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ABSTRACT

We design and evaluate a distributed information retrieval
system that operates over a mobile network where a wire-
less infrastructure unavailable. Such networks are common
in developing nations, disaster-stricken areas, and even in
the rural areas of the technologically progressive countries.
This poses a new challenge for distributed IR, which nor-
mally relies on a wired Internet or always-available wireless
coverage among mobile peers. In our mobile system, queries
are propagated among peers only as they intermittently are
in wireless range of one another. For each query received,
peers retrieve top-ranked documents from their local collec-
tion and send them to the source of the query. Intermediate
peers on the path to the source have to manage a finite buffer
filled with documents from multiple collections and multiple
queries. When too many documents are in the system, the
intermediate peers must drop documents that are either un-
likely to be relevant or for which a successful path to the
destination is unlikely. To enable such a system, we propose
a score normalization technique that works across queries
and across multiple collections. We show that our method
returns more relevant documents in the mobile network than
existing normalization methods, which are not intended for
multiple queries. Additionally, we compare our approach to
existing networking algorithms for delivering data in such
challenged networks. We show that although our method
delivers less total documents, it delivers significantly more
documents that are relevant to sources of queries.

1. INTRODUCTION

The ubiquity of inexpensive wireless computing devices
has the potential to allow the Internet to reach beyond wired,
stationary desktops. Users commonly carry Internet-capable
PDAs and embedded devices in their pockets and vehicles,
and with wireless connectivity, mobiles users could make use
an information retrieval service.

However, the provision of a mobile IR service can be dif-
ficult for many reasons. First, an infrastructure may not be
present to support wireless routing of queries and retrieved
documents. This is the predominant case in developing na-
tions, where cell towers are uncommon and Internet access
appears rarely outside one cafe in a village, if anywhere at
all. Even in the US, cell phone towers are primarily deployed
along highways and populous cities. Satellites provide broad
coverage but require enormous energy and expensive equip-
ment and services to access. Second, a natural or man-made

disaster can destroy infrastructure; e.g., a tsunami, electri-
cal grid outage, or military action can destroy critical infras-
tructure across a county, state, or country. Radios on mobile
devices, like 802.11 and Bluetooth, have ranges of less than
300m. Thus, it is problematic to assume a set of mobile
users with only peer-to-peer radio links can provide wireless
coverage across a large geographic area without partitions.

The goal of this paper is to design a distributed informa-
tion retrieval service that operates in such limited environ-
ments, allowing the Internet to extend its reach. These envi-
ronments can vary in severity. For example, at one extreme,
workers responding to a disaster may find infrastructure to
assist them has been destroyed, including power, phone and
cellular networks, and Internet access. Our system would
be an invaluable service for improving the quality of medical
care in response to such disasters [4]. On the hand, in a more
everyday scenario, a user wishing to query an IR service may
simply find themselves out-of-range of cell towers or far from
a wireless infrastructure allowing access to the Internet. A
user carrying a 802.11-enabled PDA without phone service
may be only a quarter-mile from the nearest Internet cafe
— yet that is far enough to prevent access to web resources.

In this paper, we address these limitations by proposing
a distributed IR service that operates over a different kind
of mobile network. Disruption tolerant networks (DTNs)
are a new form of mobile network that provide service even
when no contemporaneous end-to-end path of peers exists.
To forward packets end-to-end, data is stored-and-carried by
intermediate mobile nodes until another wireless peer is dis-
covered. Although message delivery latency can be lengthy,
the other option is no service at all — when the informa-
tion requested remains useful longer than the roundtrip time,
DTNs are appropriate.

Each node in a DTN may be a PDA carried by a user
enabled with an 802.11 radio and storage. Or, nodes may
be buses that carry computers with wireless equipment and
a hard drive. We operate a 39-node bus-based DTN that
roams the county surrounding the Amherst campus'. (N.b.,
our buses travel outside the range of cell tower coverage in
western Massachusetts.) In the system we propose here, the
buses would pick up queries from the pedestrians they pass
by, route the queries to the nearest Internet access point,
and then drive the retrieved documents back to the pedes-
trian, using several different buses at each stage. Just like
passengers, the queries and retrieved documents jump from
bus-to-bus until the destination is reached.

More specifically, the protocols we propose support text-
based distributed IR. We assume a homogeneous set of mo-
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bile peers that have limited-range radios, and have no wide-
area communication infrastructure among them. One or
more nodes may have access to Internet resources for resolv-
ing queries, but such access will not assist with the routing
of information from or to peers.

We assume each peer is willing to act as an intermedi-
ary for the routing of both queries and retrieved documents
that propagate through the network. Each peer donates a
limited-size buffer for routing storage. Queries are propa-
gated through the network by message exchange during lim-
ited duration meetings of two peers, called transfer opportu-
nities. Each peer that sees a query for the first time returns
sorted search results to the query source. Results may come
from an Internet resource or from the peer’s local storage.

These retrieved documents are returned to the sources by
a DTN routing algorithm that we have extended to evaluate
the relevance of the stored documents. Because each peer’s
buffer space is limited, the number of retrieved documents
being routed through the network at one time may be larger
than the peer can store; as a result, the peer must drop
some documents. In our protocol, the peer determines what
documents to drop based on both the likelihood of deliver-
ing the document as well as the relevance of the document.
The documents in the peer’s buffer are for different queries,
and therefore we need to normalize the ranked document
scores across all queries in the buffer, which is substantially
different than the related problem of merging results in dis-
tributed retrieval [6]. We call our method Score Normaliza-
tion Across Queries (SNAQ).

We offer a number of contributions after reviewing re-
lated work in the next section. In Section 3, we detail our
model and assumptions. In Section 4, we propose our SNAQ
method for normalizing document scores. SNAQ normalizes
document scores by utilizing global corpus statistics esti-
mated from a general English corpus. In Section 5, we detail
the design of our routing algorithm for document delivery in
DTNs. In Section 6, we present our evaluations that show
the effectiveness of our approach. Moreover, we show that
our routing algorithm provides better retrieval performance
than the approaches proposed previously that route without
relevance metrics [11, 14, 8]. In Section 7, we summarize the
main conclusions of this paper.

2. RELATED WORK

2.1 Information retrieval

Language models [13] have been successfully introduced
in the past few years as a new class of probability models
supporting effective information retrieval. One basic lan-
guage model is query likelihood [16], where each document
is scored by the probability that the query was generated,
given the language model of the current document. In this
framework, if we assume a multinomial distribution and use
linear smoothing, given document D and query @, the doc-
ument score is

Score(D) = P(Q|D) = [ [ P(w|D)
weQ
=[] MPaoe(w|D) + (1 = X) Peou(w|C) (1)
weR
where w € @ is a term in the query. We estimate Pjoc(w|D)

by the number of times w occurs in document D divided
by the total number of terms in D. We estimate Peo(w|C')

by the number of times w occurs in collection C' divided
by the total number of terms in collection C. Peoy(w|C)
smooths the result; it approximates the distribution of a
general English by maximum likelihood estimation of terms
from collection C. In this paper, we use the query-likelihood
model for retrieval.

Another popular language model framework is Lafferty
and Zhai’s risk minimization framework [10], where the sim-
ilarity between a document and a query is measured by the
negative Kullback-Liebler (KL) divergence between the doc-
ument model and the query model. If the query model is esti-
mated by the relative frequency of the terms of the query, the
KL divergence is equivalent to the query-likelihood model,
in terms of the document ranking for a given query.

When documents are retrieved from different collections,
ranking is not straightforward. For example, distributed IR
systems require a method of merging results from different
sources for the same query, including different collections or
different search engines. Luo and Callan [15] have a language
modeling framework for normalizing document scores from
different collections. Manmatha et al [12] propose a method
of merging results by modeling the score distributions of a
number of search engines.

The fundamental difference between existing work and
this paper is that we are interested in scoring documents
across different collections and different queries. Specifically,
we are interested in the following question: Is document A
for query @1 more likely to be relevant than document B for
query Q27 In Section 3, we use KL-divergence as a baseline
for normalizing document score. We show that a score nor-
malization that is ideally suited for result merging does not
produce good results for our problem.

2.2 Networking

Unlike traditional wireless or ad hoc networks of mobile

nodes, the common case in disruption tolerant networks (DTNs)

is that the peers are disconnected from one another almost
all the time. This allows the network to span enormous ge-
ographic areas, or alternatively, it removes the requirement
that all nodes be powered continuously, which greatly ex-
tends the lifetime of a network of battery-powered peers.

The vast majority of work in DTNs has focused on the for-
warding of messages from one peer to another. One strategy
we’ve proposed in our previous work [7, 5] is for peers to
keep track of the other peers they meet regularly over time.
With this approach, peers initialize to 0 their likelihood of
successful message delivery to all peers. For example, when
a peer A meets another peer B, the former sets the likelihood
of delivering messages to B to 1. Then A takes a portion of
B’s likelihood of delivering messages to the other nodes in
the system. These values degrade over time, such that they
are reinforced only if A and B meet periodically. This is an
approach that is common to later work [11, 14, §].

In our own previous work [9], we also proposed an IR
scheme for networks where peers are sparsely located. In
that work, peers each carry only a small randomized por-
tion of a single IR database. The major difference with that
work and this paper is that the earlier work assumes peers
coordinate their collections ahead of time to ensure random
collections; that kind of coordination is not always feasible
and we do not assume coordination among peers in this pa-
per. Additionally, in our earlier work, queries are not routed;
peers are only allowed to ask neighbors with whom they hap-
pen to be in direct contact at the moment the query is gen-



erated. In this paper, peers not only ask neighbors, but also
neighbors of neighbors, and so on; and thus by definition,
more relevant documents will be available to the source of
the query in the approach we propose here.

Finally, we note that it is possible for a single peer to
carry a large collection on a DVD or large local hard drive.
However, such a collection by definition prevents access to
dynamic information, and it is difficult to determine ahead
of time all information that may be relevant to a user. Sec-
ondly, sharing of heterogeneous collections is clearly more
useful than having only resource. Finally, with our solution,
if even one node has Internet access, then all reachable nodes
have the ability to query any web resource, including google,
yahoo, or other services.

3. MODEL AND ASSUMPTIONS

In our model, each peer carries a wireless radio and a finite
buffer. Because of limited radio range and geographic area
of movement, no network paths of length greater than one
exist contemporaneously. Therefore, to enable a distributed
IR system in a DTN, peers use their buffer to store and
carry messages for one another. Peers exchange messages
(including queries and retrieved documents) when they are
temporarily in range of another, called transfer opportuni-
ties. Over time, each peer generates queries, which are prop-
agated through the network so that relevant documents can
be retrieved. Peers carry queries retrieved documents as in-
termediaries between the source of the query and other peers
that have access to relevant documents.

We assume each peer has access to a unique collection of
documents for resolving queries. In order to apply our results
to a broad set of scenarios, we do not specify where the
collection resides. We can view the collection as a resource
carried by the user on a hard drive; or we can view the
collection as a resource accessible through the Internet (via
a cell phone data service, Internet cafe connection, or other
data service).

We do not assume any coordination among peers of which
documents are stored in the local collections. Peers do not
have contact ahead of time. Term frequencies are estimated
from a representative (English) text corpus and specifically
not from the local collections. Note the finite buffer is sep-
arate from a peer’s collection, and that documents from the
peer’s collection are never deleted.

At each transfer opportunity between two peers, A and B,
the followings events occur:

1. Delivery check. If A’s document buffer contains a
document for a query that originated from B, then A
delivers the document to B and deletes the document
from its buffer immediately. The same occurs for B.

2. Query exchange. A takes from B any query it has
not previously seen. Each query, @, is actually a tuple
containing a list of n terms and a source, s, as follows:
Q = ((w1,...,wn),s). The same occurs for B.

3. Retrieval. Peer A retrieves a fixed number of top-
ranked documents per query; call this set of new doc-
uments N4. The same occurs for B, where the set is
denoted Np. A sends to B the scores for the docu-
ments in A’s buffer and the scores for the documents
in Nga.

4. Scoring and Buffer Management. Peer A creates
a ranking based on document scores of the documents

in its buffer, the set Np, and the documents in B’s
buffer. Since the buffer at A is limited, it must drop
some of the documents in this union. A makes decision
on which documents to keep in its buffer according to
some criteria. So does B.

5. Document Exchange. Peer B transfers to A the
documents that A did not drop and that are not al-
ready in A’s buffer. So does A.

All queries are given an expiration time when generated.
After the timeout is reached, the peer deletes the query and
all associated documents stored in the peer’s buffer.

Our goal is to increase the total number of relevant results
returned to each peer. Step 4 is the key mechanism that
determines the quality of the result and is the subject of the
remainder of the paper.

In existing DTN work, buffer management is determined
strictly by the destinations of the messages. Messages with
destinations for which that are estimated to have a low prob-
ability of delivery are dropped first.

In the next section we design a scoring method that is
applicable to our scenario. In Section 5, we design hybrid
schemes, and in Section 6, we evaluate what scheme performs
best.

4. NORMALIZING DOCUMENT SCORES

The approach we propose for DTN-IR buffer management
is to drop documents that are likely to be least relevant (and
hence, bring the least utility to the network as a whole).
Therefore, we require that each peer ranks the documents
in its buffer by the likelihood of relevance. When the doc-
uments in a peer’s buffer are results retrieved for the same
query, our problem is the same as the problem of result merg-
ing in distributed IR [6]. However, in our system, each peer’s
buffer will hold retrieval results for different queries, and so
we require a method of comparing document scores even
when the documents are for different queries. We assume
each peer uses the same ranking algorithm, specifically, the
query-likelihood model we described in Section 2.

4.1 Score Normalization Across Queries

Two major problems arise when we directly apply Eq. 1 to
our scenario. First, if the smoothing collection used in Eq. 1
is directly estimated from each peer’s own collection, the
document score computed from Eq. 1 is incomparable be-
cause each collection has a different word distribution. Sec-
ond, even if each peer knows the exact global corpus statis-
tics, the document scores are still not comparable because
they are dependent on the query itself. For example, from
Eq. 1 we see that documents for a long query unfairly tend
to have a lower score than documents for a short query. In
other words, we are interested in a measure that is both
collection independent and query independent.

4.1.1 Collection Independence

To overcome the first problem, we propose using one large
general-purpose English collection as the smoothing collec-
tion, C, in Eq. 1. We assume the statistics of this collection
are available to all peers in the network. If each collection
knows the word distribution of the single complete collec-
tion that consists of all available collections, the document
scores would be collection-independent since any two collec-
tions would give the same score to the same document. In



practice, this actual single complete collection is unknown to
each peer and is instead a large, general-purpose English col-
lection. Additionally, since the purpose of P (w) in Eq. 1
is just to approximate the probability distribution of general
English, we can use another large general-purpose English
collection instead when the actual single complete collection
is unknown.

The downside of our method is that each peer needs to
keep word frequency information of a large background col-
lection. However, in practice, we can reduce space require-
ment by only storing words that are likely to be used in a
query instead of all the words in the collection.

4.1.2 Query Independence

To make document scores comparable across all queries,
one natural way is to use the negative KL-divergence be-
tween query model and document model as the document
score. That is,

Score(D) = —KL(6g||6p)

= S taw)lox g2 @

where 6g is the query model of @), and 6p is the document
model of D. In such a framework, the document score can be
seen as a distance between the distributions of query model
and document model.

We propose a new method, called Score Normalization
Across Queries (SNAQ), that uses global statistics. Given
a query @, a document D and a collection C, our approach
computes the document score for D as follows:

Score(D) = —KL(0o||0p) — (—KL(0g||6c))
KL(0q|l0c) — KL(0q||6p) (3)

where ¢ is the collection model of C. Here, the collection
model is estimated from a large, general-purpose English cor-
pus and can be seen as the document model averaged over
all documents in the collection. Thus, —K L(0¢||0c) denotes
the distance between the query model and the average doc-
ument model. The idea is that by using —KL(fg||0c) as a
baseline, we further eliminate the influence of the query.

If the query model is estimated by the relative frequency of
query term w € @ and linear smoothing is used for document
model, the KL-divergence method (Eq. 2) can be rewritten

3 a5t

weR

Score(D) = —KL(6g||0p) =

= Z 0q (w) log Op (w Z g (w)log g (w)
weEQ weQ
= ﬁ Z log()\Pdoc(w|D) + (1 - A)Pcoll(w|c))
weQ
#(w, Q)
“i0l U;Q# w, Q) log ——=— 0] (4)

where #(w, Q) is the number of occurrences of w in Q. Our
SNAQ method (Eq. 3) can be rewritten as:

SCOTE(D) = KL(9Q||90) — L(@QH@D)
_ o (w)
B %9‘? e (w)
o APioc(w|D) 4+ (1 — A) Peour(w|C)
N \Q\ Z log Peon(w]C) (5)

weQ
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Figure 1: Setup of normalization comparison exper-
iment.

Note that the re-written versions of the KL-divergence
method (Eq. 4) and SNAQ (Eq. 5) are both exactly equiv-
alent to the query-likelihood method (Eq. 1) in terms of
document ranking for a given query.

4.2 Evaluation

To evaluate the performance of different methods for nor-
malizing document scores, we ran simulations over a central
client-server architecture assumed in traditional distributed
IR, which represents a very simple version of our DTN sce-
nario. This scenario is illustrated in Fig. 1. Instead of send-
ing one query at a time, the central server sends multiple
queries simultaneously to the clients. Each client sends back
at the same time all top-ranked documents for all queries it
received. We assume that there is a limited buffer space that
the retrieved documents must pass through before reaching
the central server; documents that do not fit in the buffer are
dropped. To make the best use of its buffer, the server has to
rank search results for different queries. Given a fixed buffer
size, in this paper we are interested only in the total number
of relevant documents in the server’s buffer no matter which
query generated the retrieved results.

We evaluated the three normalization techniques, plus one
more:

e Query-likelihood model (Eq. 1);
e KL-divergence (Eq. 4);

e SNAQ (Eq. 5);

e Even allocation of the buffer

In the first three methods, documents from all queries
share the whole buffer unevenly. In these methods, docu-
ments for query A may take more space than documents for
query B. The even allocation method assigns a fixed buffer
size to each query and merges results independently for each
query.

Specifically, even allocation works as follows. Let N de-
note the total number of queries. We evenly divide the buffer
space to each query, that is, each query is assigned 1/N of
the total available buffer space. For each query, we merge
the search results from all collections and keep top-ranked
documents in the buffer. For example, if we have 100 queries
and the size of available buffer is 1,000, each query has the
buffer size of ten containing the ten top-ranked documents
from across all collections for the one query. We use the
query-likelihood model (Eq. 1) to compute document scores
in each collection. Note that in the case of even alloca-
tion, since we compare only document scores from the same
query, the three scoring methods (query-likelihood model,
KL-divergence, and SNAQ) are equivalent.



TREC123 | WT10G
1.07 Million 1.69M
Number of total terms 249.95M | 676.83M
Number of unique terms 0.816M 4.8M
Average document length 231 399

Number of documents

Table 1: A comparison of the statistics of corpuses
WT10G and TREC123.

4.2.1 Setup

In our experiments, we assume 100 clients, each assigned
one of the 100 collections defined in TREC123-100-bysource-
callan99.v2a [1]. We assume the central server sends out 100
simultaneous queries, and all 100 queries are received at all
clients. The queries are from the title field of TREC topics
51-151. Each client uses one of the four methods to score the
documents in its collection. This collection occupies only a
small amount of storage and could be stored on one resource-
ful PDA; however, our use of TREC if for evaluations and
is not intended to be representative of the size or content of
collections that would be carried by each peer. In practice
we expect each peer would carry (or have access to) a much
larger collection that would take up available space, would
be heterogeneous from each other peer, and created without
coordination with each other peer.

We set the mixing weight to A\ = 0.6 in all four meth-
ods. As discussed above, the first three methods are equiv-
alent from the viewpoint of single-query multiple-collection
retrieval. In the end, each client returns the ten top-ranked
documents for each query (i.e., 100,000 documents are re-
trieved). In the first three methods, the central server stores
only D top-scored documents in its buffer, according to its
buffer size. For simplicity, we set the buffer size as a quantity
of documents, D, instead of bytes.

The smoothing collection used for the query-likelihood,
KL-divergence, and even allocation methods is from TREC
CDs 1, 2, and 3, which is the union of all 100 individual col-
lections from clients. We call this union the global collection.
Given a query, the goal of result merging is to approximate
the ranked list that would be produced if the query is re-
trieved from the global collection. By using the global col-
lection as the smoothing collection, query-likelihood model
method can lead to perfect result merging for any given
query.

When applying query-likelihood model in our scenario, we
act as if all documents are for the same query. Additionally,
we assume the global collection is available to KL-divergence
method to determine an upper bound on its best perfor-
mance in the experiment. In practice, this global collection
would be unknown, which is a common assumption in dis-
tributed IR. With our SNAQ method, we assume no knowl-
edge of the global collection and instead use the WT10G [2]
collection for smoothing. Table 1 shows comparison of cor-
pus statistics between two collections. Hence, SNAQ is the
most disadvantaged in our simulations.

4.2.2 Results

Figure 2 shows the performance of four methods. Figure 3
shows a zoom of the smallest buffer sizes for the same ex-
periments. On the x-axis is the buffer size measured as the
number of documents that can be held on the server’s buffer.
Shown on the y-axis is the number of relevant documents in
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Figure 2: Performance of three normalization meth-
ods and even allocation.
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Figure 3: Zoom of Figure 2.

the server’s buffer for each method. From the figure, we
can see that query-likelihood method performs significantly
worse than the others because the scoring is highly query-
dependent. This implies that scores from the query likeli-
hood model are not quite comparable. Our method performs
better than KL-divergence regardless of the buffer size. We
can conclude that taking the average document model into
account is helpful for normalizing document scores.

The even-allocation method performs poorly with small
buffers, but performs better than SNAQ when the buffer
size is large. The reason is that SNAQ is biased towards
some queries when the buffer size is large and all queries
are compared simultaneously. However, in Section 6.3, we
show that the even-allocation performs the worst of all four
methods in a simulation of a mobile network where peers
cannot see all queries at once. The results in Section 6.3
also show that SNAQ performs best, delivering the most
relevant documents in a mobile network.

5. DISTRIBUTED IRINADTN

The key challenge of a successful IR routing algorithm is
the scoring and buffer management step listed in Section 3.
We derived a method of scoring documents in Section 4; in
this section, we propose a method for buffer management.
In our algorithm, we rank documents and drop the lowest-



ranking documents first when the peer’s buffer is overfull.

Since our goal is to maximize the number of relevant docu-
ments delivered to each peer, we have two criteria for ranking
documents in a peer’s buffer:

1. Delivery: if peer p can not deliver document D to
its destination, then the document should be dropped
from the buffer even if it is relevant.

2. Relevance: if document D is non-relevant to a query,
q, then the document should be dropped from the
buffer even if it is deliverable.

Accordingly, we propose the following routing metric, which
combines information from both the state of the network
and the relevance of documents. We rank a document D
proportional to the score and deliverable estimate:
1
—_—

Rank(D) (1 — o) Deliverable(D) + aScore(D)  (6)

(Note that existing research in the networking literature sets
a=0.)

The Score(D) term in Eq. 6 is the estimation of relevance
of document D that we compute in Section 4. To estimate
the Deliverable(D) term, we adopt the meeting value met-
ric common to many network algorithms to DTNs [11, 14,
8]. This metric estimates the likelihood of a future meet-
ing between pairs of peers given a history of meetings, and
operates as follows. Each peer p maintains a meeting value
for every other peer g in the network. Every time peer p
meets peer g, p adds 1 to its current meeting value for q.
Additionally, p adds a portion of ¢’s meeting value for each
other peer, r € R, to p’s current meeting value for r; where
R is the set of all peers in the network. This captures the
likelihood of multi-hop paths as well as one-hop paths. The
meeting values degrade slowly over time, so meetings that
occur more regularly result in higher values. At first, each
peer initializes its meeting values to zero for all other peers.

In addition to Eq. 6, there are two more details that com-
plete the description of our algorithm.

First, so far, we have assumed that all documents that
score greater than zero from a peer’s collection are offered
to the next peer it meets. In fact, each peer can also pre-
select documents by offering only those documents that score
higher than a specific threshold. Specifically, in Step 3 (re-
trieval, in Section 3), peer A sets a threshold on document
score. Only retrieved documents with score higher than the
threshold are added to the new document set N4.

Second, we note that during document exchange (Step 4
in Section 3) we require that there is no overlap of doc-
uments between A’s buffer and B’s buffer (the node that
ranks the document lower keeps the document). This saves
buffer space and prevents duplicates from being delivered to
the destination. Our experiments have shown this policy in-
creases the number of relevant documents that are delivered
in the network across all ranking and scoring methods.

In sum, our IR routing framework consists of two compo-
nents:

1. Document pre-selection for documents from the peer’s
collection: During retrieval against a peer’s collection,
the peer attempts to increase precision by returning
documents that score higher than some threshold. Note
that the thresholding method requires that document
scores are comparable between different collections and

different queries. Otherwise, there is no way to set a
threshold.

2. Document ranking for the documents in the peer’s buffer:
Peers rank documents based on Eq. 6 which is a com-
bination of network information and document rele-
vance.

6. EVALUATION

Recall that our goal is to design a distributed information
retrieval service that delivers the largest number of relevant
documents using a DTN. This differs greatly from existing
Internet-based distributed IR retrieval algorithms, which as-
sume all collections are always reachable in a short timescale
and that the routing infrastructure can handle any number
of retrieved documents. This also differs greatly from exist-
ing DTN routing algorithms, which aim only to deliver the
largest number of documents.

In this section, we present the results of our simulation
comparing several methods of Distrusted IR for DTNs. We
perform two major comparisons. In both sets of experi-
ments, we use the algorithm described in Section 3.

First, we compare difference scoring methods in the net-
work simulator; in Section 4, our comparison was an upper
bound on all methods as the document comparison did not
occur in a distributed fashion. Our results show that our
SNAQ method performs best.

Second, we evaluate the SNAQ method for various values
of a from Eq. 6 and various threshold values, as discussed
in the previous section. The value of a controls whether
the peers use existing networking routing algorithms or take
document scores into account. Our results show that while
existing routing algorithms can deliver the most documents
to the sources of queries, our approach of applying to SNAQ-
based relevance to routing decisions in the network delivers
the most relevant documents.

6.1 Evaluation Model

6.1.1 IR simulation

As we for experiments in Section 4, we used TREC123-
100-bysource-callan99.v2a [1], which is a 100-collections testbed
created from TREC CDs 1,2, and 3. The collections are or-
ganized by source and publication date. We use 100 queries
from the title field of TREC topics 51-151. Relevance judg-
ments for these queries are available from NIST [3].

6.1.2 Network simulation

The type of DTN we simulate is called a small-diameter
network by the network community [11, 14, 8]. In these
networks each peer, p, has a small set of preferred peers
that it meets with often and fairly regularly over the course
of simulation. Peer p meets with the remaining set of peers
infrequently or not at all.

Since our algorithms assume no knowledge of geographic
location, we simulate peer connectivity instead of peer move-
ments. We create a link between each pair of peers in the
simulation and links are activated (representing the start of a
transfer opportunity) and deactivated (representing the end
of a transfer opportunity) at random.

We create small-diameter networks as follows: each pair
of peers in the network has a link connecting them, for each
link, we draw a meeting count, at random from an exponen-
tial distribution with mean A. For any links with ¢ < A, we
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Figure 4: The number of relevant documents deliv-
ered by each normalization method as the buffer size
varies (plots are slightly offset for clarity).

reset ¢c=0. This creates fewer direct meetings peers and re-
duces the number of one-hop deliveries in the network. Let s
represent the duration of the simulation. We then calculate
an inter-meeting time, ¢ = s/c. for each link independently.
The actual times between meetings during the simulation
are drawn randomly from another exponential distribution
with mean of 3.

We randomly pick a fixed number of peers as query peers
that can generate queries from a query pool that consists
of 100 TREC title queries. In a query peer the arrival time
of a query is independently and randomly drawn from an
exponential distribution with mean of ¢. We set ¢ = 10 in
the simulation.

In our experiments, there are 100 peers in the network and
each peer is assigned one of the 100 collections described in
5.1. We use an average meeting count of A = 10 along each
link and let the total duration of the simulation be 200. For
all experiments, we run 50 experimental trials and take the
averages as the final results.

6.2 Normalization Simulation Results
Figure 4 shows that SNAQ consistently works better than

the KL-divergence, query-likelihood, and even-allocation meth-

ods in the network environment. This is consistent with Fig-
ure 3, which suggested that SNAQ can normalize documents
scores better than the other two methods. (In these experi-
ments, for each method, we fixed the buffer size at 50.) Not
surprisingly the random method works worst because it does
not consider any relevance information at all.

The most interesting result is that the even-allocation
method works poorly compared to SNAQ, KL-divergence
and query-likelihood even though it performs very well in
the client-server experiment shown in Figure 2. There are
several reasons why this happens. The first is that we used
small buffers. However, there is a more general explanation.

In the client-server architecture, the server has a global
view — it can see at one time all retrieved documents from
all collections for a given query. The top documents chosen
for each query by the even-allocation method are exactly the
top-ranked documents retrieved by a single complete collec-
tions (i.e., one that consists of all collections).

However, in the case of our small diameter network, each
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Figure 5: The number of relevant documents deliv-
ered by SNAQ with varied thresholds and values of
a (see Eq. 6).
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Figure 6: The total number of documents delivered
by SNAQ with varied thresholds and values of « (see
Eq. 6).

peer only has a local view. Locally top-ranked documents
(the documents that are top ranked by local collection) are
less often dropped from the buffer, taking up valuable buffer
space. Since each peer is required to provide retrieval results
for all available queries and each collection usually only has
relevant documents for a small number of queries, some doc-
uments, even highly-ranked by a local collection, may have
very low ranks in the single ranked list mentioned above.
Since the even-allocation method compares only documents
scores from the same query, it cannot easily judge if a lo-
cally top-ranked document would have a high rank in the
single ranked list or not. SNAQ, on the other hand, is able
to compare document scores among queries. Therefore, it
works better because it can identify this case by comparing
them with other documents for different queries.

6.3 Ranking Simulation Results

Given that SNAQ performed best in our simulations, in
the remainder of this section we evaluate the affects of vary-
ing the threshold at each peer, and varying the value of «
in Eq. 6. For example, for @ = 0, peer in the simulation use
a buffer management technique that relies on only the like-



Score :  Percentage
0-1 :24.2%
1-2  : 38.6%
2-3 :21.7%
34 : 9.0%
> 4 6.4%

Table 2: Distribution of scores in retrieved docu-
ments.

lihood of delivery of documents (i.e., deliverable(D)). Simi-
larly, a setting of a = 1.0 means peers use only document
scores to rank documents. A hybrid approach is a = 0.01
where both terms of Eq. 6 are used to make buffer manage-
ment decisions.

Thresholding controls the precision of documents that are
sent to the network. Table 2 shows a distribution of doc-
ument scores of all retrieved documents (that is, all top 10
ranked documents by each collection for each query). Set-
ting a threshold to zero means each peer will provide all top-
ranked documents to the buffers and let buffer management
makes decision on which documents to keep in the buffers.
Setting a positive threshold means each peer selects only
these top-ranked documents with document scores above the
threshold .

Our results are presented in Figure 5, which shows the to-
tal number of documents (relevant or not) returned to each
peer with SNAQ for various values of o and threshold. Fig-
ure 6 shows the number of relevant documents returned to
each peer for the same experiments. The curve labeled “ran-
dom” denotes a method where peers randomly drop docu-
ments in overfull buffers instead of using Eq. 6 during buffer
management. (Not shown, for clarity, are values of o > 0.1,
which performed close to but below o = 1.0.)

The results suggest that ranking with only relevance (i.e.,
a = 1) with a zero threshold provides the best result in terms
of the number of relevant documents delivered. One expla-
nation of this result is that SNAQ is a good normalization
method. Another explanation is that it is easier to distin-
guish which of two documents is more likely to be relevant
to a query than it is to distinguish which of two packets is
more likely to be delivered to a destination. Figure 6 shows
that the routing algorithm is not able to take strong ad-
vantage of the scenario we have placed it in. The greatest
performance benefit from the routing algorithm over ran-
dom is with larger buffer sizes and networks where peers
have smaller cliques than we have used [11, 14, 8]. We did
not evaluate many types of network connectivity patterns
because our focus was on the performance of the IR. How-
ever, we believe for better routing algorithms, or different
connectivity models, our hybrid method is a framework that
can take advantage of the deliverable() estimate.

The results also suggest that setting a threshold is helpful
for cases where routing is used in the ranking; e.g., both a =
0.0 and a = 0.01. In these two cases, delivery(D) in Eq 6
dominates the buffer management, so pre-selection at the
peer has a significant benefit. By retrieving and routing less
documents, less packets at peers must be dropped. When
a hybrid approach is required, the threshold is a significant
improvement.

7. CONCLUSION

Our distributed information retrieval system is the first

that operates over a disruption tolerant network, which is a
mobile peer-to-peer network that covers a large geographic
area. The different assumptions of a DTN pose a challenge
to existing work in distributed IR. This is because retrieved
results are returned hop-by-hop through the network of peers
and stored in limited-size buffers. Intermediate peers on the
path to the source must manage a finite buffer filled with
documents from multiple queries and multiple collections.

As a solution, we proposed a method that evaluates both
relevance scores and an estimate of whether the document
can be delivered successfully. We showed that our scoring
method, SNAQ), returns more relevant documents in our mo-
bile network simulation than existing normalization meth-
ods, which are not intended to work across multiple queries.
Additionally, we compared our approach to existing net-
working algorithms for delivering data in a DTN. We showed
that although our method delivers less documents total, it
delivers significantly more relevant documents to sources of
queries. Our work shows that it is easier to distinguish likely
relevance across documents than it is to distinguish a likeli-
hood of successful routing and delivery in a DTN. However,
as network routing methods improve, our ranking will be
able to take advantage of the improvement and adjust its
balance of scoring and delivery estimation.
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