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Abstract

Learning Markov random field (MRF) models is

notoriously hard due to the presence of a global

normalization factor. In this paper we present a

new framework for learning MRF models based

on the contrastive free energy (CF) objective

function. In this scheme the parameters are up-

dated in an attempt to match the average sta-

tistics of the data distribution and a distribution

which is (partially or approximately) “relaxed” to

the equilibrium distribution. We show that max-

imum likelihood, mean field, contrastive diver-

gence and pseudo-likelihood objectives can be

understood in this paradigm. Moreover, we pro-

pose and study a new learning algorithm: the “k-

step Kikuchi/Bethe approximation”. This algo-

rithm is then tested on a conditional random field

model with “skip-chain” edges to model long

range interactions in text data. It is demonstrated

that with no loss in accuracy, the training time

is brought down on average from 19 hours (BP

based learning) to 83 minutes, an order of mag-

nitude improvement.

1 INTRODUCTION: LEARNING MRFs

In the context of machine learning two classes of graphical

model have been extensively studied: the directed graph-

ical model or Bayesian network (BN) and the undirected

graphical model or Markov random field (MRF). While

both models have been applied successfully in a num-

ber of domains, it is fair to say that learning in BNs has

reached a more advanced level of sophistication than learn-

ing in MRFs. For instance, hidden variable models can

be efficiently tackled with the variational EM algorithm1,

Bayesian inference is often feasible with conjugate pri-

ors and greedy structure learning algorithms have met with

1Fully observed BNs are trivial and only depend on counts.

some success as well. In contrast, even for a fully observed

MRF model, evaluating the gradient of the log-likelihood

is typically intractable. The problem can be traced back

to the presence of a global normalization term which de-

pends on the parameters and which translates into an often

intractable inference problem when we compute its gra-

dient2. Clearly, introducing unobserved random variables

only aggravates this problem, while Bayesian approaches

to infer posterior distributions over parameters or structures

seem completely absent in the literature, apart from one pa-

per [9]. Because MRF models arise in many applications,

including spatial statistics, computer vision, and natural-

language processing, we feel that it is important to improve

this state of affairs.

We claim that learning MRFs is so difficult because the

inference problem induced by the global normalizer is of

a different nature and often harder than the problem of

computing the posterior distribution of the hidden variables

given the observed variables needed for learning BNs. The

reason is that in the latter case we enter evidence to the

model and we may have reasonable hope that the posterior

is peaked around a single solution. However, for MRFs we

need to infer the distribution when all variables are uncon-

strained implying that the distribution we are trying to infer

is likely to have many modes. Even though much progress

has been in the field of approximate inference, no method

can satisfactorily deal with a large number of modes for

which the location is unknown.

To approximate the required averages over the uncon-

strained (model) distribution we could for instance run a

MCMC sampler or use the mean field approximation [10].

While the first method is relatively slow (we need to sam-

ple for every iteration of gradient descent), the estimated

statistics can also get swamped by the sampling variance3.

2In case the structure of the graph is such we can identify a
junction tree with small tree-width, then inference can be per-
formed tractably and we can compute exact learning rules.

3Of course, one can reduce the variance by using more sam-
ples, but note that this only improves as 1/N where N is the num-
ber of samples.



The mean field approximation is not plagued by variance,

but unlike the MCMC sampler it has to tolerate a certain

bias in its estimates. However, both problems suffer from a

much more severe problem, namely that they will only ap-

proximate one mode of the distribution. One could argue

that a “good sampler” should mix between modes, but in

the absence of any information about the location of these

modes, this is an unrealistic hope, certainly in high dimen-

sions.

There is one piece of information which typically remains

unexploited, namely the fact that data points are expected

to be located close to a mode (or at least this is what we

like to achieve during learning). Hence, one idea to deal

with the above mentioned “many modes” problem, is to run

multiple MCMC chains, each one initialized at a different

data-point. With this method, we are at least certain that

all the modes close to data points are explored by samples.

This will have the effect that learning is likely to get the

local shape of each local mode correct. Still, there are (at

least) two drawbacks: 1) the modes do not communicate,

i.e. we have no mixing between modes and 2) accidental

modes which are created because of the particular parame-

terization of the model remain undetected by samples im-

plying there is no force to remove them from the model.

The first problem has the undesirable effect that although

the shape of each mode may be a good fit, the relative vol-

ume (or free energy) of the modes may not be properly esti-

mated. This was studied in [7] and mode-jumping MCMC

procedures were proposed to improve the communication

between modes. Since there is no information about the

location of the spurious modes (mentioned under 2), we

predict it will be extremely hard to deal with the second

problem.

Running Markov chains to convergence at every data case

at every iteration of learning is clearly a costly business.

Fortunately, it turns out that we can greatly improve our ef-

ficiency by running these Markov chains for only a few (say

k) steps4. It turns out that if one uses these pseudo-samples,

or rather “k-step reconstructions” of the data, we approxi-

mately minimize the so-called ”contrastive divergence” ob-

jective function [5]. Apart from a very significant increase

in efficiency, we also decrease the variance of our estimates

at the expense of an increased bias.

The aim of the current paper is to combine deterministic,

variational approximations with the ideas of contrastive di-

vergence. This idea is analogous to the introduction of

mean field learning in MRFs in [10]. A mean field based

approach to contrastive divergence was presented in [17].

In the current work we extend these ideas to general vari-

ational approximations. In particular we study the Bethe

approximation, which in combination with the convergent

“belief optimization” algorithm to minimize the Bethe free

4It is essential that the chains are started at the data-cases.

energy results in a novel algorithm to train Markov ran-

dom fields with loopy structure. This algorithm is tested on

a conditional random field model with long range interac-

tions (the so called “skip-chain” CRFs [11]) to label tokens

in email messages. We demonstrate that we can speed up

learning tenfold at no cost to the test-performance of the

trained model.

2 MAXIMUM LIKELIHOOD LEARNING

An intuitive way to restate the maximum likelihood ob-

jective is as a minimization problem of the following

Kullback-Leibler divergence between the data distribution

P0(y) and the model distribution Pλ(y),

λML = arg min
λ

KL [P0(y)||Pλ(y)] (1)

We will consider the general case here, where apart from

the observed variables, y, the model may also contain

a number of unobserved variables h. Introducing the

joint distribution Pλ(y, h) and the distribution P0(y, h) =
Pλ(h|y)P0(y) = Pλ(h, y)P0(y)/Pλ(y) with Pλ(y) =
∑

h Pλ(y, h), we can rewrite the KL divergence as a dif-

ference between two free energies,

KL[P0(y)||Pλ(y)] = KL[P0(y, h)||Pλ(y, h)]

= F0 − F∞
.
= CF∞ ≥ 0 (2)

where F0 denotes the free energy of the distribution

P0(y, h), while F∞ = − log(Z) denotes the free energy

of the “random system” governed by Pλ. The subscript ∞
indicates that we have to run a Markov chain infinitely long

to reach equilibrium. For every data-case we can therefore

identify two random systems; one system with free energy

F0 has a data case clamped to the observed random vari-

ables while the hidden variables are free to fluctuate. In

the “free system” (with free energy F∞) all random vari-

ables (y, h) are unconstrained. The energy of the system,

E(y, h), is defined through the Boltzman distribution,

P (y, h) =
1

Z
exp [−E(y, h)] . (3)

Although our discussion is more general, we will restrict

ourselves from now on to exponential family distributions

defined through the following energy function,

E(y, h) = −
∑

β

∑

i

λiβfiβ(yβ , hβ). (4)

In analogy to physical systems, we can decompose the free

energy in an average energy term and a entropy term,

F0 = E[E]0 − H0 F∞ = E[E]∞ − H∞ (5)

where E[·]0 denotes averaging with respect to the joint

P0(y, h) and E[·]∞ denotes averaging with respect to the

equilibrium distribution Pλ(v,h).



Learning can now be understood as follows: for each data

case we first compute the free energy F0 of the system with

the datum clamped to the observed units (this involves in-

ference over the hidden units). Then we set the constraints

on the observed variables free and let the system relax into

a new distribution Pλ(y, h) with lower free energy F∞.

If in this process the expected sufficient statistics E[fiβ ]
change we have an imperfect model and we change the

parameters λiβ in such a way that the expected sufficient

statistics are better preserved in the next iteration,

∂CF∞

∂λiβ
= −E[fiβ(yβ , hβ)]P0

+ E[fiβ(yβ , hβ)]Pλ
(6)

Note that this does not mean that the statistics for each data

point must cancel with the equilibrium statistics; this prop-

erty must only hold when averaged over all data cases.

3 APPROXIMATE ML-LEARNING

In the previous section, we wrote the likelihood function

as a difference of two free energies, one of which was in-

tractable to compute in general. In this section, we replace

those free energies with approximate free energies, in a way

conceptually similar to the mean field approximation intro-

duced in [10]. The idea is to replace the objective in Eqn.2

with

KL[Q0(y, h)||Pλ(y, h)] − KL[Q∞(y, h)||Pλ(y, h)]

= F APP
0 − F APP

∞
.
= CFAPP

∞ ≥ 0 (7)

where we define Q0(y, h) = Q(h|y)P0(y) and where

both Q0(h|y) and Q(y, h) are approximate, variational

distributions such as fully factorized mean field distribu-

tions or tree structured distributions. Typically they de-

pend on a number of variational parameters that need to

be computed by separately minimizing the respective KL-

divergence terms in Eqn.7. The most important simplifica-

tion that is achieved by minimizing CFAPP is the fact that

the log-partition function term, log Z, cancels between the

two terms in Eqn.7.

An important constraint that must be satisfied by any con-

trastive free energy is that F0 ≥ F∞ or equivalently

CF ≥ 0. The reason is that we like to change the un-

constrained system with F∞ so that on average it is similar

to the constrained system with F0. This would ensure that

if we sample from Pλ the samples would be similar to the

data-cases. Since both systems have the same energy func-

tion, but an unconstrained system has more entropy its free

energy should be lower as well (see Eqn.5). Moreover, the

cost function F0 − F∞ wouldn’t be lower bounded if F∞

was allowed to become arbitrarily large.

As an example, let’s choose the mean field approximation

for Q0(h|y) and Q∞(h, y) in Eqn.7 above,

Q0(h|y) =
∏

i

qi(hi|y) Q∞(y, h) =
∏

j

rj(zj) (8)

with z = {y, h} and where both q and r are variational pa-

rameters satisfying
∑

hi
q(hi|y) = 1 ∀i and

∑

zj
r(zj) =

1 ∀j. They are computed by minimizing their respective

KL-divergence terms in Eqn.7. It is now easy to see that

F∞ is smaller than F0, simply because it has more degrees

of freedom to minimize over (in F0 the variables y are con-

strained). It is convenient to imagine a process where we

minimize F∞ in two phases, first we clamp y to a data-case

and minimize over h, then we set the y variables free and

continue the minimization over (y, h) jointly5. Once we

have found the variational parameters (q, r), we can update

the parameters using the following gradient,

∂CF
APP
∞

∂λiβ
= −E[fiβ(yβ , hβ)]Q0

+ E[fiβ(yβ , hβ)]Q∞
(9)

We only need to have access to (approximate) marginal

distributions pβ(yβ , hβ) in order to compute the expecta-

tions in Eqn.9. Hence, we are allowed to consider gen-

eral approximate free energies F0, F∞ as functions of local

marginal distributions only, as long as we can assert that

F0 ≥ F∞. An important example of this is the family of

Kikuchi free energies F KIK({qα}), where the approximate

marginals need not be consistent with a global distribution

Q. In other words, there may not exist a global distribution

Q such that its marginals over clusters of nodes are given

by the qα which minimize F KIK.

The contrastive Kikuchi free energy can be expressed as a

sum over constrained local KL-divergences as follows,

CFKIK
∞

.
= F KIK

0 − F KIK
∞ =

∑

α

cαKL[p0(yα)qα(hα|yα)||pα(yα, hα)] −

∑

α

cαKL[rα(yα, hα)||pα(yα, hα)] (10)

where pα(zα) = 1
Zα

∏

β⊂α Ψβ(xβ), and where the set of

clusters {α} consists of a number of overlapping large clus-

ters which cover the graph such that any interaction Ψβ

fits in one of these clusters. By p0(yα) we mean the mar-

ginal data distribution over the variables6 y in cluster α.

Since this distribution is fixed, we only minimize over the

qα variables in the first term. The counting numbers cα

make sure that every variable and interaction is effectively

counted once. Unlike the mean field approximation, the

marginals are overlapping and are required to satisfy cer-

tain “marginalization constraints” on the intersections,

∑

zα\zβ

rα(zα) = rβ(zβ) (11)

and similarly for q. We refer to [19] for more details.

5In fact, the mean field equations, when run sequentially (one
variable at a time), are a form of coordinate descent.

6Note that if we write (yα, hα) we mean all the variables y
and h which reside in cluster α.



In the following we will be working with clusters consist-

ing of edges and nodes only, called the “Bethe approxima-

tion”, but we like to emphasize that the formalism is easily

adapted to general Kikuchi approximations, or in fact re-

gion graph approximations [19]. The counting numbers in

this case are given by,

cedge = 1, cnode = 1 − #neighbors (12)

The approximate learning procedure is again similar to

what we have seen before: first we compute the varia-

tional parameters (qα, rα) by minimizing the respective

KL-divergence terms, and subsequently we update the pa-

rameters using the following gradients,

∂CF
BETHE
∞

∂λiβ
= −E[fiβ(yβ , hβ)]qαp0

+ E[fiβ(yβ , hβ)]rα

(13)

where we need that β ⊆ α.

When the free energies F BETHE
0 and F BETHE

∞ are convex in

the variational parameters (q, r), we can use a class of al-

gorithms under the name (generalized) belief propagation

to minimize the Bethe free energies (or KL-divergences) in

Eqn.10. However, the Bethe free energy is only convex un-

der very special circumstances, e.g. when the graph has at

most one loop. In general it is littered with local minima

and for reasons explained before it does not deserve rec-

ommendation to run BP and end up in some random local

minimum. Instead, we would like to initialize our mini-

mization procedures on the data-cases. However, it is not

clear how to efficiently find a set of messages that will pro-

duce a prescribed set of marginals, implying that we have

little control over our initialization. Fortunately, algorithms

have been developed that do not rely on messages but di-

rectly minimize the Bethe free energy as a function of the

marginals [14, 20, 4]. In general, these algorithms itera-

tively construct a convex upper bound on the Bethe free

energy and minimize those under the constraints of mar-

ginal consistency. Unfortunately, every constrained bound

optimization step is a slow iterative algorithm with linear

converge in general. Hence, if we use such an algorithm at

every step of learning for every data-case we end up with

a computationally very inefficient learning algorithm. For

binary random variables with pairwise interactions the sit-

uation is considerably better, since it was shown in [18]

that the constraints can be solved analytically, leaving only

the node marginals as free variational parameters. Hence, a

truly efficient learning procedure is currently only available

for this case, but we are confident that efficient minimiza-

tion algorithms for the more general case will be developed

in the near future.

4 APPROXIMATE CONTRASTIVE FREE

ENERGIES

We will now introduce a second approximation that is

based on the ideas behind contrastive divergence and com-

bine them with the variational approximations described in

the previous section. This will have the effect of making the

learning algorithm computationally much more efficient.

Recall our interpretation of learning using a contrastive free

energy. First we compute the free energy F0 at the data-

case under consideration and compute the necessary suffi-

cient statistics. Then we relax the constraints on the vari-

ables which were clamped to the value of the data-case and

let the system reach equilibrium where we compute the val-

ues of the sufficient statistics again. The system is relaxed

by “hitting” the data distribution P0 with a transition kernel

that has Pλ as its invariant distribution,

P1(h, y) =
∑

h′,y′

K(h, y|h′, y′)P0(h
′, y′) (14)

Pλ = (K)∞P0 (15)

In practice we replace P0 by the empirical distribution and

achieve the relaxation by running MCMC sampling proce-

dures initialized at the data cases.

The underlying idea of contrastive divergence is that we

don’t actually have to wait until the system has reached

equilibrium, since there is much valuable information in

the first few steps of this relaxation process (i.e. after a few

steps of the MCMC samplers). If the population of samples

have a systematic tendency to move away from the data,

we can immediately correct this tendency by changing the

parameters such that the probability becomes larger at the

location of the data and the probability becomes smaller at

the location of the samples obtained after a brief MCMC

run,

∂CF
CD
k

∂λiβ
= −E[fiβ(yβ , hβ)]P0

+ E[fiβ(yβ , hβ)]Pk
(16)

Following these gradients downhill approximately mini-

mizes the following contrastive divergence objective,

KL[P0(y, h)||Pλ(y, h)] − KL[Pk(y, h)||Pλ(y, h)]

= F0 − Fk
.
= CFk ≥ 0 (17)

The derivative of this objective w.r.t. λiβ contains a term

∂Fk/∂λiβ in addition to the terms in Eqn.16. However, it

is usually small and rarely in conflict with the other terms

in the gradient and as result it can be safely ignored [5].

Clearly, learning with contrastive divergence results in a

vast improvement in efficiency. Moreover, because for each

data-case there is a nearby sample we reduce the variance in

the estimates of the sufficient statistic in Eqn.16 (compared

to a MCMC sampler at equilibrium) but at the same time



we may have introduced bias in our estimates. However,

it is not hard to show that for an infinite number of data-

cases and a model that is flexible enough to contain the

true model, it must be true that there is a fixed point at

the correct parameter value, i.e. the first and second term

in Eqn.20 will cancel. We refer to [5, 15, 21] for further

details on contrastive divergence learning.

It is now a small step to argue for a procedure that combines

the variational approximation of the previous section with

the ideas of contrastive divergence. Instead of relaxing the

free energy using sampling we will relax it by applying a

minimization procedure over the variational distributions Q
initialized at Q0 or over the marginals rα(zα), initialized

at p0(yα)qα(hα|yα). Thus, we define the approximate “k-

step” contrastive free energy as,

KL[Q0(y, h)||Pλ(y, h)] − KL[Qk(y, h)||Pλ(y, h)]

= F APP
0 − F APP

k
.
= CFAPP

k ≥ 0 (18)

where F APP
k is a function of the variational distribution Qk.

Alternatively, in case of the Kikuchi approximation, we use

Eqn.10 and replace the local marginals rα(zα) with their

k-step counterparts obtained after k steps of minimization

on the Kikuchi free energy. Because of its definition the

“k-step” contrastive free energy must be positive which, as

discussed earlier, is an important constraint for the proce-

dure to work. Taking derivatives w.r.t. to the parameters

{λiβ} we find,

∂CFAPP
k

∂λiβ
=

∂F APP
0

∂λiβ
−

∂F APP
k

∂λiβ
−

∂F APP
k

∂Qk

∂Qk

∂λiβ
(19)

where the last term appears because we didn’t minimize the

free energy and hence ∂Fk/∂Qk 6= 0 (unlike ∂F0/∂Q0 =
0 and ∂F∞/∂Q∞ = 0). This term is difficult to com-

pute, since we don’t have explicit expressions for Qk in

terms of λi. Again, it is small and rarely in conflict with

the other terms in the gradient so it can be safely ignored

(see [17] for experimental evidence of this fact in the case

of MF). Hence, ignoring the last term and simplifying the

other terms we arrive at the gradient,

∂CF
APP
k

∂λiβ
= −E[fiβ(yβ , hβ)]Q0

+ E[fiβ(yβ , hβ)]Qk
(20)

Of course, when we use the Kikuchi approximation we re-

place the global distributions Q0 and Qk in Eqn.20 by local

marginals qαp0 and rα,k as in Eqn.13.

5 RELATION TO PSEUDO-LIKELIHOOD

We have seen that learning in MRFs can be interpreted

as minimizing the difference between two free energies,

one with the data clamped on the observed variables, the

other one with all the variables unconstrained. Importantly,

the latter free energy must always be lower than the first

one. The various methods differed in the way we allowed

the relaxation of the free energy to take place. We have

introduced approximate relaxations using variational dis-

tributions and partial relaxations where we don’t relax all

the way to equilibrium. We will now see that the pseudo-

likelihood estimator can also be interpreted in this frame-

work (see also [6]).

In [1], the pseudo-likelihood (PL) was introduced to learn

MRF models tractably. For a fully observed7 MRF the PL

is given by,

PL =
1

KN

N
∏

n=1

K
∏

k=1

p(ŷk,n|ŷ−k,n) (21)

where y−k denotes all variables except variable yk, K is

the number of variables and N the number of data-cases.

This objective is far more tractable than the ML criterion

because it only depends on one dimensional normalization

constants Zk|−k. Moreover it was shown that asymptoti-

cally this estimator is consistent [3] (but less efficient in the

statistical sense than the MLE). We can rewrite minus the

log of this objective as a difference of two free energies,

KL[P0||
∏

k

Pk|−k] = E[
∑

iβ

fiβ(yβ)]P0
+

1

K

∑

k

log Zk|−k

= F PL
0 − F PL

∞ = CF
PL ≥ 0 (22)

where we identify the first term as the average energy and

the second as the average one dimensional conditional par-

tition functions. Since the data have no entropy, the first

term is the free energy of the data F0. The second term

can be interpreted as a partially unconstrained free energy,

where only one variable is relaxed at a time, conditioned on

all the others and where the final result is averaged. Hence,

like our partial relaxations, the PL-relaxation stays close to

the data distribution since at all times we condition on all

but one of the variables. The relaxed distribution for one

data-case is given by the following mixture,

P PL
λ (yn) =

1

K

K
∑

k=1



pλ(yk,n|ŷ−k,n)
∏

j\k

δ(yj,n − ŷj,n)





(23)

which has to be compared with Pλ (maximum likelihood),

Pk (k-step contrastive divergence), Q∞ (variational) and

Qk (k-step variational). It is now straightforward to derive

the following gradients,

∂CF
PL

∂λiβ
= −E[fiβ(yβ)]P0

+ E[fiβ(yβ)]P PL (24)

= −
1

N

N
∑

n=1

(fiβ(ŷβ,n) +
1

|β|

∑

k⊂β

E[fiβ(yk, ŷβ\k)]pk|−k
)

7The following considerations are easily generalized to in-
clude hidden variables, but for simplicity we have chosen to il-
lustrate our point using observed variables only.



where |β| denotes the number of nodes in the cluster β.

In light of our interpretation of learning in MRFs, it is not

hard to generalize the PL estimator to a generalized PL es-

timator where we allow the relaxation of larger, possibly

overlapping clusters of nodes conditioned on the remaining

nodes in the graph. We leave the study of these generalized

PL estimators as future work.

As mentioned above, it has been shown that the PL esti-

mator is asymptotically consistent, but is less efficient than

the ML estimator. It would be interesting to see if the argu-

ments in the PL-consistency proofs can be adapted to cover

the estimators studied in this paper.

6 CONDITIONAL RANDOM FIELDS

A conditional random field (CRF) [8] is a MRF that is

trained to maximize the conditional log-likelihood of la-

bels, y, given input variables x,

λML = arg min
λ

KL [P0(y|x)||Pλ(y|x)] (25)

That is, the variables that appear in the data are partitioned

into input nodes x, which will be observed at test time,

and output nodes y, which we will be asked to predict at

test time. In practice, discriminatively-trained models often

have advantages over generatively-trained models, includ-

ing the ability to include many interdependent variables in

x without needing to learn their distribution.

All of our previous considerations apply to the condi-

tional case as well. However, it should be noted that

for generatively-trained models the free energy F∞ must

be computed with all the variables free to fluctuate. In

contrast, for discriminatively-trained models the free en-

ergy F∞ has the data-case xn clamped to the input nodes.

Hence, the learning rule aims to match the average suffi-

cient statistics of the random system with 1) both x and y
clamped at the nodes (F0) and 2) the random system with

only x clamped at the nodes (F∞). This has the impor-

tant consequence that the relaxed distributions Pλ(y|xn)
are different for every data-case, while the relaxed distrib-

utions for generatively-trained models Pλ(y) are the same

for all data-cases and it would in principle suffice to run a

single MCMC procedure per learning iteration 8.

7 EXPERIMENTS

In this section, we evaluate the CFk estimators presented in

this paper on CRFs. The state of the art for training loopy

CRFs in practice is penalized maximum-likelihood train-

ing with the expected sufficient statistics computed by BP

8Note that we need to visit all modes with this Markov chain,
so in practice it may be better to run multiple Markov chains ini-
tialized at various data-cases.

Method F1 (2-clique) F1 (4-clique)

CF
BETHE
5 70.08 74.94

CF
BETHE
10 68.35 75.23

CF
BETHE
15 61.80 76.51

CF
BETHE
500 63.44 75.86

CF
MF
10 57.91 55.91

MLMF 60.98 65.31

MLBP 68.19 78.71

Table 1: F1 performance measure for various training

methods on the 2-clique and 4-clique models.

[12, 13]. This has two difficulties: (a) If the model distri-

bution has multiple modes BP may converge to different

solutions depending on its initialization (or fail to converge

altogether), and (b) it requires running BP to convergence

at each step of gradient ascent on the log-likelihood, which

will be very expensive. Therefore, if nothing else, we can

still hope to achieve improved training time by using the

k-step CF estimators introduced in this paper. For the ex-

periments in this paper, we will use fully-observed training

data, leaving partially observed data to future work.

Our data set is a collection of 485 e-mail messages an-

nouncing seminars at Carnegie Mellon University. The

messages are annotated with the seminar’s starting time,

ending time, location, and speaker. This data set is due

to Dayne Freitag [2], and has been used in much previous

work. For reasons discussed in section 4, we consider here

the binary problem of whether a word is a speaker name.

Often the speaker is listed multiple times in the same mes-

sage. For example, the speaker’s name might be included

both near the beginning and later on, in a sentence like “If

you would like to meet with Professor Smith. . . ” It can be

useful to find both such mentions, because different infor-

mation can be in the surrounding context of each mention:

for example, the first mention might be near an institution

affiliation, while the second mentions that Smith is a pro-

fessor.

To solve this problem, we wish to exploit that when the

same word appears multiple times in the same message, it

tends to have the same label. In a CRF, we can represent

this by adding edges between output nodes (yi, yj) when

the words xi and xj are identical and capitalized. Thus,

the conditional distribution p(y|x) has different graphical

structure for different input configurations x. We use input

nodes describing word identity, part-of-speech tags, cap-

italization, and membership in domain-specific lexicons;

these are described in more detail elsewhere [11].

We compare training time and test performance of four dif-



ferent contrastive free energies: MLMF, which corresponds

to maximum-likelihood training with mean-field free en-

ergy; MLBP, which corresponds to maximum likelihood

training with the Bethe free energy; and finally, CF
MF
k and

CF
BETHE
k , which correspond to k-step contrastive diver-

gence with the mean-field and Bethe approximations, re-

spectively. We compute the contrastive free energy as fol-

lows. For MLBP, we use the TRP schedule for belief prop-

agation [16], with messages initialized to 1. For MLMF,

we use damped fixed point equations with damping factor

α = 0.1 and uniform initialization. For CF
MF
k , however,

we observed that iterating fixed-point equations for k steps

might not decrease the free energy if they are improperly

damped. Hence we have used separate damping factors for

each data-case, α(i), which are adapted to keep CF positive

during learning.

To compute CF
BETHE
k , we use belief optimization; that is,

we take k gradient steps on the Bethe free energy, elimi-

nating the constraints by solving for the pairwise marginals

and using the sigmoid parameterization described in [18].

The step-size for the gradient updates is determined by line

search. For k-step contrastive divergence, it is essential that

the optimization required to compute F BETHE
k is initialized

at the data cases. However, at the empirical distribution

the derivative of the Bethe entropy is infinite. To avoid

this problem we smooth the 0/1 empirical distribution by

p̃SOFT(xj) = |p̃0/1(xj) − ǫ|. In these experiments we use

ǫ = 10−4.

We report performance with the F1 measure on a per-token

basis, that is:

F1 = (2PR)/(P + R) (26)

with P = # correct tokens / # tokens extracted and R =
# correct tokens / # true tokens. We use ℓ2 regularization with

regularization parameter δ = 10. All results are averaged

over 5-fold cross validation.

First, we consider a 2-clique model where all cliques are ei-

ther linear chain edges (yi, yi+1), skip edges (yi, yj), and

input edges (yi, xi)
9. The parameters are tied over all in-

stances of each clique type. For example, each linear chain

edge (yi, yi+1) has the same weight wLC. This sort of pa-

rameter tying is necessary in a conditional model because

until we observe the input x, we do not know how many

output nodes there will be or what connections they will

have.

Table 1 compares the testing performance of the differ-

ent training methods on the 2-clique model (first column).

First, we note that both in CF and ML training, the Bethe

approximation results in better accuracy than the mean-

field approximation. This is as expected because the skip-

9To make the exposition simpler, we describe the models as if
the only input variables xi are the words at time i. In reality, each
xi is a vector of the observational tests described in [11].

chain model contains few short loops which is a graphical

structure for which the Bethe approximation is more appro-

priate than the MF approximation. Second, with the Bethe

free energy, using CF
BETHE
5 training results in comparable

accuracy to ML training. This has great practical signifi-

cance, because while the CF
BETHE
5 training used an average

of 83 minutes to train, the ML training using belief propa-

gation used over 19 hours, which is an order of magnitude

improvement.

Although the belief optimization algorithm has been de-

veloped for binary MRFs with pairwise interactions (a.k.a.

Boltzmann machines), the CRF is free to contain arbi-

trary cliques with at most two output nodes, since the dis-

tribution p(y|x) then still contains pairwise interactions

only. To evaluate the practical advantages of such mod-

els, we also evaluate a skip chain model with higher-order

cliques. In the 4-clique model, we add input nodes into the

linear-chain and skip-chain cliques, so that we now have

“linear-chain” cliques (yi, yi+1, xi) and “skip” cliques

(yi, yj , xi, xj) in addition to the input edges (yi, xi).

In Figure 1, we show the performance of CF
BETHE
k model

on the 4-clique model as a function of k (second column).

For all values of k, the higher-order model performs better

than the 2-clique model. Between the best 2-clique model

and the best higher-order clique model, all 5 folds show

improvement; averaging over the folds, the relative reduc-

tion in error is 20% (the F1 rises from 70 to 76). For an

unknown reason, the 2-clique model trained with CF
BETHE
15

hits a bad local maximum, but we do not see this behav-

ior with a richer set of features. In the 4-clique model,

ML training with BP does somewhat better than the best

CF
BETHE
k model, but there is substantial variance among

the different training sets. None of the differences between

MLBP and CF
BETHE
k for the 4-clique model are statistically

significant (McNemar’s test with p > 0.1). For the 2-clique

model, on the other hand, CF
BETHE
5 training is significantly

better than MLBP (p < 0.001).

In summary, the experiments demonstrate two main points:

that a k-step CF energy performs comparably to ML with

vastly lower training time, and that belief optimization,

which was developed for Boltzmann machines, is still ef-

fective for training models with certain higher-order cliques

in a conditional setting.

8 CONCLUSION

In this paper we have offered a new view of parameter

learning in MRF models as a minimization of contrastive

free energies. We have seen that many objectives for

MRF learning, including the likelihood function, the mean

field learning objective, the contrastive divergence and the

pseudo-likelihood can be written as a positive difference

between two free energies. During learning we first infer

the (posterior) distribution of the hidden variables given a



clamped data-vector, then we relax this system (exactly, ap-

proximately or partially) by un-constraining the observed

random variables. Finally we update the parameters by

computing the difference of the average sufficient statistics.

Not only is this unifying framework conceptually interest-

ing, it also naturally suggests hybrid schemes where distri-

butions are relaxed partially and approximately. In particu-

lar, we have studied a new learning algorithm based on the

contrastive Kikuchi/Bethe free energy and its accompany-

ing minimization algorithm, “belief optimization”.

We feel that the view presented here is a rich breeding

ground for new approximate learning algorithms. In future

studies we hope to characterize the estimators proposed

here by their asymptotic properties such as consistency and

statistical efficiency.
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