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Abstract

We explore the problem of retrieving

semi-structured documents from a real-

world collection using a structured query.

We formally develop Structured Rele-

vance Models (SRM), a retrieval model

that is based on the idea that plausible

values for a given field could be inferred

from the context provided by the other

fields in the record. We then carry out a

set of experiments using a snapshot of the

National Science Digital Library (NSDL)

repository, and queries that only mention

fields missing from the test data. For such

queries, typical field matching would re-

trieve no documents at all. In contrast, the

SRM approach achieves a mean average

precision of over twenty percent.

1 Introduction

This study investigates information retrieval on

semi-structured information, where documents con-

sist of several textual fields that can be queried in-

dependently. If documents contained subject and

author fields, for example, we would expect to see

queries looking for documents about theory of rela-

tivity by the author Einstein.

This setting suggests exploring the issue of inex-

act match—is special theory of relativity relevant?—

that has been explored elsewhere (Cohen, 2000).

Our interest is in an extreme case of that problem,

where the content of a field is not corrupted or in-

correct, but is actually absent. We wish to find rele-

vant information in response to a query such as the

one above even if a relevant document is completely

missing the subject and author fields.

Our research is motivated by the challenges we

encountered in working with the National Science

Digital Library (NSDL) collection.1 Each item in

the collection is a scientific resource, such as a re-

search paper, an educational video, or perhaps an

entire website. In addition to its main content, each

resource is annotated with metadata, which provides

information such as the author or creator of the re-

source, its subject area, format (text/image/video)

and intended audience – in all over 90 distinct fields

(though some are very related). Making use of such

extensive metadata in a digital library paves the way

for constructing highly-focused models of the user’s

information need. These models have the potential

to dramatically improve the user experience in tar-

geted applications, such as the NSDL portals. To

illustrate this point, suppose that we are running

an educational portal targeted at elementary school

teachers, and some user requests teaching aids for

an introductory class on gravity. An intelligent

search system would be able to translate the request

into a structured query that might look something

like: subject=’gravity’ AND audience=’grades 1-4’

AND format=’image,video’ AND rights=’free-for-

academic-use’. Such a query can be efficiently an-

swered by a relational database system.

Unfortunately, using a relational engine to query a

semi-structured collection similar to NSDL will run

into a number of obstacles. The simplest problem is

1http://www.nsdl.org
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that natural language fields are filled inconsistently:

e.g., the audience field contains values such as K-

4, K-6, second grade, and learner, all of which are

clearly semantically related.

A larger problem, and the one we focus on in this

study, is that of missing fields. For example 24%

of the items in the NSDL collection have no sub-

ject field, 30% are missing the author information,

and over 96% mention no target audience (reading

level). This means that a relational query for ele-

mentary school material will consider at most 4% of

all potentially relevant resources in the NSDL col-

lection.2

The goal of our work is to introduce a retrieval

model that will be capable of answering complex

structured queries over a semi-structured collection

with corrupt and missing field values. This study

focuses on the latter problem, an extreme version

of the former. Our approach is to use a generative

model to compute how plausible a word would ap-

pear in a record’s empty field given the context pro-

vided by the other fields in the record.

The remainder of this paper is organized as fol-

lows. We survey previous attempts at handling semi-

structured data in section 2. Section 3 will provide

the details of our approach, starting with a high-level

view, then providing a mathematical framework, and

concluding with implementation details. Section 4

will present an extensive evaluation of our model on

the large set of queries over the NSDL collection.

We will summarize our results and suggest direc-

tions for future research in Section 5.

2 Related work

The issue of missing field values is addressed in a

number of recent publications straddling the areas of

relational databases and machine learning. In most

cases, researchers introduce a statistical model for

predicting the value of a missing attribute or relation,

based on observed values. Friedman et al (1999) in-

troduce a technique called Probabilistic Relational

Models (PRM) for automatically learning the struc-

ture of dependencies in a relational database. Taskar

2Some of the NSDL metadata fields overlap substantially in
meaning, so it might be argued that the overlapping fields will
cover the collection better. Under the broadest possible inter-
pretation of field meanings, more than 7% of the documents
still contain no subject and 95% still contain no audience field.

et al (2001) demonstrate how PRM can be used to

predict the category of a given research paper and

show that categorization accuracy can be substan-

tially improved by leveraging the relational structure

of the data. Heckerman et al (2004) introduce the

Probabilistic Entity Relationship (PER) model as an

extension of PRM that treats relations between enti-

ties as objects. Neville at al (2003) discuss predict-

ing binary labels in relational data using Relational

Probabilistic Trees (RPT). Using this method they

successfully predict whether a movie was a box of-

fice hit based on other movies that share some of

the properties (actors, directors, producers) with the

movie in question.

Our work differs from most of these approaches in

that we work with free-text fields, whereas database

researchers typically deal with closed-vocabulary

values, which exhibit neither the synonymy nor the

polysemy inherent in natural language expressions.

In addition, the goal of our work is different: we aim

for accurate ranking of records by their relevance to

the user’s query, whereas database research has typ-

ically focused on predicting the missing value.

Our work is related to a number of existing ap-

proaches to semi-structured text search. Desai et

al (1987) followed by Macleod (1991) proposed us-

ing the standard relational approach to searching

unstructured texts. The lack of an explicit rank-

ing function in their approaches was partially ad-

dressed by Blair (1988). Fuhr (1993) proposed the

use of Probabilistic Relational Algebra (PRA) over

the weights of individual term matches. Vasan-

thukumar et al (1996) developed a relational imple-

mentation of the inference network retrieval model.

A similar approach was taken by de Vries and

Wilschut (1999), who managed to improve the ef-

ficiency of the approach. De Fazio et al (1995) in-

tegrated IR and RDBMS technology using an ap-

proached called cooperative indexing. Cohen (2000)

describes WHIRL – a language that allows efficient

inexact matching of textual fields within SQL state-

ments. A number of relevant works are also pub-

lished in the proceedings of the INEX workshop.3

The main difference between these endeavors and

our work is that we are explicitly focusing on the

cases where parts of the structured data are missing

3http://inex.is.informatik.uni-duisburg.de/index.html
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or mis-labeled.

3 Structured Relevance Model

In this section we will provide a detailed description

of our approach to searching semi-structured data.

Before diving into the details of our model, we want

to clearly state the challenge we intend to address

with our system.

3.1 Task: finding relevant records

The aim of our system is to identify a set of

records relevant to a structured query provided by

the user. We assume the query specifies a set of

keywords for each field of interest to the user, for

example Q: subject=’physics,gravity’ AND audi-

ence=’grades 1-4’4. Each record in the database is

a set of natural-language descriptions for each field.

A record is considered relevant if it could plausibly

be annotated with the query fields. For example, a

record clearly aimed at elementary school students

would be considered relevant to Q even if it does not

contain ’grades 1-4’ in its description of the target

audience. In fact, our experiments will specifically

focus on finding relevant records that contain no di-

rect match to the specified query fields, explicitly

targeting the problem of missing data and inconsis-

tent schemata.

This task is not a typical IR task because the

fielded structure of the query is a critical aspect of

the processing, not one that is largely ignored in fa-

vor of pure content based retrieval. On the other

hand, the approach used is different from most DB

work because cross-field dependencies are a key

component of the technique. In addition, the task

is unusual for both communities because it consid-

ers an unusual case where the fields in the query do

not occur at all in the documents being searched.

3.2 Overview of the approach

Our approach is based on the idea that plausible val-

ues for a given field could be inferred from the con-

text provided by the other fields in the record. For

instance, a resource titled ’Transductive SVMs’ and

containing highly technical language in its descrip-

tion is unlikely to be aimed at elementary-school stu-

4For this paper we will focus on simple conjunctive queries.
Extending our model to more complex queries is reserved for
future research.

dents. In the following section we will describe a

statistical model that will allow us to guess the val-

ues of un-observed fields. At the intuitive level, the

model takes advantage of the fact that records sim-

ilar in one respect will often be similar in others.

For example, if two resources share the same author

and have similar titles, they are likely to be aimed at

the same audience. Formally, our model is based on

the generative paradigm. We will describe a proba-

bilistic process that could be viewed, hypothetically,

as the source of every record in our collection. We

will assume that the query provided by our user is

also a sample from this generative process, albeit a

very short one. We will use the observed query fields

(e.g. audience and subject) to estimate the likely val-

ues for other fields, which would be plausible in the

context of the observed subject and audience. The

distributions over plausible values will be called rel-

evance models, since they are intended to mimic the

kind of record that might be relevant to the observed

query. Finally, all records in the database will be

ranked by their information-theoretic similarity to

these relevance models.

3.3 Definitions

We start with a set of definitions that will be used

through the remainder of this paper. Let C be a

collection of semi-structured records. Each record

w consists of a set of fields w1. . .wm. Each

field wi is a sequence of discrete variables (words)

wi,1. . .wi,ni
, taking values in the field vocabulary

Vi.
5 When a record contains no information for the

i’th field, we assume ni=0 for that record. A user’s

query q takes the same representation as a record

in the database: q={qi,j∈Vi : i=1..m, j = 1..ni}.

We will use pi to denote a language model over Vi,

i.e. a set of probabilities pi(v)∈[0, 1], one for each

word v, obeying the constraint Σvpi(v) = 1. The

set of all possible language models over Vi will be

denoted as the probability simplex IPi. We define

π : IP1×· · ·×IPm→[0, 1] to be a discrete measure

function that assigns a probability mass π(p1. . .pm)
to a set of m language models, one for each of the

m fields present in our collection.

5We allow each field to have its own vocabulary Vi, since we
generally do not expect author names to occur in the audience
field, etc. We also allow Vi to share same words.
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3.4 Generative Model

We will now present a generative process that will be

viewed as a hypothetical source that produced ev-

ery record in the collection C. We stress that this

process is purely hypothetical; its only purpose is to

model the kinds of dependencies that are necessary

to achieve effective ranking of records in response to

the user’s query. We assume that each record w in

the database is generated in the following manner:

1. Pick m distributions p1. . .pm according to π

2. For each field i = 1. . .m:

(a) Pick the length ni of the i′th field of w

(b) Draw i.i.d. words wi,1. . .wi,ni
from pi

Under this process, the probability of observing a

record {wi,j : i=1..m, j=1..ni} is given by the fol-

lowing expression:

∫

IP1...IPm

[

m
∏

i=1

ni
∏

j=1

pi(wi,j)

]

π(p1. . .pm)dp1. . .dpm (1)

3.4.1 A generative measure function

The generative measure function π plays a critical

part in equation (1): it specifies the likelihood of us-

ing different combinations of language models in the

process of generating w. We use a non-parametric

estimate for π, which relies directly on the combi-

nations of language models that are observed in the

training part of the collection. Each training record

w1. . .wm corresponds to a unique combination of

language models p
w

1
. . .pw

m defined by the following

equation:

p
w

i (v) =
#(v,wi) + µicv

ni + µi

(2)

Here #(v,wi) represents the number of times the

word v was observed in the i’th field of w, ni

is the length of the i’th field, and cv is the rela-

tive frequency of v in the entire collection. Meta-

parameters µi allow us to control the amount of

smoothing applied to language models of different

fields; their values are set empirically on a held-out

portion of the data.

We define π(p1. . .pm) to have mass 1

N
when

its argument p1. . .pm corresponds to one of the N

records w in the training part Ct of our collection,

and zero otherwise:

π(p1. . .pm) =
1

N

∑

w∈Ct

m
∏

i=1

1pi=p
w

i
(3)

Here p
w

i is the language model associated with the

training record w (equation 2), and 1x is the Boolean

indicator function that returns 1 when its predicate x
is true and zero when it is false.

3.4.2 Assumptions and limitations of the model

The generative model described in the previous

section treats each field in the record as a bag of

words with no particular order. This representation

is often associated with the assumption of word in-

dependence. We would like to stress that our model

does not assume word independence, on the con-

trary, it allows for strong un-ordered dependencies

among the words – both within a field, and across

different fields within a record. To illustrate this

point, suppose we let µi→0 in equation (2) to re-

duce the effects of smoothing. Now consider the

probability of observing the word ’elementary’ in

the audience field together with the word ’differen-

tial’ in the title (equation 1). It is easy to verify that

the probability will be non-zero only if some train-

ing record w actually contained these words in their

respective fields – an unlikely event. On the other

hand, the probability of ’elementary’ and ’differen-

tial’ co-occurring in the same title might be consid-

erably higher.

While our model does not assume word indepen-

dence, it does ignore the relative ordering of the

words in each field. Consequently, the model will

fail whenever the order of words, or their proximity

within a field carries a semantic meaning. Finally,

our generative model does not capture dependencies

across different records in the collection, each record

is drawn independently according to equation (1).

3.5 Using the model for retrieval

In this section we will describe how the generative

model described above can be used to find database

records relevant to the structured query provided by

the user. We are given a structured query q, and

a collection of records, partitioned into the training

portion Ct and the testing portion Ce. We will use

the training records to estimate a set of relevance
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records average unique
covered length words

title 655,673 (99%) 7 102,772
description 514,092 (78%) 38 189,136

subject 504,054 (77%) 12 37,385
content 91,779 (14%) 743 575,958

audience 22,963 (3.5%) 4 119

Table 1: Summary statistics for the five NSDL fields

used in our retrieval experiments.

models R1. . .Rm, intended to reflect the user’s in-

formation need. We will then rank testing records by

their divergence from these relevance models. A rel-

evance Ri(v) specifies how plausible it is that word

v would occur in the i’th field of a record, given

that the record contains a perfect match to the query

fields q1. . .qm:

Ri(v) =
P (q1. . .v◦qi. . .qm)

P (q1. . .qi. . .qm)
(4)

We use v◦qi to denote appending word v to the

string qi. Both the numerator and the denomina-

tor are computed using equation (1). Once we have

computed relevance models Ri for each of the m
fields, we can rank testing records w

′ by their sim-

ilarity to these relevance models. As a similarity

measure we use weighted cross-entropy, which is an

extension of the ranking formula originally proposed

by (Lafferty and Zhai, 2001):

H(R1..m;w1..m) =

m
∑

i=1

αi

∑

v∈Vi

Ri(v) log p
w

i (v) (5)

The outer summation goes over every field of inter-

est, while the inner extends over all the words in the

vocabulary of the i’th field. Ri are computed accord-

ing to equation (4), while p
w

i are estimated from

equation (2). Meta-parameters αi allow us to vary

the importance of different fields in the final rank-

ing; the values are selected on a held-out portion of

the data.

4 Experiments

4.1 Dataset and queries

We tested the performance of our model on a Jan-

uary 2005 snapshot of the National Science Digi-

tal Library repository. The snapshot contains a to-

tal of 656,992 records, spanning 92 distinct (though

sometimes related) fields. 6Only 7 of these fields

are present in every record, and half the fields are

present in less than 1% of the records. An average

record contains only 17 of the 92 fields. Our experi-

ments focus on a subset of 5 fields (title, description,

subject, content and audience). These fields were

selected for two reasons: (i) they occur frequently

enough to allow a meaningful evaluation and (ii)

they seem plausible to be included in a potential

query.7 Of these fields, title represents the title of the

resource, description is a very brief abstract, content

is a more detailed description (but not the full con-

tent) of the resource, subject is a library-like clas-

sification of the topic covered by the resource, and

audience reflects the target reading level (e.g. ele-

mentary school or post-graduate). Summary statis-

tics for these fields are provided in Table 1.

The dataset was randomly split into three sub-

sets: the training set, which comprised 50% of the

records and was used for estimating the relevance

models as described in section 3.5; the held-out set,

which comprised 25% of the data and was used to

tune the smoothing parameters µi and the bandwidth

parameters αi; and the evaluation set, which con-

tained 25% of the records and was used to evaluate

the performance of the tuned model8.

Our experiments are based on a set of 127 auto-

matically generated queries. We randomly split the

queries into two groups, 64 for training and 63 for

evaluation. The queries were constructed by com-

bining two randomly picked subject words with two

audience words, and then discarding any combi-

nation that had less than 10 exact matches in any

of the three subsets of our collection. This proce-

dure yields queries such as Q91={subject:’artificial

intelligence’ AND audience=’researchers’}, or

Q101={subject:’philosophy’ AND audience=’high

school’}.

4.2 Evaluation paradigm

We evaluate our model by its ability to find “rele-

vant” records in the face of missing values. We de-

6As of May 2006, the NSDL contains over 1.5 million doc-
uments.

7The most frequent NSDL fields (id, icon, url, link and 4
brand fields) seem unlikely to be used in user queries.

8In real use, typical pseudo relevance feedback scheme can
be followed: retrieve top-k documents to build relevance mod-
els then perform IR again on the same whole collection
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fine a record w to be relevant to the user’s query q

if every keyword in q is found in the corresponding

field of w. For example, in order to be relevant to

Q101 a record must contain the word ‘philosophy’ in

the subject field and words ‘high’ and ‘school’ in the

audience field. If either of the keywords is missing,

the record is considered non-relevant.9

When the testing records are fully observable,

achieving perfect retrieval accuracy is trivial: we

simply return all records that match all query key-

words in the subject and audience fields. As we

stated earlier, our main interest concerns the sce-

nario when parts of the testing data are missing. We

are going to simulate this scenario in a rather ex-

treme manner by completely removing the subject

and audience fields from all testing records. This

means that a straightforward approach – matching

query fields against record fields – will yield no rel-

evant results. Our approach will rank testing records

by comparing their title, description and content

fields against the query-based relevance models, as

discussed in section 3.5.

We will use the standard rank-based evaluation

metrics: precision and recall. Let NR be the total

number of records relevant to a given query, sup-

pose that the first K records in our ranking contain

NK relevant ones. Precision at rank K is defined

as NK

K
and recall is defined as NK

NR
. Average preci-

sion is defined as the mean precision over all ranks

where relevant items occur. R-precision is defined

as precision at rank K=NR.

4.3 Baseline systems

Our experiments will compare the ranking perfor-

mance of the following retrieval systems:

cLM is a cheating version of un-structured text

search using a state-of-the-art language-modeling

approach (Ponte and Croft, 1998). We disregard

the structure, take all query keywords and run them

against a concatenation of all fields in the testing

records. This is a “cheating” baseline, since the con-

9This definition of relevance is unduly conservative by the
standards of Information Retrieval researchers. Many records
that might be considered relevant by a human annotator will be
treated as non-relevant, artificially decreasing the accuracy of
any retrieval algorithm. However, our approach has the advan-
tage of being fully automatic: it allows us to test our model on
a scale that would be prohibitively expensive with manual rele-
vance judgments.

catenation includes the audience and subject fields,

which are supposed to be missing from the testing

records. We use Dirichlet smoothing (Lafferty and

Zhai, 2001), with parameters optimized on the train-

ing data. This baseline mimics the core search capa-

bility currently available on the NSDL website.

bLM is a combination of SQL-like structured

matching and unstructured search with query ex-

pansion. We take all training records that contain

an exact match to our query and select 10 highly-

weighted words from the title, description, and con-

tent fields of these records. We run the resulting 30

words as a language modeling query against the con-

catenation of title, description, and content fields in

the testing records. This is a non-cheating baseline.

bMatch is a structured extension of bLM. As in

bLM, we pick training records that contain an ex-

act match to the query fields. Then we match 10

highly-weighted title words, against the title field of

testing records, do the same for the description and

content fields, and merge the three resulting ranked

lists. This is a non-cheating baseline that is similar

to our model (SRM). The main difference is that this

approach uses exact matching to select the training

records, whereas SRM leverages a best-match lan-

guage modeling algorithm.

SRM is the Structured Relevance Model, as de-

scribed in section 3.5. For reasons of both effec-

tiveness and efficiency, we firstly run the original

query to retrieve top-500 records, then use these

records to build SRMs. When calculating the cross

entropy(equ. 5), for each field we only include the

top-100 words which will appear in that field with

the largest probabilities.

Note that our baselines do not include a standard

SQL approach directly on testing records. Such

an approach would have perfect performance in a

“cheating” scenario with observable subject and au-

dience fields, but would not match any records when

the fields are removed.

4.4 Experimental results

Table 2 shows the performance of our model (SRM)

against the three baselines. The model parameters

were tuned using the 64 training queries on the train-

ing and held-out sets. The results are for the 63 test

queries run against the evaluation corpus. (Similar

results occur if the 64 training queries are run against

94



cLM bMatch bLM SRM %change improved

Rel-ret: 949 582 914 861 -5.80 26/50

Interpolated Recall - Precision:

at 0.00 0.3852 0.3730 0.4153 0.5448 31.2 33/49
at 0.10 0.3014 0.3020 0.3314 0.4783 44.3 42/56
at 0.20 0.2307 0.2256 0.2660 0.3641 36.9 40/59
at 0.30 0.2105 0.1471 0.2126 0.2971 39.8 36/58
at 0.40 0.1880 0.1130 0.1783 0.2352 31.9 36/58
at 0.50 0.1803 0.0679 0.1591 0.1911 20.1 32/57
at 0.60 0.1637 0.0371 0.1242 0.1439 15.8 27/51
at 0.70 0.1513 0.0161 0.1001 0.1089 8.7 21/42
at 0.80 0.1432 0.0095 0.0901 0.0747 -17.0 18/36
at 0.90 0.1292 0.0055 0.0675 0.0518 -23.2 12/27
at 1.00 0.1154 0.0043 0.0593 0.0420 -29.2 9/23

Avg.Prec. 0.1790 0.1050 0.1668 0.2156 29.25 43/63

Precision at:

5 docs 0.1651 0.2159 0.2413 0.3556 47.4 32/43
10 docs 0.1571 0.1651 0.2063 0.2889 40.0 34/48
15 docs 0.1577 0.1471 0.1841 0.2360 28.2 32/49
20 docs 0.1540 0.1349 0.1722 0.2024 17.5 28/47
30 docs 0.1450 0.1101 0.1492 0.1677 12.4 29/50

100 docs 0.0913 0.0465 0.0849 0.0871 2.6 37/57
200 docs 0.0552 0.0279 0.0539 0.0506 -6.2 33/53
500 docs 0.0264 0.0163 0.0255 0.0243 -4.5 26/48

1000 docs 0.0151 0.0092 0.0145 0.0137 -5.8 26/50

R-Prec. 0.1587 0.1204 0.1681 0.2344 39.44 31/49

Table 2: Performance of the 63 test queries retrieving 1000 documents on the evaluation data. Bold figures

show statistically significant differences. Across all 63 queries, there are 1253 relevant documents.

the evalution corpus.)

The upper half of Table 2 shows precision at

fixed recall levels; the lower half shows precision

at different ranks. The %change column shows rel-

ative difference between our model and the base-

line bLM. The improved column shows the num-

ber of queries where SRM exceeded bLM vs. the

number of queries where performance was different.

For example, 33/49 means that SRM out-performed

bLM on 33 queries out of 63, underperformed on

49−33=16 queries, and had exactly the same per-

formance on 63−49=14 queries. Bold figures in-

dicate statistically significant differences (according

to the sign test with p < 0.05).

The results show that SRM outperforms three

baselines in the high-precision region, beating

bLM’s mean average precision by 29%. User-

oriented metrics, such as R-precision and precision

at 10 documents, are improved by 39.4% and 44.3%

respectively. The absolute performance figures are

also very encouraging. Precision of 28% at rank 10

means that on average almost 3 out of the top 10

records in the ranked list are relevant, despite the re-

quested fields not being available to the model.

We note that SRM continues to outperform bLM

until very high recall and until the 100-document

cutoff. After that, SRM degrades rapidly with re-

spect to bLM. We feel the drop in effectiveness is of

marginal interest because precision is already well

below 10% and few users will be continuing to that

depth in the list.

It is encouraging to see that SRM outperforms

both cLM, the cheating baseline that takes advantage

of the field values that are supposed to be “miss-

ing”, and bMatch, suggesting that best-match re-

trieval provides a superior strategy for selecting a set

of appropriate training records.

5 Conclusions

We have developed and empirically validated a new

retrieval model for semi-structured text. The model

is based on the idea that missing or corrupted val-

ues for one field can be inferred from values in other

fields of the record. The cross-field inference makes

it possible to find documents in response to a struc-

tured query when those query fields do not exist in

the relevant documents at all.

We validated the SRM approach on a large
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archive of the NSDL repository. We developed a

large set of structured Boolean queries that had rel-

evant documents in the test portion of collection.

We then indexed the documents without the fields

used in the queries. As a result, using standard field

matching approaches, not a single document would

be returned in response to the queries—in particular,

no relevant documents would be found.

We showed that standard information retrieval

techniques and structured field matching could be

combined to address this problem, but that the SRM

approach outperforms them. We note that SRM

brought two relevant documents into the top five—

again, querying on missing fields—and achieved an

average precision of 23%, a more than 35% im-

provement over a state-of-the-art relevance model

approach combining the standard field matching.

Our work is continuing by exploring methods

for handling fields with incorrect or corrupted val-

ues. The challenge becomes more than just inferring

what values might be there; it requires combining

likely missing values with confidence in the values

already present: if an audience field contains ’under-

graduate’, it should be unlikely that ’K-6’ would be

a plausible value, too.

In addition to using SRMs for retrieval, we are

currently extending the ideas to provide field valida-

tion and suggestions for data entry and validation:

the same ideas used to find documents with miss-

ing field values can also be used to suggest potential

values for a field and to identify values that seem

inappropriate. We have also begun explorations to-

ward using inferred values to help a user browse

when starting from some structured information—

e.g., given values for two fields, what values are

probable for other fields.
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