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Abstract

A combinatorial random variable is a dis-
crete random variable defined over a com-
binatorial set (e.g., a power set of a given
set). In this paper we introduce combinato-
rial Markov random fields (Comrafs), which
are Markov random fields where some of the
nodes are combinatorial random variables.
We argue that Comrafs are powerful models
for unsupervised learning by showing their re-
lationship with two existing models. We then
present a Comraf model for semi-supervised
clustering that demonstrates superior results
in comparison to an existing semi-supervised
scheme (constrained optimization).

1. Introduction

Graphical models have proven themselves to be a use-
ful machine learning framework, showing excellent re-
sults in information retrieval (Metzler & Croft, 2005),
natural language processing (Sha & Pereira, 2003),
computer vision (Freeman et al., 2000), and a variety
of other fields (Jordan, 2004). One benefit of using
graphical models is the availability of black-box infer-
ence mechanisms; once a model is designed, it is usu-
ally straightforward to apply an existing optimization
procedure to make inferences in the model.

Unsupervised learning tasks are often performed us-
ing generative graphical models (such as Bayesian net-
works). Practitioners traditionally make assumptions
about the structure of the model based on domain
knowledge, the need for computational tractability, or
both. Such assumptions can potentially be inappropri-
ate and thus introduce undesired bias into the model.
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Moreover, while in some cases it may be possible to
learn the structure of the model from data, this can
easily become infeasible without significant restrictions
on the class of models being considered.

Despite the fact that generative models are likely to
be biased, they remain a popular approach for unsu-
pervised learning within the graphical model frame-
work. Other types of graphical models for unsuper-
vised learning are emerging.1 This paper proposes
a combinatorial MRF (Comraf): a non-generative
graphical model which is an instance of a Markov Ran-
dom Field (MRF), an undirected graphical model (see,
e.g. Li, 1995). We show how Comrafs can be applied
to clustering in general and to semi-supervised clus-
tering in particular.

Combinatorial MRFs realize four basic principles:
(a) data-driven: unlike generative models, Comrafs
do not prescribe the intrinsic structure of the data,
thereby limiting the bias; (b) multi-modal: Com-
rafs exploit the fact that the data usually has multi-
ple views; (c) compact: each modality of the data is
represented with one random variable – only interac-
tions between modalities are explicitly modeled, mak-
ing model learning easier; (d) general: the Comraf
is a unified model that can be applied as is to vari-
ous tasks, such as unsupervised and semi-supervised
clustering, transfer learning, ranking, etc.

The rest of the paper is organized as follows. In Sec-
tion 2 we propose the Comraf model. In Section 3
we discuss clustering with Comrafs and in Section 4
we present a Comraf for semi-supervised clustering.
Section 5 describes our experimental setup; Section 6
provides empirical results. We conclude in Section 7.

1Some work has been done on non-standard applica-
tion of existing types of graphical models, e.g. Friedman
et al. (2001) use a Bayesian network for describing de-
pendencies between variables in an information-theoretic
clustering system.
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2. Combinatorial MRFs

Definition 1. A combinatorial random variable (or
combinatorial r.v.) Xc is a discrete random variable
defined over a combinatorial set.

A combinatorial set in mathematical jargon means a
set of all subsets, partitionings, permutations etc. of a
given finite set. To capture this intuition, we define a
finite set A as combinatorial if its size is exponential
with respect to another finite set B, i.e. |A| = O(2|B|).
As an example, a combinatorial r.v. Xc can be defined
over all the outcomes of lotto 6 of 49, in which 6 balls
are selected from 49 enumerated balls to produce an
outcome of the lottery. In this case, set B consists of
49 balls, while set A consists of

(

49
6

)

possible choices of
6 balls out of B. In a fair lottery, the distribution of
Xc is uniform: each outcome is drawn with probability
1/

(

49
6

)

. However, in an unfair lottery, some outcomes
are more probable than others.

From the theoretical perspective, a combinatorial
r.v. behaves exactly as an ordinary discrete random
variable with finite support. However, from the prac-
tical point of view, a combinatorial r.v. is different:
in most real-world cases, the support of Xc is so large
that the distribution P (Xc) cannot be explicitly speci-
fied. Moreover, the Most Probable Explanation (MPE)
task for combinatorial r.v.’s can be computationally
hard. Considering an unfair lottery example, if the
distribution of outcomes is flat (close to uniform), the
problem of identifying the most probable outcome is
hard because the number of possible outcomes is very
large. For instance, if the probability of one outcome
{7, 23, 29, 35, 48, 49} is 0 and the probability of another
outcome {4, 18, 28, 37, 39, 43} is 2/

(

49
6

)

, while the rest

of the outcomes still have the probability 1/
(

49
6

)

, then

an O(2|B|) long sampling process is required to detect
the most probable outcome.

It is easy to come up with other examples of combi-
natorial r.v.’s: over all the possible translations of a
sentence, orderings in a ranked list of retrieved docu-
ments, positions in a chess game, etc. In this paper we
consider combinatorial r.v.’s over all partitionings of a
given set. In most complex systems random variables
interact with each other. Such interactions are usu-
ally represented in a directed or undirected graphical
model. In multi-modal systems, which are in the fo-
cus of our paper, interactions between modalities are
symmetric, so the undirected case is more appealing.

A Markov random field (MRF) is a model (G,P ),
where G is an undirected graph whose nodes X =
{X1, . . . , Xm} represent random variables and whose
edges denote interactions between these variables. P is

a joint probability distribution defined over the nodes
of G. The Markov property holds in this graph.

Definition 2. A combinatorial Markov random field
(Comraf) is an MRF, at least one node of which is a
combinatorial random variable.

2.1. Inference in Comrafs

An inference procedure in MRFs answers questions
about the model, such as what are the most likely
assignments {x1, . . . , xm} to variables {X1, . . . , Xm}
(i.e. MPE). Naturally, answering most of such ques-
tions is an NP-complete task since it potentially re-
quires considering every possible assignment. Thus,
most inference techniques fall into the category of ap-
proximation methods.

The famous Hammersley-Clifford theorem (Besag,
1974) states that the joint distribution over nodes of
an MRF is a Gibbs distribution:

P (x) =
1

Zf

exp
∑

i

fi(x), (1)

where fi(x) are arbitrary potential functions defined
over cliques in G, and Zf is a normalization factor
called a partition function. Note that Zf depends
on the particular choice of f ’s and is a sum over all
the possible configurations. It is often intractable to
directly compute Zf , so many inference techniques
such as mean field approximation, variational methods
etc. (see, e.g. Wiegerinck, 2000) deal with approximat-
ing Zf , which is generally a difficult task. However,
if the potentials fi are predefined and fixed for each
clique, the partition function Zf becomes a constant
and then log P (x) ∝ exp

∑

i fi(x), so for the MPE task
it is sufficient to directly optimize:

x′ = arg max
x

P (x) = arg max
x

∑

i

fi(x). (2)

This relatively simple formulation is still quite power-
ful, as it allows us to use a wide variety of potential
functions that might be too complicated to use in the
general setting where the partition function still needs
to be approximated.

3. Clustering with Comrafs

We will demonstrate the basic principle of unsuper-
vised learning with Comrafs on a classic application
of data clustering. First, we define a combinatorial
r.v. X̃c over a set of all clusterings of a given set.
To illustrate this on a small example, let us consider
three data points {x1, x2, x3} and define a discrete
random variable X with an empirical probability dis-
tribution over this set. One of a few possible hard
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Figure 1. Comraf graphs for: (a) hard version of IB; (b)
4-way MDC; (c) semi-supervised clustering.

clusterings of this set is, say, {{x1, x3}, {x2}}. We
can define a random variable X̃ over this set of clus-
ters, so that it can take two values: x̃1 = {x1, x3}
and x̃2 = {x2}. There are five possible clusterings
of {xi}: x̃c

1 = {{x1, x2, x3}}, x̃c
2 = {{x1}, {x2, x3}},

x̃c
3 = {{x1, x2}, {x3}}, x̃c

4 = {{x1, x3}, {x2}}, and
x̃c

5 = {{x1}, {x2}, {x3}}. The combinatorial r.v. X̃c

is then defined over the set {x̃c
i} of these clusterings:

it will take one of the five possible values. Throughout
this paper we will be consistent with the notation in-
troduced above: x is a data point, x̃ is a cluster, and
x̃c is a clustering; X is a r.v. over {xi}, X̃ is a r.v.
over {x̃i}, X̃c is a (combinatorial) r.v. over {x̃c

i}.

We then decide about interactions between combina-
torial r.v.’s (possibly, with ordinary r.v.’s), and con-
struct a Comraf graph. To use the objective from
Equation (2), we should choose relevant cliques in the
Comraf graph and define potential functions over these
cliques. To make the inference feasible, we consider
only the smallest cliques, i.e. adjacent pairs. Since
our inference objective allows using complex poten-
tial functions (see Section 2.1), we use Mutual In-
formation between r.v.’s defined over values of adja-
cent nodes: a potential between values of X̃c

i and X̃c
j

is I(X̃i; X̃j) =
∑

x̃i,x̃j
P (x̃i, x̃j) log

P (x̃i,x̃j)
P (x̃i)P (x̃j)

. Recall

that X̃i is defined over a clustering x̃c
i (a value of X̃c

i ).

This non-trivial choice of potential functions allows us
to consider two important special cases of Comrafs:

A hard version of Information Bottleneck (IB)
(Tishby et al., 1999) is a special case of a Comraf. In
IB, a clustering (x̃c)′ is constructed that maximizes
information about the variable Y (and minimizes in-
formation about X), i.e. (x̃c)′ = arg maxx̃c(I(X̃; Y ) −
βI(X̃; X)), where β is a Lagrange multiplier. The
compression constraint I(X̃;X) can be omitted if the
number of clusters is fixed: |x̃c| = k. Let us consider
graph G in Figure 1(a), where a shaded Y c represents
an observed variable.2 On the only clique in the graph
we define one potential which is the Mutual Informa-

2For discussion on observed variables see Section 4.

tion I(X̃; Y ). The MPE objective is then defined as:

(x̃c)′ = arg max
x̃c

P (x̃c, yc) = arg max
x̃c

I(X̃; Y ). (3)

Multi-way distributional clustering (MDC)
(Bekkerman et al., 2005) is a generalization of IB,
where the data has a number of interdependent modal-
ities (such as documents, words, authors, titles, etc.).
Bekkerman et al. (2005) represent interactions be-
tween the modalities using a pairwise interaction graph
that has no probabilistic interpretation. Actually,
these interactions can be represented in a Comraf,
where the modalities are combinatorial r.v.’s X̃c =
{X̃c

1 , . . . , X̃c
m} that are nodes in a graph G with edges

E. The MPE scheme is then:

(x̃c)′ = arg max
x̃c

P (x̃c) = arg max
x̃c

∑

(X̃c
i
,X̃c

j
)∈E

I(X̃i; X̃j),

(4)
which is equivalent to the objective proposed by
Bekkerman et al. (2005). An example Comraf graph
for a 4-way MDC (that corresponds to simultaneously
clustering documents, words, authors and titles) is
shown in Figure 1(b). MDC demonstrates superior re-
sults with respect to two previous state-of-the-art doc-
ument clustering algorithms, including information-
theoretic co-clustering (Dhillon et al., 2003).

Due to unique characteristics of combinatorial r.v.’s,
it is problematic to apply existing inference algorithms
to Comrafs. Bekkerman et al. (2006) propose a simple
and efficient inference algorithm specific for Comrafs,
which is based on combinatorial optimization. They
show that even such a simple algorithm consistently
and significantly outperforms Latent Dirichlet Alloca-
tion (Blei et al., 2003) on document clustering.

In the case of a combinatorial MRF with more than
one combinatorial r.v., this Comraf inference algo-
rithm becomes a variation of the Iterative Conditional
Mode (ICM) method (Besag, 1986). ICM optimizes
each node of an MRF iteratively (in a round-robin
fashion), given its Markov blanket. When an ICM
iteration is applied to a node X̃c

i , the MPE objective
from Equation (4) with O(|X|2) terms is reduced to:

(x̃c
i )

′ = arg max
x̃c

i

∑

j: (X̃c
i
,X̃c

j
)∈E

I(X̃i; X̃j) (5)

that sums over only O(|X|) neighbors of X̃c
i .

4. Semi-supervised clustering with

Comrafs

The Comraf model is a convenient framework for per-
forming semi-supervised clustering. Prior to present-
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ing details of a particular Comraf, let us define the
concepts of hidden and observed states in Comrafs. A
combinatorial r.v. is hidden if it can take any value
from its support. A combinatorial r.v. is observed if
its value is preset and fixed.

Semi-supervised clustering is the clustering task that
takes advantage of labeled examples. Usually, semi-
supervised clustering is performed when the number
of available labeled examples is not sufficient to con-
struct a good classifier (e.g., the constructed classifier
would overfit), or when the the labeled data is noisy
or skewed to a few classes. Assuming that most of the
labeled data is accurate, our goal is to incorporate it
into the (unsupervised) Comraf model.

In this paper, we consider a uni-labeled case when each
labeled data point xi|

n
i=1 belongs to only one category

lj |
k
j=1. We propose an intrinsic Comraf approach (in-

troducing observed nodes to a Comraf graph) for incor-
porating labeled data into the clustering, and compare
it with an existing constrained optimization scheme.

Intrinsic scheme. An advantage of Comrafs is that
they offer a unique intrinsic method for incorporating
labeled data which does not require significant changes
in the model. First, note that labels define a natural
partition of the labeled data: for each label lj let x̃j be
a subset of {xi} labeled with lj , i.e. x̃j = {xi|li = lj}.

We now define a random variable X̃0 over the set {x̃j},

and we also define a combinatorial r.v. X̃c
0 over all

the possible partitionings of the set {xi}. Since the
partition x̃c

0 = {x̃j} is given to us, the variable X̃c
0 is

observed, with x̃c
0 being its fixed value.

Observed combinatorial random variables appear
shaded on a Comraf graph – see Figure 1(c). The
objective function from Equation (5) and the Comraf
inference procedure remain unchanged (with the only
difference being that there is no need in optimizing
the observed nodes): at each ICM iteration the cur-
rent node is optimized with respect to the fixed values
of its neighbors, while values of the observed nodes are
fixed by definition.

Constrained optimization. Previous research
works (Wagstaff & Cardie, 2000; Basu et al., 2004)
perform semi-supervised clustering with two types of
boolean constraints: must-link (two data points must
be in the same cluster during the course of the cluster-
ing algorithm) and cannot-link (two data points must
not be in the same cluster). Formally, for a cluster
x̃ and two data points xi and xj labeled by li and lj
respectively, a must-link constraint is:

ml(xi, xj) =

{

0, if (li = lj) ∧ (xi ∈ x̃) ∧ (xj ∈ x̃)

1, otherwise,

and a cannot-link constraint is:

cl(xi, xj) =

{

1, if (li 6= lj) ∧ (xi ∈ x̃) ∧ (xj ∈ x̃)

0, otherwise.

Note that in order to fairly compare two semi-
supervised methods, for both of them we must use
the same underlying clustering algorithm. So, we use
the Comraf inference algorithm, where the objective
function from Equation (5) is modified to incorporate
the constraints. For each combinatorial r.v. X̃c:

(x̃c
i )

′ = arg max
x̃c

i

∑

j: (X̃c
i
,X̃c

j
)∈E

I(X̃i; X̃j)

−
∑

j

wj mlj −
∑

j

wj clj ,

(6)

where wj are weights that we set at +∞, which cor-
responds to the requirement that all constraints must
be satisfied. Note that in the general case we are free
to choose any non-negative weights.

5. Experimental setup

5.1. Datasets

We evaluate the Comraf models on six text datasets:
the standard benchmark 20 Newsgroups dataset
(20NG) and five real-world email directories. Three
of them belong to participants in the CALO project3

and the other two belong to former Enron employees.4

For preprocessing steps and statistics on the data, see
Bekkerman et al. (2005).

5.2. Evaluation criterion

Following Dhillon et al. (2003), we use micro-averaged
accuracy for evaluation of our clustering methods. Let
{xi} be the data and x̃c its clustering. Let T be the
set of ground truth categories. We fix the number
of clusters to match the number of categories |x̃c| =
|T | = k. For each cluster x̃, let γT (x̃) be the maximal
number of x̃’s elements that belong to one category.
We say that this category is dominant in x̃. Then, the
accuracy Acc(x̃, T ) of x̃ with respect to T is defined as
Acc(x̃, T ) = γT (x̃)/|x̃|. The micro-averaged accuracy
of the entire clustering x̃c is:

Acc(x̃c, T ) =

∑k

i=1 γT (x̃i)
∑k

i=1 |x̃i|
. (7)

The main drawback of clustering accuracy is that it
does not penalize a split of a category over a number

3http://www.ai.sri.com/project/CALO
4The preprocessed Enron email datasets can be

obtained from http://www.cs.umass.edu/∼ronb/enron
dataset.html.
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Figure 2. Clustering accuracy of the semi-supervised Comraf on five email datasets.

of clusters, as long as the category remains dominant
in these clusters. In this aspect, clustering accuracy
differs from (standard) classification accuracy, as de-
fined, e.g., in Bekkerman et al. (2003), so clustering
results cannot be directly compared with classification
results. However, in the special case described below
they can be compared.

Definition 3. A clustering is called well-balanced if
each category of the clustered data is dominant exactly
in one cluster.

Claim 1. For well-balanced clusterings, the micro-
averaged clustering accuracy (7) equals the standard
micro-averaged classification accuracy.

The proof of this claim is straightforward (based on
the fact that the topic of a cluster is determined ac-
cording to its dominant category). Claim 1 allows us
to compare clustering and classification methods.

6. Semi-supervised clustering results

We report on the clustering accuracy averaged over ten
independent runs on the email datasets and five runs
on 20NG. We apply agglomerative clustering to doc-
uments and divisive clustering to words. Figure 1(c)
shows a Comraf graph for the intrinsic scheme of semi-
supervised clustering (see Section 4). Together with a
node D̃c over document clusterings and a node W̃ c

over word clusterings, we introduce an observed node
D̃c

0, whose value d̃c
0 is a given partitioning of the la-

beled documents.

We conduct the following experiment: for each email
dataset, we uniformly at random select 10%, 20%, or
30% of the data and refer to it as labeled examples
while the rest of the data is considered unlabeled. We
apply both intrinsic and constrained methods on the
three setups and plot the accuracy (calculated on unla-
beled data only) versus the percentage of labeled data
used. The results are shown in Figure 2. As we can see
from the figure, both methods unsurprisingly improve
the unsupervised results, but the intrinsic method usu-
ally outperforms the constrained method.

On 20NG, we select 10% of data to be labeled. The
constrained method obtains 74.8 ± 0.6% accuracy,
while the intrinsic method obtains 78.9 ± 0.8% accu-

racy (over 5% and 9% absolute improvement to the
unsupervised result, which is 69.5 ± 0.7%). We note
that having 10% labeled data from 20NG is actually
2,000 labeled documents – a number that should allow
constructing a good classifier. We also note that three
of the five independent runs of the intrinsic method on
20NG produced well-balanced clusterings, whose accu-
racy (80.0 ± 0.6%) can be directly compared to clas-
sification accuracy (Claim 1). We apply SVM (with
linear kernel)5 to the same three data splits and ob-
tain 77.2±0.2% accuracy, which is significantly inferior
to the semi-supervised intrinsic Comraf results.

0 10 20 30
0.4

0.5

0.6

0.7

0.8

percentage of noise in labels

a
c
c
u
ra

c
y

intrinsic model, 20% labeled data

 

 

acheyer
mgervasio
mgondek

Figure 3. Resistance to noise in intrinsic semi-supervised
Comraf.

The intrinsic scheme is resistant to noise. To show
this, we conduct the following experiment: on CALO
datasets with 20%/80% labeled/unlabeled split, we ar-
bitrarily corrupt labels of 10%, 20% and 30% of the la-
beled data. Figure 3 shows the results: clustering ac-
curacy remains almost the same for all three datasets.

7. Conclusion and future work

In this paper, we have presented combinatorial MRFs
and empirically shown their utility on the problem of
semi-supervised clustering of documents. The use of
Comrafs is not limited to clustering problems only. We
plan to apply Comrafs to ranking and machine transla-
tion, along with other important tasks. We also plan to
apply Comraf clustering to other domains, such as to
image clustering. Another interesting research prob-
lem is model learning in Comrafs. While model learn-
ing is often infeasibly expensive in graphical models
with thousands or millions of nodes, we have shown
that useful Comraf models can still be extremely com-
pact. Learning such models is another interesting area
of our future work.

5We use Thorsten Joachims’ SVMlight. For details on
our experimental setup, see Bekkerman et al. (2003).
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