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Abstract

With the increasing use of research paper

search engines, such as CiteSeer, for both lit-

erature search and hiring decisions, the accu-

racy of such systems is of paramount impor-

tance. This paper employs Conditional Ran-

dom Fields (CRFs) for the task of extracting

various common fields from the headers and

citation of research papers. The basic the-

ory of CRFs is becoming well-understood, but

best-practices for applying them to real-world

data requires additional exploration. This paper

makes an empirical exploration of several fac-

tors, including variations on Gaussian, expo-

nential and hyperbolic-
�✂✁
priors for improved

regularization, and several classes of features

and Markov order. On a standard benchmark

data set, we achieve new state-of-the-art perfor-

mance, reducing error in average F1 by 36%,

and word error rate by 78% in comparison with

the previous best SVM results. Accuracy com-

pares even more favorably against HMMs.

1 Introduction

Research paper search engines, such as CiteSeer

(Lawrence et al., 1999) and Cora (McCallum et al.,

2000), give researchers tremendous power and conve-

nience in their research. They are also becoming increas-

ingly used for recruiting and hiring decisions. Thus the

information quality of such systems is of significant im-

portance. This quality critically depends on an informa-

tion extraction component that extracts meta-data, such

as title, author, institution, etc, from paper headers and

references, because these meta-data are further used in

many component applications such as field-based search,

author analysis, and citation analysis.

Previous work in information extraction from research

papers has been based on two major machine learn-

ing techniques. The first is hidden Markov models

(HMM) (Seymore et al., 1999; Takasu, 2003). An

HMM learns a generative model over input sequence

and labeled sequence pairs. While enjoying wide his-

torical success, standard HMM models have difficulty

modeling multiple non-independent features of the ob-

servation sequence. The second technique is based

on discriminatively-trained SVM classifiers (Han et al.,

2003). These SVM classifiers can handle many non-

independent features. However, for this sequence label-

ing problem, Han et al. (2003) work in a two stages pro-

cess: first classifying each line independently to assign it

label, then adjusting these labels based on an additional

classifier that examines larger windows of labels. Solving

the information extraction problem in two steps looses

the tight interaction between state transitions and obser-

vations.

In this paper, we present results on this research paper

meta-data extraction task using a Conditional Random

Field (Lafferty et al., 2001), and explore several practi-

cal issues in applying CRFs to information extraction in

general. The CRF approach draws together the advan-

tages of both finite state HMM and discriminative SVM

techniques by allowing use of arbitrary, dependent fea-

tures and joint inference over entire sequences.

CRFs have been previously applied to other tasks such

as name entity extraction (McCallum and Li, 2003), table

extraction (Pinto et al., 2003) and shallow parsing (Sha

and Pereira, 2003). The basic theory of CRFs is now

well-understood, but the best-practices for applying them

to new, real-world data is still in an early-exploration

phase. Here we explore two key practical issues: (1) reg-

ularization, with an empirical study of Gaussian (Chen

and Rosenfeld, 2000), exponential (Goodman, 2003), and

hyperbolic-
�✂✁
(Pinto et al., 2003) priors; (2) exploration

of various families of features, including text, lexicons,



and layout, as well as proposing a method for the bene-

ficial use of zero-count features without incurring large

memory penalties.

We describe a large collection of experimental results

on two traditional benchmark data sets. Dramatic im-

provements are obtained in comparison with previous

SVM and HMM based results.

2 Conditional Random Fields

Conditional random fields (CRFs) are undirected graph-

ical models trained to maximize a conditional probabil-

ity (Lafferty et al., 2001). A common special-case graph

structure is a linear chain, which corresponds to a finite

state machine, and is suitable for sequence labeling. A

linear-chain CRF with parameters ✄✆☎✞✝✠✟☛✡✌☞✍☞✍☞✏✎ defines
a conditional probability for a state (or label1) sequence✑ ☎✓✒ ✁ ☞✍☞✔☞ ✒✖✕ given an input sequence ✗✘☎✚✙ ✁ ☞✍☞✍☞ ✙✛✕ to be✜✣✢✛✤ ✑✦✥ ✗★✧✦☎ ✩✪✣✫✭✬✌✮✰✯ ✱ ✕✲ ✳✵✴ ✁ ✲✖✶ ✟ ✶✠✷✠✶ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡✻✗✣✡✻✼✽✧✿✾✓✡

(1)

where
✪ ✫
is the normalization constant that makes

the probability of all state sequences sum to one,
✷ ✶ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡✻✗✣✡✻✼✽✧ is a feature function which is often
binary-valued, but can be real-valued, and ✟ ✶ is a learned
weight associated with feature

✷ ✶
. The feature functions

can measure any aspect of a state transition, ✒ ✳✹✸ ✁❁❀ ✒ ✳ ,
and the observation sequence, ✗ , centered at the current
time step, ✼ . For example, one feature function might
have value 1 when ✒ ✳✹✸ ✁ is the state TITLE, ✒ ✳ is the state
AUTHOR, and ✙ ✳ is a word appearing in a lexicon of peo-
ple’s first names. Large positive values for ✟ ✶ indicate a
preference for such an event, while large negative values

make the event unlikely.

Given such a model as defined in Equ. (1), the most

probable labeling sequence for an input ✗ ,✑✣❂ ☎✚❃✠❄✻❅❇❆❈❃ ✮❉ ✜❋❊❇✤ ✑●✥ ✗★✧❍✡
can be efficiently calculated by dynamic programming

using the Viterbi algorithm. Calculating the marginal

probability of states or transitions at each position in

the sequence by a dynamic-programming-based infer-

ence procedure very similar to forward-backward for hid-

den Markov models.

The parameters may be estimated by maximum

likelihood—maximizing the conditional probability of

a set of label sequences, each given their correspond-

ing input sequences. The log-likelihood of training set

1We consider here only finite state models in which there is
a one-to-one correspondence between states and labels; this is
not, however, strictly necessary.
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Figure 1: Empirical distribution of ✟✝ ✤ ✙❏■❑✡✺✒✖■▲✧✦▼❖◆P☎ ✩ ✡◗☞✔☞✍☞❙❘❚✎ is written� ❊ ☎ ✲ ■✓❯✍❱ ❅ ✜ ❊ ✤ ✑ ■ ✥ ✗ ■ ✧☎ ✲ ■ ✱ ✕✲ ✳✵✴ ✁ ✲ ✶ ✟ ✶ ✷ ✶ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡✻✗✣✡✻✼✽✧✣❲ ❯❳❱ ❅ ✪❩❨❭❬ ✾❪☞
(2)

Maximizing (2) corresponds to satisfying the follow-

ing equality, wherein the the empirical count of each fea-

ture matches its expected count according to the model✜❋❊❇✤ ✑✦✥ ✗★✧ .✲ ■ ✲ ✳ ✷✠✶ ✤ ✒ ✳✹✸ ✁ ✡✻✒ ✳ ✡✻✙❏■❑✡✻✼✽✧❇☎ ✲ ■ ✲✹❫❵❴ ✜❋❊❇✤ ✒✰❛ ✥ ✙❏■✹✧ ✲ ✳ ✷✠✶ ✤ ✒✰❛✳✹✸ ✁ ✡✻✒❜❛✳ ✡✻✙❏■❑✡✻✼✽✧
CRFs share many of the advantageous properties of

standard maximum entropy models, including their con-

vex likelihood function, which guarantees that the learn-

ing procedure converges to the global maximum. Tra-

ditional maximum entropy learning algorithms, such as

GIS and IIS (Pietra et al., 1995), can be used to train

CRFs, however, it has been found that a quasi-Newton

gradient-climber, BFGS, converges much faster (Malouf,

2002; Sha and Pereira, 2003). We use BFGS for opti-

mization. In our experiments, we shall focus instead on

two other aspects of CRF deployment, namely regulariza-

tion and selection of different model structure and feature

types.

2.1 Regularization in CRFs

To avoid over-fitting, log-likelihood is often penalized by

some prior distribution over the parameters. Figure 1

shows an empirical distribution of parameters, ✄ , learned
from an unpenalized likelihood, including only features

with non-zero count in the training set. Three prior dis-

tributions that have shape similar to this empirical dis-

tribution are the Gaussian prior, exponential prior, and

hyperbolic-
�✂✁
prior, each shown in Figure 2. In this pa-

per we provide an empirical study of these three priors.
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Figure 2: Shapes of prior distributions

2.1.1 Gaussian prior

With a Gaussian prior, log-likelihood (2) is penalized

as follows:� ❊ ☎ ✲ ■✓❯❳❱ ❅ ✜ ❊ ✤ ✑ ■ ✥ ✗ ■ ✧✣❲ ✲ ✶ ✟✛❝✶❞✠❡ ❝✶ ✡ (3)

where
❡ ❝✶ is a variance.

Maximizing (3) corresponds to satisfying✲ ■ ✲ ✳ ✷ ✶ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡❢✙ ■ ✡✻✼✽✧✣❲ ✟ ✶❡ ❝✶ ☎✲ ■ ✲✹❫ ❴ ✜❋❊❩✤ ✒✰❛ ✥ ✙✛■▲✧ ✲ ✳ ✷✖✶ ✤ ✒✰❛✳✹✸ ✁ ✡✺✒✰❛✳ ✡❢✙❏■❑✡✻✼✽✧
This adjusted constraint (as well as the adjustments im-

posed by the other two priors) is intuitively understand-

able: rather than matching exact empirical feature fre-

quencies, the model is tuned to match discounted feature

frequencies. Chen and Rosenfeld (2000) discuss this in

the context of other discounting procedures common in

language modeling. We call the term subtracted from the

empirical counts (in this case ✟ ✶❖❣ ❡ ❝ ) a discounted value.
The variance can be feature dependent. However for

simplicity, constant variance is often used for all features.

In this paper, however, we experiment with several alter-

nate versions of Gaussian prior in which the variance is

feature dependent.

Although Gaussian (and other) priors are gradually

overcome by increasing amounts of training data, per-

haps not at the right rate. The three methods below all

provide ways to alter this rate by changing the variance

of the Gaussian prior dependent on feature counts.

1. Threshold Cut: In language modeling, e.g, Good-

Turing smoothing, only low frequency words are

smoothed. Here we apply the same idea and only

smooth those features whose frequencies are lower

than a threshold (7 in our experiments, following

standard practice in language modeling).

2. Divide Count: Here we let the discounted value

for a feature depend on its frequency in the training

set, ❤ ✶ ☎❥✐ ■ ✐ ✳ ✷✠✶ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡✻✗✣✡✻✼✽✧ . The discounted
value used here is

✢❧❦♠ ❦✖♥✰♦✠♣ where ❡ is a constant over
all features. In this way, we increase the smoothing

on the low frequency features more so than the high

frequency features.

3. Bin-Based: We divide features into classes based

on frequency. We bin features by frequency in the

training set, and let the features in the same bin share

the same variance. The discounted value is set to be✢ ❦q ♠ ❦❵r✿s✦t◗♥✰♦✠♣ where ❤ ✶ is the count of features, ✉ is
the bin size, and ✈✵✇❖① is the ceiling function. Alterna-
tively, the variance in each bin may be set indepen-

dently by cross-validation.

2.1.2 Exponential prior

Whereas the Gaussian prior penalizes according to the

square of the weights (an
� ❝ penalizer), the intention here

is to create a smoothly differentiable analogue to penal-

izing the absolute-value of the weights (an
�②✁
penalizer).�●✁

penalizers often result in more “sparse solutions,” in

which many features have weight nearly at zero, and thus

provide a kind of soft feature selection that improves gen-

eralization.

Goodman (2003) proposes an exponential prior,

specifically a Laplacian prior, as an alternative to Gaus-

sian prior. Under this prior,�❇❊ ☎ ✲ ■ ❯❳❱ ❅ ✜❋❊❇✤ ✑ ■ ✥ ✗☛■✿✧P❲ ✲✠✶④③ ✶ ✥ ✟ ✶ ✥ (4)

where
③ ✶
is a parameter in exponential distribution.

Maximizing (4) would satisfy✲ ■ ✲ ✳ ✷✠✶ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡❢✙❏■❑✡✻✼✽✧P❲ ③ ✶ ☎✲ ■ ✲✹❫❵❴ ✜ ❊ ✤ ✒✰❛ ✥ ✙ ■ ✧ ✲ ✳ ✷ ✶ ✤ ✒✰❛✳✹✸ ✁ ✡✺✒✰❛✳ ✡❢✙ ■ ✡✻✼✽✧
This corresponds to the absolute smoothing method in

language modeling. We set the
③ ✶ ☎ ③

; i.e. all features

share the same constant whose value can be determined

using absolute discounting
③ ☎ ⑤❖⑥⑤ ⑥❑⑦ ❝ ⑤ ♣ , where ⑧ ✁ and ⑧ ❝are the number of features occurring once and twice (Ney

et al., 1995).

2.1.3 Hyperbolic-
�✂✁
prior

Another
� ✁
penalizer is the hyperbolic-

� ✁
prior, de-

scribed in (Pinto et al., 2003). The hyperbolic distribution

has log-linear tails. Consequently the class of hyperbolic

distribution is an important alternative to the class of nor-

mal distributions and has been used for analyzing data

from various scientific areas such as finance, though less

frequently used in natural language processing.

Under a hyperbolic prior,



⑨★⑩❷❶❹❸❜❺❼❻✏❽◗❾✣❿➀⑩➂➁➄➃ ❺❑➅ ➆✛❺➈➇➀➉ ❸◗➊✓❻✏❽❭❾➋➁❵➌❵➍ ❦➏➎ ➌❧➐✰➍ ❦➑ ➇
(5)

which corresponds to satisfying❸ ❺ ❸✖➒❹➓ ➊ ➁➄➔ ➒ ➐➣→✻↔ ➔ ➒ ↔✿↕ ❺ ↔✿➙ ➇✛➉ ➌➜➛ ➍ ❦ ➛ ➉ ➌ ➐ ➛ ➍ ❦ ➛➌ ➛ ➍ ❦ ➛ ➎ ➌ ➐ ➛ ➍ ❦ ➛ ❶❸ ❺ ❸➞➝ ❴ ❿➣⑩☛➁➄➔✠➟ ➅ ↕ ❺➈➇ ❸ ➒ ➓ ➊ ➁➄➔✠➟➒ ➐➣→ ↔ ➔✠➟➒ ↔✿↕ ❺ ↔✿➙ ➇
The hyperbolic prior was also tested with CRFs in Mc-

Callum and Li (2003).

2.2 Exploration of Feature Space

Wise choice of features is always vital the performance

of any machine learning solution. Feature induction (Mc-

Callum, 2003) has been shown to provide significant im-

provements in CRFs performance. In some experiments

described below we use feature induction. The focus in

this section is on three other aspects of the feature space.

2.2.1 State transition features

In CRFs, state transitions are also represented as fea-

tures. The feature function

✷ ✶ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡✻✗✣✡✻✼✽✧ in Equ. (1)
is a general function over states and observations. Differ-

ent state transition features can be defined to form dif-

ferent Markov-order structures. We define four differ-

ent state transitions features corresponding to different

Markov order for different classes of features. Higher

order features model dependencies better, but also create

more data sparse problem and require more memory in

training.

1. First-order: Here the inputs are examined in the con-

text of the current state only. The feature functions

are represented as

✷ ✤ ✒ ✳ ✡✺✗★✧ . There are no separate
parameters or preferences for state transitions at all.

2. First-order+transitions: Here we add parameters

corresponding to state transitions. The feature func-

tions used are

✷ ✤ ✒ ✳ ✡✺✗★✧❍✡ ✷ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✧ .
3. Second-order: Here inputs are examined in the con-

text of the current and previous states. Feature func-

tion are represented as

✷ ✤ ✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡✺✗★✧ .
4. Third-order: Here inputs are examined in the con-

text of the current, two previous states. Feature func-

tion are represented as

✷ ✤ ✒ ✳✹✸ ❝ ✡✺✒ ✳✹✸ ✁ ✡✺✒ ✳ ✡✻✗★✧ .
2.2.2 Supported features and unsupported features

Before the use of prior distributions over parameters

was common in maximum entropy classifiers, standard

practice was to eliminate all features with zero count

in the training data (the so-called unsupported features).

However, unsupported, zero-count features can be ex-

tremely useful for pushing Viterbi inference away from

certain paths by assigning such features negative weight.

The use of a prior allows the incorporation of unsup-

ported features, however, doing so often greatly increases

the number parameters and thus the memory require-

ments.

Below we experiment with models containing and not

containing unsupported features—both with and without

regularization by priors, and we argue that non-supported

features are useful.

We present here incremental support, a method of in-

troducing some useful unsupported features without ex-

ploding the number of parameters with all unsupported

features. The model is trained for several iterations with

supported features only. Then inference determines the

label sequences assigned high probability by the model.

Incorrect transitions assigned high probability by the

model are used to selectively add to the model those un-

supported features that occur on those transitions, which

may help improve performance by being assigned nega-

tive weight in future training. If desired, several iterations

of this procedure may be performed.

2.2.3 Local features, layout features and lexicon

features

One of the advantages of CRFs and maximum entropy

models in general is that they easily afford the use of arbi-

trary features of the input. One can encode local spelling

features, layout features such as positions of line breaks,

as well as external lexicon features, all in one framework.

We study all these features in our research paper extrac-

tion problem, evaluate their individual contributions, and

give some guidelines for selecting good features.

3 Empirical Study

3.1 Hidden Markov Models

Here we also briefly describe a HMM model we used

in our experiments. We relax the independence assump-

tion made in standard HMM and allow Markov depen-

dencies among observations, e.g.,
✜➠✤➈➡ ✳ ✥ ➢ ✳ ✡ ➡ ✳✹✸ ✁ ✧ . We

can vary Markov orders in state transition and observa-

tion transitions. In our experiments, a model with second

order state transitions and first order observation transi-

tions performs the best. The state transition probabilities

and emission probabilities are estimated using maximum

likelihood estimation with absolute smoothing, which

was found to be effective in previous experiments, includ-

ing Seymore et al. (1999).

3.2 Datasets

We experiment with two datasets of research paper con-

tent. One consists of the headers of research papers. The



other consists of pre-segmented citations from the refer-

ence sections of research papers. These data sets have

been used as standard benchmarks in several previous

studies (Seymore et al., 1999; McCallum et al., 2000;

Han et al., 2003).

3.2.1 Paper header dataset

The header of a research paper is defined to be all of

the words from the beginning of the paper up to either

the first section of the paper, usually the introduction,

or to the end of the first page, whichever occurs first.

It contains 15 fields to be extracted: title, author, affil-

iation, address, note, email, date, abstract, introduction,

phone, keywords, web, degree, publication number, and

page (Seymore et al., 1999). The header dataset contains

935 headers. Following previous research (Seymore et

al., 1999; McCallum et al., 2000; Han et al., 2003), for

each trial we randomly select 500 for training and the re-

maining 435 for testing. We refer this dataset as H.

3.2.2 Paper reference dataset

The reference dataset was created by the Cora

project (McCallum et al., 2000). It contains 500 refer-

ences, we use 350 for training and the rest 150 for test-

ing. References contain 13 fields: author, title, editor,

booktitle, date, journal, volume, tech, institution, pages,

location, publisher, note. We refer this dataset as R.

3.3 Performance Measures

To give a comprehensive evaluation, we measure per-

formance using several different metrics. In addition to

the previously-usedword accuracymeasure (which over-

emphasizes accuracy of the abstract field), we use per-

field F1 measure (both for individual fields and averaged

over all fields—called a “macro average” in the informa-

tion retrieval literature), and whole instance accuracy for

measuring overall performance in a way that is sensitive

to even a single error in any part of header or citation.

3.3.1 Measuring field-specific performance

1. Word Accuracy: We define ➤ as the number of true
positive words, ➥ as the number of false negative
words, ➦ as the number of false positive words, ➧
as the number of true negative words, and ➤➩➨➫➥✚➨➦➩➨❼➧ is the total number of words. Word accuracy
is calculated to be ➭ ⑦❋➯➭ ⑦★➲❋⑦☛➳★⑦★➯

2. F1-measure: Precision, recall and F1 measure are

defined as follows. Precision = ➭➭ ⑦☛➳ Recall = ➭➭ ⑦★➲
F1 = ❝ ♥➋➵☛➸✺➺ ♠ ■❳➻✿■✍➼ ⑤ ♥➋➽➀➺ ♠✿➾❍➚➪➚➵➂➸✻➺ ♠ ■❳➻✿■✔➼ ⑤ ⑦ ➽➀➺ ♠✿➾❍➚✏➚

3.3.2 Measuring overall performance

1. Overall word accuracy: Overall word accuracy

is the percentage of words whose predicted labels

equal their true labels. Word accuracy favors fields

with large number of words, such as the abstract.

2. Averaged F-measure: Averaged F-measure is com-

puted by averaging the F1-measures over all fields.

Average F-measure favors labels with small num-

ber of words, which complements word accuracy.

Thus, we consider both word accuracy and average

F-measure in evaluation.

3. Whole instance accuracy: An instance here is de-

fined to be a single header or reference. Whole

instance accuracy is the percentage of instances in

which every word is correctly labeled.

3.4 Experimental Results

We first report the overall results by comparing CRFs

with HMMs, and with the previously best benchmark re-

sults obtained by SVMs (Han et al., 2003). We then break

down the results to analyze various factors individually.

Table 1 shows the results on dataset H with the best re-

sults in bold; (intro and page fields are not shown, fol-

lowing past practice (Seymore et al., 1999; Han et al.,

2003)). The results we obtained with CRFs use second-

order state transition features, layout features, as well as

supported and unsupported features. Feature induction

is used in experiments on dataset R; (it didn’t improve

accuracy on H). The results we obtained with the HMM

model use a second order model for transitions, and a first

order for observations. The results on SVM is obtained

from (Han et al., 2003) by computing F1 measures from

the precision and recall numbers they report.

HMM CRF SVM

Overall acc. 93.1% 98.3% 92.9%

Instance acc. 4.13% 73.3% -

acc. F1 acc. F1 acc. F1

Title 98.2 82.2 99.7 97.1 98.9 96.5

Author 98.7 81.0 99.8 97.5 99.3 97.2

Affiliation 98.3 85.1 99.7 97.0 98.1 93.8

Address 99.1 84.8 99.7 95.8 99.1 94.7

Note 97.8 81.4 98.8 91.2 95.5 81.6

Email 99.9 92.5 99.9 95.3 99.6 91.7

Date 99.8 80.6 99.9 95.0 99.7 90.2

Abstract 97.1 98.0 99.6 99.7 97.5 93.8

Phone 99.8 53.8 99.9 97.9 99.9 92.4

Keyword 98.7 40.6 99.7 88.8 99.2 88.5

Web 99.9 68.6 99.9 94.1 99.9 92.4

Degree 99.5 68.8 99.8 84.9 99.5 70.1

Pubnum 99.8 64.2 99.9 86.6 99.9 89.2

Average F1 75.6 93.9 89.7

Table 1: Extraction results for paper headers on H

Table 2 shows the results on dataset R. SVM results

are not available for these datasets.



HMM CRF

Overall acc. 85.1% 95.37%

instance acc. 10% 77.33%

acc. F1 acc. F1

Author 96.8 92.7 99.9 99.4

Booktitle 94.4 0.85 97.7 93.7

Date 99.7 96.9 99.8 98.9

Editor 98.8 70.8 99.5 87.7

Institution 98.5 72.3 99.7 94.0

Journal 96.6 67.7 99.1 91.3

Location 99.1 81.8 99.3 87.2

Note 99.2 50.9 99.7 80.8

Pages 98.1 72.9 99.9 98.6

Publisher 99.4 79.2 99.4 76.1

Tech 98.8 74.9 99.4 86.7

Title 92.2 87.2 98.9 98.3

Volume 98.6 75.8 99.9 97.8

Average F1 77.6% 91.5%

Table 2: Extraction results for paper references on R

3.5 Analysis

3.5.1 Overall performance comparison

From Table (1, 2), one can see that CRF performs

significantly better than HMMs, which again supports

the previous findings (Lafferty et al., 2001; Pinto et al.,

2003). CRFs also perform significantly better than SVM-

based approach, yielding new state of the art performance

on this task. CRFs increase the performance on nearly all

the fields. The overall word accuracy is improved from

92.9% to 98.3%, which corresponds to a 78% error rate

reduction. However, as we can see word accuracy can be

misleading since HMMmodel even has a higher word ac-

curacy than SVM, although it performs much worse than

SVM in most individual fields except abstract. Interest-

ingly, HMM performsmuch better on abstract field (98%

versus 93.8% F-measure) which pushes the overall accu-

racy up. A better comparison can be made by compar-

ing the field-based F-measures. Here, in comparison to

the SVM, CRFs improve the F1 measure from 89.7% to

93.9%, an error reduction of 36%.

3.5.2 Effects of regularization

The results of different regularization methods are

summarized in Table (3). Setting Gaussian variance of

features depending on feature count performs better, from

90.5% to 91.2%, an error reduction of 7%, when only

using supported features, and an error reduction of 9%

when using supported and unsupported features. Re-

sults are averaged over 5 random runs, with an aver-

age variance of 0.2%. In our experiments we found the

Gaussian prior to consistently perform better than the

others. Surprisingly, exponential prior hurts the perfor-

mance significantly. It over penalizes the likelihood (sig-

nificantly increasing cost—defined as negative penalized

support feat. all features

Method F1 F1

Gaussian infinity 90.5 93.3

Gaussian variance = 0.1 81.7 91.8

Gaussian variance = 0.5 87.2 93.0

Gaussian variance = 5 90.1 93.7

Gaussian variance = 10 89.9 93.5

Gaussian cut 7 90.1 93.4

Gaussian divide count 90.9 92.8

Gaussian bin 5 90.9 93.6

Gaussian bin 10 90.2 92.9

Gaussian bin 15 91.2 93.9

Gaussian bin 20 90.4 93.2

Hyperbolic 89.4 92.8

Exponential 80.5 85.6

Table 3: Regularization comparisons: Gaussian infinity is

non-regularized, Gaussian variance = X sets variance to

be X. Gaussian cut 7 refers to the Threshold Cut method,

Gaussian divide count refers to the Divide Count method,

Gaussian bin N refers to the Bin-Based method with bin

size equals N, as described in 2.1.1

log-likelihood). We hypothesized that the problem could

be that the choice of constant
③
is inappropriate. So we

tried varying
③
instead of computing it using absolute

discounting, but found the alternatives to perform worse.

These results suggest that Gaussian prior is a safer prior

to use in practice.

3.5.3 Effects of exploring feature space

State transition features and unsupported features.

We summarize the comparison of different state tran-

sition models using or not using unsupported features in

Table 4. The first column describes the four different state

transition models, the second column contains the overall

word accuracy of these models using only support fea-

tures, and the third column contains the result of using

all features, including unsupported features. Comparing

the rows, one can see that the second-order model per-

forms the best, but not dramatically better than the first-

order+transitions and the third order model. However, the

first-order model performs significantly worse. The dif-

ference does not come from sharing the weights, but from

ignoring the

✷ ✤ ✒ ✳✹✸ ✁ ✡✻✒ ✳ ✧ . The first order transition feature
is vital here. We would expect the third order model to

perform better if enough training data were available.

Comparing the second and the third columns, we can

see that using all features including unsupported features,

consistently performs better than ignoring them. Our

preliminary experiments with incremental support have

shown performance in between that of supported-only

and all features, and are still ongoing.

Effects of layout features



support all

first-order 89.0 90.4

first-order+trans 95.6 -

second-order 96.0 96.5

third-order 95.3 96.1

Table 4: Effects of using unsupported features and state

transitions on H

To analyze the contribution of different kinds of fea-

tures, we divide the features into three categories: local

features, layout features, and external lexicon resources.

The features we used are summarized in Table 5.

Feature name Description

Local features

INITCAP Starts with a capitalized letter

ALLCAPS All characters are capitalized

CONTAINSDIGITS Contains at least one digit

ALLDIGITS All characters are digits

PHONEORZIP Phone number or zip code

CONTAINSDOTS Contains at least one dot

CONTAINSDASH Contains at least one -

ACRO Acronym

LONELYINITIAL Initials such as A.

SINGLECHAR One character only

CAPLETTER One capitalized character

PUNC Punctuation

URL Regular expression for URL

EMAIL Regular expression for e-address

WORD Word itself

Layout features

LINE START At the beginning of a line

LINE IN In middle of a line

LINE END At the end of a line

External lexicon features

BIBTEX AUTHOR Match word in author lexicon

BIBTEX DATE Words like Jan. Feb.

NOTES Words like appeared, submitted

AFFILIATION Words like institution, Labs, etc

Table 5: List of features used

The results of using different features are shown in Ta-

ble 6. The layout feature dramatically increases the per-

formance, raising the F1 measure from 88.8% to 93.9%,

whole sentence accuracy from 40.1% to 72.4%. Adding

lexicon features alone improves the performance. How-

ever, when combing lexicon features and layout fea-

tures, the performance is worse than using layout features

alone.

The lexicons were gathered from a large collection of

BibTeX files, and upon examination had difficult to re-

move noise, for example words in the author lexicon that

were also affiliations. In previous work, we have gained

significant benefits by dividing each lexicon into sections

based on point-wise information gain with respect to the

Word Acc. F1 Inst. Acc.

local feature 96.5% 88.8% 40.1%

+ lexicon 96.9% 89.9% 53.1%

+ layout feature 98.2% 93.4% 72.4%

+ layout + lexicon 98.0% 93.0% 71.7%

Table 6: Results of using different features on H

lexicon’s class.

3.5.4 Error analysis

Table 7 is the classification confusion matrix of header

extraction (field page is not shown to save space). Most

errors happen at the boundaries between two fields. Es-

pecially the transition from author to affiliation, from ab-

stract to keyword. The note field is the one most con-

fused with others, and upon inspection is actually labeled

inconsistently in the training data. Other errors could

be fixed with additional feature engineering—for exam-

ple, including additional specialized regular expressions

should make email accuracy nearly perfect. Increasing

the amount of training data would also be expected to

help significantly, as indicated by consistent nearly per-

fect accuracy on the training set.

4 Conclusions and Future Work

This paper investigates the issues of regularization, fea-

ture spaces, and efficient use of unsupported features in

CRFs, with an application to information extraction from

research papers.

For regularization we find that the Gaussian prior with

variance depending on feature frequencies performs bet-

ter than several other alternatives in the literature. Feature

engineering is a key component of any machine learn-

ing solution—especially in conditionally-trained mod-

els with such freedom to choose arbitrary features—and

plays an even more important role than regularization.

We obtain new state-of-the-art performance in extract-

ing standard fields from research papers, with a signifi-

cant error reduction by several metrics. We also suggest

better evaluation metrics to facilitate future research in

this task—especially field-F1, rather than word accuracy.

We have provided an empirical exploration of a few

previously-published priors for conditionally-trained log-

linear models. Fundamental advances in regularization

for CRFs remains a significant open research area.
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