
Find-Similar: Similarity Browsing as a Search Tool

Mark D. Smucker and James Allan
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts Amherst

ABSTRACT
Search systems have for some time provided users with the
ability to request documents similar to a given document.
Interfaces provide this feature via a link or button for each
document in the search results. We call this feature find-
similar or similarity browsing. We examined find-similar as
a search tool, like relevance feedback, for improving retrieval
performance. Our investigation focused on find-similar’s
document-to-document similarity, the reexamination of doc-
uments during a search, and the user’s browsing pattern.
Find-similar with a query-biased similarity, avoiding the re-
examination of documents, and a breadth-like browsing pat-
tern achieved a 23% increase in the arithmetic mean average
precision and a 66% increase in the geometric mean aver-
age precision over our baseline retrieval. This performance
matched that of a more traditionally styled iterative rele-
vance feedback technique.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Find-Similar, Similarity Browsing, Relevance Feedback

1. INTRODUCTION
Relevance feedback is not a widely adopted feature of pop-

ular search services even though it is known to be a powerful
tool for improving retrieval performance. The feedback-like
feature that has been adopted by some services is a feature
we term find-similar or similarity browsing. Find-similar
allows a user to request documents that are similar to a
particular document. For example, the Excite web search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’06, August 6–11, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

engine once provided this feature by adding a link to each
result that read “More Like This: Click here for a list of
documents like this one”[31]. Today, Google’s web search
engine provides a find-similar link for each item in the search
results. The U.S. National Library of Medicine’s PubMed
search system offers find-similar as a link to “Related Arti-
cles” for each search result [26].

In our experiments, the starting point for the use of find-
similar is always a results list produced by a query. Find-
similar can be applied to any document listed in the re-
sults list. Like the above examples, typical instantiations of
find-similar show a button or link next to each document in
the results list. Clicking on find-similar produces a new re-
sults list of documents similar to the selected document. To
browse a collection of documents by similarity, a user can use
find-similar to jump from list to list of similar documents.

This paper focuses on find-similar’s use as a search tool
rather than as a browsing interface. To use find-similar as a
search tool, a user will apply find-similar to a relevant docu-
ment to find more relevant documents, and so forth. While
feedback-like, the version of find-similar that we study has
no notion of relevance. Each use of find-similar on a docu-
ment is separate from uses on other documents. While the
potential exists for some form of implicit relevance feedback,
we examine find-similar merely as a tool that returns similar
documents.

In contrast to find-similar, the traditional research inter-
face to support relevance feedback involves showing the user
the top 5 or 10 results for the query and asking the user to
judge the relevance of these results. The user’s feedback
is then used to update the query and a new ranked list
is produced. Typically the already judged documents are
not shown in the new results list. Repeated use of this rele-
vance feedback iterates through the collection of documents,
and we call this iterative relevance feedback. In both batch
and user experiments, iterative relevance feedback has been
shown to be an effective means for improving search results
[27, 11, 8, 15].

It appears that some users attempt to use relevance feed-
back systems designed for judgments on multiple documents
in a manner resembling find-similar. Croft reports that users
will often use a single document, which may be unrelated to
the query, for relevance feedback and effectively be “brows-
ing using feedback” [7]. Hancock-Beaulieu et al. studied 58
user sessions that used interactive query expansion (IQE)
via a relevance feedback interface [10]. Of the 58 sessions,
17 used only a single document for feedback. Algorithms de-
signed for multiple-document feedback may not always work

well for single document feedback. Only 3 of the 17 sessions
were successful at finding additional relevant material.

We ran all of our experiments in a batch style without user
involvement. We agree with White et al. [40] that simulation
studies can find better ways to implement the algorithms
behind interface features before investing in user studies.
Simulation studies don’t replace user studies.

We used two browsing patterns to evaluate various aspects
of find-similar: a greedy depth-first pattern and a breadth-
like pattern. At best, these browsing patterns are crude
models of user behavior, but our primary use of the patterns
is to demonstrate find-similar’s possible effect on retrieval.

Using these browsing patterns, we examined find-similar’s
potential as a search tool to improve document retrieval as
compared to iterative relevance feedback. An important as-
pect of our investigation focused on find-similar’s document-
to-document similarity. We also looked at the cost of hav-
ing to reexamine documents while using find-similar. The
browsing patterns themselves give insight into how much a
user’s browsing pattern can affect performance.

1.1 Related work
Wilbur and Coffee studied several aspects of find-similar

[41]. They found that on average, a single relevant docu-
ment used as a query does not perform as well as the origi-
nal query, but that relevant documents similar to the query
will do better than the query. They also used a set of brows-
ing patterns and found that a method they called parallel
neighborhood searching performed better than the other pat-
terns. This method attempts to search the find-similar lists
of all discovered relevant documents to the same depth. This
browsing pattern is likely too complex for a user to follow.
They suggested that a system could hide the complexity by
showing the user one document at a time to judge, but such
a system no longer supports similarity browsing or tradi-
tional lists of results.

Spink et al. have analyzed samples of Excite’s query logs
and reported that between 5 and 9.7 percent of the queries
came from the use of the “more like this” find-similar feature
[31, 32]. There is little evidence that users repeatedly used
the find-similar feature to browse by feedback. Most web
users look at very few results [32]. Thus, it is not surprising
that find-similar found limited use by web users who are
likely precision oriented.

Other systems offering similarity browsing include those of
Thompson and Croft [34] and Campbell [4]. Both systems
draw a display that allows the user to browse to similar
documents. One of the functions of such a display is as a
map to prevent users from becoming lost in their browsing.
Such a display may be of use to interfaces incorporating find-
similar, but find-similar does not require such a display.

One possible reason for search systems’ adoption of find-
similar is its appearance as an easily understood and simple
to use form of relevance feedback. Of the large body of
relevance feedback research [28], Aalbersberg’s incremental
feedback is an illustrative example of simplifying relevance
feedback [1]. With incremental feedback, the user is shown
one result at a time. To see more results, the user must
judge the relevance of the presented item. In batch experi-
ments, Aalbersberg found that incremental feedback worked
better than Rocchio, Ide Regular, and Ide Dec-Hi. For these
other approaches, Aalbersberg used an iteration size of 15
documents. While incremental feedback builds a model of

relevant documents one document at a time, each use of
find-similar involves a single document without any accu-
mulation of documents or model of relevance.

In many systems, users can browse documents via hyper-
links. If a collection lacks hyperlinks, they can be automati-
cally generated [2]. Find-similar effectively adds a hyperlink
from a document to those most similar to it. For hypertext
systems like the web, researchers have created programs to
assist the user with finding relevant pages via browsing [20,
24]. In contrast to these approaches, find-similar does not
observe the user to determine what the user considers rele-
vant, and find-similar does not offer any assistance in choos-
ing where to browse.

Another set of research has focused on helping the user
better process ranked retrieval results. This work is related
to but different from relevance feedback and find-similar,
both of which are applied to the entire collection of docu-
ments and not restricted to the set of top ranked results. For
example, Leuski [19] created a software agent to guide users
in their exploration of the top results. Other approaches
involve presenting the results grouped by an online cluster-
ing of the results or by predetermined categories [12, 9, 13,
5]. These approaches are different from find-similar in that
while the user gets to see documents grouped by similarity,
the user does not get to request more documents similar to
a document.

2. METHODS AND MATERIALS
We first describe in section 2.1 how we retrieved docu-

ments for find-similar, the baseline, and an implementation
of iterative relevance feedback. We then explain in section
2.2 how we created a query model for a document to which
a user has applied find-similar. In sections 2.3 and 2.4 we
discuss our hypothetical user interfaces and two browsing
patterns used for evaluation of find-similar. We finish by
describing the test collection and the evaluation methodol-
ogy in sections 2.5 and 2.6.

2.1 Retrieval methods
We used both the language modeling approach to infor-

mation retrieval [25] and its combination with the inference
network approach [21] as implemented in the Lemur [18] and
Indri [33] retrieval systems.

Language modeling represents documents and queries as
probabilistic models. We used multinomials as our proba-
bilistic models of text. For a given piece of text T , we write
the probability of the word w given the model MT of the
text as P (w|MT).

The maximum likelihood estimated (MLE) model of text
estimates the probability of a word as the count of that word
divided by the total number of words in the text. As such,
the probability of a word w given a text T is: P (w|MT) =
T (w)/|T |, where T (w) is the count of word w in the text T
and |T | =

�
w T (w) is the text’s length.

For find-similar, we ranked documents using the Kullback-
Leibler divergence of the query model MQ with the docu-
ment model MD:

DKL(MQ||MD) =
�

w

P (w|MQ) log
P (w|MQ)

P (w|MD)
(1)

where 0 log 0 = 0, and the query model is a model of the
document to which find-similar is being applied. We detail

#weight(

0.8 #combine(international organized crime)

0.1 #combine(

#1(organized crime)

#1(international organized)

#1(international organized crime))

0.1 #combine(

#uw8(organized crime)

#uw8(international crime)

#uw8(international organized)

#uw12(international organized crime)))

Figure 1: TREC topic 301, “international organized
crime,” converted to an Indri query by Metzler
and Croft’s dependence models. This query gives a
weight of 0.8 to the unigram model of the topic. The
ordered phrases, #1, have a weight of 0.1 as well as
the unordered windows, #uwN. Not shown here is the
unigram relevance model that provides a pseudo-
relevance feedback component when combined with
the dependence model query for our baseline run.

the two ways we constructed query models for find-similar
in section 2.2.

To avoid zero probabilities and better estimate the doc-
ument models, we calculated the document models using

Dirichlet prior smoothing [42]: P (w|MD) = D(w)+mP (w|C)
|D|+m

,

where P (w|C) is the MLE model of the collection, and m is
the Dirichlet prior smoothing parameter.

The inference network approach by Metzler and Croft [21]
takes the probability estimates from language modeling and
uses them as part of the Bayesian inference network model
of Turtle and Croft [37]. The inference network provides
a formal method for combination of evidence, and is easily
accessed by users via a structured query language.

For our baseline, we used Metzler et al.’s method [23] that
combines Metzler and Croft’s [22] dependence models with
Lavrenko and Croft’s [17] relevance models. This method
can be seen as using a precision enhancing retrieval method,
dependence models, with a pseudo-relevance feedback tech-
nique, relevance models. Unlike Metzler et al., we used only
the existing collection for query expansion with relevance
models and did not use any external collections for expan-
sion.

The dependence model uses the Indri query language to
combine three types of evidence. The first is the standard
bag-of-words unigram model as used by language model-
ing. The second type captures the sequential ordering of
the terms in the query. The third uses the close proxim-
ity of query terms as evidence. Figure 1 shows the Indri
query produced by Metzler and Croft’s dependence models
for TREC topic 301, “international organized crime.”

To perform the baseline retrieval, first the dependence
model Q of the query is run. Then a relevance model is cre-
ated from the top k ranked documents. The relevance model
MR is calculated as: P (w|MR) =

�k
i=1 P (Di|Q)P (w|Di),

where P (Di|Q) = P (Q|Di)/
�k

j=1 P (Q|Dj), and P (Q|Di)
is the Indri belief that document model Di is relevant to the
query Q. Finally, the dependence model and the relevance
model are combined to create the final baseline query using
Indri’s #weight operator.

Parameter Value
Dirichlet smoothing for unigram terms, m 1500
Dirichlet smoothing for ordered and unordered
windows, m

2000

Weight of unigram model in dependence model 0.8
Weight of ordered windows model in dependence
model

0.1

Weight of unordered windows model in depen-
dence model

0.1

Number of pseudo feedback documents for rele-
vance model

10

Weight of dependence model when mixed with
pseudo relevance model

0.3

Max. terms in pseudo feedback relevance model 25
Max. terms in find-similar document models 50
Max. terms in iterative feedback relevance model 50
Weight of initial query when mixed with iterative
feedback relevance model

0.3

Table 1: Retrieval parameters.

The baseline is also used as the initial retrieval for both
find-similar and iterative relevance feedback.

Our implementation of iterative relevance feedback is akin
to that used by Rocchio [27]. We mix in a model of the
relevant documents with the original baseline query model
using Indri’s #weight operator. We tried weights of 0.0,
0.3, 0.5, and 0.7 for the original query and found 0.3 to
work best. The model of relevant documents is calculated
as: P (w|MR) = 1

k

�k
i=1 P (w|Di), where k is the number

of documents the user has judged to be relevant. An alter-
native is for us to replace the pseudo feedback component
of the baseline query model with the real relevance model
as provided by the user’s judgments, but we have not yet
investigated this variant.

We used the same parameter settings that Metzler et al.
derived from training on the TREC 2004 Robust track data
and that they used for the 2005 Robust track [23]. The
2004 Robust track includes the same 150 topics we used for
evaluation (topics 301-450) in its 250 topics. Table 1 shows
the retrieval parameters’ settings for all runs. We used the
same smoothing parameters for all experiments.

2.2 Document-to-document similarity
An obvious way to implement find-similar for documents

is to treat the document as a very long query. A problem
with this approach is that each document will often be about
several topics of which only one is the user’s search topic.
A document may well be about “organized crime” but it
may also be about the prosecution of criminals. Not all sto-
ries about criminal prosecution are about organized crime.
Rather than finding documents that are similar to all the
topics mentioned in a story, we think a user will want to
find documents that are similar with respect to the current
search topic.

We examined two types of similarity for find-similar: regu-
lar and query-biased. Regular similarity treats the document
as a query to find other similar documents. Query-biased
similarity aims to find similar documents given the context
of the user’s search and avoid extraneous topics. For both
regular and query-biased similarity, we construct a unigram
model of the find-similar document that is then used as a

query to find similar documents (see equation 1). Regular
similarity uses the maximum likelihood estimated (MLE)
model of the document as the query. For query-biased sim-
ilarity, we create a MLE model of the document text that
consists of all words within a certain distance W of all query
terms in the document. For our experiments, we set W to
5. Thus the 5 preceding words, the query term, and the
5 words following a query term are used. Should a docu-
ment not contain any query terms, the whole document is
used. For both types of similarity, we truncate the document
model to the 50 most probable terms.

Our notion of query-biased similarity is more akin to query-
biased summaries [36, 29] than to query-biased clustering
[9, 13] or query sensitive similarity [35]. The nature of
query-biased summaries is to extract the sentences or text
surrounding query terms in a document and use this ex-
tracted text as a summary of the document. In contrast to
query-biased summaries, both Eguchi [9] and Iwayama [13]
increase the weight of query terms in the documents before
clustering. Tombros’ query sensitive similarity modifies the
cosine similarity measure to place more weight on the query
terms [35]. Preliminary experiments where we linearly com-
bined the query model with the document model as a form
of query-biasing showed poorer performance. We hypothe-
size that this poorer performance was the result of a lack of
diversity in the find-similar lists.

2.3 Hypothetical user interfaces
We ran all of our experiments in a batch style without

user involvement. Assumptions about the interface affect
the batch evaluation of retrieval features. In particular, we
only consider browsing patterns that could be reasonably
executed by a user with our hypothetical user interface. We
next describe our hypothetical user interfaces for find-similar
and iterative relevance feedback.

The find-similar interface we envision is similar to the
web-based PubMed search system [26]. Our hypothetical
interface has “back button” support like a web browser. If a
user has performed find-similar on a document, the user can
decide to stop examining the documents presented as sim-
ilar to that document and hit the back button. The back
button returns the user to the previous list at the position
in the list where the user had applied find-similar.

Results are presented in rank order with query-biased
summaries for both the initial query and the find-similar
lists. Sanderson [29] demonstrated that users are able to
judge the relevance of documents from query-biased sum-
maries with 75% of the accuracy of full documents. Thus,
we assume users will examine most documents by reading
the already visible summaries. Reading a summary requires
no manipulation of the interface and therefore provides no
feedback to the system that the document has been exam-
ined. When a user applies find-similar to a document, the
user will be presented with a new page listing the similar
documents. The find-similar lists will contain some docu-
ments that the user has already examined on previous pages.
The user will have to reexamine documents unless there is
a visual marker to designate already examined documents.

In our evaluation, we compared two conceptual variations
of our imagined find-similar interface. In one variation non-
relevant documents are reexamined and in the other they are
not. Both variations prevent the reexamination of relevant
documents.

The hypothetical iterative relevance feedback interface dis-
plays the top N documents of the ranked results. The user
judges each of the displayed documents and then submits
the feedback to retrieve the next N documents. In our ex-
periments, we set the iteration size N to 10. The previously
displayed documents are not shown again for the current
topic. This process repeats until 1000 documents have been
examined. This interface does not provide for use of a back
button like find-similar. The system only allows forward
iteration.

2.4 Find-similar browsing patterns
Klöckner et al. [14] used an eye tracker to observe how

people processed search results. They used a Google results
list containing 25 results for a query. The subjects’ task was
to find the relevant documents in the list. Subjects could
click on a result to see the result’s web page. Of the subjects,
65% followed a depth-first strategy. These users examined
the documents in order, from highest to lowest rank, and did
not look ahead. Another 15% used a breadth-first strategy
by looking at the entire results list before opening a single
web page. The remaining 20% used a partial breadth-first
strategy by sometimes looking ahead at a few results before
opening a web page.

Given the user behavior observed by Klöckner et al., we
used two browsing patterns to evaluate find-similar. The
greedy pattern represents the depth-first behavior, and the
breadth-like pattern aims to capture the breadth-first search
behaviors. Neither pattern is a true depth-first or breadth-
first search pattern. A true depth-first pattern does not
reflect that a user is likely to stop examining a results list if
no relevant documents are found. A true breadth-first pat-
tern is not feasible for a user to implement. While inspired
by the user behavior observed by Klöckner et al., these pat-
terns are at best crude models of user behavior. Users could
execute these patterns, but we have little knowledge of how
users actually search with find-similar. Instead, these pat-
terns give us insight into the potential of find-similar and
the degree to which find-similar’s performance can be af-
fected by different browsing patterns. Both patterns use the
baseline as the initial retrieval.

The greedy browser examines documents in the order that
they appear in a results list. As section 2.3 explained, the
browser will only examine a relevant document once. When
a relevant document is examined, the greedy browser per-
forms a find-similar operation on this document. The greedy
browser ceases to examine documents in a results list after
examining 5 contiguous non-relevant documents. When the
browser stops examining a list, the browser hits the “back
button” and returns to the previous list and continues ex-
amining documents in that list. If the browser is examining
the initially retrieved list of documents, the only stopping
criterion is that the browser stops when 1000 documents
have been examined.

The breadth-like browser also examines documents in the
order that they appear in a results list. What differs from
the greedy pattern is that the breadth-like browser only be-
gins to browse via find-similar when the results list’s quality
becomes too poor. As the breadth-like browser examines
relevant documents, it places these documents in a first-in
first-out queue local to the current list. When the precision
at N , where N is the rank of the current document, drops
below 0.5 or when 5 contiguous non-relevant documents are

encountered, the browser applies find-similar to the first rel-
evant document in the queue. When the browser returns to
the current list, it applies find-similar to the next document
in the queue until the queue is empty. The browser never
uses find-similar on a relevant document more than once.
Thus documents in the queue will be ignored if the browser
has already performed find-similar on them. There is not
any notion that the breadth-like browser knows which rele-
vant documents are the best for find-similar. The breadth-
like browser merely delays exploration until the current list
seems to have gone “cold.” The browser stops examining
a results list in the same manner and with the same crite-
ria, i.e. 5 contiguous non-relevant documents, as the greedy
browser.

Early experiments with a greedy browsing pattern influ-
enced our design of the breadth-like browser. We saw that
the greedy browser could degrade the performance of an al-
ready good retrieval. Thus, the breadth-like browser uses
list quality as its criteria for delaying use of find-similar.
While the breadth-like browsing pattern could be seen as
a “corrected” greedy pattern, we feel that it does capture
the goal of a breadth-first user, that is, to look ahead before
acting.

2.5 Queries, documents, and retrieval tools
The topics used for the experiments consisted of TREC

topics 301-450, which are the ad-hoc topics for TREC 6,
7, and 8. TREC topics consist of a short title, a sentence
length description, and a paragraph sized narrative. The
titles best approximate a short keyword query, and we used
them as our queries.

We used TREC volumes 4 and 5 minus the Congressional
Record for our collection. This 1.85 GB, heterogeneous
collection contains 528,155 documents from the Financial
Times Limited, the Federal Register, the Foreign Broadcast
Information Service, and the Los Angeles Times.

We used the Lemur toolkit [18] for all of our experiments
including its Indri subsystem [33]. In particular, we gener-
ated the results for the find-similar runs using a Lemur index
of the collection with stop words removed at index time. For
the baseline and iterative relevance feedback runs we used
an Indri index with stop word removal at query time. We
stemmed all words with the Krovetz stemmer [16]. We used
an in-house stopword list of 418 noise words.

2.6 Evaluation methodology
We constructed our runs’ results lists for evaluation in the

same manner as Aalbersberg [1]. The results lists that we
evaluated represent the order in which the simulated user
examines the documents. For the baseline retrieval, the
documents are examined in rank order. For find-similar,
the browsing patterns of section 2.4 determine the order in
which documents are examined. For iterative relevance feed-
back, documents are examined in the same manner they are
judged — one iteration of 10 documents at a time.

All relevance judgments are made using the “true” rel-
evance judgments per NIST. We treat a reexamined non-
relevant document the same as any other non-relevant docu-
ment found at that position in the results. All of the retrieval
techniques we studied do not reexamine relevant documents.

We report metrics using both the arithmetic mean and
the geometric mean. The TREC Robust track has estab-
lished the geometric mean as a useful tool for analyzing

performance [38]. As opposed to the usual arithmetic mean,
the geometric mean emphasizes the lower performing topics.
The arithmetic mean can hide large changes in performance
on poorly performing topics with small changes in the bet-
ter performing topics. As with the 2005 TREC Robust track
[39], for computing the geometric mean, we set values less
than 0.00001 to 0.00001 to avoid zeros. We used version 8
of trec eval [3] to compute per topic metrics. We measured
statistical significance with a two-sided, paired, randomiza-
tion test with 100, 000 samples (see page 168 [6]). Unless
otherwise stated, significance is at the p < 0.05 level.

3. RESULTS
Table 2 shows the arithmetic mean, non-interpolated, av-

erage precision (AMAP) and the geometric mean (GMAP)
across the 150 topics of TREC 6, 7, and 8, for the base-
line, find-similar, and iterative relevance feedback runs. The
find-similar runs vary based on whether or not non-relevant
documents were reexamined (section 2.3), whether a greedy
or breadth-like browsing pattern was used (section 2.4), and
whether the similarity was regular or query-biased (section
2.2).

In general, find-similar and iterative relevance feedback
are better able to improve on a poor initial retrieval than
on a good initial retrieval. To highlight this behavior, Table
2 also reports results for the 150 topics divided into three
sets of 50 topics. The topics are ordered by their perfor-
mance on the baseline and then divided into three sets (like
quartiles except into thirds instead of quarters). These sets
are roughly equivalent to poor, fair, and good retrieval per-
formance with baseline AMAPs of 0.036, 0.202, and 0.548
respectively. With the topics divided up in this manner, the
geometric mean adds little insight and we report only the
arithmetic mean of each topic set.

The average precision results are based on the TREC stan-
dard of 1000 results. To understand the performance when a
user examines fewer documents, Table 3 shows the precision
at 20 and 100 documents. Feedback techniques can increase
recall as well as precision. Table 4 shows the recall at 1000
documents.

4. DISCUSSION
The best find-similar run avoids reexamining non-relevant

documents, follows a breadth-like browsing pattern, and
uses query-biased similarity. Table 2 shows that this run
matches the performance of our implementation of iterative
relevance feedback and achieves a 23% improvement in the
arithmetic mean average precision (AMAP) and a 66% im-
provement in the geometric mean average precision (GMAP)
over the baseline. Iterative relevance feedback achieves a
69% improvement in GMAP, but this is not a statistically
significant difference compared to the best find-similar run.

The use of a high quality baseline retrieval is required
to avoid overstating the performance gains possible with
a retrieval technique. We used the method developed by
Metzler et al. [23] for our baseline (see section 2.1). This
method had the best title run as measured by mean average
precision and had the second best geometric mean average
precision for both title and description runs submitted to
TREC’s 2005 Robust track [39]. We achieved larger relative
performance improvements during initial experiments with
a weaker baseline.

Reexamine non-relevant Do not reexamine non-relevant Iter.
Greedy Breadth-like Greedy Breadth-like Rel.

Baseline Regular Biased Regular Biased Regular Biased Regular Biased FB.
All 150 topics

AM Avg. Prec. 0.262 0.175� 0.226� 0.260 0.269 0.224� 0.281 0.303� 0.323� 0.322�

Pct. Change -33% -14% -1% 3% -14% 7% 16% 23% 23%

GM Avg. Prec. 0.130 0.122 0.151� 0.157� 0.169� 0.160� 0.193� 0.197� 0.216� 0.220�

Pct. Change -6% 16% 21% 30% 23% 49% 52% 66% 69%

Baseline’s 50 poorest performing topics
AM Avg. Prec. 0.036 0.079� 0.091� 0.083� 0.101� 0.108� 0.119� 0.114� 0.134� 0.129�

Pct. Change 119% 151% 130% 179% 197% 228% 215% 270% 255%
Baseline’s 50 middle performing topics

AM Avg. Prec. 0.202 0.160� 0.190 0.190 0.196 0.218 0.261� 0.251� 0.275� 0.256�

Pct. Change -21% -6% -6% -3% 8% 29% 24% 36% 27%
Baseline’s 50 best performing topics

AM Avg. Prec. 0.548 0.285� 0.396� 0.505� 0.509� 0.346� 0.461� 0.544 0.560 0.580�

Pct. Change -48% -28% -8% -7% -37% -16% -1% 2% 6%

Table 2: Arithmetic mean (AM) and geometric mean (GM) average precision for all 150 topics and the
arithmetic mean average precision for the 150 topics grouped into three disjoint sets based on the baseline’s
average precision for that topic. Results with a � are different from the baseline at a statistically significant
level (p < 0.05) as measured by a two-sided, paired, randomization test with 100,000 samples.

Reexamine non-relevant Do not reexamine non-relevant Iter.
Greedy Breadth-like Greedy Breadth-like Rel.

Baseline Regular Biased Regular Biased Regular Biased Regular Biased FB.
Precision at 20 documents

Arith. Mean 0.374 0.254� 0.330� 0.372 0.387 0.282� 0.358 0.395� 0.415� 0.411�

Pct. Change -32% -12% -1% 3% -25% -4% 6% 11% 10%

Geo. Mean 0.120 0.095� 0.116 0.121 0.130 0.104� 0.128 0.132� 0.143� 0.137�

Pct. Change -21% -3% 0% 8% -13% 6% 9% 19% 14%

Precision at 100 documents
Arith. Mean 0.225 0.163� 0.206 0.219 0.236 0.204� 0.246 0.250� 0.274� 0.277�

Pct. Change -28% -8% -3% 5% -10% 9% 11% 22% 23%

Geo. Mean 0.122 0.106� 0.128 0.125 0.137� 0.129 0.152� 0.145� 0.163� 0.162�

Pct. Change -13% 5% 3% 12% 6% 25% 19% 34% 33%

Table 3: Arithmetic mean and geometric mean of the precision at 20 and 100 documents. Results with a
� are different from the baseline at a statistically significant level (p < 0.05) as measured by a two-sided,
paired, randomization test with 100,000 samples.

Reexamine non-relevant Do not reexamine non-relevant Iter.
Greedy Breadth-like Greedy Breadth-like Rel.

Baseline Regular Biased Regular Biased Regular Biased Regular Biased FB.
Arith. Mean 0.687 0.741� 0.750� 0.747� 0.746� 0.806� 0.809� 0.808� 0.811� 0.823�

Pct. Change 8% 9% 9% 9% 17% 18% 18% 18% 20%

Geo. Mean 0.603 0.688� 0.703� 0.695� 0.700� 0.763� 0.765� 0.764� 0.767� 0.779�

Pct. Change 14% 17% 15% 16% 26% 27% 27% 27% 29%

Table 4: Arithmetic mean and geometric mean of the recall at 1000 documents. Results with a � are
different from the baseline at a statistically significant level (p < 0.05) as measured by a two-sided, paired,
randomization test with 100,000 samples.

We also tested iterative relevance feedback with an it-
eration size of 1, which is Aalbersberg’s incremental feed-
back [1]. An iteration size of 1 performed as well as an
iteration size of 10, with the larger iteration size yielding a
negligibly larger AMAP (0.322 vs. 0.321).

All the find-similar runs that avoid reexamination of non-
relevant documents perform better than the corresponding
runs that do reexamine non-relevant documents. An inter-
face that supports find-similar may need to provide a mech-
anism to help the user avoid reexamination of non-relevant
documents. If a user has to keep track of judgments, it
would seem that find-similar and traditional multiple item
relevance feedback should be able to co-exist in the same
retrieval system.

While both the greedy and breadth-like browsing patterns
show significant improvements in GMAP over the baseline,
following a breadth-like browsing pattern is superior to the
greedy browsing pattern. Table 2 shows that the greedy
browsing pattern in particular has difficulty with the bet-
ter performing topics. As section 2.4 noted, the work by
Klöckner et al. [14] motivated the two browsing patterns we
used, but the performance of the greedy pattern influenced
our design of the breadth-like browser. A user that follows a
greedy browsing pattern will be harmed by the find-similar
feature on better performing topics. The breadth-like brows-
ing pattern avoids using find-similar while the retrieval qual-
ity of a list is high. We leave for future work the question
of whether find-similar can be used to improve an already
high quality retrieval.

Query-biased similarity shows consistently better perfor-
mance than regular similarity. The query-biased similarity
helps the greedy browsing pattern perform over 20% bet-
ter than with regular similarity as measured by AMAP and
GMAP on all 150 topics. Query-biased similarity also helps
the breadth-like browser but to a lesser degree.

Given a search topic, a perfect document-to-document
similarity method for find-similar makes the topic’s relevant
documents most similar to each other. We can character-
ize this notion of relevant documents being more similar to
each other by measuring the distance from all relevant doc-
uments to all other relevant documents. For each topic, we
constructed a directed graph as follows. Each relevant doc-
ument is a node in the graph. There is an edge from each
node to each other node. The weight of an out edge is the
rank of the target document in the ranked list produced by
applying find-similar to the source document. Given this
graph, we compute the all pairs shortest paths (APSP) to
obtain the shortest distance from every node to every other
node. This distance is the number of documents that need to
be examined to navigate from one relevant document to an-
other using find-similar. We used the Boost Graph Library’s
implementation of the Floyd-Warshall APSP algorithm [30].
The distribution of distances is highly skewed. The distance
to some documents is so large that they are “out of reach”
via find-similar. A single topic can greatly skew the average,
too. Therefore we use the median rather than the mean to
handle these skewed distributions. The median of the me-
dian distances is 70.8 for regular and 33.0 for query-biased
similarity. It appears that query-biased similarity creates
a tighter grouping of relevant documents than does regular
similarity. This result, that query-biased similarity better
clusters relevant documents, echoes the results of Tombros’
work on query sensitive similarity [35].

The find-similar and feedback runs show a much greater
improvement in GMAP than in AMAP. Table 2 highlights
this difference and shows that the majority of the improve-
ment comes from improving the poorer performing topics.
For the poorest performing topics, the baseline has an AMAP
of 0.036, and on average, 1 document in 28 is relevant. On
these same topics, find-similar raises this ratio to 1 in 7 with
an AMAP of 0.134. Besides having a large relative per-
formance improvement for poorly performing topics, find-
similar can provide performance gains that should be no-
ticeable by the end user.

Being able to improve precision early in a ranked list
may influence user adoption of a retrieval tool such as find-
similar. Table 3 shows that find-similar can achieve im-
provements over the baseline in precision at 20 and 100 doc-
uments. While not shown, the best find-similar run also ob-
tained a statistically significant 7% increase in P@10 (arith-
metic mean) over the baseline.

For find-similar’s best run, its P@100 arithmetic mean
improvement of 22% is comparable to its AMAP improve-
ment of 23%. For this same run, the P@100 geometric mean
improvement of 34% is nearly half that of the 66% improve-
ment in GMAP. A fair amount of the GMAP performance
may come from improving very poorly performing topics
with feedback on low ranking relevant documents. For some
poor performing topics, if users are unwilling to dig deep
into the ranked results, they may be unable to use feedback
to help their search.

Table 4 shows that all of the find-similar runs increase
recall at 1000 documents and the best performance is com-
parable to iterative relevance feedback. Retrieval techniques
that cluster or reorder the top N results cannot increase the
recall at N [13, 19]. Interestingly, the different similarity
and browsing types do not significantly impact recall at 1000
documents.

5. CONCLUSION
We found that find-similar, as a feedback-like search tool,

has the potential to improve document retrieval. The best
performance improvement attained by find-similar matched
that of an implementation of iterative relevance feedback.
Find-similar achieved a 23% improvement in the arithmetic
mean average precision and a 66% improvement in the geo-
metric mean average precision. The geometric mean empha-
sizes the poorer performing topics.

We found differences in performance for find-similar along
the dimensions of document-to-document similarity, reex-
amination of documents, and the browsing pattern. First,
we discovered that a query-biased similarity performs signif-
icantly better than using a document alone as a query for
find-similar. We demonstrated the greater clustering power
of query-biased similarity using an all pairs shortest path
analysis that we believe is novel. Secondly, interfaces sup-
porting find-similar as a search tool will likely need to help
the user avoid reexamining already examined documents.
Finally, a user’s browsing pattern can substantially affect the
performance of find-similar. Between two simulated brows-
ing patterns, we found that a breadth-first like pattern works
better than a greedy, depth-first like pattern. Both patterns
show significant improvement in the geometric mean average
precision over a strong baseline retrieval.

Given the potential of find-similar, future work should
include user studies to determine if users can obtain simi-

lar improvements. While one could create more elaborate
browsing patterns, our preference would be to implement a
find-similar interface and study users. Future work should
also examine in greater detail the many ways of comput-
ing document-to-document similarity. Analyzing the ability
of similarity methods to cluster relevant documents could
continue to be done with batch style experiments.

6. ACKNOWLEDGMENTS
Thanks to Don Metzler for providing his dependence model

code and guidance on the use of dependence models. Thanks
to Trevor Strohman, Hema Raghavan, and the anonymous
reviewers for their helpful feedback.

This work was supported in part by the Center for In-
telligent Information Retrieval and in part by the Defense
Advanced Research Projects Agency (DARPA) under con-
tract number HR0011-06-C-0023. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
those of the sponsor.

7. REFERENCES
[1] I. J. Aalbersberg. Incremental relevance feedback. In

SIGIR, pages 11–22, 1992.
[2] J. Allan. Automatic Hypertext Construction. PhD thesis,

Cornell University, 1995.
[3] C. Buckley. trec eval.

http://trec.nist.gov/trec eval/trec eval.8.0.tar.gz.
[4] I. Campbell. The ostensive model of developing

information needs. PhD thesis, University of Glasgow,
2000.

[5] H. Chen and S. Dumais. Bringing order to the web:
automatically categorizing search results. In CHI, pages
145–152, 2000.

[6] P. R. Cohen. Empirical methods for artificial intelligence.
MIT Press, 1995.

[7] W. B. Croft. What do people want from information
retrieval? D-Lib Magazine, Nov. 1995.

[8] S. T. Dumais and D. G. Schmitt. Iterative searching in an
online database. In Proc. Human Factors Soc. 35th Annual
Mtg., pages 398–402, 1991.

[9] K. Eguchi. Adaptive cluster-based browsing using
incrementally expanded queries and its effects (poster
abstract). In SIGIR, pages 265–266, 1999.

[10] M. Hancock-Beaulieu, M. Fieldhouse, and T. Do. An
evaluation of interactive query expansion in an online
library catalogue with a graphical user interface. Journal of
Documentation, 51(3):225–243, 1995.

[11] D. Harman. Relevance feedback revisited. In SIGIR, pages
1–10, 1992.

[12] M. A. Hearst and J. O. Pedersen. Reexamining the cluster
hypothesis: scatter/gather on retrieval results. In SIGIR,
pages 76–84, 1996.

[13] M. Iwayama. Relevance feedback with a small number of
relevance judgments: incremental relevance feedback vs.
document clustering. In SIGIR, pages 10–16, 2000.

[14] K. Klöckner, N. Wirschum, and A. Jameson. Depth- and
breadth-first processing of search result lists. In CHI, page
1539, 2004.

[15] J. Koenemann and N. J. Belkin. A case for interaction: a
study of interactive information retrieval behavior and
effectiveness. In CHI, pages 205–212, 1996.

[16] R. Krovetz. Viewing morphology as an inference process.
In SIGIR, pages 191–202, 1993.

[17] V. Lavrenko and W. B. Croft. Relevance based language
models. In SIGIR, pages 120–127, 2001.

[18] Lemur Toolkit for Language Modeling and IR.
http://www.lemurproject.org/.

[19] A. Leuski. Relevance and reinforcement in interactive
browsing. In CIKM, pages 119–126, 2000.

[20] H. Lieberman. Letizia: An agent that assists web browsing.
In IJCAI-95, pages 924–929, 1995.

[21] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval. IPM,
40(5):735–750, 2004.

[22] D. Metzler and W. B. Croft. A markov random field model
for term dependencies. In SIGIR, pages 472–479, 2005.

[23] D. Metzler, F. Diaz, T. Strohman, and W. B. Croft. UMass
robust 2005 notebook: Using mixtures of relevance models
for query expansion. In TREC 2005 Notebook, 2005.

[24] C. Olston and E. H. Chi. Scenttrails: Integrating browsing
and searching on the web. ACM Trans. Comput.-Hum.
Interact., 10(3):177–197, 2003.

[25] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR, pages
275–281, 1998.

[26] Pubmed, www.pubmed.gov. “Related articles”:
www.nlm.nih.gov/bsd/pubmed tutorial/m5002.html.

[27] J. J. Rocchio. Relevance feedback in information retrieval.
In G. Salton, editor, The SMART Retrieval System, pages
313–323. Prentice Hall, 1971.

[28] I. Ruthven and M. Lalmas. A survey on the use of
relevance feedback for information access systems. The
Knowledge Engineering Review, 18(2):99–145, 2003.

[29] M. Sanderson. Accurate user directed summarization from
existing tools. In CIKM, pages 45–51, 1998.

[30] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph
Library. Addison Wesley, 2001.

[31] A. Spink, B. J. Jansen, and H. C. Ozmultu. Use of query
reformulation and relevance feedback by excite users.
Internet Research: Electronic Networking Applications and
Policy, 10(4):317–328, 2000.

[32] A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic.
Searching the web: The public and their queries. JASIST,
52(3):226–234, 2001.

[33] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: A language-model based search engine for complex
queries (extended version). Technical Report IR-407, CIIR,
UMass, 2005.

[34] R. H. Thompson and W. B. Croft. Support for browsing in
an intelligent text retrieval system. Int. J. Man-Machine
Studies, 30:639–668, 1989.

[35] A. Tombros. The effectiveness of query-based hierarchic
clustering of documents for information retrieval. PhD
thesis, University of Glasgow, 2002.

[36] A. Tombros and M. Sanderson. Advantages of query biased
summaries in information retrieval. In SIGIR, pages 2–10,
New York, NY, USA, 1998. ACM Press.

[37] H. Turtle and W. B. Croft. Evaluation of an inference
network-based retrieval model. TOIS, 9(3):187–222, 1991.

[38] E. M. Voorhees. The trec robust retrieval track. SIGIR
Forum, 39(1):11–20, 2005.

[39] E. M. Voorhees and H. T. Dang. Draft: Overview of the
TREC 2005 robust retrieval track. In TREC 2005
Notebook, pages 105–112, 2005.

[40] R. W. White, J. M. Jose, C. J. van Rijsbergen, and
I. Ruthven. A simulated study of implicit feedback models.
In ECIR, 2004.

[41] W. J. Wilbur and L. Coffee. The effectiveness of document
neighboring in search enhancement. IPM, 30(2):253–266,
1994.

[42] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
SIGIR, pages 334–342, 2001.

