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Abstract

This paper extends the familiar “query by humming” music

retrieval framework into the polyphonic realm. As humming

in multiple voices is quite difficult, the task is more accu-

rately described as “query by audio example,” onto a collec-

tion of scores. To our knowledge, we are the first to use

polyphonic audio queries to retrieve from polyphonic 

symbolic collections. Furthermore, as our results will show,

we will not only use an audio query to retrieve a known-

item symbolic piece, but we will use it to retrieve an entire

set of real-world composed variations on that piece, also in

the symbolic format. The harmonic modeling approach

which forms the basis of this work is a new and valuable 

technique which has both wide applicability and future

potential.1

1. Introduction

Music collections, or sources, exist in one of two basic

formats: audio and symbolic. To complicate matters, music

queries exist in both formats as well. A comprehensive music

retrieval system should be able to allow queries in either

format to retrieve music pieces in either format. The problem

lies in the fact that the features readily available from audio

files (MFCCs, energy) do not correspond well with the fea-

tures available from symbolic files (note pitches, note dura-

tions). It is a “vocabulary mismatch” problem.

The system described here bridges the gap between audio

and symbolic music using transcription algorithms together

with harmonic modeling techniques. In this manner we allow

users to present queries in the audio format and retrieve

pieces of music which exist in the symbolic format. This is

one of the earliest goals of music retrieval, and until now it

has only been possible within the monophonic domain. We

extend the realm of possibility into the remarkably more dif-

ficult polyphonic domain, and show this through successful

retrieval experiments for both known-item and variation

queries. The ability to use polyphonic audio queries to

retrieve pieces of music from a polyphonic symbolic 

collection is a major step forward in the field. Our attempt 

to use a high-level harmonic representation of music 

derived directly from audio as a means of retrieval is, we

think, unique. The aim is to make it possible to match 

documents for their similarity in underlying musical struc-

ture. We feel that this work is a very encouraging first step

in this direction.

The remainder of this paper proceeds as follows: In

Section 2 we give a brief review of the problem domain and

existing literature. Section 3 locates this paper within the

larger framework of the “language” modeling approach to

Information Retrieval. Section 4 contains an overview of our

system. In Section 5 we explain our audio music transcrip-

tion techniques. In Section 6 we explain our harmonic mod-

eling techniques, while in section 7 we show how two models
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are compared for dissimilarity. Finally, Sections 8 and 9

contain our experimental design, results, discussion and 

conclusion.

2. Background and related work

To date, research in the field of ad hoc music retrieval has

experienced two fundamental divisions. The first division is

one of representation. Music may either be presented as a

performance or as instructions to the performer. A perfor-

mance is an audio file, in a format such as WAV or MP3.

Instructions to the performer exist in a symbolic format,

either as a MIDI file (www.midi.org) or in some variety of

Conventional Music Notation (CMN) format (AMNS, 2002),

both of which express some manner of instructions about

what notes should be played, when, for how long, and with

what instrument or dynamic.

This division between actualized performance and in-

structions for a performance manifests itself in the types of

features readily extractable from digital forms of audio and

symbolic music. Those retrieving audio tend to work with

signal-based features such as MFCCs, LPCs, centroids, or

energy, while those retrieving symbolic sources use actual

note pitch and/or duration.

The second division in music IR is one of complexity, or

of monophony versus polyphony. Monophonic music has at

most one note playing at any given time; before a new note

starts the previous note must have ended. Polyphonic music

has no such restrictions. Any note or set of notes may begin

before any previous note or set of notes has ended, which

proves difficult for any clear, unambiguous sense of sequen-

tiality. Therefore, techniques which work for monophonic

music, such as string matching or n-gramming, are more dif-

ficult to apply to the polyphonic domain. Furthermore, rea-

sonably accurate conversion from audio to symbolic music

is generally seen as a solved (or at least manageable) problem

for monophonic music, but still a fairly inaccurate, unsolved

problem for polyphonic music.

Polyphonic music in general is more complex and diffi-

cult to work with. Indeed, some of the earliest works in music

retrieval remained entirely within the monophonic domain

(Ghias et al., 1995; McNab et al., 1997). These “query by

humming” systems allow the query to be presented in audio

format, and it is then converted to symbolic format to be used

for query on a monophonic symbolic collection. Gradually,

systems which allowed monophonic queries upon a poly-

phonic collection, a more difficult prospect, were introduced

(Birmingham et al., 2002; Lemström & Tarhio, 2000; 

Uitdenbogerd & Zobel, 1999). The query is still monophonic,

so conversion of the query between audio and symbolic

formats remains possible. The collection to be searched may

therefore be audio or symbolic, as the query may easily be

converted in either direction to match. But again, this is only

possible because the query is monophonic.

Most recently, polyphonic queries upon a polyphonic col-

lection have become possible. Yet because of the complex

nature of polyphonic music and the difficulty of accurate

conversion, researchers tend not to mix the audio and sym-

bolic domains. Research has either focused on polyphonic

audio queries upon polyphonic audio collections (Foote,

2000; Purwins et al., n.d.; Tzanetakis et al., 2001), or poly-

phonic symbolic queries upon polyphonic symbolic collec-

tions (Bloch & Dannenberg, 1985; Dovey, 1999; Doraisamy

& Rüger, 2001; Meredith et al., 2001; Pickens & Crawford,

2002). We know of no prior work which tackles polyphony,

audio, and symbolic music all in the same breath.

Of the papers mentioned above, the one that most closely

resembles our work is Purwins et al. (n.d.). These authors

have devised a method of estimating the similarity between

two polyphonic audio music pieces by fitting the audio

signals to a vector of key signatures using real-valued scores,

averaging the score for each key fit across the entire piece,

and then comparing the averages between two documents. 

As do we, these authors use Krumhansl’s distance metrics

(Krumhansl, 1990) to assist in the scoring. One of the main

differences, however, is that these authors attempt to fit an

audio source to a 12-element vector of keys, while we fit a

symbolic source to a 24-element vector of major and minor

triads. Furthermore, by averaging their key-fit vector across

the entire piece, their representation is analogous to our 0th-

order Markov models. Our paper utilizes not only 0th-order

models, but 1st and 2nd-order models as well. Moreover, the

Purwins paper was not specifically developed as a music

retrieval task, and thus has no retrieval-related evaluation. 

We present comprehensive known-item as well as recall-

precision results.

Key-finding is also the goal of a probabilistic method

described in a recent paper by Temperley (2002). The

approach has some aspects in common with ours, but 

the emphasis is, again, on music analysis rather than on the

somewhat different needs of music information retrieval.

Finally, a paper by Shmulevich et al. (2001) also uses

some of the same techniques presented here, such as

Krumhansl’s distance metrics and the notion of smoothing

(our approach to this will be presented in section 6.2). The

domain to which these techniques are applied is monophonic,

but Shmulevich’s work nevertheless demonstrates that har-

monic analysis and probabilistic smoothing can be valuable

components of a music retrieval system.

3. Language Modeling approach

Language Modeling (LM) has received much attention

recently in the text information retrieval community. It is

only natural that we wish to leverage some of the advantages

of LM and apply it to music. Ponte explains some of the 

motivations for this framework:

“[A language model is] a probability distribution over strings in

a finite alphabet (page 9) . . . The approach to retrieval taken

here is to infer a language model for each document and to esti-

mate the probability of generating a query according to each
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model. The documents are then ranked according to these prob-

abilities (page 14) . . . The advantage of using language models

is that observable information, i.e., the collection statistics, can

be used in a principled way to estimate these models and do not

have to be used in a heuristic fashion to estimate the probabil-

ity of a process that nobody fully understands (page 10) . . .

When the task is stated this way, the view of retrieval is that a

model can capture the statistical regularities of text without

inferring anything about the semantic content (page 15).” (Ponte,

1998)

Even though our retrieval task is polyphonic music rather

than text, we are duplicating the LM framework by creating

statistical models of each piece of music in a collection and

then ranking the pieces by those statistical properties. Thus,

while it might be more appropriate to name this work “sta-

tistical music modeling,” we still say that we are taking the

language modeling approach to information retrieval. So

rather than attempting a formal analysis of the harmonic

structure of music, we instead “capture the statistical regu-

larities of [music] without inferring anything about the

semantic content.”

Nothing illustrates this more than our choice, explained

in section 6, to characterize the harmony of a piece of music

at a certain point as a probability distribution over chords,

rather than as a single chord. Selecting a single chord is akin

to inferring the semantic meaning of the piece of music at

that point in time. While useful for some applications, we

feel that for retrieval, this semantic information is not nec-

essary, perhaps even harmful if the incorrect chord is chosen.

Rather, we let the statistical patterns of the music speak for

themselves.

To our knowledge, the first LM approach to music IR 

was done in the monophonic domain (Pickens, 2000). 

Other recent techniques, which also take the LM approach

(though without always explicitly stating it), apply 1st-order

Markov modeling to monophonic note sequences (Rand &

Birmingham, 2001; Hoos et al., 2001). Further work extends

the modeling to the polyphonic domain, using both 0th

and 1st-order Markov models of raw note simultaneities to

represent scores (Birmingham et al., 2001).

4. System overview

The goal of this system is to take polyphonic audio queries

and return polyphonic symbolic pieces of music, highly

ranked, which are relevant to the given query. This is done 

in a number of stages, as outlined in Figure 1 [System

overview].

Offline and prior to query time, the entire source collec-

tion (the set of polyphonic scores which are to be searched)

is passed through the harmonic modeling module, described

in Section 6. Each piece of music, each document, is then

“indexed,” or stored, as a model. At query time, the system

is presented with polyphonic audio, such as a digitized

recording of a piano piece from an old LP. The query is first

passed through the audio transcription module, described in

Section 5. The transcription from this module is passed to the

harmonic modeling module, and a model for the query is

created. Finally, a scoring function is used to compare the

query model with each of the document models, and to give

each query-document pair a dissimilarity value. Documents

are then sorted, or ranked, by that value, with the least dis-

similar at the top of the list.

5. Audio transcription

Automatic music transcription is the process of transforming

a recorded audio signal into a representation of its musical

features. We will limit our definition to the estimation of

onset times, durations and pitches of the notes being played.

This task becomes increasingly complicated when dealing

with polyphonic music because of the multiplicity of pitches,

inconsistent durations, and varied timbres. Most monophonic

transcription techniques are therefore not applicable. In 

fact, despite several methods being proposed with varying

degrees of success (Dixon, 2000; Klapuri, 1998; Marolt,

JNMR014 
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2000; Martin, 1996), automatic transcription of polyphonic

music remains an unsolved problem.

We offer two figures as an example of this transcription

procedure. Figure 2 [Bach Fugue #10 Original Score] is the

original score of Bach’s Fugue #10 from Book I of the Well-

tempered Clavier, presented here in piano-roll notation. A

human musician then performs this piece, and the audio

signal is digitized. Figure 3 [Bach Fugue #10 from Poly-

phonic Transcription II algorithm] is the transcription of this

digitized audio from one of our algorithms. With imperfect

transcriptions like this we still achieve excellent retrieval

results. (While both algorithms have general application to

polyphonic transcription, within the context of OMRAS 

they have only been tested on recordings of piano music at

this time.)

We locate the audio transcription task within the context

of Computational Auditory Scene Analysis (CASA). In this

context, systems try to explain the analysed signal following

a set of perceptual rules and sound models. These rules

suggest how to group the elements from the signal time-

frequency representation into auditory objects (i.e., musical

notes). In polyphonic music, events overlap both in the time

and the frequency domain, meaning that transcription

systems should be able to analyse the signal in both domains

in order to return an accurate representation of the scene.

From this approach we propose two different methods. Both

techniques will be used, separately, to produce queries, and

retrieval results for each transcription technique will be

given. We do this to show that our harmonic modeling algo-

rithm is robust to varying transcriptions and their associated

errors.

The rates of note-recognition are heavily dependent on the

style of the composition and the performance of the music,

as well as on the acoustic in which the recording is made. A

JNMR014
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full-scale evaluation over a large range of recordings of the

algorithms as described here has not been done. Some test-

results for more recent versions will appear in Bello (2003)

and Monti (2003); in general, the two approaches seem to

perform similarly well, with the percentage of notes detected

in the approximate range 60–75%; out of those notes

detected typically 80–85% are found to be recognised 

correctly.

5.1 Polyphonic transcription I

Our first method is an extension and reworking of a tech-

nique used for monophonic transcription in Monti (Monti 

& Sandler, 2002). Fourier analysis is used to represent the

signal in the frequency domain. An auditory masking thresh-

old is calculated using a perceptual model. Only spectral

maxima above such a threshold are chosen to represent the

signal. The Phase-Vocoder technique is used to calculate 

the instantaneous frequencies of the peaks, by interpolating

the phase of two consecutive frames. The analysis is 

optimised for the steady state part of the notes.

Once the representation of the signal is given as a set of

spectral peaks, the system groups the peaks according to their

frequency position and time evolution. The grouping rules

are: harmonic relation in the frequency domain and common

onset in the time domain. For the implementation of these

rules, which group peaks into objects (notes) we used the

Blackboard model (Engelmore & Morgan, 1988). This model

has shown great flexibility and modularity, which is impor-

tant when implementing additional rules.

The system starts selecting the lowest available frequency

peak and, assuming it to be a note’s fundamental, looks for

harmonic support among the other peaks. The support of a

note hypothesis is given by a fuzzy rate depending on the

fundamental frequency position and energy, and the har-

monic support in the spectrum. If the note is confirmed as an

hypothesis, its harmonic peaks are eliminated from the

hypothesis space so they cannot be chosen as new funda-

mental hypotheses. However, they still may contribute to

other notes’ hypotheses since the partials of the notes com-

posing a chord often overlap in western music.

The algorithm iterates while there are peaks in the spec-

trum. Hypotheses qualify as note objects only if they last in

time for a minimum number of (activation) frames. Once a

note is recognized the system predicts its evolution in the

spectrum, and in future analysis the existing notes are veri-

fied before searching for new notes. If the spectrum reveals

any change in the frequencies’ positions or amplitude the

system formulates new note hypotheses corresponding to the

new events detected. Using this method, octave errors are

eliminated, but at the cost of failing to detect octave intervals

when played simultaneously. The system extracts onsets,

offsets and MIDI pitches from the audio and writes them in

a MIDI file for listening and retrieval tasks.

(A version of Algorithm I, optimized for piano music, is

described in detail in Monti & Sandler, 2002b.)

5.2 Polyphonic transcription II

Our second system is an extension of work found in (Bello

et al., 2002; Bello & Sandler, 2000). We again begin by

applying Fourier analysis on overlapping frames in the time-

domain. The Phase-Vocoder technique is also used to esti-

mate the exact instantaneous frequency value for each bin 

in the frequency-domain representation. However in this

approach all frequency peaks are used, regardless of their

perceptual conditions.

Two levels of hypotheses are considered here. On each

analysis frame, all musical notes within the evaluated range

(from 65 to 2 kHz) are considered to be “frame” hypotheses.

Associated with each of these frame hypotheses a filter is

developed in the frequency domain. To do this we assume

that a note with fundamental frequency fk must (theoretically)

present frequency partials located according to:

(1)

where bk is the inharmonicity factor (note and instrument

dependent) (Fletcher & Rossing, 1991), and m = 1 . . . M,

with M such that fM,k £ fs/2, where fs is the sampling fre-

quency. The filter associated with fk behaves like a comb filter

with lobes centered at the expected partials’ frequencies and

bandwidths equal to half the tone-distance between the hypo-

thetical note and its closest neighbour (a quarter or half a

tone depending on the note).

The frame’s frequency-domain is processed through this

filter-bank, producing a group of spectra associated with each

of the frame-hypotheses. The hypotheses are rated according

to the ratio between the filtered spectra energy and the energy

of the original spectrogram. Hypotheses with high ratings are

classified as “note” hypotheses and followed over time. If

continuity and envelope conditions are satisfied, then the note

is recognised as a note-object of the signal.

Note that in this approach no onset detection is performed

on the audio signal. Timing information depends on the

behaviour of the instantaneous rating of each possible note.

A smoothing window is used to group events that are very

close in time.

An important difference from the previous approach is

that frame hypotheses are evaluated independently, allowing

any interval to be detected. This brings as a consequence the

detection of octave intervals and the proliferation of octave-

related errors. As with the previous transcription algorithm,

the system extracts onsets, offsets and MIDI pitches from 

the audio and writes them in a MIDI file for listening and

retrieval tasks.

6. Harmonic modeling

A harmonic model is our term for a Markov Model in which

the states of the model are musically salient, harmonic enti-

ties. The process of transforming polyphonic music into a

harmonic model divides into three stages. In the first stage,

harmonic description, the music document to be modeled is

f m f mm k k k, = ◊ + -( ) ◊1 12 b
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broken up into sequences of note sets, and each of those note

sets are fit to a probability vector. Each of these note sets is

assumed to be independent of the neighboring sets. This

assumption, while necessary for the modeling, is not always

accurate, in particular because harmonies in a piece of music

are often defined by their context. The second stage of the

harmonic modeling process is therefore a smoothing proce-

dure, designed to account for this context. Finally, the third

stage is the process by which Markov models are created

from the smoothed harmonic descriptions. Stages one and

three are covered in greater detail in Pickens and Crawford

(2002), while stage two is a new technique first described in

this paper.

6.1 Harmonic description

Recall from Section 1 that polyphonic music has no innate,

one-dimensional sequence. Arbitrary notes or sets of notes

may start before the current note or set of notes has finished

playing. It therefore becomes necessary for us to artificially

impose sequentiality. This is accomplished by ignoring the

played duration for every note in a score, and then selecting

at each new note onset all the notes which also begin at that

onset. These event-based sets are then reduced, mod 12, 

to octave-equivalent pitch classes and given the name 

simultaneity.

We define a lexical chord as a codified pitch template. Of

the 12 octave-equivalent (mod 12) pitches in the Western

canon, we select some n-sized subset of those, call the subset

a chord, give that chord a name, and add it to the lexicon.

Not all possible chords belong in a lexicon; with ( n
12) possi-

ble lexical chords of size n, and 12 different choices for n,

we must restrict ourselves to a musically-sensible subset. The

chord lexicon will furthermore make up the state space of

our Markov model, in addition to providing the basis for the

harmonic description.

The chord lexicon used in this paper is the set of 24 major

and minor triads, one each for all 12 members of the 

chromatic scale: C Major, c minor, C Major, c minor . . . B 

Major, b minor, B Major, b minor. No distinction is made

between enharmonic equivalents (C sharp/D flat, A sharp/B

flat, E sharp/F natural, and so on). Assuming octave-

invariance, the three members of a major triad have the rel-

ative semitone values n, n + 4 and n + 7; those of a minor

triad n, n + 3 and n + 7.

During the 1970s and 1980s the music-psychologist 

Carol Krumhansl conducted a ground-breaking series of 

experiments into the perception and cognition of musical

pitch (Krumhansl, 1990). By using the statistical technique

of multi-dimensional scaling on the results of experiments

on listeners’ judgements of inter-key relationships, she pro-

duced a table of coordinates in four-dimensional space 

(p. 42) which provides the basis for the lexical chord distance

measure we adopt here. The “distance” between triads 

a and b can be expressed as the four-dimensional 

Euclidean distance between these coordinates. We do not

reproduce these distances here, but denote the distance as

Edist(a, b).

Now that these definitions are clear, we may proceed with

the harmonic description algorithm. The basic idea is that

when calculating the score of a simultaneity s on a lexical

chord c, this score is influenced by all the other lexical chords

p in which s participates. Thus, every lexical chord has an

effect on every other lexical chord.

An analogy might help: The amount of gravitational force

that two bodies (such as the earth and moon) exert on each

other is proportional to the product of their masses, and

inversely proportional to a function of the distance between

them. By analogy, each of our 24 lexical chords is a body 

in space, and each exerts some influence on all others. 

Thus, if the notes of a G major triad are observed, not only

does G major get the most mass, but we also assign some

probability mass to E minor and B minor, a bit less to 

C major and D major, even less to A minor and F# minor,

and so on.

So the amount of influence exerted by each chord in the

lexicon on the current chord is proportional to the number of

pitches shared between the simultaneity s and each lexical

chord p, and inversely proportional to the inter-triad distance

from each p to c. Since, in general, “contributions” of near

neighbors in terms of inter-key distance are preferred, we use

that fact as the basis for computing a suitable context:

(2)

This context score is computed for every chord c in the

lexicon (each point in the distribution), and then the entire

distribution is normalized by the sum total of all context

scores. While it is clear that the harmony of all but the

crudest music cannot be reduced to a mere succession of

major and minor triads, as this choice of lexicon might be

thought to assume, we believe that this is a sound basis for

a probabilistic approach to harmonic description, as more

complex chords (such as 7th chords) are in fact accounted for

by the contributions of their notes to the overall probabilis-

tic context. In addition, with Krumhansl’s Euclidean-distance

measures, we have a perceptually-validated way of measur-

ing inter-chord distances, something which does not exist (as

far as we are aware) for more complex chords.

6.2 Smoothing

While the method above takes into account contributions

from neighboring triads, it only does so within the current

simultaneity, the current timestep. Harmony, as musi-

cians perceive it, is a highly contextual phenomenon which

depends not only on the harmonic distances at the current

timestep, but is also influenced by the previous timesteps: the

harmonies present in the recent past are assumed to be a good

indication of the current harmony. Thus, a simultaneity with

only one note might provide a relatively flat or uniform dis-

Context s c
s p

Edist p cp lexicon

,
,

( ) =
«
( )+Œ

Â
1
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tribution across the lexical chord set, but when that simul-

taneity is taken in historical context, the distribution becomes

more accurate.

We have developed a naive, yet effective, technique for

taking into account this event-based context by examining 

a window of n simultaneities and using the values in that

window to give a better estimate for the current simultane-

ity. This is given by the following equation, where st is the

simultaneity at timestep t:

(3)

When the smoothing window n is equal to 1, this equation

degenerates into the one from the previous section. When n

is greater than one, the score for the lexical chord c at the

current timestep is influenced by previous timesteps in pro-

portion to the distance (number of events) between the

current and previous timestep. As in the unsmoothed version,

the smoothed context score is computed for every chord c in

the lexicon and then the entire distribution is normalized by

the sum total.

6.3 Markov modeling

It should be clear by now that the primary difference between

our harmonic description algorithm and most other such

algorithms is the choice to create probabilistic distributions

across the lexical chord set, rather than reductions of each

simultaneity to a single, most salient lexical chord. The figure

below is a toy example of a harmonic description, using 

an example lexicon of three chords, P, Q, and R. With this

probabilistic harmonic description, we now create a Markov

model.

Lexical Timestep (Simultaneity)

Chord

1 2 3 4 5

P 0.2 0.1 0.7 0.5 0

Q 0.5 0.1 0.1 0.5 0.1

R 0.3 0.8 0.2 0 0.9

Markov models are often used to capture statistical proper-

ties of a state sequence over time. We want to be able to

predict future occurrences of a state by the presence of

sequences of previous states. In our harmonic approach, we

have chosen lexical chords as the states of the model. For an

nth-order model, a 24nx24 matrix is constructed, with the 

24n rows representing the previous state space, and the 24

columns representing the current state space. An (n + 1)

sized window slides over the sequence of lexical chord dis-

tributions and Markov chains are extracted from that window.

The count of each chain is added to the matrix, where 

the cross of the first n states is the previous state, and the 

Smoothed s c
i

s p

Edist p c
t

i

n
t i

p lexicon

,
,

( ) =
Œ«
( )+

Ê
ËÁ

ˆ
¯̃=

- +

Œ
Â Â1
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1

(n + 1)th state is the current state. Finally, when the entire

observable sequence has been counted, each row of the

matrix is individually summed and the elements of each row

normalized by the sum total for that row.

One problem is that Markov modeling only works on 

1-dimensional sequences of observable states, while our 

harmonic description is a sequence of 24-point probability

distributions. Our solution is to assume independence

between points in each distribution at each timestep, so that

an exhaustive number of independent, one-dimensional paths

through the sequence may be traced. (This exhaustive paths

approach is abstractly similar to one suggested by Doraisamy

and Rüger (2001).) Each path, thus constructed, is not

counted as a full observation. Instead, observations are pro-

portional; the degree to which each path is observed is a

function of the amount by which all elements of the path 

are present. Since independence between neighboring simul-

taneities was assumed, this becomes the product of the values

of each state which comprises the path. For example, suppose

we construct a 2nd-order model from the sequence of dis-

tributions, above. Then one of the many observed state

sequences we would see in timesteps 1 to 3 is “QRR.” The

count of this observation is 0.08 = (0.5 *0.8 *0.2).

7. Scoring function

Our goal is to produce a ranked list for a query across the

collection. We wish to rank those pieces of music at the top

which are most similar to the query, and those pieces at the

bottom which are least similar. This is the task of the scoring

function. We have chosen as this function the Kullback-

Liebler (KL) divergence, a measure of how different two 

distributions are, over the same event space. The divergence

is always zero if two distributions are exactly the same, 

or a positive value if the distributions differ. We denote 

the KL divergence between query model q and music 

document model d as D(q||d). “The KL divergence between

[q] and [d] is the average number of bits that are wasted by

encoding events from a distribution [q] with a code based on

the not-quite-right distribution [d]” (Manning & Schütze,

2001).

In our Markov model, each previous state, each row in the

24nx24 matrix, is a complete distribution. We therefore

compute a divergence score for each row in the model, and

add the value to the total divergence score for that query-

document pair. This is given by the following equation, where

qi and di represent each previous state. It is imperative that

the same modeling procedure and size that is used for the

document models is also used for the query model.

(4)

However, there is a problem in that sometimes a docu-

ment model can have estimates of zero probability. This is 

especially true of shorter music documents, in which a lot of

D q d q x
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the possible transitions are never observed. The divergence 

score in such cases automatically goes to 

infinity. This small problem in just a single value could 

therefore throw off our entire score for that document. We

therefore must create some small but principled non-zero

value for every document model zero value. There are many

ways to do this, but we have done so by “backing off ” to a

general “background” music model, using the value of that

previous state node from the general model whenever we

encounter a zero value in any particular document model.

A general music model is created by averaging the models

over the entire set of document models in the collection. In

principle, there could still remain zero values in the general

music model, depending on the size and properties of the col-

lection. In our experiments, however, we found this almost

never to be the case. Also, it should be observed that when

the query model has a zero probability in any cell, there is

no problem. The KL divergence for that point is 

which is zero.

8. Experiment design and results

For our retrieval experimentation, we adopt the Cranfield

evaluation model2 (Cleverdon et al., 1966). This requires

three crucial components: (1) Source collection, (2) Query,

and (3) Relevance judgements which label each item in the

source collection as either relevant or not relevant to the

query. In all our experiments, the source collection remains

the same. However, we vary the queries and the relevance

judgements, as described below.

8.1 Source collection

The basic test collection on which we tested our retrieval

method was assembled from data provided by the Center 

for Computer Assisted Research in the Humanities (CCARH,

2000). It comprises around 3000 files of separate movements

from polyphonic fully-encoded music scores by a number of

classical composers (including Bach, Beethoven, Handel,

and Mozart) of varying keys, textures (i.e., average numbers

of notes in a simultaneity) and lengths (numbers of simul-

taneities).3 To this basic collection we add, for the purposes

of the present paper, three additional sets of polyphonic

0
0

log ,
d xi ( )

q x
q x

i
i( )
( )Ê

Ë
ˆ
¯

Ê
Ë

ˆ
¯log

0

music data, for a total collection of approximately 3150

pieces of music. Collectively, we denote these Twinkle,

Lachrimae and Folia variations as the TLF sets:

T 26 individual variations on the tune known to English

speakers as “Twinkle, twinkle, little star” (in fact a

mixture of mostly polyphonic and a few monophonic 

versions);

L 75 versions of John Dowland’s “Lachrimae Pavan,” col-

lected as part of the ECOLM project (www.ecolm.org)

from different 16th and 17th-century sources, sometimes

varying in quality (numbers of “wrong” notes, omissions

and other inaccuracies), in scoring (for solo lute, keyboard

or five-part instrumental ensemble), in sectional structure

and in key;

F 50 variations by four different composers on the well-

known baroque tune “Les Folies d’Espagne.”

8.2 Experiment one: known item

The idea for the first experiment comes from a desire to test

the robustness of our harmonic modeling. We therefore

assembled from the Naxos audio collection the 24 Preludes

and Fugues of Book I of Bach’s Well-tempered Clavier. The

score versions of these piano-based, human-played audio

files are present within our source collection, from the

CCARH data. So each audio-transcribed Prelude or Fugue

becomes a query, and the score from which the audio file was

ostensibly played becomes the one “known item” relevant

document in the collection.4

The question is whether this degraded, transcribed 

query (Fig. 3) can retrieve, at a high rank relative to all 

other music in the collection, the original “perfect” score

(Fig. 2). For this particular example in fact, Figure 2 was

retrieved at a rank of 1st, from our collection of 3150 pieces

of music.

As good as this result is, accurate evaluation deals with

averages to get a true indication of system performance. 

The averaged results of this experiment are found in 

Tables 1 and 2. For each set of queries (either the 24 

Preludes or 24 Fugues) the known item was retrieved at 

some rank, where first is the best possible value. These ranks

were then averaged across all queries in the set. Results are

given for 0th to 2nd-order Markov models, each of which 

has been smoothed over a window of size n = 1 to n = 4. For

comparison (and lacking comparable results from any other

researchers), a system which performed random ranking

JNMR014

2 See also http: //ciir.cs.umass.edu/music2000/evaluation.html
3 For these experiments we used a copy of the CCARH data pro-

vided in Humdrum kern format dating from 1997. In the process of

our work on this paper we discovered a number of problems with

the translations of the original MuseData encodings. At the time of

writing we have recently received a new, improved copy of the kern

data, and we will report the results of repeated experiments with

this at a future time.

4 Note that, apart from any errors in our transcription of the query,

there are highly likely to be significant differences between the

musical content of the performance and the score; one important

example is in the performance of trills and similar ornaments or

spontaneous embellishments, where the score may give only a

single note, yet the performance may contain an arbitrary number

of “repercussions” of two or more notes.
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would place the known item, on average, approximately

1575th.

Our results show that the known item searches are

extremely successful. Through a combination of higher-order

Markov models and larger smoothing windows, we were able

to retrieve the true symbolic version of the piece using the

audio-transcribed, degraded query at an average rank of a

little over 3 for the Bach Preludes, and a little over 2 for the

Bach Fugues. While there is still room for improvement, it

should prove difficult to produce an average which is better

than 2nd or 3rd.

Though results vary slightly from the Transcription I to

the Transcription II algorithms, equally good results were

achieved using each. Our harmonic modeling technique is

robust enough to handle two significantly different tran-

scription algorithms.

8.3 Experiment two: variations

For the second experiment, we wish to determine whether

our harmonic modeling approach is useful for retrieving vari-

ations on a piece of music, rather than just the original.

Recall that in addition to the CCARH data, our source col-

lection contains three sets of variations. For this experiment,

the audio version of one variation is selected and the score

versions of all the variations are judged “relevant” to the

audio query, even though their actual similarity may vary

considerably. A good retrieval system would therefore return

all variations toward the top of the 3150 item list, and all non-

variations further down. This is repeated for all audio pieces

in the set. For example, Figure 4 contains a few of the

“Twinkle” variations. When the audio version of Variation 3

is used as the query, we expect not only the score version of

Variation 3 to be ranked highly, but the score version of Vari-

ation 11 and the score version of the Theme to be ranked

highly as well. (The “Theme” is, of course, one of the many

variations.)

Because of the size of these sets and our limited resources,

we were not able to get human performances of all these vari-

ations. Instead, we converted the queries to MIDI and used

a high-quality (30 Megabyte) piano soundfont to create an

audio “performance.” This apparent weakness in our evalua-

tion is countered by two facts: (1) These audio queries are

still polyphonic, even if synthesized, and automatic tran-

scription of overlapping and irregular-duration tones is still

quite difficult. (2) Many of the variations on a piece are them-

selves quite different from a potential query, as we see in

Figure 4, and good retrieval is still a difficult task. Even if

JNMR014 

Table 1. Average Ranks for Transcription I.

Bach Preludes

Window Size mm0 mm1 mm2

1 4.83 23.11 219.41

2 4.83 4.83 13.98

3 4.76 3.52 4.30

4 4.83 3.17 3.04

Random = 1575

Bach Fugues

Window Size mm0 mm1 mm2

1 4.04 35.08 192.08

2 3.63 5.69 10.58

3 3.31 5.19 3.52

4 3.23 4.02 2.38

Random = 1575

Table 2. Average Ranks for Transcription II.

Bach Preludes

Window Size mm0 mm1 mm2

1 8.91 28.72 223.87

2 7.85 5.04 16.72

3 7.54 3.83 6.85

4 7.35 4.87 7.96

Random = 1575

Bach Fugues

Window Size mm0 mm1 mm2

1 6.08 24.88 142.92

2 5.33 4.77 10.23

3 6.10 3.75 3.63

4 5.79 3.58 2.60

Random = 1575

Fig. 4. Excerpts from the “Twinkle” variations.
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the perfect score of a variation were used as a query, rather

than the imperfect transcription (though perhaps slightly

better because of the synthesized audio), quality retrieval is

not guaranteed. While we hope to work with a human-

produced audio collection for this retrieval experiment

someday, as we have done with the known-item Naxos data

above, we feel the gist of the evaluation has not been 

compromised.

Presentation of the known-item results was straight-

forward. With one relevant document in the entire collection,

one need only report the rank (or average rank across all

queries) of this document. The problem with multiple rele-

vant documents is how best to visualize the ranked list. Typ-

ically in the IR literature this is done using 11-pt interpolated

recall-precision graphs, with precision (number of relevant

documents over total retrieved at a point in the ranked list)

given at various levels of recall (number of relevant docu-

ments retrieved over the total number of relevant documents

in the query set). However, space constrains us. Instead, we

present two values which we believe characterize the result

data: a) mean average precision and b) mean precision at the

top 5 retrieved documents.

Average precision is computed by calculating the preci-

sion for a single query (retrieved relevant over total retrieved)

every time another variation (relevant document) is found,

then averaging over all those points. This score is then aver-

aged over all queries in the set, to create the mean average

precision. It is a single value popular in IR studies because

it allows easy comparison of different systems.

However, some users are more interested in the precision

of a system at the top of the ranked list. If the user does not

care about finding every single variation but only cares about

finding any variation, then the average precision is not as

important as the precision at the top of the ranked list. We

therefore compute the precision for a single query after

retrieving the top 5 documents. If 1 of those documents is

relevant (a variation), then the precision is 0.2, or 20%. If

none of them are, the precision is 0%. If all of them are, the

precision is 100%. We then average this value over all queries

in the set, to get the mean precision at the top 5 retrieved

documents.

Tables 3 and 4 contain the mean average precision results,

while Tables 5 and 6 contain the average precision at the top

5 retrieved documents. These values are given for the three

TLF query sets, for 0th to 2nd-order Markov models, each of

which has been smoothed over a window of size n = 1 to n

= 4, averaged over all queries in each of the TLF query sets.

Unlike the known-item results, where the lower numbers

were better because they represented average rank, the values

for these variations experiments represent precision. Higher

numbers are better.

For each query set we give, as a baseline, the expected

value a random ranking algorithm would produce, for a doc-

ument collection of size and with relevant document count

equal to those of the various query sets. For example, the

Twinkle set only has 26 variations, so a random ranking of

JNMR014

Table 3. Variations Transcription I, Mean Average Precision.

Twinkle

Window Size mm0 mm1 mm2

1 0.164 0.130 0.168

2 0.168 0.163 0.179

3 0.168 0.122 0.131

4 0.172 0.135 0.101

Random = 0.0052

Lachrimae

Window Size mm0 mm1 mm2

1 0.168 0.064 0.033

2 0.168 0.140 0.094

3 0.164 0.172 0.158

4 0.162 0.179 0.191

Random = 0.0112

Folia

Window Size mm0 mm1 mm2

1 0.375 0.216 0.136

2 0.379 0.365 0.219

3 0.378 0.479 0.334

4 0.384 0.445 0.390

Random = 0.0087

Table 4. Variations Transcription II, Mean Average Precision.

Twinkle

Window Size mm0 mm1 mm2

1 0.145 0.111 0.150

2 0.145 0.149 0.156

3 0.145 0.095 0.117

4 0.130 0.104 0.083

Random = 0.0052

Lachrimae

Window Size mm0 mm1 mm2

1 0.172 0.056 0.030

2 0.174 0.136 0.096

3 0.173 0.177 0.162

4 0.172 0.181 0.195

Random = 0.0112

Folia

Window Size mm0 mm1 mm2

1 0.333 0.172 0.105

2 0.337 0.315 0.178

3 0.331 0.422 0.284

4 0.328 0.389 0.329

Random = 0.0087
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the collection yields a mean precision at the top 5 documents

of 0.0077. The Lachrimae set has 75 variations, so it is only

natural that with more relevant documents in the collection,

a random ranking of those documents will include more rel-

evant documents toward the top of the list. Indeed, the mean

precision at 5 docs of the random algorithm on the Lachri-

mae set is 0.0213.

Using an audio-transcribed query to retrieve variations on

a piece of music is much harder. We do not consider it to be

a solved problem by any means, but we are encouraged by

the results we see. First, it is clear that our harmonic model-

ing algorithm is doing something correctly, as it yields sig-

nificant improvement over the random algorithm. Second, 

we once again see the trend that higher order Markov models

and more harmonic smoothing yield better results. Higher

and longer does not monotonically indicate better perfor-

mance, but the trend is nonetheless apparent.

We also note that some query sets are more difficult than

others. Not only did we have more success on the Folia vari-

ations than on the Twinkle variations, but after listening to the

actual pieces, it is clear than human judges would have more

difficulty picking out the Twinkle variations than they would

the Folia variations. Furthermore, the “variations” in the

Lachrimae and Twinkle sets vary much more in texture,

harmony and key than do those in the Folia set. For these

experiments, however, each variation was declared indiscrim-

inately “relevant” to every other; we see this as a harsh test for

any retrieval system or even for a trained human ear. (In

Pickens and Crawford (2002) we report on a transposition-

invariant version of our modeling method which was not used

here; this tends to recover transposed versions of a query, but

at the inevitable cost of a general loss of precision.) Never-

theless, even for the more difficult Twinkle variations, almost

3 of the 5 top ranked documents are, on average, relevant vari-

ations. We feel this is a respectable result.

9. Conclusion

It is now clear that retrieval of polyphonic scores using poly-

phonic audio is possible. By “taking apart” (transcribing) an

audio music query and harmonically modeling the musically-

salient pitch features we are bridging the gap between audio

and symbolic music retrieval, and doing so within the diffi-

cult polyphonic domain.

That we have restricted ourselves in this paper to piano (a

single timbre) is not a limitation as much as it is an indica-

tion of future potential. We did not have to perfectly recog-

nize every single note in a piece of music in order for the

harmonic modeling to be successful. Therefore, future audio

transcription methods which attempt to transcribe the even

more difficult polytimbral, polyphonic domain may do so

with the confidence that the transcription need not be perfect

in order to get good retrieval results.

The same technique which gives us robust, error-tolerant

retrieval of known-item queries (Section 8.2) is also useful
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Table 5. Variations Transcription I, Precision at top 5 retrieved

pieces.

Twinkle

Window Size mm0 mm1 mm2

1 0.592 0.323 0.462

2 0.577 0.500 0.515

3 0.577 0.431 0.485

4 0.585 0.485 0.415

Random = 0.0077

Lachrimae

Window Size mm0 mm1 mm2

1 0.496 0.067 0.056

2 0.501 0.317 0.096

3 0.477 0.520 0.451

4 0.456 0.531 0.616

Random = 0.0213

Folia

Window Size mm0 mm1 mm2

1 0.692 0.104 0.212

2 0.680 0.444 0.200

3 0.704 0.884 0.544

4 0.740 0.804 0.816

Random = 0.02

Table 6. Variations Transcription II, Precision at top 5 retrieved

pieces.

Twinkle

Window Size mm0 mm1 mm2

1 0.485 0.285 0.408

2 0.515 0.539 0.431

3 0.531 0.346 0.446

4 0.439 0.392 0.331

Random = 0.0077

Lachrimae

Window Size mm0 mm1 mm2

1 0.461 0.040 0.032

2 0.440 0.216 0.059

3 0.427 0.523 0.419

4 0.440 0.499 0.619

Random = 0.0213

Folia

Window Size mm0 mm1 mm2

1 0.628 0.056 0.112

2 0.672 0.404 0.144

3 0.628 0.788 0.480

4 0.608 0.728 0.732

Random = 0.02
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for retrieving variations (Section 8.3). Indeed, at one level of

abstraction, a composed variation can be thought of as an

“errorful transcription” of the original piece. Our harmonic

modeling approach succeeded in capturing a degree of

invariance, a degree of similarity, across such “transcrip-

tions.” The technique, though far from perfect, is an impor-

tant first step for polyphonic (audio and symbolic) music

retrieval.

10. Future work

We feel one useful direction for this work is to bypass the

transcription phase and go directly from audio features to a

harmonic description. This will make the modeling phase

slightly more difficult, but there might be advantages to

bypassing the transcription, as the transcription is only used

to create harmonic descriptions. This would bring us closer

to some harmonic-recognition work being carried out by

others in the pure audio domain such as by Carreras et al.

(1999), or Fujishima (1999).

A second direction is to enhance the harmonic description

smoothing algorithm. We propose in the future to adopt

either a (millisecond) time-based or a (rhythmic) beat-based

window smoothing approach, rather than the event-based

approach we use in this paper. We will sum the harmonic

contributions in the way described above across simultane-

ities within the window in inverse proportion to their time or

beat-based distance from the current simultaneity, with addi-

tional weightings provided according to metrical stress, note

duration or other factors that might be considered helpful.

Indeed, harmonic smoothing, properly executed, might be a

way of integrating the problematic, not-quite-orthogonal

dimensions of pitch and duration within a polyphonic source.

Better time-based smoothing might also yield a richer har-

monic description, because it gives less weight to transient

changes in harmony arising from non-harmonic notes such

as passing tones or appoggiaturas.

A third direction deals with passage level retrieval. Rather

than modeling entire documents, it might be useful to model

portions of documents, particularly if those portions are

musically salient.

It would be useful to know more about the musical 

implications of our harmonic modeling technique. At

present, however, we cannot say with certainty what contri-

bution to the overall performance results from a particular

musical aspect of a certain query (or indeed the content of

the database as a whole). We cannot, for example, be sure

whether our method will work well on, say, rock music, as

well as J. S. Bach, or 16th-century lute music. A lot of experi-

mentation needs to be carried out in order to investigate such

matters.

Our system has a large number of parameters already, and

will no doubt gain more as it is developed further. This

further suggests that optimization methodology will become

very important in future phases of the OMRAS project, as in

other complex IR systems. At this point, for such experi-

ments we see no alternative to the Cranfield IR-based evalu-

ation techniques we adopt here.

In the context of retrieval evaluation, it would also be

interesting to consider why certain “non-relevant” musical

scores are sometimes retrieved with higher rank than those

we explicitly marked as relevant. This potentially raises some

quite difficult questions in the domain of user needs which

we have not yet begun to tackle (what is relevant for one class

of user may not be so for another), and in fact in some senses

questions the very nature of musical “relevance.” Such

matters are likely to remain prominent in the unfolding 

evolution of the discipline of music information retrieval for

some years to come.
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