
Journal of Machine Learning Research 8 (2007) 693-723 Submitted 5/06; Published 3/07

Dynamic Conditional Random Fields: Factorized Probabilistic Models

for Labeling and Segmenting Sequence Data

Charles Sutton CASUTTON@CS.UMASS.EDU

Andrew McCallum MCCALLUM@CS.UMASS.EDU

Khashayar Rohanimanesh∗
KHASH@CS.UMASS.EDU

Department of Computer Science

University of Massachusetts

140 Governors Drive

Amherst, Massachusetts 01003, USA

Editor: Michael Collins

Abstract

In sequence modeling, we often wish to represent complex interaction between labels, such as when

performing multiple, cascaded labeling tasks on the same sequence, or when long-range dependen-

cies exist. We present dynamic conditional random fields (DCRFs), a generalization of linear-chain

conditional random fields (CRFs) in which each time slice contains a set of state variables and

edges—a distributed state representation as in dynamic Bayesian networks (DBNs)—and param-

eters are tied across slices. Since exact inference can be intractable in such models, we perform

approximate inference using several schedules for belief propagation, including tree-based repa-

rameterization (TRP). On a natural-language chunking task, we show that a DCRF performs better

than a series of linear-chain CRFs, achieving comparable performance using only half the training

data. In addition to maximum conditional likelihood, we present two alternative approaches for

training DCRFs: marginal likelihood training, for when we are primarily interested in predicting

only a subset of the variables, and cascaded training, for when we have a distinct data set for

each state variable, as in transfer learning. We evaluate marginal training and cascaded training on

both synthetic data and real-world text data, finding that marginal training can improve accuracy

when uncertainty exists over the latent variables, and that for transfer learning, a DCRF trained in

a cascaded fashion performs better than a linear-chain CRF that predicts the final task directly.

Keywords: conditional random fields, graphical models, sequence labeling

1. Introduction

The problem of labeling and segmenting sequences of observations arises in many different areas,

including bioinformatics, music modeling, computational linguistics, speech recognition, and in-

formation extraction. Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa, 1989; Murphy,

2002) are a popular method for probabilistic sequence modeling, because they exploit structure

in the problem to compactly represent distributions over multiple state variables. Hidden Markov

Models (HMMs), an important special case of DBNs, are a classical method for speech recognition

(Rabiner, 1989) and part-of-speech tagging (Manning and Schütze, 1999). More complex DBNs

have been used for applications as diverse as robot navigation (Theocharous et al., 2001), audio-

visual speech recognition (Nefian et al., 2002), activity recognition (Bui et al., 2002), information

∗. Current affiliation: Massachusetts Institute of Technology, Cambridge, MA 02139, USA

c©2007 Charles Sutton, Andrew McCallum and Khashayar Rohanimanesh.

SUTTON, MCCALLUM AND ROHANIMANESH

extraction (Skounakis et al., 2003; Peshkin and Pfeffer, 2003), and automatic speech recognition

(Bilmes, 2003).

DBNs are typically trained to maximize the joint probability distribution p(y,x) of a set of

observation sequences x and labels y. However, when the task does not require the ability to generate

x, such as in segmenting and labeling, modeling the joint distribution is a waste of modeling effort.

Furthermore, generative models often must make problematic independence assumptions among

the observed nodes in order to achieve tractability. In modeling natural language, for example,

we may wish to use features of a word such as its identity, capitalization, prefixes and suffixes,

neighboring words, membership in domain-specific lexicons, and category in semantic databases

like WordNet—features which have complex interdependencies. Generative models that represent

these interdependencies are in general intractable; but omitting such features or modeling them as

independent has been shown to hurt accuracy (McCallum et al., 2000).

A solution to this problem is to model instead the conditional probability distribution p(y|x).
The random vector x can include arbitrary, non-independent, domain-specific feature variables. Be-

cause the model is conditional, the dependencies among the features in x do not need to be explicitly

represented. Conditionally-trained models have been shown to perform better than generatively-

trained models on many tasks, including document classification (Taskar et al., 2002), part-of-

speech tagging (Ratnaparkhi, 1996), extraction of data from tables (Pinto et al., 2003), segmentation

of FAQ lists (McCallum et al., 2000), and noun-phrase segmentation (Sha and Pereira, 2003).

Conditional random fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) are undi-

rected graphical models of the conditional distribution p(y|x). Early work on CRFs focused on

the linear-chain structure (depicted in Figure 1) in which a first-order Markov assumption is made

among labels. This model structure is analogous to conditionally-trained HMMs, and has efficient

exact inference algorithms. Often, however, we wish to represent more complex interaction between

labels—for example, when longer-range dependencies exist between labels, when the state can be

naturally represented as a vector of variables, or when performing multiple cascaded labeling tasks

on the same input sequence.

In this paper, we introduce dynamic CRFs (DCRFs), which are a generalization of linear-chain

CRFs that repeat structure and parameters over a sequence of state vectors. This allows us to both

represent distributed hidden state and complex interaction among labels, as in DBNs, and to use

rich, overlapping feature sets, as in conditional models. For example, the factorial structure in

Figure 1(b), which we call a factorial CRF (FCRF), includes links between cotemporal labels, ex-

plicitly modeling limited probabilistic dependencies between two different label sequences. Other

types of DCRFs can model higher-order Markov dependence between labels (Figure 2), or incorpo-

rate a fixed-size memory. For example, a DCRF for part-of-speech tagging could include for each

word a hidden state that is true if any previous word has been tagged as a verb.

Any DCRF with multiple state variables can be collapsed into a linear-chain CRF whose state

space is the cross-product of the outcomes of the original state variables. However, such a linear-

chain CRF needs exponentially many parameters in the number of variables. Like DBNs, DCRFs

represent the joint distribution with fewer parameters by exploiting conditional independence rela-

tions.

In natural-language processing, DCRFs are especially attractive because they are a probabilis-

tic generalization of cascaded, weighted finite-state transducers (Mohri et al., 2002). In general,

many sequence-processing problems are traditionally solved by chaining errorful subtasks, such as

chains of finite state transducers. In such an approach, however, errors early in processing nearly

694

DYNAMIC CONDITIONAL RANDOM FIELDS

always cascade through the chain, causing errors in the final output. This problem can be solved

by jointly representing the subtasks in a single graphical model, both explicitly representing their

dependence, and preserving uncertainty between them. DCRFs can represent dependence between

subtasks solved using finite-state transducers, such as phonological and morphological analysis,

POS tagging, shallow parsing, and information extraction.

More specifically, in information extraction and data mining, McCallum and Jensen (2003)

argue that the same kind of probabilistic unification can potentially be useful, because in many

cases, we wish to mine a database that has been extracted from raw text. A unified probabilistic

model for extraction and mining can allow data mining to take into account the uncertainty in the

extraction, and allow extraction to benefit from emerging patterns produced by data mining. The

applications here, in which DCRFs are used to jointly perform multiple sequence labeling tasks, can

be viewed as an initial step toward that goal.

In this paper, we evaluate DCRFs on several natural-language processing tasks. First, a factorial

CRF that learns to jointly predict parts of speech and segment noun phrases performs better than

cascaded models that perform the two tasks in sequence. Also, we compare several schedules

for belief propagation, showing that although exact inference is feasible, on this task approximate

inference has lower total training time with no loss in testing accuracy.

In addition to conditional maximum likelihood training, we present two alternative training

methods for DCRFs: marginal training and cascaded training. First, in some situations, we are

primarily interested in predicting a few output variables y, and the other output variables w are

included only to help in modeling y. For example, part-of-speech labels are usually never interesting

in themselves, but rather are used to aid prediction of some higher level task. Training to maximize

the joint conditional likelihood p(y,w|x) may then be inappropriate, because it may be forced to

trade off accuracy among the y, which we are primarily interested in, to obtain higher accuracy

among w, which we do not care about. For such situations, we explore the idea of training a

DCRF by the marginal likelihood log p(y|x) = log ∑w p(y,w|x). On a natural-language chunking

task, marginal training leads to a slight but not significant increase in accuracy on y. We explain

this unexpected result by further exploration on synthetic data, where we find that marginal training

tends to improve performance most when the model has large uncertainty among the y labels, which

is not the case in the chunking task.

Second, in other situations, a single fully-labeled data set is not available, and instead the outputs

are partitioned into sets (y0,y1, . . . ,yℓ), and we have one data set D0 labeled for y0, another data set

D1 labeled for y1, and so on. For example, this can be the case in transfer learning, in which

we wish to use previous learning problems (that is, y0,y1, . . . ,yℓ−1) to improve performance on a

new task yℓ. To train a DCRF without a single fully-labeled training set, we propose a cascaded

training procedure, in which first we train a CRF p0 to predict y0 on D0, then we annotate D1 with

the most likely prediction from p0, then we train a CRF p1 on p(y1|y0,x), and finally, at test time,

perform inference jointly in the resulting DCRF. Compared to other work in transfer learning, an

interesting aspect of this approach is that the model includes no shared latent structure between

subtasks; rather, the probabilistic dependence between tasks is modeled directly. On a benchmark

information extraction task, we show that a DCRF trained in a cascaded fashion performs better

than a linear-chain CRF on the target task.

The rest of the paper is structured as follows. In Section 2, we describe the general framework

of CRFs. Then, in Section 3, we define DCRFs, and explain methods for approximate inference and

parameter estimation, including exact conditional maximum likelihood (Section 3.3.1), approximate

695

SUTTON, MCCALLUM AND ROHANIMANESH

�✂✁ �✂✄ ☎✝✆� ✄ ✞ ✆

✟✠✁ ✟✂✄ ☎✝✆✟✠✄ ✞ ✆

✡ ✄ ✞ ✆

�☛✄ ✞ ✆ �☛✄ ☎✝✆�☛✁

✟✠✁ ✟✠✄ ☎✝✆✟✠✄ ✞ ✆

✡ ✁ ✡ ✄ ☎✝✆☞ ✌✎✍
☞ ✏✑✍

Figure 1: Graphical representation of (a) linear-chain CRF, and (b) factorial CRF. Although the

hidden nodes can depend on observations at any time step, for clarity we have shown

links only to observations at the same time step.

parameter estimation using BP (Section 3.3.2), and cascaded parameter estimation (Section 3.3.3).

Then, in Section 3.4, we describe inference and parameter estimation in marginal DCRFs. In Sec-

tion 4, we present the experimental results, including evaluation of factorial CRFs on noun-phrase

chunking (Section 4.1), comparison of BP schedules in FCRFs (Section 4.2), evaluation of marginal

DCRFs on both the chunking data and synthetic data (Section 4.3), and cascaded training of DCRFs

for transfer learning (Section 4.4). Finally, in Section 5 and Section 6, we present related work and

conclude.

2. Conditional Random Fields (CRFs)

Conditional random fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) are condi-

tional probability distributions that factorize according to an undirected model. CRFs are defined as

follows. Let y be a set of output variables that we wish to predict, and x be a set of input variables

that are observed. For example, in natural language processing, x may be a sequence of words

x = {xt} for t = 1, . . . ,T and y = {yt} a sequence of labels. Let G be a factor graph over y and x

with factors C = {Φc(yc,xc)}, where xc is the set of input variables that are arguments to the local

function Φc, and similarly for yc. A conditional random field is a conditional distribution pΛ that

factorizes as

pΛ(y|x) =
1

Z(x) ∏
c∈C

Φc(yc,xc),

where Z(x) = ∑y ∏c∈C Φc(yc,xc) is a normalization factor over all state sequences for the sequence

x. We assume the potentials factorize according to a set of features { fk}, as

Φc(yc,xc) = exp

(

∑
k

λk fk(yc,xc)

)

,

so that the family of distributions {pΛ} is an exponential family. In this paper, we shall assume

that the features are given and fixed. The model parameters are a set of real weights Λ = {λk}, one

weight for each feature.

Many previous applications use the linear-chain CRF, in which a first-order Markov assump-

tion is made on the hidden variables. A graphical model for this is shown in Figure 1. In this case,

the cliques of the conditional model are the nodes and edges, so that there are feature functions

696

DYNAMIC CONDITIONAL RANDOM FIELDS

� ✁ ✂

� ✁ ✂

� ✁ ✂

� ✁ ✄

� ✁ ✂

� ✁ ✂ ☎

☎� ✁ ✂

☎

✆✞✝✠✟✠✡ ☛✌☞✎✍ ✝✠✏

☎� ✁ ✂

✑✓✒ ✟✠☛✕✔✕✖✘✗ ☛✌☞✎✖ ✒ ☞✞✙✚✝✛☞ ✜✘☛✌✢

☎

☎

☎

✣✤✍ ✒ ☞✥✝✛☞✎✟✠✦✕✍ ✟✧✝✛✏

� ✁ ✂

★

✩

★

✩

Figure 2: Examples of DCRFs. The dashed lines indicate the boundary between time steps. The

input variables x are not shown.

fk(yt−1,yt ,x, t) for each label transition. (Here we write the feature functions as potentially depend-

ing on the entire input sequence.) Feature functions can be arbitrary. For example, a feature function

fk(yt−1,yt ,x, t) could be a binary test that has value 1 if and only if yt−1 has the label “adjective”, yt

has the label “proper noun”, and xt begins with a capital letter.

3. Dynamic CRFs

In this section, we define dynamic CRFs (Section 3.1) and describe methods for inference (Sec-

tion 3.2) and parameter estimation (Section 3.3).

3.1 Model Representation

A dynamic CRF (DCRF) is a conditional distribution that factorizes according to an undirected

graphical model whose structure and parameters are repeated over a sequence. As with a DBN, a

DCRF can be specified by a template that gives the graphical structure, features, and weights for

two time slices, which can then be unrolled given an input x. The same set of features and weights is

used at each sequence position, so that the parameters are tied across the network. Several example

templates are given in Figure 2.

Now we give a formal description of the unrolling process. Let y = {y1 . . .yT} be a sequence of

random vectors yi = (yi1 . . .yim), where yi is the state vector at time i, and yi j is the value of variable j

at time i. To give the likelihood equation for arbitrary DCRFs, we require a way to describe a clique

in the unrolled graph independent of its position in the sequence. For this purpose we introduce the

concept of a clique index. Given a time t, we can denote any variable yi j in y by two integers: its

index j in the state vector yi, and its time offset ∆t = i− t. We will call a set c = {(∆t, j)} of such

pairs a clique index, which denotes a set of variables yt,c by yt,c ≡ {yt+∆t, j |(∆t, j)∈c}. That is, yt,c

is the set of variables in the unrolled version of clique index c at time t.

Now we can formally define DCRFs:

Definition 1 Let C be a set of clique indices, F = { fk(yt,c,x, t)} be a set of feature functions and

Λ = {λk} be a set of real-valued weights. Then the distribution p is a dynamic conditional random

697

SUTTON, MCCALLUM AND ROHANIMANESH

field if and only if

p(y|x) =
1

Z(x) ∏
t

∏
c∈C

exp

(

∑
k

λk fk(yt,c,x, t)

)

where Z(x) = ∑y ∏t ∏c∈C exp(∑k λk fk(yt,c,x, t)) is the partition function.

Although we define a DCRF has having the same set of features for all of its cliques, in practice we

choose each feature function fk so that it is non-zero only on cliques with some particular index ck.

Thus, we will sometimes think of each clique index has having its own set of features and weights,

and speak of fk and λk as having an associated clique index ck.

DCRFs generalize not only linear-chain CRFs, but more complicated structures as well. For

example, in this paper, we use a factorial CRF (FCRF), which has linear chains of labels, with

connections between cotemporal labels. We name these after factorial HMMs (Ghahramani and

Jordan, 1997). Figure 1(b) shows an unrolled factorial CRF. Consider an FCRF with L chains,

where Yℓ,t is the variable in chain ℓ at time t. The clique indices for this DCRF are of the form

{(0, ℓ),(1, ℓ)} for each of the within-chain edges and {(0, ℓ),(0, ℓ+ 1)} for each of the between-

chain edges. The FCRF p defines a distribution over output variables as:

p(y|x) =
1

Z(x)

(

T−1

∏
t=1

L

∏
ℓ=1

Φℓ(yℓ,t ,yℓ,t+1,x, t)

)(

T

∏
t=1

L−1

∏
ℓ=1

Ψℓ(yℓ,t ,yℓ+1,t ,x, t)

)

,

where {Φℓ} are the factors over the within-chain edges, {Ψℓ} are the factors over the between-

chain edges, and Z(x) is the partition function. The factors are modeled using the features { fk} and

weights {λk} of G as:

Φℓ(yℓ,t ,yℓ,t+1,x, t) = exp

{

∑
k

λk fk(yℓ,t ,yℓ,t+1,x, t)

}

,

Ψℓ(yℓ,t ,yℓ+1,t ,x, t) = exp

{

∑
k

λk fk(yℓ,t ,yℓ+1,t ,x, t)

}

.

More complicated structures are also possible, such as second-order CRFs, and hierarchical

CRFs, which are moralized versions of the hierarchical HMMs of Fine et al. (1998).1 As in DBNs,

this factorized structure can use many fewer parameters than the cross-product state space: even the

two-level FCRF we discuss below uses less than an eighth of the parameters of the corresponding

cross-product CRF.

3.2 Inference in DCRFs

Inference in a DCRF can be done using any inference algorithm for undirected models. For an unla-

beled sequence x, we typically wish to solve two inference problems: (a) computing the marginals

p(yt,c|x) over all cliques yt,c, and (b) computing the Viterbi decoding y∗ = argmaxy p(y|x). The

Viterbi decoding can be used to label a new sequence, and marginal computation is used for param-

eter estimation (Section 3.3).

If the number of states is not large, the simplest approach is to form a linear chain whose output

space is the cross-product of the original DCRF outputs, and then perform forward-backward. In

1. Hierarchical HMMs were shown to be DBNs by Murphy and Paskin (2001).

698

DYNAMIC CONDITIONAL RANDOM FIELDS

other words, a DCRF can always be viewed as a linear-chain CRF whose feature functions take

a special form, analogous to the relationship between generative DBNs and HMMs. The cross-

product space is often very large, however, in which case this approach is infeasible. Alternatively,

one can perform exact inference by applying the junction tree algorithm to the unrolled DCRF, or by

using the special-purpose inference algorithms that have been designed for DBNs (Murphy, 2002),

which can avoid storing the full unrolled graph.

In complex DCRFs, though, exact inference can still be expensive, making approximate meth-

ods necessary. Furthermore, because marginal computation is needed during training, inference

must be efficient so that we can use large training sets even if there are many labels. The largest

experiment reported here required computing pairwise marginals in 866,792 different graphical

models: one for each training example in each iteration of a convex optimization algorithm. In the

remainder of the section, we describe approximate inference using loopy belief propagation (BP).

Although belief propagation is exact only in certain special cases, in practice it has been a

successful approximate method for general graphical models (Murphy et al., 1999; Aji et al., 1998).

For simplicity, we describe BP for a pairwise CRF with factors {Φ(xu,xv)}, but the algorithm can

be generalized to arbitrary factor graphs. Belief propagation algorithms iteratively update a vector

m = (mu(xv)) of messages between pairs of vertices xu and xv. The update from xu to xv is given by:

mu(xv)←∑
xu

Φ(xu,xv) ∏
xt 6=xv

mt(xu), (1)

where Φ(xu,xv) is the potential on the edge (xu,xv). Performing this update for one edge (xu,xv) in

one direction is called sending a message from xu to xv. Given a message vector m, approximate

marginals are computed as

p(xu,xv)← κΦ(xu,xv) ∏
xt 6=xv

mt(xu) ∏
xw 6=xu

mw(xv),

where κ is a normalization constant.

At each iteration of belief propagation, messages can be sent in any order, and choosing a good

schedule can affect how quickly the algorithm converges. We describe two schedules for belief

propagation: tree-based and random. The tree-based schedule, also known as tree reparameter-

ization (TRP) (Wainwright et al., 2001; Wainwright, 2002), propagates messages along a set of

cross-cutting spanning trees of the original graph. At each iteration of TRP, a spanning tree T (i) ∈ ϒ

is selected, and messages are sent in both directions along every edge in T (i), which amounts to

exact inference on T (i). In general, trees may be selected from any set ϒ = {T } as long as the trees

in ϒ cover the edge set of the original graph. In practice, we select trees randomly, but we select

first edges that have never been used in any previous iteration.

The random schedule simply sends messages across all edges in random order. To improve

convergence, we arbitrarily order each edge ei = (si, ti) and send all messages msi
(ti) before any

messages mti(si). Note that for a graph with V nodes and E edges, TRP sends O(V) messages per

BP iteration, while the random schedule sends O(E) messages.

An alternative to schedule is a synchronous schedule, in which conceptually all messages are

sent at the same time. In the tree-based and random schedules, once a message is updated, its

new values are immediately available for other messages. In the synchronous schedule, on the

other hand, when computing a message m
(j)
u (xv) at iteration j of BP, the previous message values

m
(j−1)
t (xu) are always used, even if an updated value m

(j)
t (xu) has been computed. We do not report

699

SUTTON, MCCALLUM AND ROHANIMANESH

results from the synchronous schedule in this paper, because preliminary experiments indicated that

it requires many more iterations to converge than the other schedules.

Finally, dynamic schedules for BP (Elidan et al., 2006), which depend on the current message

values during inference, have recently been shown to converge significantly faster than TRP on

sufficiently difficult graphs, and may be preferable to TRP on certain DCRFs. We do not consider

them in this paper, however.

To perform Viterbi decoding, we use the same propagation algorithms, except that the summa-

tion in Equation (1) is replaced by maximization.

3.3 Parameter Estimation in DCRFs

In this section, we discuss exact parameter estimation (Section 3.3.1) and approximate parameter

estimation using belief propagation (Section 3.3.2). Also, we introduce a novel approximate training

procedure called cascaded training (Section 3.3.3).

3.3.1 EXACT PARAMETER ESTIMATION

The parameter estimation problem is to find a set of parameters Λ = {λk} given training data D =
{x(i),y(i)}N

i=1. More specifically, we optimize the conditional log-likelihood

L(Λ) = ∑
i

log pΛ(y(i) | x(i)).

The derivative of this with respect to a parameter λk associated with clique index c is

∂L

∂λk

= ∑
i

∑
t

fk(y
(i)
t,c ,x(i), t)

−∑
i

∑
t

∑
yt,c

pΛ(yt,c | x
(i)) fk(yt,c,x

(i), t).
(2)

where y
(i)
t,c is the assignment to yt,c in y(i), and yt,c ranges over assignments to the clique c. Observe

that it is the factor pΛ(yt,c | x
(i)) that requires us to compute marginal probabilities in the unrolled

DCRF.

To reduce overfitting, we define a prior p(Λ) over parameters, and optimize log p(Λ|D) =
L(Λ)+ log p(Λ). We use a spherical Gaussian prior with mean µ = 0 and covariance matrix Σ = σ2I,

so that the gradient becomes
∂p(Λ|D)

∂λk

=
∂L

∂λk

−
λk

σ2
.

This corresponds to optimizing L(Λ) using ℓ2 regularization. Other priors are possible, for example,

an exponential prior, which corresponds to regularizing L(Λ) by an ℓ1 norm.

The function log p(Λ|D) is convex, and can be optimized by any number of techniques, as in

other maximum-entropy models (Lafferty et al., 2001; Berger et al., 1996). For example, New-

ton’s method achieves fast convergence, but requires computing the Hessian, which is expensive

both because computing the individual second derivatives is expensive, and because the Hessian

is of size K2, where K is the number of parameters. Typically in text applications, the number of

parameters can be anywhere from the tens of thousands to the millions, so that maintaining a full

K×K matrix is infeasible. Instead, we use quasi-Newton methods, which iteratively maintain an

700

DYNAMIC CONDITIONAL RANDOM FIELDS

approximation to the Hessian using only the gradient. But standard quasi-Newton methods, such as

BFGS, also approximate the Hessian by a full K×K matrix, which is too large. Therefore, we use

a limited-memory version of BFGS, called L-BFGS (Nocedal and Wright, 1999), which approxi-

mates the Hessian in such a way that the full K×K matrix is never calculated explicitly. L-BFGS

has previously been shown to outperform other optimization algorithms for linear-chain CRFs (Sha

and Pereira, 2003; Malouf, 2002; Wallach, 2002). In particular, iterative scaling algorithms such as

GIS and IIS have been shown to be much slower than gradient-based algorithms such as L-BFGS

or preconditioned conjugate gradient.

All of the methods we have described are batch methods, meaning that they examine all of the

training data before making a gradient update. Recently, stochastic gradient methods, which make

gradient updates based on small subsets of the data, have been shown to converge significantly

faster for linear-chain CRFs (Vishwanathan et al., 2006). It is likely that stochastic gradient methods

would perform similarly well for DCRFs, but we do not use them in the experiments reported here.

The discussion above was for the fully-observed case, where the training data include observed

values for all variables in the model. If some nodes are unobserved, the optimization problem

becomes more difficult, because the log likelihood is no longer convex in general. We describe this

case in Section 3.4.1.

3.3.2 APPROXIMATE PARAMETER ESTIMATION USING BP

For models in which exact inference is infeasible, we use approximate inference during training. In

Section 3.2, we discussed inference in DCRFs. In this section, we discuss additional issues that arise

when using BP during training. First, to simplify notation in this section, we will write a DCRF as

p(y|x) = Z(x)−1 ∏t ∏c ψt,c(yt,c), where each factor in the unrolled DCRF is defined as

ψt,c(yt,c) = exp

{

∑
k

λk fk(yt,c,x, t)

}

.

That is, we drop the dependence of the factors {ψt,c} on x.

For approximate parameter estimation, the basic procedure is to optimize using the gradient (2)

as described in the last section, but instead of running an exact inference algorithm on each training

example to obtain marginal distributions pΛ(yt,c | x(i)), we run BP on each training instance to

obtain approximate factor beliefs bt,c(yt,c) for each clique yt,c and approximate node beliefs bs(ys)
for each output variable s.

Now, although BP provides approximate marginal distributions that allow calculating the gra-

dient, there is still the issue of how to calculate an approximate likelihood. In particular, we need

an approximate objective function whose gradient is equal to the approximate gradient we have just

described. We use the approximate likelihood

ℓ̂(Λ;{b}) = ∑
i

log

[

∏t ∏c bt,c(y
(i)
t,c)

∏s bs(y
(i)
s)ds−1

]

, (3)

where s ranges over output variables (that is, components of y), and ds is the degree of s (that is,

the number of factors ψc,t that depend on the variable s). In other words, we approximate the joint

likelihood by the product over each clique’s approximate belief, dividing by the node beliefs to

avoid overcounting. In the remainder of this section, we justify this choice.

701

SUTTON, MCCALLUM AND ROHANIMANESH

BP can be viewed as attempting to solve an optimization problem over possible choices of

marginal distributions, for a particular cost function called the Bethe free energy. More techni-

cally, it has been shown that fixed points of BP are stationary points of the Bethe free energy (for

more details, see Yedidia et al., 2005), when minimized over locally-consistent beliefs. The Bethe

energy is an approximation to another cost function, which Yedidia et al. call the Helmholtz free

energy. Since the minimum Helmhotlz energy is exactly − logZ(x), we approximate − logZ(x) by

the minimizing value of the Bethe energy, that is:

ℓBETHE(Λ) = ∑
i

∑
t

∑
c

logψt,c(yt,c)+∑
i

min
{b}

FBETHE(b), (4)

where FBETHE is the Bethe free energy, which is defined as

FBETHE(b) = ∑
t

∑
c

∑
yt,c

bt,c(yt,c) log
bt,c(yt,c)

ψt,c(yt,c)
−∑

s

(ds−1)∑
xs

bs(ys) logbs(ys).

So approximate training with BP can be viewed as solving a saddlepoint problem of maximizing

ℓBETHE with respect to the model parameters and minimizing with respect to the beliefs bt,c(yt,c).
Approximate training using BP is just coordinate ascent: BP optimizes ℓBETHE with respect to b for

fixed Λ; and a step along the gradient (2) optimizes ℓBETHE with respect to Λ for fixed b. Taking

the partial derivative of (4) with respect to a weight λk, we obtain the gradient (2) with marginal

distributions replaced by beliefs, as desired.

To justify the approximate likelihood (3), we note that the Bethe free energy can be written a

dual form, in which the variables are interpreted as log messages rather than beliefs. Details of this

are presented by Minka (2001a, 2005). Substituting the Bethe dual problem into (4) and simplifying

yields (3).

3.3.3 CASCADED PARAMETER ESTIMATION

Joint maximum likelihood training assumes that we have access to data in which we have observed

all of the variables. Sometimes this is not the case. One example is transfer learning, which is

the general problem of using previous learning problems that a system has seen to aid its learning

of new, related tasks. Usually in transfer learning, we have one data set labeled with the old task

variables and one with the new task variables, but no data that is jointly labeled. In this section, we

describe a cascaded parameter estimation procedure that can be applied when the data is not fully

labeled.

For a factorial CRF with N levels, the basic idea is to train each level separately as if it were a

linear-chain CRF, using the single-best prediction of the previous level as a feature. At the end, each

set of individually-trained weights defines a pair of factors, which are simply multiplied together

to form the full FCRF. The cascaded procedure is described formally in Algorithm 1. In this de-

scription, the two clique indices for each level ℓ of the FCRF are denoted by cW

ℓ for the within-level

cliques, with features f W

ℓ,k(y
ℓ
t ,y

ℓ
t+1,x, t) and weights ΛW

ℓ ; and another index cP

ℓ for the between-level

cliques, with features f P

ℓ,k(y
ℓ
t ,y

ℓ−1
t ,x, t) and weights ΛP

ℓ.

For simplicity, we have presented cascaded training for factorial CRFs, but it can be generalized

to other DCRF structures, as long as the DCRF templates can be partitioned in a way that respects

the available labels. In Section 4.4, we evaluate cascaded training on a transfer learning problem.

702

DYNAMIC CONDITIONAL RANDOM FIELDS

Algorithm 1 Cascaded training for Factorial CRFs

1: Train a linear-chain CRF on log p(y0|x), yielding weights ΛW

0 .

2: for all levels ℓ do

3: Compute Viterbi labeling y∗ℓ−1 = argmaxyℓ−1
p(yℓ−1|y

∗
ℓ−2,x) for each training instance i.

4: Train a linear-chain CRF to maximize log p(yℓ|y
∗
ℓ−1,x), yielding weights ΛW

ℓ and ΛP

ℓ.

5: end for

6: return factorial CRF defined as

p(y|x) ∝
N

∏
ℓ=0

T

∏
t=1

ΨW(yℓ
t ,y

ℓ
t+1,x, t)ΨP(yℓ

t ,y
ℓ−1
t ,x, t)

where

ΨW(yℓ
t ,y

ℓ
t+1,x, t) = exp{∑

k

λW

k,ℓ f W

ℓ,k(y
ℓ
t ,y

ℓ
t+1,x, t)},

ΨP(yℓ
t ,y

ℓ−1
t ,x, t) = exp{∑

k

λP

k,ℓ f P

ℓ,k(y
ℓ
t ,y

ℓ−1
t ,x, t)}.

t T

. . .

. . .NP

POS

t−1 t t+1 T

t−1 t+1

t+1t−1 Tt

X X X X

y y y y

w w ww

Figure 3: Graphical representation of factorial CRF for the joint noun phrase chunking and part-

of-speech tagging problem, where the chain y represents the NP labels, and the chain w

represents the POS labels.

3.4 Marginal DCRFs

In some applications, we are primarily interested in a few main variables, and other auxiliary vari-

ables are included in the model simply to aid in predicting the main variables. For example, in the

chunking model of Section 4.1, the task is to predict the boundaries of noun phrases, and we are

interested in predicting part-of-speech tags only insofar as they help to do this. In such applications,

training by maximizing the joint likelihood might be inappropriate, because it might be forced to

trade off modeling the main variables against modeling the other variables. This motivates the fol-

lowing idea: rather than modeling all of the variables jointly given the input, we can model the

main variables only, marginalizing out the auxiliary variables. The idea is to let the model focus

its effort on modeling the main variables, while retaining the useful information from the other

variables. In this section, we discuss this model class, which we call the marginal DCRF. First, in

Section 3.4.1, we define the model class and describe maximum likelihood parameter estimation.

Then, in Section 3.4.2, we discuss inference in marginal DCRFs.

703

SUTTON, MCCALLUM AND ROHANIMANESH

3.4.1 MARGINAL DCRFS, AND PARAMETER ESTIMATION

First, we define the marginal DCRF model.

Definition 2 A distribution p is a marginal DCRF over random vectors (y,w) given inputs x if it

can be written as:

pΛ(y|x) = ∑
w

pΛ(y,w|x),

where pΛ(y,w|x) is a DCRF.

Parameter estimation proceeds by optimizing the log likelihood

L(Λ) = ∑
i

log pΛ(y(i)|x(i)) = ∑
i

log∑
w

pΛ(y(i),w|x(i)). (5)

Intuitively, this objective function concentrates on the conditional likelihood over the variables

y, possibly sacrificing accuracy on the variables w. Indeed, this objective function ignores any

observations of w in the training set. We can take these observations into account in some partial

way by careful choice of initialization, as we describe in Section 4.3.

The derivative of (5) with respect to a parameter λk associated with a clique index c is:

∂L(Λ)

∂λk

=∑
i

∑
t

∑
w̃t,c

p(w̃t,c|y
(i),x(i)) fk(y

(i)
t,c, w̃t,c,x

(i)
t,c)−

∑
i

∑
t

∑
ỹt,c,w̃t,c

p(ỹt,c, w̃t,c|x
(i)) fk(ỹt,c, w̃t,c,x

(i)), (6)

where y
(i)
t,c is the subset of the training vector y(i) that occurs in clique c instantiated at time t; the

summation over ỹt,c ranges over all assignments to clique c; and wt,c and w̃t,c are defined similarly.

Also, to reduce overfitting, we include a prior on parameters, as in Section 3.3.

Another way to understand the gradient is as follows. For any function f (λ), we have

∂ f

∂λ
= f (λ)

∂ log f

∂λ
,

which can be seen by applying the chain rule to log f and rearranging. Applying this to the marginal

likelihood ℓ(Λ) = log∑w p(y,w|x), we get

∂ℓ

∂λk

=
1

∑w p(y,w|x) ∑
w

∂

∂λk

[

p(y,w|x)
]

=
1

p(y|x) ∑
w

p(y,w|x)
∂

∂λk

[

log p(y,w|x)
]

= ∑
w

p(w|y,x)
∂

∂λk

[

log p(y,w|x)
]

,

which is the expectation of the fully-observed gradient over all the unobserved variables. Substitut-

ing the expression (2) for the fully-observed gradient yields (6).

The marginal likelihood (5) can be maximized numerically using standard techniques. In the ex-

periments below, we use a quasi-Newton method, just as we do in the fully-observed case, but other

704

DYNAMIC CONDITIONAL RANDOM FIELDS

. . .

. . .NP

POS

t−1 t t+1 T

t−1

t−1
X t t+1 T

t+1t T

XX X

y y y y

w w w w

Figure 4: Graphical representation of factorial CRF for the joint noun phrase chunking and part

of speech labeling problem, demonstrating the process for computing the probability

p(w|y(i),x(i)).

optimization algorithms can be used, such as expectation maximization and its variants. Unfortu-

nately, unlike the fully-observed case, the penalized likelihood for marginal DCRFs is not convex

in general. Thus standard optimization techniques are guaranteed to find only a local maximum, the

quality of which depends on where in parameter space the optimizer is initialized. In Section 4.3,

we evaluate an approach for finding a good starting point.

3.4.2 INFERENCE IN MARGINAL DCRFS

In this section, we discuss how to compute the model probabilities required by the marginal DCRF

gradient. The solutions are very similar to those for DCRFs. The gradient in Equation (6) requires

computing two kinds of marginal probabilities. First, the marginal probabilities p(ỹt,c, w̃t,c|x
(i)) in

the second term can be computed by standard inference algorithms, just as in Section 3.2. Second,

the other kind of marginal probabilities are of the form p(w̃t,c|y
(i),x(i)), used in the first term on

the right hand side of Equation (6). We do this by performing inference in a clamped model, in

which y is fixed to its observed values (shown in Figure 4). More specifically, to form the clamped

model for a training instance {x(i),y(i),w(i)}, we instantiate yt nodes (nodes associated with the

noun phrase labels) from y(i). This eliminates the edges that are solely between yt nodes, and hence

p(w|y(i),x(i)) can be computed efficiently using any inference algorithm. Finally, to compute the

actual likelihood (5), we can pick an arbitrary assignment w′ and compute the likelihood p(y|x) =
p(y,w′|x)/p(w′|y,x).

For decoding in marginal DCRFs, we wish to find the most likely label sequence for only the y

variables, that is:

y∗ = argmax
y

p(y|x)

= argmax
y

∑
w

p(y,w|x).
(7)

To solve this maximization problem, we present an approximate algorithm that is a mixture of

the max-product and sum-product BP algorithms. Basically, nodes that are marginalized out (in our

example, nodes associated with the POS labels) send sum-product messages, and nodes that are not

marginalized out (in our example, nodes associated with the NP labels) send max-product messages.

These updates are summarized in Algorithm 2.

705

SUTTON, MCCALLUM AND ROHANIMANESH

Algorithm 2 MAP algorithm for marginal FCRF

1 If u is a marginalized node, perform: mu(xv)← ∑xu
{Φ(xu,xv)∏xt 6=xv

mt(xu)}.
2 If u is not a marginalized node, perform: mu(xv)←maxxu

{Φ(xu,xv)∏xt 6=xv
mt(xu)}.

3 For all nodes perform: p(xu,xv)← κΦ(xu,xv)∏xt 6=xv
mt(xu)∏xw 6=xu

mw(xv).

200 300 400 500 600 700 800 900

8
4

8
6

8
8

9
0

Number of training instances

F
1

 o
n

 N
P

 c
h

u
n

k
s

FCRF

CRF+CRF

Figure 5: Performance of FCRFs and cascaded approaches on noun-phrase chunking, averaged

over five repetitions. The error bars on FCRF and CRF+CRF indicate the range of the

repetitions.

Finally, an important point is that part of the reason that the marginal maximization in (7) is

possible in our setting is because of our choice of w. In the application considered here, w is a

single chain of a two-chain FCRF, so that the marginal p(y|x) is likewise the marginal of a single

chain, which can be approximated by BP in a natural way. In a more difficult case—for example,

if the variables y are disconnected, spread throughout the model, and highly correlated—further

approximation would be necessary.

4. Experiments

We present experiments comparing factorial CRFs to other approaches on noun-phrase chunking

(Sang and Buchholz, 2000). Also, we compare different schedules of loopy belief propagation in

factorial CRFs.

4.1 FCRFs for Noun-Phrase Chunking

Automatically finding the base noun phrases in a sentence can be viewed as a sequence labeling

task by labeling each word as either BEGIN-PHRASE, INSIDE-PHRASE, or OTHER (Ramshaw and

706

DYNAMIC CONDITIONAL RANDOM FIELDS

Size CRF+CRF Brill+CRF FCRF

223 86.23 93.12

447 90.44 95.43

POS accuracy 670 92.33 N/A 96.34

894 93.56 96.85

2234 96.18 97.87

8936 98.28 98.92

223 81.92 89.19

447 86.58 91.85

Joint accuracy 670 88.68 N/A 92.86

894 90.06 93.60

2234 93.00 94.90

8936 95.56 96.48

223 83.84 86.02 86.03

447 86.87 88.56 88.59

NP F1 670 88.19 89.65 89.64

894 89.21 90.31 90.55

2234 91.07 91.90 92.02

8936 93.10 93.33 93.87

Table 1: Comparison of performance of cascaded models and FCRFs on simultaneous noun-phrase

chunking and POS tagging. The column Size lists the number of sentences used in training.

The row CRF+CRF lists results from cascaded CRFs, and Brill+CRF lists results from a

linear-chain CRF given POS tags from the Brill tagger. The FCRF always outperforms

CRF+CRF, and given sufficient training data outperforms Brill+CRF. With small amounts

of training data, Brill+CRF and the FCRF perform comparably, but the Brill tagger was

trained on over 40,000 sentences, including some in the CoNLL 2000 test set.

Marcus, 1995). The task is typically performed by an initial pass of part-of-speech tagging, but then

it can be difficult to recover from errors by the tagger. In this section, we address this problem by

performing part-of-speech tagging and noun-phrase segmentation jointly in a single factorial CRF.

Our data comes from the CoNLL 2000 shared task (Sang and Buchholz, 2000), and consists

of sentences from the Wall Street Journal annotated by the Penn Treebank project (Marcus et al.,

1993). We consider each sentence to be a training instance, with single words as tokens. The data

are divided into a standard training set of 8936 sentences and a test set of 2012 sentences. There are

45 different POS labels, and the three NP labels.2

We compare a factorial CRF to two cascaded approaches, which we call CRF+CRF and Brill+

CRF. CRF+CRF uses one linear-chain CRF to predict POS labels, and another linear-chain CRF

to predict NP labels, using as a feature the Viterbi POS labeling from the first CRF. Brill+CRF

predicts NP labels using the POS labels provided from the Brill tagger, which we expect to be more

accurate than those from our CRF, because the Brill tagger was trained on over four times more

data, including sentences from the CoNLL 2000 test set.

The factorial CRF uses the graph structure in Figure 1(b), with one chain modeling the part-of-

speech process and the other modeling the noun-phrase process. We use L-BFGS to optimize the

2. The source code used for this experiment is available at http://mallet.cs.umass.edu/index.php/GRMM.

707

SUTTON, MCCALLUM AND ROHANIMANESH

wt−δ = w

wt matches [A-Z][a-z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt matches .*[0-9].*

wt appears in list of first names,

last names, company names, days,

months, or geographic entities

wt is contained in a lexicon of words

with POS T (from Brill tagger)

Tt = T

qk(x, t +δ) for all k and δ ∈ [−3,3]

Table 2: Input features qk(x, t) for the CoNLL data. In the above wt is the word at position t, Tt is

the POS tag at position t, w ranges over all words in the training data, and T ranges over

all part-of-speech tags.

posterior p(Λ|D), and TRP to compute the marginal probabilities required by ∂L/∂λk. Based on

past experience with linear-chain CRFs, we use the prior variance σ2 = 10 for all models.

We factorize our features as fk(yt,c,x, t) = pk(yt,c)qk(x, t) where pk(yt,c) is a binary function on

the assignment, and qk(x, t) is a function solely of the input string. Table 2 shows the features we

use. All three approaches use the same features, with the obvious exception that the FCRF and the

first stage of CRF+CRF do not use the POS features Tt = T .

Performance on noun-phrase chunking is summarized in Table 1. As usual, we measure per-

formance on chunking by precision, the percentage of returned phrases that are correct; recall, the

percentage of correct phrases that were returned; and their harmonic mean F1. In addition, we also

report accuracy on POS labels,3 and joint accuracy on (POS, NP) pairs. Joint accuracy is simply the

number of sequence positions for which all labels were correct.

Each row in Table 1 is the average of five different random subsets of the training data, except

for row 8936, which is run on the single official CoNLL training set. All conditions used the same

2012 sentences in the official test set.

On the full training set, FCRFs perform better on NP chunking than either of the cascaded

approaches, including Brill+POS. The Brill tagger (Brill, 1994) is an established part-of-speech

tagger whose training set is not only over four times bigger than the CoNLL 2000 data set, but

also includes the WSJ corpus from which the CoNLL 2000 test set was derived. The Brill tagger

is 97% accurate on the CoNLL data. Also, note that the FCRF—which predicts both noun-phrase

boundaries and POS—is more accurate than a linear-chain CRF which predicts only part of speech.

Our explanation for this is that the NP chain captures long-run dependencies among the POS labels.

The POS-only accuracy is listed under CRF+CRF in Table 1.

3. To simulate the effects of a cascaded architecture, the POS labels in the CoNLL-2000 training and test sets were

automatically generated by the Brill tagger. Thus, POS accuracy measures agreement with the Brill tagger, not

agreement with human judgements.

708

DYNAMIC CONDITIONAL RANDOM FIELDS

Method Time (hr) NP F1 LBFGS iter

µ s µ s µ

Random (3) 15.67 2.90 88.57 0.54 63.6

Tree (3) 13.85 11.6 88.02 0.55 32.6

Tree (∞) 13.57 3.03 88.67 0.57 65.8

Random (∞) 13.25 1.51 88.60 0.53 76.0

Exact 20.49 1.97 88.63 0.53 73.6

Table 3: Comparison of F1 performance on the chunking task by inference algorithm. The columns

labeled µ give the mean over five repetitions, and s the sample standard deviation. Ap-

proximate inference methods have labeling accuracy very similar to exact inference with

lower total training time. The differences in training time between Tree (∞) and Ex-

act and between Random (∞) and Exact are statistically significant by a paired t-test

(d f = 4; p < 0.005).

On smaller training subsets, the FCRF outperforms CRF+CRF and performs comparably to

Brill+CRF. For all the training subset sizes, the difference between CRF+CRF and the FCRF is

statistically significant by a two-sample t-test (p < 0.002). In fact, there was no subset of the data on

which CRF+CRF performed better than the FCRF. The variation over the randomly selected training

subsets is small—the standard deviation over the five repetitions has mean 0.39—indicating that the

observed improvement is not due to chance. Performance and variance on noun-phrase chunking is

shown in Figure 5.

On this data set, several systems are statistically tied for best performance. Kudo and Matsumoto

(2001) report an F1 of 94.39 using a combination of voting support vector machines. Sha and

Pereira (2003) give a linear-chain CRF that achieves an F1 of 94.38, using a second-order Markov

assumption, and including bigram and trigram POS tags as features. An FCRF imposes a first-order

Markov assumption over labels, and represents dependencies only between cotemporal POS and

NP label, not POS bigrams or trigrams. Thus, Sha and Pereira’s results suggest that more richly-

structured DCRFs could achieve better performance than an FCRF.

Other DCRF structures can be applied to many different language tasks, including informa-

tion extraction. Peshkin and Pfeffer (2003) apply a generative DBN to extraction from seminar

announcements (Frietag and McCallum, 1999), attaining improved results, especially in extracting

locations and speakers, by adding a factor to remember the identity of the last non-background label.

4.2 Comparison of Inference Algorithms

Because DCRFs can have rich graphical structure, and require many marginal computations during

training, inference is critical to efficient training with many labels and large data sets. In this section,

we compare different inference methods both on training time and labeling accuracy of the final

model.

Because exact inference is feasible for a two-chain FCRF, this provides a good case to test

whether the final classification accuracy suffers when approximate methods are used to calculate

the gradient. Also, we can compare different methods for approximate inference with respect to

speed and accuracy.

709

SUTTON, MCCALLUM AND ROHANIMANESH

We train factorial CRFs on the noun-phrase chunking task described in the last section. We

compute the gradient using exact inference and approximate belief propagation using both random

and tree-based schedules, as described in Section 3.2. Algorithms are considered to have converged

when no message changes by more than 10−3. In these experiments, we observe that the approxi-

mate BP algorithms always converge, although this is not guaranteed in general. We train on five

random subsets of 5% of the training data, and the same five subsets are used in each condition. All

experiments were performed on a 2.8 GHz Intel Xeon with 4 GB of memory.

In an attempt to reduce the training time, we also examine early stopping of BP. For each

message-passing schedule, we compare terminating belief propagation on convergence (Random(∞)

and Tree(∞) in Table 3), to terminating after three iterations (Random (3) and Tree (3)). In all cases,

we run BFGS to convergence. To be clear, training as a whole is a two-loop process: in the outer

loop, BFGS updates the parameters to increase the likelihood, and in the inner loop, belief prop-

agation passes messages to compute beliefs which are used to approximate the gradient. In these

experiments, we examine early stopping in the inner loop, not the outer loop.

Thus, early-stopping of BP need not lead to faster training time overall. Of course each call

the inner loop of training becomes faster with early stopping. However, early stopping of BP can

interact badly with the outer loop, because it makes the gradients less accurate. If the gradient is

too inaccurate, then the outer loop will require many more iterations, resulting in greater training

time overall, even though the time per gradient computation is lower. Another hazard is that no

maximizing step may be possible along the approximate gradient, even if one is possible along the

true gradient. When that happens, the gradient descent algorithm terminates prematurely, leading to

decreased performance.

Table 3 shows the average F1 score and total training times of DCRFs trained by the different

inference methods. Unexpectedly, letting the belief propagation algorithms run to convergence led

to lower training time than the early cutoff. For example, even though Random(3) averaged 427

sec per gradient computation compared to 571 sec for Random(∞), Random(∞) took less total time

to train, because Random(∞) needed an average of 83.6 gradient computations per training run,

compared to 133.2 for Random(3).

As for final classification performance, the various approximate methods and exact inference

perform similarly, except that Tree(3) has lower final performance because maximization ended

prematurely, averaging only 32.6 maximizer iterations. The variance in F1 over the subsets, al-

though not large, is much larger than the F1 difference between the inference algorithms.

Previous work (Wainwright, 2002) has shown that TRP converges faster than synchronous be-

lief propagation, that is, with Jacobi updates. Both the schedules discussed in Section 3.2 use

asynchronous Gauss-Seidel updates. We emphasize that the graphical models in these experiments

are always pairs of coupled chains. On more complicated models, or with a different choice of span-

ning trees, tree-based updates could outperform random asynchronous updates. Also, in complex

models, the difference in classification accuracy between exact and approximate inference could be

larger, but then exact inference is likely to be intractable.

In summary, we draw three conclusions about belief propagation on this particular model. First,

using approximate inference instead of exact inference leads to lower overall training time with no

loss in accuracy. Indeed, the two-level FCRFs that we consider here appear to have been particularly

easy cases for BP, because we observed little difficulty with convergence. Second, there is little dif-

ference between a random tree schedule and a completely random schedule for belief propagation.

710

DYNAMIC CONDITIONAL RANDOM FIELDS

Initial model Precision Recall Accuracy F1

Joint FCRF Random 0.431 0.420 0.710 0.425

Random 0.470 0.430 0.730 0.450

1-Joint 0.470 0.430 0.730 0.450

5-Joint 0.460 0.418 0.726 0.440

10-Joint 0.460 0.418 0.730 0.440

Marginal FCRF 15-Joint 0.454 0.415 0.725 0.434

20-Joint 0.460 0.423 0.730 0.440

25-Joint 0.453 0.408 0.725 0.430

Final-Joint 0.477 0.404 0.723 0.437

Table 4: NP chunking results comparing marginal FCRF and jointly trained FCRF performance

using a data set consisting of 21 training instances and 195 testing instances.

Third, running belief propagation to convergence leads both to increased classification accuracy and

lower overall training time than an early cutoff.

4.3 Experiments with Marginal FCRFs

In this section we apply marginal DCRFs (Section 3.4) to the CoNLL 2000 shared task data set

(Sang and Buchholz, 2000), and to synthetic data.

4.3.1 NOUN-PHRASE CHUNKING

In Section 4.1 we presented experiments using FCRFs for the noun-phrase segmentation problem.

In this section we apply marginal FCRFs to the same problem, where we wish to predict the noun-

phrase labels and marginalize out the part-of-speech labels.

Because the marginal likelihood is not a convex function of the model parameters, our choice

of initialization can affect the quality of the learned model. In order to partly capture the usefulness

of the part-of-speech labels in the data, we initialize the marginal FCRF from a joint FCRF at

some intermediate stages of training. We train an FCRF using the joint likelihood from a random

initialization, saving the model parameters after each iteration of BFGS. Then we use each of those

saved parameter settings as an initialization for marginal training; we call this n-joint initialization,

where n is the number of BFGS steps on the joint likelihood used for the initializer. We compare

this to initializing from a fully-trained joint FCRF (Final-Joint) and and to initializing from random

parameters. We use two different-sized subsets of the CoNLL 2000 data. The first subset contains

21 training instances and 195 testing instances (Table 4). The second contains 447 training instances

and 2012 testing instances (Table 5).

Based on the results shown in Tables 4 and 5, the best performance using the small data set

is attained when the marginal FCRF is trained by the joint FCRF model trained for 1 iterations

which improves the F1 by 0.5%. The best performance using the large data set is attained when

the marginal FCRF is trained by the joint FCRF model trained for 90 iterations which improves

the F1 by 0.3%. The difference between the marginal FCRF and the joint FCRF is not statistically

significant, however.

711

SUTTON, MCCALLUM AND ROHANIMANESH

Initial model Precision Recall Accuracy F1

Joint FCRF Random 0.819 0.803 0.913 0.811

Random 0.814 0.800 0.910 0.806

1-Joint 0.810 0.800 0.910 0.810

5-Joint 0.810 0.800 0.909 0.806

20-Joint 0.810 0.782 0.907 0.795

30-Joint 0.820 0.791 0.908 0.804

Marginal FCRF 50-Joint 0.820 0.800 0.913 0.808

70-Joint 0.820 0.800 0.913 0.810

80-Joint 0.827 0.800 0.920 0.813

90-Joint 0.827 0.800 0.920 0.814

Final-Joint 0.825 0.797 0.913 0.811

Table 5: NP chunking results comparing marginal FCRF and jointly trained FCRF performance

using a data set consisting of 447 training instances and 2012 testing instances.

t−1

t−1X

W

Y

Xt

t

t−1 t

w

y

w

y

Figure 6: Graphical representation of the DBN used for generating synthetic data.

4.3.2 SYNTHETIC DATA

In this section we discuss a set of experiments with synthetic data that further highlights the dif-

ferences between joint and marginal DCRFs. In this set of experiments we generate synthetic data

using randomly chosen generative models that all share the graphical structure shown in Figure 6.

All variables take on discrete values from a finite domain of cardinality five. The parameters (hor-

izontal and vertical transition probability matrices, and also the observation model) are randomly

selected from a uniform Dirichlet distribution with parameter µ = 0.5. We then sample each model

to generate a set of 200 training sequences and 400 testing sequences, each of length 20.

For each synthetic training set, we train both a joint FCRF with the graphical structure shown

in Figure 3 and a marginal FCRF initialized by the final parameters of the joint FCRF. Figure 7

compares the accuracy of the marginal FCRFs to the joint FCRFs over the different training and test

sets. It can be observed when the joint FCRF performs poorly, then the marginal FCRF on average

performs better. In some cases the prediction accuracy of the marginal FCRF is significantly better

than the prediction accuracy of the joint FCRF.

712

DYNAMIC CONDITIONAL RANDOM FIELDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
a

rg
in

a
l
A

c
c
u

ra
c
y

Joint Accuracy

Figure 7: Accuracy of the marginal FCRF versus accuracy of the joint FCRF over the factor Y.

Each point represents a training and testing set generated from a different randomly-

selected generative model with structure shown in Figure 6.

If the joint FCRF performs well, however, the marginal FCRF tends to yield the same prediction

accuracy. We conjecture that when we have learned a good joint FCRF model given a set of training

sequences, the marginally trained FCRF initialized by the joint FCRF does not offer improvement

in accuracy. However, when the joint FCRF performs poorly, we can train a marginal FCRF that is

likely to outperform the joint FCRF.

In order to further study this phenomenon, we measure the entropy of the model distribution,

the idea being that when the model is very accurate, it has little uncertainty over the latent variables,

so modeling the marginal directly is unlikely to make a difference. To measure the uncertainty over

output labels, we use a per-timestep entropy measure, that is, ∑i ∑t H(p(yt |x
(i))), where as before i

ranges over test instances, and t over sequence positions. Figure 8 shows the plot of the accuracy of

the joint FCRF versus its per-timestep entropy. As the per-timestep entropy of the model increases,

the accuracy decreases. This suggests that the per-timestep entropy can serve as a surrogate measure

to decide which problems are most appropriate for marginal training.

Figure 9 plots the ratio of the the marginal FCRF accuracy to the joint FCRF accuracy, as a

function of the per-timestep entropy of the joint FCRF. We observe that for joint FCRF models

with a smaller entropy measure, this ratio is close to one which means that both joint FCRF and

marginal FCRF perform almost the same. However, for joint FCRF models with high entropy,

this ratio increases on average, meaning that the marginal FCRF is outperforming the joint FCRF.

This suggests that the per-timestep entropy of the jointly trained model provides some indication of

whether marginal training may be expected to improve performance.

713

SUTTON, MCCALLUM AND ROHANIMANESH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

J
o
in

t
A

c
c
u
ra

c
y

Mean Entropy

Figure 8: Accuracy of the joint FCRF as a function of the mean per-timestep entropy,

E(H(p(yt |x))), averaged over all time steps t, and all testing sequences x(i), of the joint

FCRF.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2

M
a
rg

in
a
l
A

c
c
u
ra

c
y
 /
 J

o
in

t
A

c
c
u
ra

c
y

Mean Entropy

Figure 9: Ratio of the accuracy of the marginal FCRF accuracy to the the joint FCRF accuracy, as

a function of the mean per-timestep entropy of the joint FCRF.

4.4 Cascaded Training for Transfer Learning

In this section, we consider an application of DCRFs to transfer learning, both as an additional

application of DCRFs, and as an evaluation of the cascaded training procedure described in Sec-

tion 3.3.3. The task is to extract the details of an academic seminar—including its starting time,

ending time, location, and speaker—from an email announcement. The data is a collection of 485

e-mail messages announcing seminars at Carnegie Mellon University, gathered by Freitag (1998),

and has been the subject of much previous work using a wide variety of learning methods. Despite

all this work, however, the best reported systems have precision and recall on speaker names and lo-

cations of only about 75%—too low to use in a practical system. This task is so challenging because

714

DYNAMIC CONDITIONAL RANDOM FIELDS

wt = w

wt matches [A-Z][a-z]+

wt matches [A-Z][A-Z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt appears in list of first names,

last names, honorifics, etc.

wt appears to be part of a time followed by a dash

wt appears to be part of a time preceded by a dash

wt appears to be part of a date

Tt = T

qk(x, t +δ) for all k and δ ∈ [−4,4]

Table 6: Input features qk(x, t) for the seminars data. In the above wt is the word at position t, Tt

is the POS tag at position t, w ranges over all words in the training data, and T ranges

over all Penn Treebank part-of-speech tags. The “appears to be” features are based on

hand-designed regular expressions that can span several tokens.

System stime etime location speaker overall

WHISK Soderland (1999) 92.6 86.1 66.6 18.3 65.9

SRV Freitag (1998) 98.5 77.9 72.7 56.3 76.4

HMM Frietag and McCallum (1999) 98.5 62.1 78.6 76.6 78.9

RAPIER Califf and Mooney (1999) 95.9 94.6 73.4 53.1 79.3

SNOW-IE Roth and Wen-tau Yih (2001) 99.6 96.3 75.2 73.8 86.2

(LP)2 Ciravegna (2001) 99.0 95.5 75.0 77.6 86.8

CRF (no transfer) This paper 99.1 97.3 81.0 73.7 87.8

FCRF (cascaded) This paper 99.2 96.0 84.3 74.2 88.4

FCRF (joint) This paper 99.1 96.0 85.3 76.3 89.2

Table 7: Comparison of F1 performance on the seminars data. Joint decoding performs significantly

better than cascaded decoding. The overall column is the mean of the other four. (This

table was adapted from Peshkin and Pfeffer (2003).)

the messages are written by many different people, who each have different ways of presenting the

announcement information.

Because the task includes finding locations and person names, the output of a named-entity

tagger is a useful feature. It is not a perfectly indicative feature, however, because many other

kinds of person names appear in seminar announcements—for example, names of faculty hosts,

departmental secretaries, and sponsors of lecture series. For example, the token Host: indicates

strongly that what follows is a person name, but that person is not the seminar’s speaker.

Even so, named-entity predictions do improve performance on this task. Therefore, we wish

to do transfer learning from the named-entity task to the seminar announcement task. We do not

have data that is labeled for both named-entity and seminar fields, so we use the cascaded training

715

SUTTON, MCCALLUM AND ROHANIMANESH

Figure 10: Learning curves for the seminars data set on the speaker field, averaged over 10-fold

cross validation. Joint training performs equivalently to cascaded decoding with 25%

more data.

procedure in Section 3.3.3. We are interested in two comparisons: (a) between the FCRF trained

to incorporate transfer and a comparable linear-chain CRF, and (b) at test time, between cascaded

decoding or joint decoding. By cascaded decoding, we mean an analogous procedure to cascaded

training, in which the maximum-value assignment to the first level of the DCRF is computed without

reference to the second level, then this assignment is clamped and decoding proceeds in the second

level only. By joint decoding, we mean standard max-product inference in the full FCRF. We might

expect joint decoding to perform better because of helpful feedback between the tasks: Information

from the seminar-field predictions can improve named-entity predictions, which in turn improve the

seminar-field predictions.

We use the predictions from a CRF named-entity tagger that we train on the standard CoNLL

2003 English data set. The CoNLL 2003 data set consists of newswire articles from Reuters labeled

as either people, locations, organizations, or miscellaneous entities. It is much larger than the semi-

nar announcements data set. While the named-entity data contains 203,621 tokens for training, the

seminar announcements data set contains only slightly over 60,000 training tokens.

Previous work on the seminars data has used a one-field-per-document evaluation. That is, for

each field, the CRF selects a single field value from its Viterbi path, and this extraction is counted as

correct if it exactly matches any of the true field mentions in the document. We compute precision

and recall following this convention, and report their harmonic mean F1. As in the previous work,

we use 10-fold cross validation with a 50/50 training/test split. We use a spherical Gaussian prior

on parameters with variance σ2 = 0.5.

We evaluate whether joint decoding with cascaded training performs better than cascaded train-

ing and decoding. Table 7 compares cascaded and joint decoding for CRFs with other previous

results from the literature.4 The features we use are listed in Table 6. Although previous work has

4. We omit one relevant paper (Peshkin and Pfeffer, 2003) because its evaluation method differs from all the other

previous work.

716

DYNAMIC CONDITIONAL RANDOM FIELDS

used very different feature sets from ours, all of our models use exactly the same features, including

the no-transfer CRF baseline.

On the most challenging fields, location and speaker, cascaded transfer is more accurate than

no transfer at all, and joint decoding is more accurate than cascaded decoding. In particular, for

speaker, we see an error reduction of 8% by using joint decoding over cascaded. The difference

in F1 between cascaded and joint decoding is statistically significant for speaker (paired t-test; p

= 0.017) but only marginally significant for location (p = 0.067). Our results are competitive with

previous work; for example, on location, the CRF is more accurate than any of the existing systems,

and the CRF has the highest overall performance, that is, averaged over all fields, than the previously

reported systems.

Figure 10 shows the difference in performance between joint and cascaded decoding as a func-

tion of training set size. Cascaded decoding with the full training set of 242 emails performs equiv-

alently to joint decoding on only 181 training instances, a 25% reduction in the training set.

Examining the trained models, we can observe errors made by the general-purpose named entity

tagger, and how they can be corrected by considering the seminars labels. In newswire text, long

runs of capitalized words are rare, often indicating the name of an entity. In email announcements,

runs of capitalized words are common in formatted text blocks like:

Location: Baker Hall

Host: Michael Erdmann

In this type of situation, the general named entity tagger often mistakes Host: for the name of an

entity, especially because the word preceding Host is also capitalized. On one of the cross-validated

testing sets, of 80 occurrences of the word Host:, the named-entity tagger labels 52 as some kind of

entity. When joint decoding is used, however, only 20 occurrences are labeled as entities. Recall that

in both of these settings, training is performed in exactly the same way; the only difference is that

joint decoding takes into account information about the seminar labels when choosing named-entity

labels. This is an example of how domain-specific information from the main task can improve

performance on a more standard, general-purpose subtask.

5. Related Work

Since the original work on conditional random fields (Lafferty et al., 2001), there has been much

interest in training discriminative models with more general graphical structures. One of the first

such applications was relational Markov networks (Taskar et al., 2002), which were first applied to

collective classification of Web pages. There has also been interest in grid-structured loopy CRFs

for computer vision (He et al., 2004; Kumar and Hebert, 2003), in which jointly-trained Markov

random fields are a classical technique. Another type of structured problem which has seen some

attention in the literature is discriminative learning of distributions over context-free parse trees, in

which training has done done using max-margin methods (Taskar et al., 2004b; McDonald et al.,

2005) and perceptron-like methods (Viola and Narasimhan, 2005).

The marginal DCRF is an example of a CRF with latent variables, a model class that has received

some recent attention. Recent examples of latent variable CRFs include Quattoni et al. (2005), in

which the latent variables label parts of an object in an image, and McCallum et al. (2005), in which

the latent structure is an alignment of two sequences. The training techniques described here here

can be applied more generally to latent-variable CRFs. Alternatively, latent-variable CRFs can be

717

SUTTON, MCCALLUM AND ROHANIMANESH

trained using EM (McCallum et al., 2005), which is described in general in Sutton and McCallum

(2006). Latent-variable CRFs are closely related to neural networks, and many training techniques

from that literature can be applied here.

Currently, the most popular alternative approaches to training structured discriminative models

are maximum-margin training (Taskar et al., 2004a; Altun et al., 2003), and perceptron training

(Collins, 2002), which has been especially popular in NLP because of its ease of implementation.

The factorial CRF that we present here should not be confused with the factorial Markov random

fields that have been proposed in the computer vision community (Kim and Zabih, 2002). In that

model, each of the factors is a grid, rather than a chain, and they interact through a directed model,

as in a factorial HMM.

The DCRF application to transfer learning in Section 4.4 is reminiscent of stacking (Wolpert,

1992). The most notable difference is that because the levels are decoded jointly, information from

later levels can affect the decisions made about earlier ones.

Finally, some results presented here have appeared in earlier conference versions, in particular

the results on noun-phrase chunking (Sutton et al., 2004) and transfer learning (Sutton and McCal-

lum, 2005).

6. Conclusions

Dynamic CRFs are conditionally-trained undirected sequence models with repeated graphical struc-

ture and tied parameters. They combine the best of both conditional random fields and the widely

successful dynamic Bayesian networks (DBNs). DCRFs address difficulties both of DBNs, by eas-

ily incorporating arbitrary overlapping input features, and of previous conditional models, by allow-

ing more complex dependence between labels. Inference in DCRFs can be done using approximate

methods, and training can be done by maximum a posteriori estimation.

Empirically, we have shown that factorial CRFs can be used to jointly perform several labeling

tasks at once, sharing information between them. Such a joint model performs better than a model

that does the individual labeling tasks sequentially, and has potentially many practical implications,

because cascaded models are ubiquitous in NLP. Also, we have shown that using approximate in-

ference leads to lower total training time with no loss in accuracy.

In future research, we plan to explore other inference methods to make training more efficient,

including expectation propagation (Minka, 2001b), contrastive divergence (Hinton, 2002) and vari-

ational approximations. Finally, investigating other DCRF structures, such as hierarchical CRFs and

DCRFs with memory of previous labels, could lead to applications into many of the tasks to which

DBNs have been applied, including object recognition, speech processing, and bioinformatics.

Acknowledgments

We thank three anonymous reviewers for many helpful comments on an earlier version of this work,

and we thank Kevin Murphy for helpful conversations. This work was supported in part by the

Center for Intelligent Information Retrieval; by SPAWARSYSCEN-SD grant number N66001-02-

1-8903; by the Defense Advanced Research Projects Agency (DARPA), through the Department

of the Interior, NBC, Acquisition Services Division, under contract number NBCHD030010; by

the Central Intelligence Agency, the National Security Agency and National Science Foundation

718

DYNAMIC CONDITIONAL RANDOM FIELDS

under NSF grants #IIS-0427594 and #IIS-0326249; and in part by the Defense Advanced Research

Projects Agency (DARPA) under contract number HR0011-06-C-0023. Any opinions, findings and

conclusions or recommendations expressed in this material are the authors’ and do not necessarily

reflect those of the sponsors.

References

Srinivas M. Aji, Gavin B. Horn, and Robert J. McEliece. On the convergence of iterative decoding

on graphs with a single cycle. In Proc. IEEE Int’l Symposium on Information Theory, 1998.

Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden Markov support vector

machines. In International Conference on Machine Learning (ICML), 2003.

Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maximum entropy approach

to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

Jeff Bilmes. Graphical models and automatic speech recognition. In M. Johnson, S.P. Khudanpur,

M. Ostendorf, and R. Rosenfeld, editors, Mathematical Foundations of Speech and Language

Processing. Springer-Verlag, 2003.

Eric Brill. Some advances in rule-based part of speech tagging. In National Conference on Artificial

Intelligence (AAAI), 1994.

Hung H. Bui, Svetha Venkatesh, and Geoff West. Policy recognition in the Abstract Hidden Markov

Model. Journal of Artificial Intelligence Research, 17, 2002.

Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-match rules for in-

formation extraction. In National Conference on Artificial Intelligence (AAAI), pages 328–334,

1999.

Fabio Ciravegna. Adaptive information extraction from text by rule induction and generalisation.

In International Joint Conference on Artificial Intelligence (ICML), 2001.

Michael Collins. Discriminative training methods for hidden Markov models: Theory and exper-

iments with perceptron algorithms. In Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2002.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation. Com-

putational Intelligence, 5(3):142–150, 1989.

Gal Elidan, Ian McGraw, and Daphne Koller. Residual belief propagation: Informed scheduling for

asynchronous message passing. In Conference on Uncertainty in Artificial Intelligence (UAI),

2006.

Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden Markov model: Analysis and

applications. Machine Learning, 32(1):41–62, 1998.

Dayne Freitag. Machine Learning for Information Extraction in Informal Domains. PhD thesis,

Carnegie Mellon University, 1998.

719

SUTTON, MCCALLUM AND ROHANIMANESH

Dayne Frietag and Andrew McCallum. Information extraction with HMMs and shrinkage. In AAAI

Workshop on Machine Learning for Information Extraction, 1999.

Zoubin Ghahramani and Michael I. Jordan. Factorial hidden Markov models. Machine Learning,

(29):245–273, 1997.

Xuming He, Richard S. Zemel, and Miguel Á. Carreira-Perpiñián. Multiscale conditional random

fields for image labelling. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2004.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural

Computation, 14:1771–1800, 2002.

Junhwan Kim and Ramin Zabih. Factorial Markov random fields. In European Conference on

Computer Vision (ECCV), pages 321–334, 2002.

Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In Conference of the

North American Chapter of the Association for Computation Linguistics (NAACL), 2001.

Sanjiv Kumar and Martial Hebert. Discriminative fields for modeling spatial dependencies in nat-

ural images. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in

Neural Information Processing Systems (NIPS) 16. MIT Press, Cambridge, MA, 2003.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilis-

tic models for segmenting and labeling sequence data. International Conference on Machine

Learning (ICML), 2001.

Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation. In Dan

Roth and Antal van den Bosch, editors, Conference on Natural Language Learning (CoNLL),

pages 49–55, 2002.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language Pro-

cessing. The MIT Press, Cambridge, MA, 1999.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated

corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

Andrew McCallum and David Jensen. A note on the unification of information extraction and

data mining using conditional-probability, relational models. In IJCAI’03 Workshop on Learning

Statistical Models from Relational Data, 2003.

Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy Markov models for

information extraction and segmentation. In International Conference on Machine Learning

(ICML), pages 591–598. Morgan Kaufmann, San Francisco, CA, 2000.

Andrew McCallum, Kedar Bellare, and Fernando Pereira. A conditional random field for

discriminatively-trained finite-state string edit distance. In Conference on Uncertainty in AI

(UAI), 2005.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin training of depen-

dency parsers. In Proceedings of the Annual Meeting of the ACL, pages 91–98, 2005.

720

DYNAMIC CONDITIONAL RANDOM FIELDS

Thomas P. Minka. The EP energy function and minimization schemes. http://research.

microsoft.com/˜minka/papers/ep/minka-ep-energy.pdf, 2001a.

Tom Minka. Divergence measures and message passing. Technical Report MSR-TR-2005-173,

Microsoft Research, 2005.

Tom Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT, 2001b.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in speech

recognition. Computer Speech and Language, 16(1):69–88, 2002.

Kevin Murphy and Mark A. Paskin. Linear time inference in hierarchical HMMs. In Advances in

Neural Information Processing Systems (NIPS), 2001.

Kevin P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD

thesis, U.C. Berkeley, July 2002.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate

inference: An empirical study. In Conference on Uncertainty in Artificial Intelligence (UAI),

pages 467–475, 1999.

Ara V. Nefian, Luhong Liang, Xiaobo Pi, Liu Xiaoxiang, Crusoe Mao, and Kevin Murphy. A cou-

pled HMM for audio-visual speech recognition. In IEEE Int’l Conference on Acoustics, Speech

and Signal Processing, pages 2013–2016, 2002.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

ISBN 0-387-98793-2.

Leonid Peshkin and Avi Pfeffer. Bayesian information extraction network. In International Joint

Conference on Artificial Intelligence (IJCAI), 2003.

David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft. Table extraction using conditional

random fields. In Proceedings of the ACM SIGIR, 2003.

Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for object recog-

nition. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Informa-

tion Processing Systems 17, pages 1097–1104. MIT Press, Cambridge, MA, 2005.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257 – 286, 1989.

Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using transformation-based learning. In

Proceedings of the Third ACL Workshop on Very Large Corpora, 1995.

Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Conference on

Empirical Methods in Natural Language Proceeding (EMNLP), 1996.

Dan Roth and Wen-tau Yih. Relational learning via propositional algorithms: An information ex-

traction case study. In International Joint Conference on Artificial Intelligence (IJCAI), pages

1257–1263, 2001.

721

SUTTON, MCCALLUM AND ROHANIMANESH

Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-2000 shared task: Chunk-

ing. In Proceedings of CoNLL-2000 and LLL-2000, 2000. See http://lcg-www.uia.ac.be/

˜erikt/research/np-chunking.html.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Conference on

Human Language Technology and North American Association for Computational Linguistics

(HLT-NAACL), pages 213–220, 2003.

Marios Skounakis, Mark Craven, and Soumya Ray. Hierarchical hidden Markov models for in-

formation extraction. In Proceedings of the 18th International Joint Conference on Artificial

Intelligence, 2003.

Stephen Soderland. Learning information extraction rules for semi-structured and free text. Machine

Learning, pages 233–272, 1999.

Charles Sutton and Andrew McCallum. Composition of conditional random fields for transfer

learning. In Conference on Human Language Technology and Empirical Methods in Natural

Language Processing (HLT-EMNLP), 2005.

Charles Sutton and Andrew McCallum. An introduction to conditional random fields for relational

learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning.

MIT Press, 2006. To appear.

Charles Sutton, Khashayar Rohanimanesh, and Andrew McCallum. Dynamic conditional random

fields: Factorized probabilistic models for labeling and segmenting sequence data. In Interna-

tional Conference on Machine Learning (ICML), 2004.

Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models for relational

data. In Conference on Uncertainty in Artificial Intelligence (UAI), 2002.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In Sebastian

Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Pro-

cessing Systems 16. MIT Press, Cambridge, MA, 2004a.

Ben Taskar, Dan Klein, Michael Collins, Daphne Koller, and Chris Manning. Max-margin parsing.

In Empirical Methods in Natural Language Processing (EMNLP04), 2004b.

Georgios Theocharous, Khashayar Rohanimanesh, and Sridhar Mahadevan. Learning hierarchical

partially observable Markov decision processes for robot navigation. In Proceedings of the IEEE

Conference on Robotics and Automation, 2001.

Paul Viola and Mukund Narasimhan. Learning to extract information from semi-structured text

using a discriminative context free grammar. In Proceedings of the ACM SIGIR, 2005.

S.V.N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin Murphy. Accelerated

training of conditional random fields with stochastic meta-descent. In International Conference

on Machine Learning (ICML), pages 969–976, 2006.

Martin Wainwright. Stochastic processes on graphs with cycles: geometric and variational ap-

proaches. PhD thesis, MIT, 2002.

722

DYNAMIC CONDITIONAL RANDOM FIELDS

Martin Wainwright, Tommi Jaakkola, and Alan S. Willsky. Tree-based reparameterization for ap-

proximate estimation on graphs with cycles. Advances in Neural Information Processing Systems

(NIPS), 2001.

Hanna Wallach. Efficient training of conditional random fields. M.Sc. thesis, University of Edin-

burgh, 2002.

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing free-energy approximations

and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):

2282–2312, July 2005.

723

