the lowess smoother built into the R

statistical package with its delta equal to ten (R Development Core Team 2004).

The resulting curve was used to determine the prior probability of a document

based on its length using interpolation. If during retrieval a document was found

outside the range of the smoothed curve, the document was given the same prior

as the nearest bin. For TREC 3, the lowess curve went negative for very short

documents, and we set their probability to 1e-6. Figures 1, 2, and 3 show the

computed probabilities for each bin and the smoothed curves.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

Figure 4 shows how TREC 3 has a very strong bias for relevant documents

to be between 500 and 1000 terms in length. Documents shorter than 250 terms

are very unlikely to be relevant relative to the other document lengths. TREC 7

and 8 are not nearly as biased, but for them also, as documents become longer,

they are more likely to be relevant.

[Figure 4 about here.]
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2.7 Experiments

The experiments consisted of determining the performance of Jelinek-Mercer

and Dirichlet prior smoothing with and without the document prior based on

document length.

If we were testing the document prior as a method to improve retrieval

performance, then we would use the document priors from one set of topics

as a training set and test on another set of topics. Instead, we purposely use

the document priors calculated for a set of topics with that set of topics. By

providing the correct document priors, we are able to eliminate any implicit

length preference as a means to better performance. With the given document

priors, any performance advantage that a smoothing method shows must come

from better estimation of document models or other unknown features of the

smoothing method.

We used the TREC 3, 7, and 8 ad-hoc retrieval tasks for our experiments.

These tasks respectively consist of topics 151-200, 351-400, and 401-450. Each

topic consists of a title, description, and narrative. The titles best approximate

a short keyword query while the description is typically formulated as a single

well formed sentence describing the information need of the user. The narratives

are directions to potential future relevance assessors and are often paragraph

length descriptions of what should be considered on-topic and off-topic.

We used only titles and descriptions in isolation of each other to represent

queries. For Zhai and Lafferty (2001), the short queries are the titles and the

long queries are the concatenation of title, description and narrative fields. We

agree with the formulation to use titles as keyword-like non-verbose queries and

descriptions as verbose queries (Zhai and Lafferty 2002). A verbose query is

likely to contain many more common and non-informative words as opposed to

the more focused title queries.

The collection for TREC 3 consists of TREC volumes (discs) 1 and 2. The

collection for TREC 7 and 8 consists of TREC volumes 4 and 5 minus the

Congressional Record (CR) subcollection. We preprocessed the collections and

queries in the same manner. We stemmed using the Krovetz stemmer (Krovetz

1993) and removed stopwords using an in-house stopword list of 418 noise words.

We used Lemur 2.0.3 (Lemur 2003) compiled to run on Windows XP for all

experiments. Documents were scored using query likelihood, and we modified

Lemur to use document priors.

The parameters for Dirichlet prior and Jelinek-Mercer smoothing were de-
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termined by evaluating the mean average precision for a set of parameter values.

For Dirichlet prior, m was tried with values of {50, 100, 150, 200, 250, 300, 350,

400, 500, 600, 800, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 5000}. For Jelinek-

Mercer, λ was tried with values of 0.05 to 0.95 inclusive in 0.05 increments.

All statistical significance results are with respect to a paired, two sided,

Student’s t-test, and if not stated, p < 0.05.

3 Results

Table 1 summarizes the results of the experiments. Without the document prior,

Dirichlet prior (DP) smoothing significantly outperforms Jelinek-Mercer (JM)

smoothing on every set of topics and query type. These results reproduce those

of Zhai and Lafferty (2001, 2002) that also show the performance advantage of

DP smoothing. In each case without the document prior, the difference between

DP and JM is statistically significant at a p < 0.05 level by paired, two sided,

Student’s t-test.

[Table 1 about here.]

JM smoothing with the document prior matches or exceeds the performance

of DP smoothing both with and without the document prior in all cases. On the

description queries, JM with a prior has a better performance than DP with a

prior at a statistically significant level (p < 0.04) on topics 151-200 and 401-450

and is equivalent to DP on topics 351-400. In all cases, the performance of JM

is significantly increased by the addition of the prior and some increases are

dramatic. For example, on description queries for topics 151-200, JM’s mean

average precision increases 23.5% from 0.183 to 0.226. The performance of DP

smoothing with the document prior is equal to or worse than DP smoothing

without the prior. For all description queries, DP smoothing is hurt by the use

of the document prior.

Table 2 shows that DP used less smoothing with the document prior. In

contrast, JM used the same or an increased amount of smoothing. Compared

to DP, JM uses considerably more smoothing for the majority of documents in

the collection. Both methods used more smoothing for description queries than

for the title queries.

[Table 2 about here.]

11



4 Discussion

When Jelinek-Mercer (JM) smoothing is given the document prior, it matches

or exceeds the performance of Dirichlet prior (DP) smoothing with and without

the prior. When DP smoothing is given the document prior, its performance

stays the same or worsens. In effect, DP’s implicit document prior interferes

with the given document prior based on length. To compensate for the given

document prior, DP uses less smoothing than when used without the document

prior. As JM smoothing shows though, a large amount of smoothing can be

used for better performance with the given document prior.

These experimental results offer strong support for our hypothesis. Dirichlet

prior’s performance advantage over Jelinek-Mercer appears to come more from

an implicit prior favoring longer documents than from better estimation of the

document model.

These results lead directly to two questions. First, is it correct to smooth

longer documents less as Dirichlet prior smoothing does? We will next show

that smoothing longer documents less appears to be correct from an estima-

tion standpoint. Second, why do both smoothing methods need to use a large

amount of smoothing to obtain good retrieval performance? Dirichlet prior uses

more smoothing than appears to be required for good estimation, and Jelinek-

Mercer is successful with large amounts of smoothing for all document lengths.

We will explain that because the amount of smoothing controls the amount of

smoothing’s inverse document frequency (IDF) like behavior (Zhai and Lafferty

2001), one needs significant amounts of smoothing to maximize that behavior.

Finally, we discuss the potential of using a document prior for performance

improvements.

4.1 Smoothing Longer Documents Less

Outside of the advantage of preferring longer documents, does it makes sense

to smooth longer documents less? Linear interpolated smoothing (and thus

Dirichlet prior) is a discounting smoothing method. Discounting methods reduce

the probability of the words seen and reallocate the probability mass to words

not seen in the document. The mass assigned to the unseen words is called

the zero probability mass. Neither Jelinek-Mercer nor Dirichlet prior smoothing

specify the amount of discounting explicitly but instead an increase in the value

of their smoothing parameters results in more discounting. Good-Turing is
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another form of discounted smoothing. Good-Turing explicitly uses the zero

probability mass, P0, and estimates it for a document D to be:

P0 =
N1(D)

|D|

where N1(D) is the number of words that occur exactly once in the document D

(Sampson 2001). We will not use or discuss Good-Turing smoothing beyond

using its estimation of the zero probability mass. Gale and Sampson (1995)

provide a good explanation of Good-Turing smoothing.

The λ parameter for linear interpolated smoothing can be determined di-

rectly from the Good-Turing estimate of the zero probability mass. To do this,

we take the sum of the seen probabilities and set the sum equal to 1 − P0 and

solve for the smoothing parameter. For linear interpolated smoothing, the P0

derived λ is:

∑
w∈D

((1 − λ)P (w|D) + λP (w|C)) = 1 − P0

λ =
P0

1 −
∑

w∈D P (w|C)
(12)

A similar derivation can be done for the Dirichlet prior parameter m, but this

merely produces an identical smoothing method. Using Equation 12, we can

determine the amount to smooth each separate document based on the Good-

Turing estimate of its zero probability mass.

[Figure 5 about here.]

Figure 5 shows the P0 derived λ values for a random set of two thousand

documents from the 1.6 million documents comprising TREC disks 1-5 minus

the CR collection on discs 4 and 5. The curve marked “Average” is the average

of the 1.6 million documents’ P0 derived λ’s after binning the documents by

length. To produce a smoother average curve, each bin has a minimum of 1000

documents and at least 2 document lengths. Also shown are the equivalent

λ values for two settings of the Dirichlet prior parameter m at 1000 and 320.

Dirichlet prior follows the general trend of the P0 derived λ values; longer doc-

uments receive less smoothing than shorter documents. Jelinek-Mercer (JM)

smoothing, on the other hand, smooths long and short documents equally and

is seen as a horizontal line in the figure for λ = 0.8. It thus could be argued

that Dirichlet prior is correct in smoothing longer documents less if we believe
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in the Good-Turing estimate of the zero probability mass, P0. In comparison,

JM smoothing appears to use too little smoothing for very short documents and

smooths long documents too much.

Zhai and Lafferty (2002) created a “leave one out” method to estimate the

Dirichlet prior parameter m. Their method finds the m that minimizes the log

likelihood for a modified collection where each document’s likelihood is com-

puted by removing a word and smoothing the resulting document with Dirichlet

prior smoothing. This method is part of the Lemur software distribution (Lemur

2003), and we used it to calculate m for the TREC volumes 1 and 2 collection

used for TREC 3 and the TREC volumes 4 and 5 collection, minus the CR

subcollection, used for TREC 7 and 8. For volumes 1 and 2, the estimate of m

is 308 and for volumes 4 and 5 minus CR the estimate of m is 332. The average

of 308 and 332 is 320 and as can be seen in Figure 5 appears to be a reasonable

fit to the P0 derived λ values. Thus both Zhai and Lafferty’s method and the

Good-Turing estimate of the zero probability mass appear to be in agreement

with each other. Both of these methods call for much less smoothing than is

needed for good document retrieval. We next discuss why so much smoothing

is used by both Dirichlet prior and Jelinek-Mercer.

4.2 IDF Behavior of Smoothing

If it is correct to use as little smoothing as suggested by the Good-Turing es-

timate of the zero probability mass and Zhai and Lafferty’s leave-one-out es-

timates, then why do Dirichlet prior and Jelinek-Mercer use so much more

smoothing than appears to be needed for good estimation? Zhai and Lafferty

(2001) have shown that smoothing the document model with the collection

model can be viewed as introducing an inverse document frequency (IDF) like

behavior to the query likelihood retrieval model. Their and our experimental re-

sults show that longer, verbose queries require more document smoothing than

shorter queries. As we will illustrate with an example, high levels of smoothing

increase the importance of rare terms relative to common terms. In other words,

the IDF-like behavior shown to exist by Zhai and Lafferty is accentuated with

high levels of smoothing.

When a document is scored using query likelihood as in Equation 4, each

term in the query contributes to the document’s score. When ranking docu-

ments, it is their scores relative to each other that matters. If a query consisted

of two words w1 and w2, the ratio of a document A to a document B tells us to
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what extent either one is more likely to have generated the query:

P (w1|MA)P (w2|MA)

P (w1|MB)P (w2|MB)

where MA and MB are the smoothed models of documents A and B. This ratio

is simply a product of the ratios for each word. The ratio for word w1 is:

(1 − λ)P (w1|A) + λP (w1|C)

(1 − λ)P (w1|B) + λP (w1|C)

Let P (w1|A) = P (w2|A) = 0.003 and P (w1|B) = P (w2|B) = 0.001. Document

A is the superior document. When λ = 0 the ratio of A’s score to B’s is 9:1

and each word contributes equally to A’s higher score. If we increase λ, the

individual word ratios will change from 3:1 to ratios nearer to 1:1 until λ = 1

and the 1:1 ratio is obtained. The way the individual ratios change though

depends on their respective collection probabilities.

Let us further assume that w1 is a rare term and w2 is a common term. To

determine what makes a term rare or common, we can look at the actual col-

lection probabilities for words found in the description queries. The words used

in description queries are skewed to rare informative words, but many common

and less-informative words are also used. For topics 351-450, the minimum col-

lection probability of a query term is 7.3×10−8 and the maximum is 3.1×10−3.

The median probability is 2.6× 10−4. Let us assume that the first quartile is a

good representative of a rare term and the third quartile represents a common

word. We thus let P (w1|C) = 6.0 × 10−5 (rare) and P (w2|C) = 4.6 × 10−4

(common).

[Figure 6 about here.]

Figure 6 shows the scenario just described. As λ increases from 0 to 1, the 3:1

ratio for each word changes at different rates. The rare word w1 has a document

probability that is large relative to its collection probability and thus requires

significantly more smoothing to affect the ratio between documents A and B.

The common word being closer to its collection probability moves faster to a 1:1

ratio as smoothing is increased. For this example, the result is that at λ = 0.86

the effective power of the rare word over the common word is maximized.

Informative words are characterized as occurring in bursts and being un-

evenly distributed in the collection while non-informative words are more evenly

distributed (Church 2000). A common heuristic to identify informative words is
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the inverse document frequency (IDF). In the language modeling approach with

documents smoothed with the collection, IDF is replaced by the inverse collec-

tion probability, which functions similarly. Informative, rare words will tend to

have large document probabilities relative to the collection probability. Thus

for informative words their influence on a document’s ranking is little changed

until large amounts of smoothing are applied. Common words will likely have

document probabilities already near the collection probabilities. Thus common

words lose their influence on a document’s ranking much faster than rare words

as the amount of smoothing increases.

The power of rare words will tend to be amplified with high levels of smooth-

ing. This is the likely explanation of why DP and JM smoothing succeed with

so much smoothing even when for estimation purposes they should be using less

smoothing. This is a surprising notion given that increased smoothing should

be used to correct poor model estimates. Instead we find that smoothing more,

but not too much, increases the weight given to rarer words in a query. In

other work, we’ve found that document retrieval performance can increase if we

decouple smoothing’s IDF and estimation roles (Smucker and Allan 2006).

4.3 Document Priors for Improved Performance

While not the focus of this paper, an obvious question to ask is whether or not

the document priors as calculated can be used to improve retrieval performance.

While a full analysis is beyond the scope of this paper, we looked at how sensitive

performance is to the document prior. As Figures 1-4 show, the priors for

topics 351-400 and 401-450 are similar while the priors for topics 151-200 are

quite different. Recall that topics 351-400 and 401-450 use the same collection.

These curves imply that priors for a collection do not vary much based on topics

but that priors for one collection may be quite different from another.

[Table 3 about here.]

To examine the sensitivity, we used the document priors from each set of top-

ics with the other set of topics. We only look at Jelinek-Mercer (JM) smoothing

since Dirichlet prior smoothing did not show a performance improvement with

the document priors. Table 3 shows the mean average precision (MAP) for each

set of topics and queries using the different document priors. The MAP scores

were found with the same parameter sweep of λ as described in Section 2.7.
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Not surprisingly, swapping the document priors for topics 351-400 and 401-

450 leads to similar performance. Interestingly, equivalent performance is ob-

tainable by using the document priors computed for topics 151-200 on topics

351-400 and 401-450. When the priors for topics 351-400 and 401-450 are used

on topics 151-200, performance degrades, but the performance is still greater

than that without a prior.

It appears as though the use of a document prior based on length computed

from different topics and collections may lead to performance improvements on

other topics and collections. In particular, the success of the prior for topics

151-200 on the other topics suggests that the most important aspect of the

document priors may be to penalize very short documents.

5 Conclusion

We discovered that Dirichlet prior’s performance advantage over Jelinek-Mercer

smoothing comes more from an implicit document prior that prefers longer

documents than from an ability to better estimate the true document model.

We determined this by constructing a prior for a given document length from the

known relevant documents. We then tested the performance of Dirichlet prior

and Jelinek-Mercer smoothing with and without the document prior. Both

methods smooth documents identically except Dirichlet prior smooths longer

documents less. With the prior, Jelinek-Mercer smoothing equals or betters

the performance of Dirichlet prior smoothing. By smoothing longer documents

less, Dirichlet prior smoothing favors them. Smoothing longer documents less

does make sense from an estimation standpoint, but Jelinek-Mercer smoothing’s

better performance on description queries seems to occur because at higher

levels of smoothing, the IDF-like behavior of document smoothing appears to be

maximized. Finally, we found that a document prior based on another collection

has the potential for improved performance. In particular, it appears that one

should penalize the scores of very short documents.
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Figure 1: The computed probability of relevance for documents binned by
length for TREC 3, topics 150-200. The curve through the points represents
the smoothed probabilities used for retrieval.
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Without Prior With Prior
Collection Topics Query JM DP JM DP
Vol 1&2 151-200 title 0.217 0.256 0.252 0.252

Vol 4&5-CR 351-400 title 0.169 0.190 0.185 0.187

Vol 4&5-CR 401-450 title 0.237 0.253 0.247 0.254

Vol 1&2 151-200 desc. 0.183 0.213 0.226 0.204
Vol 4&5-CR 351-400 desc. 0.174 0.189 0.191 0.177

Vol 4&5-CR 401-450 desc. 0.224 0.226 0.237 0.217

Table 1: This table shows the non-interpolated mean average precision (MAP)
scores for Jelinek-Mercer (JM) and Dirichlet prior (DP) smoothing. Scores
are shown with and without a document prior that is the known probability
of relevance given a document’s length. JM with a prior betters or equals
the performance of DP in all cases. For a given row, MAP scores in bold
are statistically equivalent by a paired, two sided, Student’s t-test (p < 0.05)
compared to the highest MAP score in the row.
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JM λ DP m
Collection Topics Query Without Prior With Prior Without Prior With Prior
Vol 1&2 151-200 title 0.30 0.65 800 400
Vol 4&5-CR 351-400 title 0.55 0.80 1500 500
Vol 4&5-CR 401-450 title 0.25 0.45 350 200
Vol 1&2 151-200 desc. 0.80 0.95 1750 1500
Vol 4&5-CR 351-400 desc. 0.90 0.90 3000 1750
Vol 4&5-CR 401-450 desc. 0.85 0.90 2500 1250

Table 2: This table shows the parameter settings for both Jelinek-Mercer (JM)
smoothing and Dirichlet prior (DP) smoothing that maximized the mean av-
erage precision. JM’s λ increases or stays the same given the document prior
while DP’s m decreases in all cases.
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Given Prior from Topics
Topics Query 151-200 351-400 401-450 No Prior
151-200 title 0.252 0.234 0.226 0.217
351-400 title 0.184 0.185 0.180 0.169
401-450 title 0.248 0.253 0.247 0.237
151-200 desc. 0.226 0.203 0.196 0.183
351-400 desc. 0.193 0.191 0.186 0.174
401-450 desc. 0.239 0.242 0.237 0.224

Table 3: This table shows the non-interpolated mean average precision (MAP)
for each set of topics and queries given different document priors. The smoothing
method used is Jelinek-Mercer smoothing. The scores in bold are the same as
the Jelinek-Mercer scores with a prior from Table 1.
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