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Abstract

To successfully embed statistical machine learning models in real world applications, two

post-deployment capabilities must be provided: (1) the ability to solicit user corrections and

(2) the ability to update the model from these corrections. We refer to the former capability

as corrective feedback and the latter as persistent learning. While these capabilities have a

natural implementation for simple classification tasks such as spam filtering, we argue that

a more careful design is required for structured classification tasks.

One example of a structured classification task is information extraction, in which raw

text is analyzed to automatically populate a database. In this work, we augment a prob-

abilistic information extraction system with corrective feedback and persistent learning

components to assist the user in building, correcting, and updating the extraction model.

We describe methods of guiding the user to incorrect predictions, suggesting the most in-

formative fields to correct, and incorporating corrections into the inference algorithm. We

also present an active learning framework that minimizes not only how many examples a

user must label, but also how difficult each example is to label. We empirically validate

each of the technical components in simulation and quantify the user effort saved. We con-

clude that more efficient corrective feedback mechanisms lead to more effective persistent

learning.
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1 Introduction

Machine learning algorithms are rarely perfect. To be successfully deployed, they

must compensate for their imperfections by interacting intelligently with the user

and the environment. We define two broad categories of such interaction: corrective

feedback and persistent learning.

Corrective feedback is the ability to solicit corrections from the user. For exam-

ple, corrective feedback may be required when spam filters incorrectly classify

email messages, when speech recognizers incorrectly transcribe words, or when

automated assembly systems incorrectly join product components. The main dif-

ficulty in corrective feedback is designing the corrective action to be as effortless

as possible for the user. The amount of effort per correction becomes increasingly

important in domains requiring high accuracy, for example where each prediction

must be manually inspected for errors.

If after being corrected the system repeats its errors, the user will be justifiably

disappointed. This is the motivation behind the second capability, persistent learn-

ing. Persistent learning is the ability of the system to continually update its predic-

tion model after deployment. Given corrected data examples, the system should re-

estimate its parameters to improve future performance. For example, given enough

corrective feedback, a spam filter should become personalized to the type of mail

each user receives, and a speech recognizer should become personalized to the

speech idiosyncrasies of each user.

Persistent learning and corrective feedback have been successfully implemented for

simple classification tasks such as spam filtering. However, such a simple interac-

tion model is not possible for algorithms that operate over more complex domains.

In particular, we are interested in algorithms designed for structured prediction:

classification tasks where the output has multiple interacting labels. Examples of

structured prediction tasks include speech recognition, where the input is a spoken

utterance and the output is a sequence of words, and information extraction, where

the input is a sequence of text and the output is a relational database of the entities

in the text.

Soliciting corrective feedback is often more difficult for structured prediction tasks

than for simple prediction tasks. For example, correcting a spam filter can be as

simple as a single mouse click, whereas correcting a speech recognizer may require

retyping entire words and phrases, and correcting an information extraction system

may require re-labeling and re-segmenting extracted entities. The more difficult it

is for the user to correct the system, the less feedback the system will receive. This

in turn leads to a brittle system incapable of adapting to its environment.

In this paper, we argue that by designing more efficient corrective feedback mech-

anisms, we can enable more effective persistent learning.
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We examine this hypothesis on one common instance of structured classification:

information extraction. In particular, we consider the task of discovering contact

information (e.g. name, address, phone number) from on-line sources such as email

messages and web pages. This is an example of named-entity recognition — the

task of identifying a set of interesting entity types in text.

As we will show, an extraction system based on linear-chain conditional random

fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) can extract over

90% of these fields correctly from a diverse set of noisy sources. However, this

accuracy is only attainable given hand-labeled data. Efficiently acquiring this data

is the goal of this work. We present an interactive information extraction system

that makes correcting the predictions of a partially-trained extractor as effortless as

possible, ensuring data integrity and fast training of a high-accuracy extractor.

There are four main contributions of this paper. The first is an algorithm to incor-

porate corrective feedback into CRFs (Section 3.1). By constraining the prediction

procedure to respect user corrections, we enable what we refer to as correction

propagation: the correction to one part of the output automatically corrects other

parts of the output. We demonstrate empirically that correction propagation can

lead to more efficient corrective feedback (Section 3.6.1).

The second contribution is a set of algorithms to determine the order in which pre-

dictions should be corrected by the user. For each example, we may want to correct

the least confident prediction first, as described in Section 3.2, or we may want to

correct the prediction that will maximize the amount of correction propagation, as

described in Section 3.3.

Third is the introduction of an interactive information extraction interface (Section

3.4). This interface highlights the label assigned to each field in the unstructured

document while flagging labels that should be corrected. The interface also allows

for rapid correction using “drag and drop,” and supports the correction propagation

capability described above.

Finally, relying on these corrective feedback mechanisms, we advocate a cost-

sensitive active learning paradigm for information extraction that reduces not only

how many examples the annotator must label, but also how difficult each example

is to annotate (Section 4). That is, whereas traditional active learning approaches

minimize the number of examples that must be manually labeled, we minimize

the number of corrective actions. We show that more efficient corrective feedback

mechanisms decrease the amount of effort required to train an accurate extractor.

The remainder of this paper first reviews CRFs for information extraction, then

describes each of our four contributions in turn. We perform experiments simulating

an interactive information extraction environment and demonstrate the amount of

user effort saved through corrective feedback and persistent learning.
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2 Information Extraction with Conditional Random Fields

Information extraction (IE) is the task of automatically populating a relational

database with facts discovered from natural language text. A common subtask of IE

is named-entity recognition (NER), the task of annotating text with shallow seman-

tic information, such as the names of people, places, or organizations. For example,

in this paper we are concerned with annotating free-text contact records with field

labels, such as name, company, city, phone number, etc.

More formally, we represent a document D by a sequence of word tokens x =
〈x1 . . . xn〉. The goal of NER is to extract from D a set of fields F = {F1 . . . Fk},

where each field is an attribute-value pair, Fi = 〈a, v〉 (for example Fi = 〈City,

San Francisco〉). Note that a field value may span multiple word tokens.

For example, consider the input string John was born in San Francisco, Califor-

nia. From this sequence of tokens, the NER system should extract the fields F1 =
〈Name, John〉, F2 = 〈City, San Francisco〉, and F3 = 〈State, California〉. We will

often refer to the attribute as a label of a token; e.g. in this example California is

labeled as a State.

There have been numerous NER systems proposed in the literature. We desire a

system that not only has accurate performance, but also facilitates intelligent and

efficient interaction with the user.

A simple, but often effective, NER system can be built simply using hand-crafted

regular expressions. For example, the pattern “born in [CAPS]” could be used to

label as a city any capitalized token that directly follows the phrase “born in.” Un-

fortunately, the infinite variability of human language makes this approach error

prone. We categorize NER errors into two types: (1) precision errors, e.g. erro-

neously labeling Charity Hospital as a city in the phrase born in Charity Hospital,

and (2) recall errors, e.g. failing to label San Francisco as a city in the phrase raised

in San Francisco. Many wrapper induction techniques have been proposed to learn

regular expressions that can reduce some of these errors (Kushmerick et al., 1997);

however, they are still constrained by the brittleness of pattern matching.

A popular alternative to pattern matching is statistical machine learning. In this

approach, a number of features are computed for each token to provide evidence of

its label. Example features include information about capitalization, syntax, context

words, presence in name lists, and even the regular expressions used in pattern

matching techniques. Given some training examples in which tokens are annotated

with their true labels, these systems learn correlations between features and labels,

thereby inducing a distribution over possible labels for each token.

In addition to often being more accurate and robust than pattern matching tech-

niques, statistical machine learning approaches frequently have the capability of
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reliably estimating the confidence of each labeling decision. This becomes impor-

tant in an interactive system, where we would like to direct the user to fields most

likely in need of correction.

Maximum entropy classification (Jaynes, 1979) is a potentially quite powerful ma-

chine learning approach to NER, since it allows arbitrary, potentially dependent,

features of the input and can also naturally estimate the confidence of its deci-

sions. However, because maximum entropy classification extracts each field inde-

pendently of related fields, there is no potential for correction propagation.

Conditional random fields (CRFs) are a generalization both of maximum entropy

models and hidden Markov models that have been shown to perform well on infor-

mation extraction tasks (Lafferty et al., 2001; Sutton and McCallum, 2006; McCal-

lum and Li, 2003; Pinto et al., 2003; McCallum, 2003; Sha and Pereira, 2003). Like

maximum entropy classifiers, they allow for the introduction of arbitrary non-local

features; additionally, they capture the dependencies between neighboring labels.

CRFs are well-suited for interactive information extraction since the confidence of

the labels can be estimated, and there is a natural scheme for optimally propagating

user corrections. We now give a brief overview of CRFs.

CRFs are undirected graphical models that encode the conditional probability of

values on designated output nodes given values on designated input nodes. In the

special case in which the designated output nodes of the graphical model are linked

by edges in a linear chain, CRFs make a first-order Markov independence assump-

tion among output nodes, and thus correspond to finite state machines (FSMs). In

this case CRFs can be roughly understood as conditionally-trained hidden Markov

models, with additional flexibility to take advantage of complex, overlapping fea-

tures.

Let x = 〈x1, x2, ...xT 〉 be an observed input data sequence, such as a sequence of

word tokens in a document (the values on T input nodes of the graphical model).

Let L be a set of FSM states, each of which is associated with a label (such as

LastName or PhoneNumber). Let y = 〈y1, y2, ...yT 〉 be some sequence of states,

(the values on T output nodes). CRFs define the conditional probability of a state

sequence given an input sequence as

pΛ(y|x) =
1

Zx

exp

(

T
∑

t=1

∑

k

λkfk(yt−1, yt,x, t)

)

(1)

where Zx is a normalization factor over all state sequences, fk(yt−1, yt,x, t) is an

arbitrary feature function over its arguments, and λk ∈ Λ is a learned weight for

each feature function. The normalization factor, Zx, involves a sum over an expo-

nential number of different possible state sequences, but because these nodes with

unknown values are connected in a graph without cycles (a linear chain in this case),

it can be efficiently calculated via belief propagation using dynamic programming.

Inference to find the most likely state sequence is also a dynamic program, in this
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x     San    Francisco    ,          CA      94080 

y      City       City      Other    State       Zip 

        City            State     Zip
San Francisco     CA     94080

            F1                    F2           F3

1               2              3              4              5

Fig. 1. A graphical model of a CRF for a named-entity recognition example. The predicted

label sequence y corresponds to the three extracted fields F1, F2, F3.

case very similar to the Viterbi algorithm of hidden Markov models.

The Λ parameters can be determined using supervised machine learning. Given a

set of N training sequences D = {x(i),y(i)}, where y(i) is the true labeling of token

sequence x(i), the Λ weights of the CRF can be set to maximize the conditional

log likelihood of the true labels of D. To mitigate over-fitting, the conditional log

likelihood is often regularized by a Gaussian prior over parameters, with mean 0

and variance σ2. The resulting function we wish to maximize is

L(Λ;D) =
N
∑

i=1

log pΛ(y(i)|x(i)) −
∑

k

λ2
k

2σ2

This maximization can be formulated as a convex optimization problem, solved

efficiently using hill-climbing methods such as conjugate gradient or its improved

second-order cousin, limited-memory BFGS (Liu and Nocedal, 1989). BFGS can

simply be treated as a black-box optimization procedure, requiring only that one

provide the first-derivative of the function to be optimized. The first-derivative of

the regularized conditional log-likelihood is

δL

δλk

=

(

N
∑

i=1

Ck(y
(i),x(i))

)

−

(

N
∑

i=1

∑

s

pΛ(y|x(i))Ck(y,x(i))

)

−
λk

σ

where Ck(y,x) is the “count” for feature k given y(i) and x(i), equal to the sum of

all of the fk(yt−1, yt,x
(i), t) values for each position in the sequence y(i). The last

term, λk/σ, is the derivative of the Gaussian prior.

Figure 1 shows an example of the graphical model for a linear-chain CRF. In graph-

ical modeling notation, circles represent random variables, shaded nodes indicated

observed random variables, and edges indicate probabilistic dependence. Each edge

is parameterized by a set of weighted feature functions representing contextual evi-

dence of a label, such as capitalization, word identity, or presence in a lexicon. The

features are presented in more detail in Section 3.5.3.

For illustrative purposes, we will now step through a concrete example of how to
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calculate the probability of the label sequence in Figure 1, according to Equation

1. Assume that we have only one type of feature f1(yt−1, yt,x, t), which is equal

to 1 if token t is capitalized, and is 0 otherwise. Assume further that the weight

associated with this feature is 0.8 if yi ∈ {City, State}, and is −0.2 otherwise.

Then, the probability of the label sequence given in Figure 1 is calculated as

pΛ(y|x)∝ exp
(

0.8 · f1(null, City, San, 1) + 0.8 · f1(City, City, Francisco, 2)

−0.2 · f1(City, Other , “,”, 3) + 0.8 · f1(Other, State, CA, 4)

−0.2 · f1(State, Zip, 94080, 5)
)

∝ 0.8 · 3 = 2.4

To convert this unnormalized score into a probability, we must divide by Zx, the

sum of the scores for every other possible label sequence for the given input se-

quence. There exists a well-known dynamic programming solution to calculate this

sum in time O(TL2), where T is the length of the sequence, and L is the number

of different output labels (see Section 3.1).

Note that in this example the feature only computes evidence over the current token

xt. In general, features can gather evidence from any element of the input sequence,

for example a feature that indicates the identity of the previous token, or whether the

next token contains only digits. These contextual features are extremely informative

for NER tasks.

In the next sections we discuss ways to extend CRFs to support corrective feedback

and persistent learning.

3 Corrective Feedback

Although CRFs have been quite successful on many information extraction task,

their output will still inevitably contain errors. The goal of this section is to present

extensions to CRFs that allow the user to verify and correct system predictions with

as little effort as possible.

The first way we reduce effort is by interactively updating system predictions as

the user makes corrections (Section 3.1). When a correction is made, the constraints

imposed upon the inference algorithm often lead to other errors being automatically

corrected with no additional input from the user. We call this capability correction

propagation.

The second way we reduce effort is by focusing the user’s attention to certain fields

that should be corrected. The user is directed to fields either when the system has
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low confidence in its prediction (Section 3.2) or when correcting that field is ex-

pected to lead to correction propagation (Section 3.3).

3.1 Correction Propagation with the Constrained Viterbi Algorithm

When the user corrects the label for one extracted field, we would like the model

to re-perform inference in case this correction affects the predicted labels of other

fields.

For example, given the name “Charles Stanley,” it is likely that the first name is

Charles and the last name is “Stanley.” But, the opposite is possible as well. Given

the error that the two names have been switched, naı̈ve correction systems require

two corrective actions. In the interactive information extraction system described

below, when the user corrects the first name field to be “Stanley,” the system then

automatically changes the last name field to be “Charles,” because this is the most

likely interpretation given the correction.

The inference algorithm for CRFs has a natural extension that essentially “clamps”

some hidden y nodes to their corrected value, often resulting in new predictions

for other fields. We first briefly describe the traditional inference algorithm, then its

constrained counterpart.

In hidden Markov models, the Viterbi algorithm (Rabiner, 1989) (also known as

the max-product algorithm) is an efficient dynamic programming solution to the

problem of finding the state sequence most likely to have generated the observa-

tion sequence (i.e. the most probable explanation (MPE) inference problem). CRFs

employ a conditional analog of Viterbi that returns the most likely state sequence

given an observation sequence, i.e. the solution to

y∗ = argmax
y

pΛ(y|x).

To avoid an exponential-time search over all possible settings of y, Viterbi stores

the probability of the most likely path at time t which accounts for the first t obser-

vations and ends in state yi. Following the notation of Rabiner (1989), we define

this probability to be δt(yi), where δ0(yi) is the probability of starting in each state

yi, and the induction step is given by:

δt+1(yi) = max
y′

[

δt(y
′) exp

(

∑

k

λkfk(y
′, yi,x, t)

)]

. (2)

The recursion terminates in

y∗

T = argmax
i

[δT (yi)]
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We can backtrack through the dynamic programming table to recover y∗.

We now describe how to modify Viterbi to respect a user correction. By a user

correction, we mean that a user has fixed the labels for some set of tokens, either

by correcting a field label, or adjusting the start or end boundaries of a field.

When a user enters a correction to a field, we represent this by fixing the y labels

for that field to the labels specified by the user. These are encoded as constraints

in the Viterbi algorithm, resulting in the constrained Viterbi algorithm. Constrained

Viterbi alters Eq. 2 such that y∗ is constrained to pass through some sub-path C =
〈yt, yt+1 . . .〉, corresponding to a user correction. These constraints C now define

the new induction

δt+1(yi) =











max
y′

[

δt(y
′) exp

(

∑

k

λkfk(y
′, yi,x, t)

)]

if yi = yt+1

0 otherwise
(3)

for all yt+1 ∈ C. For time steps not constrained by C, Eq. 2 is used instead. Thus,

constrained Viterbi restricts Viterbi search to only consider paths that respect con-

straints C.

Because CRFs model the dependence between adjacent labels, a change to the pre-

diction for label yi can change the MPE estimate for label yi+1, which can in turn

change the estimate for yi+2, etc. In this way, a single user correction can be prop-

agated throughout the entire sequence.

In an interactive setting, when the user corrects one field, these corrections are

propagated in real-time to the rest of the fields, allowing the user to fix multiple

errors with a single action.

We refer to a CRF augmented with constrained Viterbi as a constrained conditional

random field (CCRF).

3.2 Confidence Estimation with the Constrained Forward-Backward Algorithm

Manually inspecting each automatically labeled field can be tedious for the user.

One way to mitigate this effort is to direct the user to fields that are most likely to

be incorrect. In this section, we describe how a CRF can estimate the confidence of

each field it extracts.

The conditional probability of the label for one token p(yi|x) is calculated by a

variant of the Viterbi algorithm called forward-backward (also known as the sum-

product algorithm). This algorithm is similar to the Viterbi algorithm; but instead

of choosing the most probable state sequence, forward-backward evaluates all pos-

sible state sequences given the observation sequence.
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The forward values αt+1(yi) are recursively defined similarly to Eq. 2, except the

max is replaced by a summation. Thus we have

αt+1(yi) =
∑

y′

[

αt(y
′) exp

(

∑

k

λkfk(y
′, yi,x, t)

)]

. (4)

The recursion terminates to define Zx in Eq. 1:

Zx =
∑

i

αT (yi) (5)

Although the probability of the label for one token p(yi|x) is easily obtained by

the CRF inference algorithm, the label for an entire field requires calculating the

probability of a sequence of tokens p(yi . . . yk|x), where the field contains tokens

xi . . . xk.

To estimate the confidence the CRF has in an extracted field, we employ a technique

we term constrained forward-backward (Culotta and McCallum, 2004), which cal-

culates the probability of any state sequence matching the labeling of the field under

consideration. The constrained forward-backward algorithm calculates the proba-

bility of any sequence passing through a set of constraints C = 〈yq . . . yr〉, where

now yq ∈ C can be either a positive constraint or a negative constraint. A negative

constraint constrains the forward value calculation not to pass through state yq.

The calculations of the forward values can be made to conform to C in a manner

similar to the constrained Viterbi algorithm. If α′

t+1(yi) is the constrained forward

value, then Z ′

x
=
∑

i α
′

T (yi) is the value of the constrained lattice. Our confidence

estimate is equal to the normalized value of the constrained lattice: Z ′

x
/Zx. For

predicted value f for field Fi, this confidence estimate is equivalent to P (Fi = f |x).

In the context of interactive form filling, the constraints C correspond to an auto-

matically extracted field. The positive constraints specify the observation tokens la-

beled inside the field, and the negative constraints specify the boundary of the field.

For example, if state names B-Title and I-JobTitle represent label tokens that begin

and continue a JobTitle field, and the system labels observation sequence 〈x2 . . . x5〉
as a JobTitle field, then C = 〈y2 = B-JobTitle, y3 = y4 = y5 = I-JobTitle, y6 6= I-

JobTitle〉. Thus, the confidence estimate corresponds to the probability of any state

sequence predicting these constrained JobTitle labels.

3.3 Maximizing Correction Propagation

While highlighting the least confident field is likely to direct the user to incorrectly

labeled fields, an alternative objective is to solicit user actions that maximize the

number of fields automatically fixed by correction propagation. The motivation for
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this objective is to maximize the number of “free” corrections enabled by correction

propagation. Because of the dependencies among predicted labels, knowing the true

label of one field may reduce the uncertainty of the predictions for other fields.

We define two scoring functions that rank fields to be labeled based on the expected

amount of correction propagation that will follow their correction.

The first scoring function prefers fields that have high mutual information with the

rest of the sequence. Let y−i be the set of label variables excluding those for field

Fi. The score for field Fi is the mutual information between y−i and Fi:

I(y−i|Fi) = H(Fi) − H(Fi|y
−i)

= −
∑

f

P (Fi = f) log P (Fi = f)

+
∑

j

∑

f

P (y−i = y(j), Fi = f) log P (y−i = y(j)|Fi = f) (6)

In the last term, the sum over j requires iterating over all possible labelings of y.

We approximate this exponential calculation by restricting the sum to the top T
most probable paths (e.g. T = 30). Similarly, when field Fi contains many tokens,

summing over all competing predictions can also become intractable. In this case,

we sample from the top most probable predictions for Fi.

The intuition behind this scoring function is that if the distribution over one field

conveys a large amount of information about the distribution over other fields, then

correcting this field may lead to the automatic correction of other fields.

The second scoring function attempts to maximize the expected number of auto-

matic corrections directly. Let y∗

Fi=f be the constrained Viterbi path where field Fi

is clamped to the setting f . Let #(Fi = f) be the number of labels in y∗

Fi=f that

are changed from the original Viterbi output when the labeling for field Fi is set to

f . Then the expected number of tokens automatically corrected by having the user

correct field Fi is estimated as

EC(Fi) =
∑

f

P (y∗

Fi=f |x)#(Fi = f) (7)

The intuition behind this measure is to weight the number of label changes effected

by setting Fi to f by the probability that those changes are correct.

We compare the effectiveness of these scoring functions empirically in Section

3.6.2.
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Fig. 2. A user interface for entry of contact information. The user interface relies on inter-

active information extraction. If a user makes a correction, the interactive parser can update

other fields. Notice that there are 3 possible names associated with the address. The user is

alerted to the ambiguity by the color coding.

3.4 User Interface

From the perspective of user interface design, there are a number of goals, in-

cluding reducing cognitive load, reducing the number of user actions (clicks and

keystrokes), and speeding up the data acquisition process. An important element

that is often overlooked is the confidence the user has in the integrity of the data.

This is crucial to the usability of the application, as users are not tolerant of (surpris-

ing) errors, and will discontinue the use of an automatic semi-intelligent application

if it has corrupted or misclassified information. Unfortunately such factors are often

hard to quantify. We describe an interface that enables efficient corrective feedback

to ensure data integrity.

3.4.1 User Interfaces for Information Extraction

Figure 2 shows a user interface that facilitates interactive information extraction.

The fields to be populated are on the left side, and the source text was pasted by the

user into the right side. The information extraction system extracts text segments

from the unstructured text and populates the corresponding fields in the contact

record. This user interface is designed with the strengths and weaknesses of the

information extraction technology in mind. Some important aspects are:

• The UI displays visual aids that allow the user to quickly verify the correctness

of the extracted fields. In this case color-coded correspondence is used (e.g. blue

for all phone information, and yellow for email addresses). Other options include
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arrows or floating overlayed tags.

• The UI allows for rapid correction. For example, text segments can easily be

grouped into blocks to allow for a single click-drag-drop. In the contact record

at the left, fields have drop down menus with other candidates for the field. Al-

ternatively the interface could include “try again” buttons next to the fields that

cycle through possible alternative extractions for the field until the correct value

is found.

• By integrating the original text in the interface, the system addresses the common

“recall” errors of extractors. That is, if a token is incorrectly labeled as not being

part of the record, the user can correct this error by dragging the token to the

correct field box.

• The UI immediately propagates all corrections and additions by the constrained

Viterbi algorithm.

• The UI visually alerts the user to fields that have low confidence based on the

constrained forward-backward algorithm. Furthermore, in the unstructured text

box, possible alternatives may be highlighted (e.g. alternate names are indicated

in orange).

Confidence scores can be incorporated in a UI in a number of ways. Field assign-

ments with relatively low confidence can be visually marked. If a field assignment

has very low confidence, and is likely to be incorrect, we may choose not to fill in

the field at all. The text that is most likely to be assigned to the field can then be

highlighted in the text-box (e.g. in orange).

Another related case is when there are multiple text segments that are all equally

likely to be classified as e.g. a name, then this could also be visually indicated (as

is done in Figure 2).

3.5 Experimental Setup

Below we simulate an interactive information extraction environment and show

that correction propagation and confidence estimation can decrease the expected

amount of user effort.

3.5.1 User Interaction Models

For the purposes of quantitative evaluation we will simulate the behavior of a user

performing contact record entry, verification, and correction. This allows for a sim-

pler experimental paradigm that can more clearly distinguish the values of the var-

ious technical components.

A large number of user interaction models are possible given the particulars of the

interface and information extraction engine. Here we outline the basic models that
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will be evaluated in the experimental section.

UIM1: The simplest case. The user is presented with the results of automatic field

assignment and has to correct all errors (i.e. no correction-propagation).

UIM2: Under this model, we assume an initial automatic field assignment, fol-

lowed by a single randomly-chosen manual correction by the user. We then

perform correction-propagation, and the user has to correct all remaining errors

manually.

UIM3: This model is similar to UIM2. We assume an initial automatic field as-

signment. Next the user is asked to correct the least confident incorrect field.

The user is visually alerted to the fields in order of confidence, until an error is

found. We then perform correction-propagation and the user then has to correct

all remaining errors manually.

UIMm: The user has to fill in all fields manually.

3.5.2 The Expected Number of User Actions:

The goal in designing a new application technology is that users see an immediate

benefit in using the technology. Assuming that perfect accuracy is required, benefit

is realized if the technology increases the time efficiency of users, or if it reduces

the cognitive load, or both. Here we introduce an efficiency measure, called the

Expected Number of User Actions, which will be used in addition to standard IE

performance measures.

The Expected Number of User Actions (ENUA) measure is defined as the num-

ber of user actions (e.g. clicks) required to correctly enter all fields of a record.

For these experiments, we define an action to be the correction of one field, either

by entering a field, changing its label or adjusting its boundaries. The Expected

Number of User Actions will depend on the user interaction model. To express the

Expected Number of User Actions, we introduce the following notation: Pi(j) is

the probability distribution over the number of errors j after i manual corrections.

This distribution is represented by the histogram in Figure 3.

Under UIM1, which does not involve correction propagation, the Expected Number

of User Actions is:

ENUA =
∞
∑

n=0

nP0(n) (8)

where P0(n) is the distribution over the number of incorrect fields (see Figure 3).

In models UIM2 and UIM3 the Expected Number of User Actions is

ENUA1 = (1 − P0(0)) +
∑

n

nP1(n). (9)

where P0(0) is the probability that all fields are correctly assigned initially and

P1(n) is the distribution over the number of incorrect fields in a record after one
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Fig. 3. Histogram, where records fall into bins depending on how many fields in a record

are in error. Solid bars are for CRF before any corrections. The shaded bars show the dis-

tribution after one random incorrect field has been corrected. These can be used to estimate

P0(j) and P1(j), respectively.

field has been corrected. The distribution P1 will depend on which incorrect field is

corrected, e.g. a random incorrect field is corrected under UIM2, whereas the least

confident incorrect field is corrected under UIM3. The subscript 1 on ENUA1

indicates that correction-propagation is performed once.

3.5.3 Data

For training and testing we collected 2187 documents (27,560 words) from web

pages and email and hand-labeled 25 fields. 1 Each document example consists of

one contact record that must be labeled with the correct field names, and may con-

tain tokens that are not part of the record (e.g. email text). Some data comes from

pages containing lists of addresses, and about half come from disparate web pages

found by searching for valid pairs of city name and zip code. For each experiment,

we sampled three random splits of the data, reserving 70% for training and 30% for

testing.

The features consist of capitalization features, 24 regular expressions over the token

text (e.g. ConstainsHyphen, ContainsDigits, etc.), character n-grams of length 2-4,

1 The 25 fields are: FirstName, MiddleName, LastName, NickName, Suffix, Title, JobTi-

tle, CompanyName, Department, AddressLine, City1, City2, State, Country, PostalCode,

HomePhone, Fax, CompanyPhone, DirectCompanyPhone, Mobile, Pager, VoiceMail,

URL, Email, InstantMessage
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Token Acc. F1 Prec Rec

CRF 92.30 88.47 89.03 87.93

MaxEnt 89.80 82.48 82.48 82.47

Table 1

Token accuracy and field performance for the Conditional Random Field based field ex-

tractor, and the Maximum Entropy based field extractor. All differences are statistically

significant (p = 0.01).

and offsets of these features within a window of size 5. We also used 19 lexicons,

including “US Last Names,” “US First Names,” “State names,” “Titles/Suffixes,”

“Job titles,” and “Road endings.” Feature induction was not used in these experi-

ments.

3.6 Results

We implement two machine learning methods to automatically annotate the text of

each contact record. CRF is the conditional random field described in Section 2.

MaxEnt is a maximum entropy classifier with the same set of features as the CRF.

However, MaxEnt does not model the dependence between adjacent labels. Table

1 shows the performance for the two methods averaged over three random trials.

Column 1 lists the token accuracy (the proportion of tokens labeled correctly), and

columns 3-4 list the precision and recall at the field level; that is, all the tokens

in a field must be extracted correctly to be considered correct. F1 is the harmonic

mean of recall and precision. These experiments do not include any user feedback.

Notice that the token error rate of the CRF system is about 25% lower than that of

the MaxEnt system. These results are statistically significant according to a paired-t

test with p = 0.01.

In the following sections, we start by discussing results in terms of the Expected

Number of User Actions. Then we discuss results that highlight the effectiveness

of correction-propagation and confidence estimation.

3.6.1 User Interaction Experiments

Table 2 shows the Expected Number of User Actions for the different algorithms

and User Interaction Models. In addition to the CRF and MaxEnt algorithms, Ta-

ble 2 shows results for CCRF, which is the constrained conditional random field

classifier presented in this paper.

The baseline user interaction model (UIM1) is expected to require 0.73 user actions

per record. Notice that manual entry of records is expected to require on average

6.31 user actions to enter all fields, about 8.6 times more actions than UIM1. This
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ENUA Change

CRF – (UIM1) 0.73 baseline

CCRF – (UIM2) 0.63 -13.9%

CCRF – (UIM3) 0.64 -11.3%

MaxEnt – (UIM1) 0.94 +29.0%

Manual – (UIMm) 6.31 +770.0%

Table 2

The Expected Number of User Actions (ENUA) to completely enter a contact record. No-

tice that Constrained CRF with a random corrected field reduces the Expected Number of

User Actions by 13.9%.

difference confirms that correcting the CRF requires much less effort than entering

fields manually.

The improvement of UIM2 over UIM1 is due to correction propagation. In UIM2,

correction propagation occurs between the user’s first and second correction, often

reducing the number of actions. The ENUA drops to 0.63, which is a relative drop

in ENUA of 13.9%. In comparison, manual entry requires over 10 times more user

actions.

Confidence estimation is used in UIM3. Recall that in this user interaction model

the system assigns confidence scores to the fields, and the user is asked to correct

the least confident incorrect field.

Interestingly, correcting a random field (ENUA = 0.63) seems to be slightly more

informative for correction-propagation than correcting the least confident erroneous

field (ENUA = 0.64). While this may seem surprising, recall that a field will have

low confidence if the posterior probability of the competing labels is close to the

score for the chosen class. Hence, it only requires a small amount of extra informa-

tion to boost the posterior for one of the other labels and “flip” the classification. We

can imagine a contrived example containing two adjacent incorrect fields. In this

case, we should correct the more confident of the two to maximize correction prop-

agation. This is because the field with lower confidence requires a smaller amount

of extra information to correct its classification, all else being equal.

To better understand this phenomenon, in the next section we compare different

methods of estimating the amount of correction propagation.

3.6.2 Correction Propagation Experiments

In this section, we describe experiments that directly measure the amount of cor-

rection propagation enabled by different methods of ordering field corrections.
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CFB EC MI

%OPT .536 .571 .875

Table 3

The percentage of optimal correction propagation for competing scoring functions.

We compare the scoring functions described in Section 3.3 to determine which best

estimates the amount of correction propagation. For each record, each field is given

a score by the scoring function, and the incorrect field with the highest score is

corrected. We then measure the number of fields automatically corrected by this

one manual correction.

For comparison, we also implement two boundary scoring functions, OPT and

NONOPT. Given a record with errors in multiple fields, OPT gives the highest

score to the incorrect field that will result in the maximum amount of correction

propagation; NONOPT results in the least amount of correction propagation. We

note that OPT is not a strict upper-bound, as there may be combinations of correc-

tions that result in greater propagation than choosing a single correction greedily.

The three other scoring functions are CFB, which uses constrained forward-backward

to score each field with the negative of its confidence value; EC, the expected num-

ber of correction (Equation 7); and MI, the mutual information criterion (Equation

6).

The values in Table 3 are normalized to be a percentage of optimal performance. If

N(X) is the number of field errors that remain under scoring function X , then

%OPT(X) =
N(NONOPT) − N(X)

N(NONOPT) − N(OPT)

Thus, %OPT(NONOPT)= 0 and %OPT(OPT)= 1.

These results suggest that the mutual information criterion (MI) is the best esti-

mate of the expected amount of correction propagation. MI outperforms EC most

likely because EC only considers the optimal path for each possible correction of a

field, whereas MI considers the full distribution of state sequences (up to the T -best

approximation).

If the system knows which fields are incorrectly labeled, it can maximize correction

propagation by soliciting corrections in the order determined by MI. Of course,

the system does not know which fields are incorrect until the user corrects them.

Because a field with a high MI score is not necessarily incorrect, MI will often

direct the user to fields needing no correction. This incurs the additional user effort

of verifying correct fields.

To reduce this burden, in the next section we evaluate how accurately the CRF can
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predict whether a field is correct.

3.6.3 Confidence Estimation Experiments

A simple way of assessing the effectiveness of the confidence measure is to ask

how effective is it at directing the user to an incorrect field. In our experiments with

CCRFs, the number of records that contained one or more incorrect fields was 276.

Using the constrained forward-backward algorithm, the least confident field was

truly incorrect in 226 out of those 276 records. Hence, confidence estimation cor-

rectly predicts an erroneous fields 81.9% of the time. If we instead choose a token

at random, then we will choose an incorrect token in 80 out of the 276 records, or

29.0%. In practice, the user does not initially know where the errors are, so confi-

dence estimates can be used effectively to direct the user to incorrect fields.

We perform a more thorough evaluation under a different user scenario, in which

we wish to reduce the labeling error rate of a large amount of data, but we do not

need the labeling to be error free. If we have limited man-power, we would like to

maximize the efficiency of the human labeler.

This user interaction model assumes that we allow the human labeler to verify or

correct a single field in each record, before going on to the next record.

As before the constrained conditional random field model is used, where con-

strained forward-backward predicts the least confident extracted field. If this field is

incorrect, then CCRF is supplied with the correct labeling, and correction propaga-

tion is performed using constrained Viterbi. If this field is correct, then no changes

are made, and we go on to the next record.

The experiments compare the effectiveness of verifying or correcting the least con-

fident field i.e. CCRF - (L.Conf), to verifying or correcting an arbitrary field i.e.

CCRF - (Random).

Finally, CMaxEnt is a Maximum Entropy classifier that estimates the confidence

of each field by averaging the posterior probabilities of the labels assigned to each

token in the field. As in CCRF, the least confident field is corrected if necessary.

Note that CMaxEnt does not perform correction propagation, since each field is

predicted independently.

Table 4 shows results after a single field in each record has been verified or cor-

rected. Notice that if a random field is chosen to be verified or corrected, then

the token accuracy increases to 93.82%, only a 20.6% reduction in error rate. If

however, we verify or correct only the least confident field, the error rate is re-

duced by 47.8%. These results are statistically significant according to a paired-t

test (p = 0.01).
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Method ∆ Error Token Acc F1 Precision Recall

CCRF - (L. Conf.) -47.8% 95.69 93.98 94.46 93.52

CCRF - (Random) -20.6% 93.82 90.85 91.58 90.13

CMaxEnt -30.1% 92.46 87.75 88.39 87.11

Table 4

Token accuracy and field performance for interactive field labeling. CCRF - (L. Conf.)

obtains a 47.8% reduction in F1 error over CRF. These reduction results are relative to

Table 1, where no user corrections are given. The improvements of CCRF - (L. Conf.) over

CCRF - (Random) and CMaxEnt are statistically significant (paired-t test, p = 0.01).

Pearson’s r Avg. Precision

CFB 0.530 97.8

Random 0.003 88.93

WorstCase - 72.8

Table 5

The correlation coefficient and average precision evaluations of the constrained forward-

backward confidence estimate.

This difference illustrates that reliable confidence prediction can increase the ef-

fectiveness of a human labeler. Also note that the 47.8% error reduction CCRF

achieves over CRF is substantially greater than the 30.1% error reduction between

CMaxEnt and MaxEnt. This difference is due both to the correction propagation

and more accurate confidence estimation of CRFs.

To explicitly measure the effectiveness of the constrained forward-backward algo-

rithm for confidence estimation, Table 5 displays two evaluation measures: Pear-

son’s r and average precision. Pearson’s r is a correlation coefficient ranging from

−1 to 1 which measures the correlation between a confidence score of a field and

whether or not it is correct.

Given a list of extracted fields ordered by their confidence scores, average precision

measures the quality of this ordering. We calculate the precision at each point in the

ranked list where a correct field is found and then average these values. WorstCase

is the average precision obtained by ranking all incorrect fields above all correct

fields. Both Pearson’s r and average precision results demonstrate the effectiveness

of constrained forward-backward for estimating the confidence of extracted fields.

We summarize the empirical results thus far as follows:

• Correction propagation reduces the expected number of actions to correct an

automatically extracted database.

• Mutual information is the most reliable estimator of correction propagation,

among the three estimators compared.

• Confidence estimation with constrained forward-backward can accelerate data
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cleaning by directing the user to fields most likely needing correction.

4 Persistent Learning

Thus far, we have discussed extensions to CRFs to enable rapid correction of sys-

tem errors. However, we have not yet described how to use these corrections to

improve the prediction model of the CRF. In this section, we will discuss persistent

learning for CRFs. The techniques presented here can be used either to create a new

CRF for a novel domain, or to improve an existing CRF with new training data.

Below, we discuss a cost-sensitive active learning framework to train a CRF in-

teractively while minimizing the amount of time spent labeling data. The efficient

corrective feedback techniques discussed in the previous sections are incorporated

into this active learning system to improve learning rates.

4.1 Active Learning for Information Extraction

Training a CRF extractor requires labeling a training set with the true labels of each

token. This is particularly expensive to obtain for structured prediction tasks, since

each training example may have multiple, interacting labels, all of which must be

correctly annotated for the example to be of use to the learner. To give the user the

flexibility to use these techniques on customized tasks, we would like to make this

labeling process as painless as possible.

Active learning is a machine learning technique designed to address this problem.

The idea is to optimize the order in which the training examples are labeled to in-

crease learning efficiency (Cohn et al., 1995; Lewis and Catlett, 1994). Most active

learners are evaluated by plotting a learning curve that displays the learner’s per-

formance on a held-out data set as the number of labeled examples increases. An

active learner is considered successful if it obtains better performance than a tra-

ditional learner given the same number of labeled examples. Thus, active learning

expedites annotation by reducing the number of labeled examples required to train

an accurate model.

However, this paradigm assumes each example is equally difficult to annotate.

While this assumption may hold in traditional classification tasks, in structured

classification tasks it does not. For example, consider the following labeled exam-

ple:

<name> Jane Smith </name>

<title> CEO </title>

<company> Unicorp, LLC </company>
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Phone: <phone> (555)555-5555 </phone>

To label this example, the user must not only specify which type of field each token

belongs to, but also must determine the start and end boundaries of each field.

Clearly, the amount of work required to label an example such as this will vary

between examples, based on the number of fields. Additionally, unlike in traditional

classification tasks, a structured prediction system may be able to partially label an

example, which can simplify annotation. In the above example, the partially-trained

system might correctly segment the title field, but mislabel it as a company name.

These partial predictions can reduce labeling effort.

This greater variety of labeling effort is not reflected by the standard evaluation

metrics from active learning. Since our goal is to reduce annotation effort, it is de-

sirable to design a labeling framework that considers not only how many examples

the annotator must label, but also how difficult each example is to annotate.

In the next section, we propose a framework to address these shortcomings for a

CRF-based extraction system. We then provide a fine-grained extension of the Ex-

pected Number of User Actions measure defined in Section 3.5.2 that distinguishes

between boundary and classification annotations. Finally, we demonstrate an in-

teractive information extraction system that aims to minimize the amount of effort

required to train an accurate extractor.

4.2 Annotation framework

To expedite annotation for information extraction, we first note that the main differ-

ence between labeling IE examples and labeling traditional classification examples

is the problem of boundary annotation (or segmentation). Given a sequence of text

that is correctly segmented, choosing the correct label for each field is simply a

classification task: the annotator must choose among a finite set of labels for each

field. However, determining the boundaries of each field is an intrinsically distinct

task, since the number of ways to segment a sequence is exponential in the sequence

length. Additionally, from a human-computer interaction perspective, the “clicking

and dragging” involved in boundary annotation generally requires more hand-eye

coordination from the user than does classification annotation.

With this distinction in mind, our system reduces annotation effort in two ways.

First, many segmentation decisions are converted into classification decisions by

presenting the user with multiple predicted segmentations to choose from. Thus,

instead of hand segmenting each field, the user may select the correct segmentation

from the given choices.

Second, the system uses the effort-saving techniques discussed in Section 3 to allow

the user to efficiently correct examples to be added to the training set.
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The resulting system allows the user to constrain the predictions of the learner with-

out manually annotating the boundaries of incorrect segments. Very often, these

constraints will allow the user to simply select the correct annotation from among

the provided choices. Thus, the annotator can frequently label a record without

explicitly annotating the boundaries.

We validate this active learning framework in an interactive information extraction

system, reducing the total number of annotation actions by 21% and the number of

boundary annotations by 42%, as compared with competing methods.

We first provide a brief overview of the annotation framework applied to IE. Given

an IE learning algorithm L and a set of unlabeled data U , the task is to iteratively

solicit annotations from the user and retrain the extractor. Each example is a se-

quence of tokens (e.g. a paragraph), and a labeled example provides the true field

label for each token.

At iteration t, the system operates as follows:

(1) Rank the set of unlabeled examples U by the priority to be labeled.

(2) Select the top-ranked example u ∈ U to be labeled.

(3) Present to the user the top k labelings of u predicted by Lt (the model at time

t).
(4) If the correct labeling exists in the top k choices, allow the user to select that

labeling, and add u to the labeled data set.

(5) Otherwise, for any field in these k predictions that is segmented correctly but

classified incorrectly, allow the user to provide the correct label for this field.

(6) Based on these corrections, generate a new set of k predictions, propagating

these corrections to possibly fix other errors.

(7) If the correct labeling exists in these new top k choices, allow the user to select

that labeling and add u to the labeled dataset.

(8) Otherwise, if the correct labeling still does not exist in these k predictions,

allow the user to manually correct one of these incorrect k predictions with

the true labeling.

Notice that the only step in which the user must manually segment fields is step

8. Steps 4 and 7 allow the user to label the sequence by making a choice among

k predictions. Step 5 allows the user to provide correct field labels to the learner,

without manually segmenting fields. In step 6, the system performs constrained

inference to generate a new set of predictions that conform to the user’s corrections.

It is in this step that the system often automatically corrects segmentation errors

present in the first k choices.

This framework allows the user to rapidly and easily annotate examples and cor-

rect the system’s predictions, while reducing the amount of effort spent labeling

boundaries.
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In the remaining sections, we describe in more detail the components of this system.

4.3 Ranking function

In step (1), the system ranks the unlabeled examples by the order in which they

should be labeled. The ranking function should order examples to create the steep-

est learning curve (i.e. achieve the highest accuracy with the fewest number of

labeled examples).

This ranking function is the subject of much of the work in active learning (Cohn

et al., 1995; Lewis and Catlett, 1994; Muslea et al., 2003). However, our proposed

framework is not directly concerned with this ranking function, but rather with the

user interaction after the examples have been ranked. Hence, any of the popular

active learning ranking functions can be used in step (1). We experiment with two

common methods:

• LeastConfidence: This uncertainty-based approach ranks each example by the

probability of the top prediction, i.e. p(y∗|x).
• Query-by-committee (QBC): This committee-based approach trains a pool of

learners and ranks examples by the amount of disagreement among the pool. In

particular, we split the set of labeled examples into m sets, and train a CRF on

each set. To score an unlabeled example, we generate m labelings, one from each

CRF. We calculate the normalized vote entropy (Argamon-Engelson and Dagan,

1999) for a labeled token t as follows:

D(t) = −
1

log min(m, |L|)

∑

l

V (l, t)

m
log

V (l, t)

m

where V (l, t) is the number of labelings assigning label l to token t, and |L| is

the number of possible labels. To obtain the score for an entire sequence, we

average the vote entropies of each labeled token. This is a measure of how much

disagreement exists among the m CRFs.

4.4 Presenting multiple predictions

To present the user with the top k predictions, we must extend the CRF inference

algorithm to return k predictions, instead of simply the top prediction. There are

well-established, efficient modifications to the Viterbi algorithm that can calcu-

late the top k optimal predictions, often called k-best Viterbi (Schwartz and Chow,

1990). This algorithm can be viewed as a beam search through the space of possible

predictions. We apply this algorithm to inference in CRFs to generate the k most

probable predictions.
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In step 5, the annotator provides the true label for fields that have been correctly

segmented but incorrectly classified. The system must then produce the top k pre-

dictions that conform to these new annotations.

In Section 3.1 we described the constrained Viterbi algorithm, which modifies the

traditional Viterbi algorithm to prune from the search space those labelings that do

not agree with the given annotations. We extend this to our current task using an

algorithm we call k-best constrained Viterbi, which, as its name suggests, combines

k-best Viterbi with constrained Viterbi. This extension can be straight-forwardly

implemented by constraining the k-best Viterbi algorithm to prune predictions that

do not agree with the annotations.

Using this algorithm, we enable the system to solicit corrections for the classifi-

cation of fields, which are then propagated to correct both the classification and

segmentation of other fields. In this way, we can reduce the amount of effort ex-

pended on segmentation labeling.

4.5 Measuring annotation effort

We refine the Expected Number of User Actions metric from Section 3.5.2 to con-

struct a more fine-grained estimate of the number of actions required to label each

example. Whereas ENUA assumes it takes one action to enter, relabel, or adjust

the boundaries of a field, we wish to distinguish among these actions. We define

three atomic labeling actions: start, end, and type, corresponding to labeling the

start boundary, end boundary, and type of an field.

Thus, labeling the input

<name> Jane Smith </name>

<title> CEO </title>

requires 2 start, 2 end, and 2 type actions. The goal of our annotation framework is

to reduce the total number of annotation actions.

We can see that a partially labeled example can require fewer annotation actions.

For example, consider the following partially labeled record:

<name> Jane </name> Smith

<company> CEO </company>

This requires one end action to fix the ending boundary of “Jane,” and one type

action to change “CEO” from a company to a title. Thus, using the partial labeling

has reduced the total number of required actions from 6 to 2.

By presenting the user with k predictions, we introduce another action: If one of
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Action Name Action Description

type User corrects the field label for a token or set of token.

start User adjusts the beginning boundary of a field.

end User adjusts the ending boundary of a field.

choice User selects the correct record labeling from a choice of k labelings.

Table 6

The set of measured user actions.

the k predictions is correct, the user must choose this prediction. We call this action

choice. A summary of user actions is given in Table 6.

To simulate corrections, we accumulate the number of times each action is per-

formed. In the first round, when the user corrects the labels of correctly segmented

fields, the only action incurred is the type action. If none of the k constrained pre-

dictions are correct, then (and only then) the user must perform the segmentation

actions start and end.

It will generally be the case that some actions are more expensive than others.

For example, as mentioned earlier, start and end actions may require more hand-

eye coordination than type actions. A cost-sensitive approach could take this into

account; however, in these experiments, we assume each action has unit cost.

4.6 Experiments

Using the same fully annotated collection of extracted contact records from Section

3.5, we simulate our annotation framework and measure the performance of the

CRF with respect to the number of actions required to train it.

We use 150 examples to train an initial CRF, 1018 to simulate user annotation, and

1019 to evaluate performance. Results are averaged over three random samples.

We first show that traditional active learning is beneficial in this domain. Figure 4

plots the average field F1 versus training set size, where the order in which exam-

ples are labeled is either random (Random), by order of least confidence (LeastCon-

fidence), or by the query-by-committee method (QBC, with three committee mem-

bers). Results are averaged over three random trials, with standard error bars as in-

dicated. This figure demonstrates that the order in which examples are labeled can

affect learning efficiency. For example, LeastConfidence requires approximately

300 fewer training examples to achieve the same F1 performance as Random.

Interestingly, the more sophisticated and computationally expensive QBC method

is outperformed by the straight-forward confidence measure. A likely reason for

this result is that because CRFs require a substantial number of labeled examples
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Fig. 4. Testing label F1 as a function of training set size, with standard error bars over

three trials. LeastConfidence outperforms both query-by-committee (qbc) and the random

baseline.

to perform well, dividing the small training set among three CRFs results in high-

variance models that do not give reliable estimates of overall performance. Because

of its simplicity and superior performance, LeastConfidence is the only ranking

function used in the following experiments.

Note that in Figure 4 each labeled example (e.g. a paragraph) must be manually la-

beled by the annotator. This figure assumes each example requires the same amount

of user effort to label (namely, one unit of cost). However, because each example

is a variable-length sequence of labels, different examples will incur different la-

beling costs. Moreover, using the corrective feedback methods we have presented,

even examples of the same length may have different labeling costs. Thus, we de-

sire a more explicit measure of labeling effort. In the next experiments, we examine

how F1 varies with the number of annotation actions.

We compare two competing methods. Baseline presents the user with the top pre-

diction, and the user must hand annotate all corrections. The other method is the

learning framework advocated in this paper, which presents the user with k pos-

sible segmentation, and interactively solicits label corrections. We vary k from 1

to 4. Constrained inference and correction propagation are used in one round of

interactive labeling. Note that all of these methods use LeastConfidence to rank the

unlabeled examples. The difference is the interaction that takes place when labeling

each example.
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Fig. 5. Testing label F1 as a function of the total number of annotation actions. At k = 4,

performance plateaus with roughly 800 fewer actions than the baseline.
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Fig. 6. Testing label F1 as a function of the total number of segmentation actions. The

interactive system with k = 4 requires just over half the number of segmentation actions of

the baseline.

Figure 5 compares these methods, measuring the total number of annotation ac-

tions required for each F1 value. The interactive framework outperforms the base-

line consistently. On average, interactive labeling with k = 4 requires 21% fewer

actions than baseline.

Note that k = 1 closely tracks the baseline performance. This suggests that when

we restrict the user corrections to type actions only, there are not enough errors

fixed by correction propagation to overcome the additional cost of a round of user

interaction. This is further confirmed by the fact that performance increases with k.
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start + end type choice start + end + type total

k = 1 1.28 1.07 0.62 2.35 2.97

k = 2 0.95 0.92 0.70 1.87 2.58

k = 3 0.79 0.88 0.74 1.67 2.41

k = 4 0.71 0.86 0.76 1.58 2.34

Table 7

The average number of actions to label a single record, averaged over 1018 records, where

each record has on average 6.2 fields. As k increases, we convert more and more segmen-

tation actions into type and choice actions. Results for k = 4 show a 22% reduction in

actions over k = 1. Boldfaced results are significantly lower than all other column values

(paired-t test, p = 0.05).

However, as k increases, we notice diminishing marginal returns in savings. This

suggests a trade-off between the difficulty of examining k labelings and the savings

realized by reducing the user action to a simple multiple-choice selection.

To demonstrate the reduction in segmentation labeling, Figure 6 displays the num-

ber of segmentation actions (start or end) needed to achieve a particular F1 value.

On average across the sampled F1 values, interactive labeling with k = 4 requires

42% fewer segmentation actions.

Note the steep learning curve of the interactive method. This suggests that the

CRF’s poor segmentation performance early in training is quickly overcome. The

result is that after a small number of actions, the annotator can reduce the number

of segmentation actions needed to train the CRF, and instead mostly provide type

annotation.

Table 7 displays the average number of actions required to label each record for

different values of k. These results are compatible with the trends in Figures 5 and

6. Note that the increase in choice actions as k increases is expected, since there are

many examples where the correct labeling is in the top k choices. The advantage of

this framework is that the increase in the number of choice actions is outweighed by

the reduction in other actions. Note also that this reduction in effort is manifest even

assuming all actions incur the same cost. If we assume that boundary annotation is

more costly than type annotation, these difference will be even more pronounced.

These experiments have demonstrated that by providing the user with efficient cor-

rective feedback mechanisms, we can decrease the labeling effort required to train

a high-accuracy extractor.
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5 Related Work

This paper unifies previous work introducing interactive information extraction

and cost-sensitive active learning (Kristjannson et al., 2004; Culotta and McCal-

lum, 2005). In addition, we provide novel scoring functions to maximize correction

propagation (Section 3.3), provide more thorough evaluation of their effectiveness

(Section 3.6.2), and compare against additional active learning methods (Section

4.3).

Others have studied efficient ways to interactively train an extraction system (Cardie

and Pierce, 1998; Caruana et al., 2000); however, these methods do not use partially

labeled examples to reduce labeling effort and do not use the corrective feedback

methods we propose here. Instead, partially correct annotations are instead simply

marked as incorrect.

There has also been work in the human-computer interaction literature on design-

ing interfaces to support error correction for speech and handwriting recognition

systems (Mankoff and Abowd, 1999; Suhm et al., 1999). They motivate the impor-

tance of confidence estimation and user feedback, but consider neither correction

propagation nor active learning systems.

Active learning in general is a widely-researched area that mainly investigates dif-

ferent forms of scoring functions to rank unlabeled examples, as we discussed

in Section 4.3. These functions can be coarsely divided into uncertainty-based

methods, committee-based methods, and error minimization methods. Uncertainty-

based methods rank examples according to how much confidence the learner has in

its prediction (Lewis and Catlett, 1994; Scheffer et al., 2001). The LeastConfidence

method discussed in Section 4.3 is an example of this approach. Notably, recent

work by Schein (2005) has shown that simple uncertainty-based methods can be

competitive or superior to committee-based methods. Committee-based methods

construct a committee of learners and rank examples by the amount of disagree-

ment among them (Freund et al., 1997; McCallum and Nigam, 1998; Argamon-

Engelson and Dagan, 1999). The QBC method presented in Section 4.3 is an ex-

ample of this approach. Query-by-committee methods have also been extended to

multi-view and co-testing domains (Muslea et al., 2003; Ghani et al., 2003). Finally,

error minimization methods attempt to directly minimize the expected classification

error on future test examples (Cohn et al., 1995; Roy and McCallum, 2001). While

this approach provides nice theoretical guarantees, it is computationally expensive

and requires a number of approximations to be effective in practice.

To the best of our knowledge, the active learning framework we propose is the

first that (1) is sensitive to the difficulty of labeling each training example (2) uses

partially labeled examples to reduce this labeling difficulty, and (3) uses efficient

corrective feedback mechanisms (such as correction propagation) to reduce user
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effort. Below we discuss other active learning methods that are more closely related

to our approach.

Thompson et al. (1999) present an active learning system for information extraction

and parsing, which are instances of structured learning tasks. While they demon-

strate the advantage of active learning for these tasks, they require the annotator to

fully label each training example, which is precisely what this paper aims to avoid.

Vlachos (2006) has recently presented an active learning method that employs an

unsupervised learning algorithm to partially label examples, which are then cor-

rected by the user. This can be seen as an unsupervised analog to our previous

work (Kristjannson et al., 2004; Culotta and McCallum, 2005). Three central dis-

tinctions in our work is that we consider confidence at the field rather than token

level, we allow correction propagation to reduce labeling effort, and we provide

estimates of user effort per annotation.

Baldridge and Osborne (2004) consider active learning to annotate sentences with

parse trees. The annotator is presented with the top n predicted parse trees for a

sentence. If the true parse is in the top n predicted parses, the user may select that

parse. Otherwise, the user must manually annotate the sentence. This differs from

our work in that they do not leverage information from partially correct parses, and

correction propagation is not considered.

Additionally, Anderson and Moore (2005) evaluate various objective functions for

active learning for HMMs. Our mutual information scoring function (Equation 6)

used to maximize correction propagation can be seen as a variant of the entropy

loss function used in their work.

Confidence prediction itself is also an under-studied aspect of information extrac-

tion, although it has been investigated in document classification (Bennett, 2000),

speech recognition (Gunawardana et al., 1998), and machine translation (Gan-

drabur and Foster, 2003). Much of the previous work in confidence estimation

for information extraction comes from the active learning literature. Scheffer et al.

(2001) derive confidence estimates using hidden Markov models in an information

extraction system; however, they do not estimate the confidence of entire fields,

only singleton tokens. The token confidence is estimated by the difference between

the probabilities of its first and second most likely labels, whereas our constrained

forward-backward (Culotta and McCallum, 2004) considers multi-token fields, and

the full distribution of all suboptimal paths. Scheffer et al. (2001) also explore

an idea similar to constrained forward-backward to perform Baum-Welch training

with partially labeled data, where a limited number of labels provide constraints.

However, these constraints are again for singleton tokens only. Analogs of con-

strained Viterbi have been used in bioinformatics to find sub-optimal alignments of

RNA sequences (Zuker, 1991), and in speech recognition to train HMMs when the

word sequence is known but the sub-phone sequence is not (Franzini et al., 1990).
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6 Conclusions and Future Work

We have presented a framework for corrective feedback and persistent learning

for information extraction and have demonstrated its value empirically through the

simulated correction of real data.

While these simulations are effective for evaluation, the best evaluation is a com-

plete user study. Performance could be measured by the actual time it takes users

to train an accurate system and correct its predictions. This more costly evalua-

tion method also requires addressing issues of user interface design and annotator

variability, but it is ultimately the most direct evaluation procedure.

Additionally, while our proposed active learning system makes no assumptions

about the underlying ranking function, there may exist ways to construct a rank-

ing function that has a preference for examples that are easy to label.

While we have restricted our empirical study to information extraction, the ideas

presented here can be applied to other structured learning domains. The main prin-

ciples we have advocated in this paper are the following:

• Active learning systems should leverage partially labeled examples to reduce

annotation effort.

• When a user correction is provided, predictions should be updated in real-time

to enable correction propagation savings.

• Users should be directed to fields that are either most likely to need correction,

or most likely to lead to correction propagation.

• To better reflect user effort, evaluation of active learning systems should consider

the number of user actions, not simply the number of labeled examples.

This work can be seen as a way to facilitate the wide-spread use of machine learn-

ing algorithms for structured prediction. These algorithms often require additional

training examples to be personalized to each user. Therefore, the easier it is for a

system to be trained and corrected by the user, more likely it is that the system will

be well-received, frequently used, and accurate.
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