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Abstract

Today’s digital libraries increasingly include not only

printed text but also scanned handwritten pages and other

multimedia material. There are, however, few tools avail-

able for manipulating handwritten pages. Here, we pro-

pose an algorithm based on dynamic time warping (DTW)

for a word by word alignment of handwritten documents

with their (ASCII) transcripts. We see at least three uses for

such alignment algorithms. First, alignment algorithms al-

low us to produce displays (for example on the web) that

allow a person to easily find their place in the manuscript

when reading a transcript. Second, such alignment algo-

rithms will allow us to produce large quantities of ground

truth data for evaluating handwriting recognition algo-

rithms. Third, such algorithms allow us to produce indices

in a straightforward manner for handwriting material. We

provide experimental results of our algorithm on a set of

70 pages of historical handwritten material - specifically

the writings of George Washington. Our method achieves

74.5% accuracy on line by line alignment and 60.5% accu-

racy when aligning whole pages at time.

1. Introduction

A number of today’s digital libraries contain hand-

written material. Some of these libraries include both

handwritten material and ASCII transcripts. An ex-

ample of such a digital library is the Newton Project

(http://www.newtonproject.ic.ac.uk/) that proposes to

create ASCII transcripts for Newton’s handwritten

manuscripts. A word by word alignment of the tran-

script and the handwritten manuscript would allow a person
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to easily find their place in the manuscript when read-

ing the transcript. For example, one could display both

the manuscript and the transcript and whenever the mouse

is held over a word in the transcript, the correspond-

ing word in the manuscript would be outlined using a

box.

Creating such alignments is challenging since the tran-

script is an ASCII document while the manuscript page is

an image. Handwriting recognition is not accurate enough

to recognize such large vocabulary historical document col-

lections. We therefore propose an alternative approach to

aligning such material. The handwriting page image is au-

tomatically segmented. Features (for example box and text

position, aspect ratio etc) are then computed for both the

transcript and the page image. An algorithm based on dy-

namic time warping (DTW) is then used to align the words

on the page image and the transcript. We compute align-

ments for whole pages and also for situations in which one

can assume that the beginning and end positions of lines are

known. We show results on a set of 70 pages from George

Washington’s handwriting. Performing alignment on a line

by line basis we achieved an accuracy of 74.5% and when

aligning pages without line breaks we achieved 60.5% when

evaluating alignments based on our edit distance metric (see

Section 7).

Alignment is difficult because every step in the

above mentioned approach produces errors. Segmenta-

tion of handwriting is known to cause errors - both over

and under segmentation occur. Since our corpus con-

sists of scanned images of old historical documents, there

are even more errors. The transcripts may themselves be er-

roneous although this is less common. In addition, the

alignment algorithm itself produces errors.

Such alignments have other applications. One such ap-

plication is the ability to create ground truth data for eval-

uating handwriting recognition and retrieval algorithms [8].

Effectively producing ground truth data for large collections

of handwritten manuscripts is a manually intensive and la-

borious process that requires a person to first create a tran-



script based on the entire manuscript and then label indi-

vidual words. The process of labelling can be avoided if

alignment algorithms are available. Alignment also allows

us to create an index for the manuscript. Specifically, this

allows one to search the manuscript by searching its ASCII

transcript. The alignment can then be used to highlight the

search terms in the manuscript (as is done with conventional

text search engines).

The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work and how our approach differs.

We then continue by formally defining the problem and no-

tation used for the rest of the paper in section 3. Several

baseline algorithms are discussed in section 4. Our DTW

algorithm is described in section 5. In section 6 we discuss

the format of our data. Section 7 goes over different evalu-

ation metrics for the alignment tasks. We conclude with ex-

perimental results in section 8 and future research paths in

section 9.

2. Previous work

2.1. Historical Documents

Very little research has been done on aligning transcripts

of historical documents. The only prior work that makes an

attempt to perform such an alignment of words between

transcripts and word images is by Tomai et al. [11]. The

method they propose is to limit the lexicon of a handwrit-

ing recognizer by using the transcript. A ranked list of pos-

sible words from the lexicon is returned for each recognized

word image. Several different likely segmentations of a line

are made. The segmentation that has the highest probabil-

ity given the transcript and previous alignments is then used.

If a mapping cannot be performed with high enough confi-

dence for a word then it is left out.

Tomai et al give a figure of 82.95% accuracy in map-

ping words to a page, However, this figure makes certain

assumptions. First they exclude 32 of the 249 words due to

their “extreme noisiness”. Including all words, their accu-

racy is roughly 72%. Second, they mention that of the 180

words they map, 17 are exactly mapped and 163 ‘roughly

mapped’. In the absence of other information, we are unable

to decide what the term ‘roughly mapped’ means and will

assume that all 180 words were accurately mapped from

transcript to manuscript. Finally, the results are reported for

a single page of handwriting.

There has also been work in the areas of Automatic

Speech Recognition (ASR) [9] and machine translation [4]

on alignment. We note that these problems are somewhat

different. For example, in machine translation, the align-

ment is between ASCII text in two different languages and

additional constraints in terms of dictionary and grammar

are available that are not available for word images.

Our approach to the transcript problem assumes that im-

ages must be aligned with ASCII text from the transcript.

Thus, it is a completely different approach from that of

Tomai et al [11]. In addition, we report results on a large

number of documents (70 versus 1 in the previous case).

2.2. Optical Character Recognition (OCR)

The OCR community [2] has done research into aligning

transcripts with printed documents for the purposes of cre-

ating ground truth. For example [2] tries to find a geomet-

ric transformation between the document description and

the image of the document which minimizes a cost func-

tion. This technique assumes that along with the transcript

there is a page description that denotes where the words in

the transcript appear on the page. The most information that

might be available in existing transcripts of historical docu-

ments is where line breaks occur. This limited information

does not appear to be sufficient to make use of the algo-

rithm proposed.

Another technique that might be applicable to our task

was proposed by Ho and Nagy [1]. Their proposed algo-

rithm uses a predefined lexicon to help recognize charac-

ters. Ho and Nagy’s algorithm is to segment a printed page

into individual characters and cluster each of the segments.

After clustering, character labels are assigned to the clusters

by finding mappings that maximize a v/p ratio. The v/p ratio

measures how well a set of mappings matches the lexicon.

This technique is not directly applicable to our task because

in general segmenting individual characters from handwrit-

ten manuscripts is very difficult. However, the idea of us-

ing the word-level language model from the transcripts to

make assignments is appealing and should be investigated

further.

3. Problem Definition and Notation

Given a digitized image of a pageDi (the set of all pages

is denoted by D) we generate a segmentation β(Di) that

produces a vector of word images {b0, b1, . . . , bn}. For clar-

ity a segmentation actually produces bounding boxes for a

digitized image, the pixels within a bounding box comprise

a word image. We also have a transcript Ti that is a vector

of ASCII words {w0, w1, . . . , wr} for each page. For each

bm ∈ β(Di) we wish to select a set Wm of words from

the transcript (Wm ⊆ Ti ∪ {}) such that Wm contains the

ASCII equivalent to what is represented by the word image

bm. An example of a handwritten page and a perfect align-

ment for the page is shown in Figure 1.

When performing alignment we can view a segmented

document β(Di) as containing multiple lines. Transcripts,

however, might not contain such line breaks. In general,

when we refer to β(Di), we view the entire document as



Figure 1. Handwritten Page and Perfect Alignment

one long line. This is accomplished by placing each suc-

cessive line at the end of the previous line. For example,

if we have two lines {b1, . . . , bn} and {bn+1, . . . , bm}. We

adjust every bounding box in {bn+1, . . . , bm} to have the

same baseline (y-coordinate) as the first line ({b1, . . . , bn})

and adjust the starting x-coordinate of each box in the sec-

ond line by adding the x-coordinate of the end of image bn.

Sometimes transcripts will have line break information.

In this case it is useful to remove the abstraction of a sin-

gle long line and refer to specific lines. We denote this as

λl(β(Di)) where l indicates that we are interested in only

the bounding boxes on the lth line. Similarly λl(Ti) denotes

we are interested only in the ASCII words on the corre-

sponding line l of the transcript. |λ(x)| gives the count of

lines in either transcript or segmentation data.

4. Baseline Algorithms

Baseline algorithms are fairly simple, naive algorithms

that give us a reference point for determining how well our

algorithm performs.

4.1. Linear Alignment

Linear alignment is the simplest possible type of align-

ment one can imagine. If we have a set of bounding boxes

{b1, . . . , bM} and a set of transcript words {w1, . . . , wN}
we can do a forward alignment by assigning wi to bi where

1 ≤ i ≤ min(M,N). Alternatively we can start from the

end of the document and move to the beginning by assign-

ing wN−i−1 to bM−i−1 where 1 ≤ i ≤ min(M,N). Note

that when N 6= M , these techniques leave some words or

bounding boxes unassigned.



4.2. Alignment Using Character Position

Alignment using character position is done by align-

ing words and bounding boxes by calculating a normalized

character position for either boxes or words and then find-

ing the closest word to the position in the other set. In con-

trast to linear alignment we are now trying to align words

and boxes based on their length, rather than counting from

the beginning or end. We define:

Xstart(b) The starting x-coordinate of the bound-

ing box for word image b.

Xend(b) The ending x-coordinate of the bounding box for

word image b.

Ytop(b), Ybottom(b) The corresponding quantities for the y-

coordinate.

µ({bi, . . . , bi+n}) is the width of a set of images and is

equal to Xend(bi+n) −Xstart(bi). Note that if n = 0
then this definition is simply the width of the word im-

age bi. In addition, by defining width in this way,

for any value of n ≥ 1 spaces between word im-

ages are included in the width. The rationale behind

this method of calculating width is that it will still pro-

vide accurate positions estimates even if a word fails

to be segmented as long as a mistake was not made at

the beginning or end of a line.

The alignment can work in one of two ways, either from

text to images or from images to text.

When aligning from text to images we calculate for each

w1, . . . , wN the character position (CP (wj)) as:

CP (wj) =

∑j
i=1(|wi| + 1)

µ({w1, . . . , wN})
(1)

We then multiply CP (wj) by µ({b1, . . . , bM}). The re-

sulting product, pj , is a position somewhere in the inter-

val 0 ≤ pj ≤ µ(b1, . . . , bM ). Box bl is assigned to word

wj if position pj lies somewhere within the box i.e. such

that Xstart(bl) ≤ pj ≤ Xend(bl). If pj falls between two

bounding boxes, then it is assigned to the closest of the

two boxes bl+1, bl by computing (argb min(Xstart(bl+1)−
pj , pj −Xend(bl))).

Alignment can also be performed by calculating the es-

timated character position in the images and multiplying it

by the character width to get the position. The ratio is cal-

culated as:

CP (bj) =
Xend(bj)

µ({b1, . . . , bM})
(2)

We then multiply by the width of the transcript

(µ({w1, . . . , wN})). The resulting product is a char-

acter position. If the character happens to be the space we

arbitrarily pick the word preceding the space as the one to

assign to box bj .

4.3. Upper Bound Alignment

In upper bound alignment we try to assign the correct

word with the correct box. Note that if a bounding box en-

circles two words, this alignment causes both ASCII words

to be assigned to this box. This measure allows us to see

what the maximum value of an evaluation metric we can ex-

pect, without performing the more complicated task of split-

ting ASCII words. It is generated automatically by assign-

ing the complete word annotations to each box (see Section

6.2).

5. Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm for

aligning two time series by minimizing the “distance” be-

tween them. A time series is a list of samples taken from

a signal, ordered by the time that the respective sam-

ples were obtained. For our alignment task, we view each

ASCII word in a transcript and each box in a segmenta-

tion as the samples that make up the two times series we

are concerned with.

samples

Figure 2. Two similar time series.

Rather than mapping samples that have the same time in-

dex to each other, DTW allows for the fact that one time

signal may be warped with respect to the other. An exam-

ple of an alignment for two series can be seen in Figure

2. The name Time Warping is derived from the fact that

this alignment “warps” the time axes of the two series so

that the corresponding samples more closely relate to our

intuition of what a good alignment should be. The DTW

cost between two time series b1 . . . bM and w1 . . . wN is

DTW(M,N) which may be calculated using the following

recurrence relation:

DTW (i, j) = min







DTW (i, j − 1)
DTW (i− 1, j)
DTW (i− 1, j − 1)







+ d(bi, wj)

(3)



where d(bi, wj) is our sample-wise cost measure:

d(bi, wj) =

|δ|
∑

k=1

δk(bi, wj) (4)

δk(b, w) is the kth word-box cost feature used (see Section

5.1). The solution to the recurrence is calculated using dy-

namic programming.

The recurrence ensures that no samples are left out, as

a result every word from the transcript will be assigned to

at least one box and every box will have at least one word

assigned to it.
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Figure 3. Sakoe-Chiba path constraint with

width r.

An important aspect of DTW is that we constrain how

much each of the time axes can be warped. This has a two-

fold effect. First, it reduces computation time for the algo-

rithm. Second, it disallows large warps. By a large warp,

we mean either assigning a single word to a large number

of boxes, or a large number of words to a single box. This

constraint is known as a global path constraint. There are a

variety of ways that the global path constraint can be imple-

mented. We chose to use the Sakoe-Chiba [10] band con-

straint that simply limits how far off the diagonal an align-

ment can move (see Figure 3).

Pseudocode for the algorithm is given in Figure 4. As-

signments are made by back tracking through the dynamic

programming table starting at point (|Ti|,|β(Di)|) and find-

ing the preceding minimum point as defined by the recur-

rence.

5.1. Word-Box Features

Word-box features are used in calculating the cost of as-

signing a word to a given bounding box in DTW. Any com-

bination of the features listed below can be used when run-

ning dynamic time warping. We used two distinct types of

features. The first type relies on computing scalar features

over the word images and ASCII text. Once we have fea-

ture values corresponding to each word in the transcript and

image in the segmentation, we can then calculate the cost of

any word-box pair using a suitable cost measure. In this case

δk from Equation (4) is defined as cost(fk(wi), fk(bj))
where fk is a feature below and cost is a cost function.

There are many possible cost functions that can be

used. We considered two possible measures for our align-

ments. The first is the square of the Euclidean distance,

cost(x, y) = (x − y)2. The second is absolute differ-

ence cost(x, y) = |x− y|.

Aspect Ratio For an image b we calculate the aspect ra-

tio as
Ybottom(b)−Ytop(b)

µ(b) . To calculate aspect ratio for

text, we render the text in a script font and perform

the same computation on a bounding box of the ren-

dered word. All values are normalized to be between 0

and 1 with a mean of 0.5.

Width For a word image width is calculated as
µ(bj)

∑

b∈β(D)
µ(b)

. ASCII words are rendered and the

same computation is performed on the rendered text

images.

Character Position We use Equations (1) and (2) to com-

pute character positions.

Ascender Count Some characters have ascenders that ex-

tend above other characters. For instance capital let-

ters, “l” and “d” have ascenders. An estimation tech-

nique [3] is used to try to determine the number of as-

cenders for a word image. Characters with ascenders

can be directly counted for words from the transcript.

All values are normalized to be between 0 and 1 with

a mean of 0.5.

Descender Count Some letters have descenders that ex-

tend below the baseline. For instance, “g” and “y” have

descenders. The same techniques for finding ascenders

is used for finding descenders in images and words.

All values are normalized to be between 0 and 1 with

a mean of 0.5.

The second type of cost feature does not explicitly ex-

tract two scalar values that can be compared with a simple

cost function. Instead the cost for assigning a given word to

an image is more complex. Two features we looked at were:

Image Matching DTW This feature is obtained by ren-

dering all ASCII characters off-line, and performing

DTW between the concatenation of features for each

character in a word and an image word from the doc-

ument as described in [7]. Image mapping is an at-

tempt to see if we can get a high enough correla-

tion between mock handwriting (the rendered text)

and George Washington’s handwriting. If there is such



Input: Ti = (w1, . . . , w|Ti|) and β(Di) = (b1, . . . , b|β(Di)|), cost function d(·, ·)
Output: DTW matrix ∆ Algorithm:

1. ∆(1, 1) = d(w1, b1);

2. for m = 1:|Ti|

3. ∆(m, 1) = ∆(m− 1, 1) + d(wm, b1);

4. for n = 1 : |β(Di)|

5. ∆(1, n) = ∆(1, n− 1) + d(w1, bn);

6. for m = 1 : |Ti|

7. for n = 1 : |β(Di)|

8. ∆(m,n) = min







∆(m,n− 1)
∆(m− 1, n)
∆(m− 1, n− 1)







+ d(wm, bn);

Figure 4. Pseudocode for DTW (adapted from [12])

a correlation then using this feature will help match

words between the transcript and the images.

Stop Word Matching Stop word matching (STM) gives

a fixed penalty if we believe a word image contains

a stop word (“a”, “the”, etc.) and the corresponding

ASCII word is not aligned with the image. Our belief

of the contents of a word image is based on trained

clustering of all word images offline.

More specifically we have a set of labeled clusters

C such that c ∈ C has a label representing the words

in the cluster (i.e. “the”, “a”, etc). c is composed of a

set of word images. δS(wi, bj) is defined as follows: if

∃c ∈ C such that bj ∈ c then if wi 6= label(c) add a

fixed penalty. Otherwise add zero.

Clustering for stop word matching was done as fol-

lows:

1. Randomly arrange all word images we wish to

cluster.

2. Using training data, build a cluster for each of

words we are interested in recognizing. In our

case we choose the top 30 occurring words in the

training data.

3. Take the next image, bi, to calculate its distance

from each cluster: Find minc∈C(dist(bi, ψ(c)))
and argc minc∈C(dist(bi, ψ(c))). Where dist is

the DTW distance [7] between the centroid of the

cluster (ψ(c)) and the image.

4. If the distance in step 3 is less then a threshold γ

(obtained through experimentation) then assign

the image bi to cluster c and update the centroid.

Otherwise discard the example.

5. If there are more images to cluster go to step 3.

6. Data

Our data consisted of 100 digitized pages from George

Washington’s archive. The pages were divided randomly

into a set of 30 pages that are used for parameter estima-

tion, cluster training and validation. The remaining 70 pages

are used for evaluation. For each page we have two different

types of segmentations with annotations and a line aligned

transcript.

# Boxes # Lines

Automatic Segmentations (βauto) 17,696 2380

Manual Segmentations (βhand) 17,192 2404

Table 1. Number of bounding boxes and lines

in our evaluation data

6.1. Segmentation (β)

The segmentation produces a list of bounding boxes that

when applied to the image should isolate all the pixels that

are part of a single word. For each bounding box we have

the coordinate that defines a rectangle and an indicator of

the line in the digital image the bounding box occurs on.

The two different types of segmentation are described be-

low. Figure 5 shows each type of segmentation. Table 1 con-

tains the number of boxes and lines in the segmentations for

the 70 pages of evaluation data.

Automatic Segmentations (βauto) Automatic segmenta-

tions are those generated automatically by a program

that is an improved version of [6]. These segmenta-



(a)

(b)

(c)

Figure 5. (a) 3 Lines from a sample image (b) Automatic Segmentation (c) Manual Segmentation

tions are not perfect and can contain four different

types of mistakes:

1. Bounding boxes will sometimes be placed

around artifacts on the page that are not real

words.

2. Some words might have no bounding boxes

placed around them.

3. Bounding boxes are sometimes placed around

more then one word.

4. A word can sometimes be split into more then

one bounding box, or only be partially in-

cluded in a bounding box.

Manual Segmentations (βhand) Manual segmentations

are corrections of automatically segmented pages. For

each page an annotator went through and made any

corrections so that there is a one-to-one and onto map-

ping of words from the transcript to bounding boxes.

Words in this case are strings made from all alphanu-

meric characters.

6.2. Annotations (A[β(D)])

Annotations consist of vectors of ASCII strings for each

bounding box in a segmentation. These labels provide us

with the truth value of the contents of each bounding box,

that can be used to evaluate how well or poorly and align-

ment algorithm works.

For manually segmented documents an annotation is

simply the ASCII text equivalent of the word in the bound-

ing box. Automatically segmented pages have a slightly

richer representation to account for possible errors in the

segmentation. For each bounding box that contains one or

more words, the string labels are the exact text that is lo-

cated within the bounding box (if a bounding box only cov-

ers part of a word, only the part covered is included). If a

bounding box only contains part of a word, then in addition

to exactly what is contained inside the box, we also record

the complete word that was split by the box.

6.3. Transcripts (T)

A transcript is an ASCII text file consisting of text that

corresponds to a specific page. Each file is aligned in par-

allel, on the line level, with the two different segmentations

above. Figure 6 contains example transcripts for the three

lines contained in Figure 5. A transcript for a document is

the same thing as an annotation for a hand segmented doc-

ument image with some additional punctuation.

pounds; and to aquaint your Honour,

that meeting with Letters at Fredericks-

burgh, as I returned from Williamsburgh,

Figure 6. Example Transcript

7. Alignment Evaluation

Evaluation of the alignment is not straightforward. Eval-

uation metrics vary depending upon the goal of the align-

ment. For instance, if we are interested in generating train-

ing data for other handwriting recognition or retrieval al-



gorithms, then we wish to have exact annotations for each

bounding box. Alternatively, to build an index directly from

alignments and use it for retrieval, a less strict measure

might give a better idea of the results we can expect when

conducting retrieval. Described below are five different

evaluation algorithms that we use to evaluate alignments we

generate.

Our evaluation measures are all defined by giving a

score, on a bounding box level and then averaging this score

for all of the bounding boxes in all of the documents.

7.1. Exact Matching (σexact)

For bj ∈ β(Di) of a document we have an annotation,

Sj ∈ A[β(Di)], and an alignment vector Wj (the words

assigned to bj). Exact matching gives a point (1) for bj if

|Sj | = |Wj | and ∀i : {1 ≤ i ≤ |Sj |}si = wi. That is, the

two strings are equal if they are the same length and all cor-

responding characters are equal. So

σexact(bj) =

{

1 |Sj | = |Wj |,∀i : {1 ≤ i ≤ |Sj |}si = wi

0 otherwise

(5)

Exact matching is very strict. For a perfect score, it re-

quires algorithms to not only give a reasonable alignment,

but to trim words from the transcript to fit poorly segmented

words and split words if a segmentation splits the word.

This type of measure is probably best used when evaluat-

ing alignments for use as training data for other retrieval

methods.

7.2. Edit Distance Matching (σED)

Exact match is a rigorous evaluation measure, and might
not be suited to all applications of the alignment algo-
rithm. We therefore propose a more relaxed definition of
what it means to get an alignment for a bounding box cor-
rect. If we concatenate the strings in both our annotation
for a bounding box and the aligned text for the box we can
then use the value returned by Equation 6 for the two re-
sulting strings to judge if a bounding box has the cor-
rect text in it.

σED(s1, s2) =

{

1 max(|s1|, |s2|) − ED(s1, s2) >
max(|s1|,|s2|)

2

0 otherwise

(6)

whereED(s1, s2) is the edit (Levenshtein) distance [5] be-

tween the two strings. The edit distance between two strings

is given by the recurrence:

ED(“”, “”) = 0
ED(s, “”) = ED(“”, s) = |s|

ED(s1+c1, s2+c2) = min





ED(s1, s2) + ǫ(c1, c2),
ED(s1 + c1, s2) + 1,
ED(s1, s2 + c2) + 1





where c1, c2 are characters and ǫ(c1, c2) returns zero if the

characters are equal and 1 otherwise. Edit distance matching

is more relaxed then exact matching. By counting bounding

boxes as correct if the words mostly match, it better reflects

the case of using alignments for direct retrieval. It also give

a little bit of leeway in case of annotation and transcript dis-

crepancies caused by typographical errors in the creation of

either set. So if we define κ({st1, . . . , stn}) to be the con-

catenation of a set of strings then

σED(bj) = σED(κ(Sj), κ(Wj)) (7)

7.3. Precision-Recall (σPrecision, σRecall)

Recall and precision, are measure commonly used in the

information retrieval domain. We can extend them to align-

ment evaluation, by calculating each of the metrics on a

bounding box level. Precision is then defined as:

precision(Sj ,Wj) =
|Sj ∩Wj |

|Wj |
(8)

(the proportion of the words in the assignment that match

the annotation) and recall as:

recall(Sj ,Wj) =
|Sj ∩Wj |

|Sj |
(9)

the proportion of the words in the annotation that are

matched. So σprecision(bj) = precision(Sj ,Wj) and

σrecall(bj) = recall(Sj ,Wj).

7.4. Tomai et al. Evaluation

The evaluation metric that is used by Tomai et al. [11], is

slightly different in flavor then any of our proposed evalua-

tion metrics. Instead of looking at bounding boxes and de-

termining which words are placed correctly within a given

box, they look at each transcript word and determine if the

box it is mapped to contains the correct image. More for-

mally for each word-box pair (wi, b
auto
j ), the mapping is

considered correct if wi = Sk ∈ A[βhand(Di)] and

Ytop(b
auto
j ) ≤ Ytop(b

hand
k )

Ybottom(bauto
j ) ≥ Ybottom(bhand

k )

Xstart(b
auto
j ) ≤ Xstart(b

hand
k )

Xend(b
auto
j ) ≥ Xend(b

hand
k )

. There score is calculated as the number of correct map-

pings divided by the size of the transcript.

7.5. Averaging

For any of the measures above, we can average the evalu-

ation in three different ways: over documents Equation (10),



over lines Equation (11), or over boxes Equation (12).

∑|D|
x=1

(∑|β(Dx)|

i=1
σ(bi)

|β(Dx)|

)

|D|
(10)

That is, each page Di is weighted equally. Recall that D is

the set of handwritten document, Di is a page, λl(β(Di)) is

a line and bi is a word image. We can also weight each line

equally:

∑|D|
x=1

∑|λ(Dx)|
i=1

(

∑

by∈λi(βi(Dx)) σ(by)
)

∑|D|
x=1 |λ(Dx)|

(11)

or each word image equally:

∑|D|
x=1

∑|β(Dx)|
i=1 σ(bi)

∑|D|
x=1 |β(Dx)|

(12)

8. Experiments

Our experiments consisted of performing alignments for

both βauto and βhand. For discussion we include tables of

our edit distance evaluation metric (see Section 7.2), tables

for each of the evaluation metrics described in Section 7,

are included at the end of paper in an appendix.

For each segmentation we attempted two types of align-

ment. The first type uses the line break information in the

transcripts (“Line by Line” in the tables). The second aligns

documents without any line breaks (“Full Page” in the ta-

ble). The former task is easier because in each application

of an alignment algorithm there are many fewer possible as-

signments.

The first 5 rows (before the dividing line) in each ta-

ble are entries for our baseline algorithms (see Section 4

for details). The remaining rows are the results for our dy-

namic time warping algorithm, with slightly different fea-

ture sets (see Section 8.1 for a more detailed description).

The second dividing line denotes the results between DTW

runs that used perfect clusters for stop word matching (not

achievable in the real world) and those that either do not

use the stop word matching feature or those that used clus-

ters produced with our image clustering algorithm. Every

entry number in the table is a percentage of correct align-

ments.

8.1. βauto

Experimentally, we found that a path width of 35 and

absolute distance function work the best. We determined

that all of the best DTW runs contained the same basic fea-

tures: width, ascenders, descenders and aspect ratio. Includ-

ing character position as a feature helped for the line by line

task, but not for the full page. Stop word matching helped,

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 48.3 50.0 4.3 20.2

Linear Aligner BACK 46.4 49.9 4.4 20.5

Char. Pos. (Ti → β(Di)) 58.3 49.3 6.5 24.7

Char. Pos. (β(Di) → Ti) 64.4 47.9 5.9 23.6

Upper Bound 87.3 33.3 87.3 33.3

Dynamic Time Warping (using Basic Features + )

Char. Pos. Perfect Clusters 76.9 42.2 70.2 45.8

Perfect Clusters 74.6 43.5 70.2 45.7

Real Clusters 70.9 45.4 60.5 48.9

Char. Pos., Real Clusters 74.5 43.6 58.6 49.3

Char. Pos. 74.2 43.7 51.2 50.0

No Additional Features 70.5 45.6 57.6 49.4

Table 2. βauto Edit Distance

only by a small amount. (If we cheated and used perfect

clustering, stop words help a great deal.) These determina-

tions held true on our evaluation data. We achieved a top ac-

curacy of 74.5% on the line by line task and 60.5% on the

full page task when using the edit distance metric for eval-

uation.

Each algorithm entry in the table for DTW only denotes

the features that differentiate them from one another (each

DTW used the basic features listed above). Clusters indi-

cates that stop word matching was used as a feature. For

each alignment algorithm we also calculated the standard

deviation (placed to the right of each experimental column).

Document Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 53.6 16.9 3.1 3.4

Linear Aligner BACK 48.7 9.6 4.2 5.4

Char. Pos. (Ti → β(Di)) 51.7 11.4 4.2 4.2

Char. Pos. (β(Di) → Ti) 68.2 10.4 6.8 5.4

Upper Bound 86.1 7.3 86.1 7.3

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 77.6 7.6 71.5 10.9

Perfect Clusters 75.5 7.5 71.8 7.7

Real Clusters 72.2 7.8 61.9 9.8

Char. Pos., Real Clusters 75.3 7.5 58.7 17.5

Char. Pos. 75.4 7.6 51.3 21.2

No Additional Features 71.8 7.5 58.9 12.2

Table 3. Tomai et al’s Evaluation for βauto



Number of pages (out of 70) Greater then 72% with Tomai

et al’s Evaluation

Line

by

Line

Full

Page

Baseline Algorithms

Linear Aligner FRONT 11 0

Linear Aligner BACK 0 0

Char. Pos. (Ti → β(Di)) 0 0

Char. Pos. (β(Di) → Ti) 26 0

Upper Bound 67 67

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 56 37

Perfect Clusters 51 32

Real Clusters 33 10

Char. Pos., Real Clusters 50 13

Char. Pos. 51 11

No Additional Features 34 9

Table 4. Number of documents for which we

performed better than Tomai et al.

In addition to our measures we also include results with

Tomai et al.’s evaluation (see Section 7.4) in Table 3. We

also analyze how many documents in our evaluation set

DTW performs better on then Tomai et al. in Table 4. Ta-

ble 4 indicates the number of pages that each of the algo-

rithms discussed exceeded 72% (the adjusted reported ac-

curacy of Tomai et al.’s algorithm on their data). Our algo-

rithm performs favorably when compared to theirs when we

use line break information from the transcript. We achieved

an accuracy of 75.4% over a total of 70 pages compared to

their result 72% on a single page. If we do not use line break

information then our accuracy drops to 61.9% but there are

still 10 pages on which we perform better than them. Addi-

tionally, we see from Tables 2 through 4 that dynamic time

warping performs quite well in comparison with our base-

line algorithms, increasing our percentage by ≈ 10% for

our best runs on the line by line experiment. When align-

ing pages a page at a time, the contrast is even more stark,

we obtain a order of magnitude improvement over the base

line measures. However, our results also show, that there is

still room for improvement between the upper achievable

score and our current results.

8.2. βhand

Performing alignments against hand segmented pages, is

a way to test if our algorithm is correct. Given a perfect seg-

mentation, any admissible algorithm should achieve near

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 69.9 45.9 7.0 25.5

Char. Pos. (β(Di) → Ti) 85.2 35.5 11.2 31.5

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 2.0 98.9 10.6

Perfect Clusters 99.9 3.4 97.7 14.9

Char. Pos., Real Clusters 99.5 7.4 94.2 23.4

Real Clusters 98.6 11.7 91.0 28.6

Char. Pos. 99.7 5.3 84.6 36.1

No Additional Features 99.3 8.6 88.2 32.2

Table 5. βhand Edit Distance

100%. Table 13 indicates that DTW achieves this for line

by line alignment (99.5%), and comes close for full page

alignment (91.0%).

The results for this set of experiments did not have pa-

rameters re-estimated from the training data (i.e. we used

the parameters from βauto). If they did performance would

have been better because the path for DTW would have pre-

sumably been constrained to just be along the diagonal and

hence DTW would collapse into simple linear alignment.

9. Future Work

We have shown that dynamic time warping provides a

correct algorithm in the sense that when given hand seg-

mented documents it produces very good mappings. In ad-

dition, when using automatically segmented documents, it

achieves high performance compared to other algorithms

for mapping transcripts to handwritten documents.

As our results show, there can still be a large increase in

alignment accuracy,for example, as our clustering gets bet-

ter. Further investigations into clustering or other methods

for recognizing very common words will help improve our

results further. Other areas improvement for DTW include

making the algorithm more flexible. Currently the algorithm

must assign at least one word to every box, and each word

in the transcript at least once. It would be very useful if our

alignment algorithm could avoid these two constraints, be-

cause of the errors resulting from segmentation.

Ultimately, we foresee the segmentation and alignment

system working as an iterative process where each iteration

refines the output, until no changes occur.

Further areas of research exist in trying to leverage im-

perfect transcripts of documents. For instance, it might be



more expedient to read historical documents out loud and

have an automatic speech recognition (ASR) system pro-

duce an ASCII transcript. Of course, ASR is not perfect

and will introduce errors in the transcript. Developing algo-

rithms to deal with the noisiness from both transcripts and

segmentations will be even more challenging then the prob-

lem addressed in this paper.

Another challenging task to be addressed in the area of

alignment is non-standard documents. For instance, it is not

clear that our techniques that assume documents consist of

prose, will also adapt to mathematical formulas and dia-

grams.
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Appendix: Remaing Evaluation Measures

Document Level Averaging:
Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 46.9 17.5 3.4 3.9

Linear Aligner BACK 43.1 10.6 3.5 4.7

Char. Pos. (Ti → β(Di)) 47.9 12.3 5.2 3.7

Char. Pos. (β(Di) → Ti) 56.3 12.4 4.4 4.1

Upper Bound 82.2 11.3 82.2 11.3

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 69.1 11.2 63.2 13.1

Perfect Clusters 67.8 11.3 63.7 11.4

Real Clusters 64.4 11.4 54.8 12.2

Char. Pos., Real Clusters 66.7 11.2 52.1 17.8

Char. Pos. 66.2 11.1 45.5 20.9

No Additional Features 63.8 11.0 52.2 14.1

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 47.5 38.7 4.0 15.6

Linear Aligner BACK 42.2 39.9 3.7 13.5

Char. Pos. (Ti → β(Di)) 49.5 31.0 5.8 16.1

Char. Pos. (β(Di) → Ti) 54.7 29.2 4.6 13.6

Upper Bound 82.2 22.0 82.2 22.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 66.9 29.3 59.4 32.2

Perfect Clusters 65.7 29.9 59.7 31.4

Real Clusters 62.6 30.9 51.3 33.4

Char. Pos., Real Clusters 64.8 30.1 49.4 34.9

Char. Pos., 64.2 29.9 43.4 35.5

No Additional Features 61.9 30.9 48.9 33.4

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 44.8 49.7 3.5 18.3

Linear Aligner BACK 42.2 49.4 3.6 18.7

Char. Pos. (Ti → β(Di)) 46.3 49.9 5.2 22.1

Char. Pos. (β(Di) → Ti) 55.1 49.7 4.3 20.3

Upper Bound 80.8 39.4 80.8 39.4

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 67.9 46.7 62.5 48.4

Perfect Clusters 66.6 47.2 62.7 48.4

Real Clusters 63.1 48.2 53.7 49.9

Char. Pos., Real Clusters 65.6 47.5 51.8 50.0

Char. Pos. 65.0 47.7 45.0 49.8

No Additional Features 62.6 48.4 51.0 50.0

Table 6. βauto Exact Match

Document Level Averaging:
Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 50.3 18.3 3.7 4.1

Linear Aligner BACK 45.4 11.2 4.0 4.8

Char. Pos. (Ti → β(Di)) 52.9 12.1 6.3 4.1

Char. Pos. (β(Di) → Ti) 59.6 14.3 5.1 4.7

Upper Bound 83.3 11.1 83.3 11.1

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 69.0 11.6 62.6 13.5

Perfect Clusters 66.9 11.4 62.8 11.4

Real Clusters 63.8 11.4 54.0 12.2

Char. Pos., Real Clusters 67.0 11.4 51.8 17.8

Char. Pos., Real Clusters 67.0 11.5 45.7 21.0

No Additional Features 63.5 11.1 52.1 14.1

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 51.5 37.6 4.4 16.0

Linear Aligner BACK 44.9 36.6 4.3 14.4

Char. Pos. (Ti → β(Di)) 54.4 28.0 7.0 17.3

Char. Pos. (β(Di) → Ti) 58.9 30.8 5.8 16.1

Upper Bound 83.0 21.5 83.0 21.5

Dynamic Time Warping (using Basic Features + )

Char. Pos.,Perfect Clusters 68.4 26.5 60.8 30.9

Perfect Clusters 66.7 27.3 60.9 30.0

Real Clusters 64.1 28.1 52.8 32.0

Char. Pos., Real Clusters 66.6 27.2 51.0 33.7

Char. Pos. 66.6 26.9 45.4 34.8

No Additional Features 63.8 27.9 51.0 32.3

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 48.0 50.0 3.7 18.9

Linear Aligner BACK 44.2 49.7 4.1 19.8

Char. Pos. (Ti → β(Di)) 50.8 47.2 6.0 22.7

Char. Pos. (β(Di) → Ti) 57.9 49.4 5.0 21.7

Upper Bound 81.0 39.0 81.0 39.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 69.7 44.9 64.7 46.9

Perfect Clusters 68.3 45.5 65.0 46.7

Real Clusters 65.3 46.6 56.4 48.6

Char. Pos., Real Clusters 67.8 45.7 54.1 48.9

Char. Pos. 68.0 45.5 47.8 49.0

No Additional Features 65.4 46.4 54.2 48.6

Table 7. βauto Precision



Document Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 45.0 15.9 3.4 3.8

Linear Aligner BACK 40.8 9.7 3.7 4.6

Char. Pos. (Ti → β(Di)) 57.3 13.2 7.2 4.7

Char. Pos. (β(Di) → Ti) 53.4 11.7 4.6 4.1

Upper Bound 82.2 10.8 82.2 10.8

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 68.6 11.9 62.5 13.8

Perfect Clusters 67.0 11.8 63.3 11.9

Real Clusters 64.2 11.8 55.3 12.5

Char. Pos., Real Clusters 66.7 11.8 52.3 18.1

Char. Pos. 66.6 11.9 46.4 21.4

No Additional Features 63.9 11.5 53.5 14.6

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 47.0 36.3 4.0 15.2

Linear Aligner BACK 42.4 36.7 3.9 13.4

Char. Pos. (Ti → β(Di)) 58.0 28.1 7.8 18.7

Char. Pos. (β(Di) → Ti) 52.6 28.1 4.7 13.1

Upper Bound 82.1 22.1 82.1 22.1

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 68.1 26.7 60.5 30.9

Perfect Clusters 66.7 27.3 61.0 30.1

Real Clusters 64.2 28.0 53.5 32.1

Char. Pos., Real Clusters 66.4 27.3 51.1 33.7

Char. Pos. 66.3 27.0 45.6 34.9

No Additional Features 64.0 27.9 51.7 32.4

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 45.3 48.6 3.5 18.1

Linear Aligner BACK 41.7 48.1 3.7 18.6

Char. Pos. (Ti → β(Di)) 54.6 49.0 6.5 24.2

Char. Pos. (β(Di) → Ti) 54.4 48.2 4.3 19.8

Upper Bound 81.0 39.0 81.0 39.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 69.4 44.9 64.5 46.8

Perfect Clusters 68.2 45.4 65.1 46.6

Real Clusters 65.4 46.5 57.0 48.7

Char. Pos., Real Clusters 67.5 45.6 54.4 49.0

Char. Pos. 67.8 45.4 48.3 49.2

No Additional Features 65.6 46.4 55.2 48.9

Table 8. βauto Recall

Document Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 61.2 6.8 5.4 6.4

Char. Pos. (β(Di) → Ti) 85.4 3.6 10.7 6.5

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 0.2 98.7 1.3

Perfect Clusters 99.9 0.3 97.2 2.0

Char. Pos., Real Clusters 99.3 1.2 93.7 4.6

Real Clusters 98.3 1.7 90.2 4.9

Char. Pos. 99.7 0.7 83.8 19.5

No Additional Features 99.2 1.1 87.8 6.6

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 64.0 29.7 6.0 18.3

Char. Pos. (β(Di) → Ti) 86.9 15.9 13.4 25.9

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 1.2 98.3 9.6

Perfect Clusters 99.9 1.8 96.8 12.6

Char. Pos., Real Clusters 99.5 4.1 93.4 19.0

Real Clusters 98.7 7.2 89.9 22.3

Char. Pos. 99.8 3.2 84.3 31.9

No Additional Features 99.4 5.2 87.6 25.0

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 60.9 48.8 5.2 22.2

Char. Pos. (β(Di) → Ti) 85.2 35.5 10.7 30.9

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 2.2 98.7 11.4

Perfect Clusters 99.9 3.8 97.3 16.2

Char. Pos., Real Clusters 99.3 8.1 93.7 24.2

Real Clusters 98.4 12.6 90.3 29.6

Char. Pos. 99.7 5.5 84.2 36.5

No Additional Features 99.2 9.0 87.6 33.0

Table 9. βhand Exact Match



Document Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 65.4 5.7 6.7 7.3

Char. Pos. (β(Di) → Ti) 85.4 3.6 10.5 6.5

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 0.2 98.6 1.4

Perfect Clusters 99.9 0.3 97.1 2.2

Char. Pos., Real Clusters 99.3 1.2 93.2 5.1

Real Clusters 98.2 1.8 89.4 5.5

Char. Pos. 99.7 0.8 82.8 20.4

No Additional Features 99.2 1.2 87.2 7.0

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 69.8 24.3 7.7 19.7

Char. Pos. (β(Di) → Ti) 86.9 15.9 13.2 25.9

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 1.1 98.5 8.4

Perfect Clusters 99.9 1.6 97.1 11.0

Char. Pos., Real Clusters 99.5 3.7 93.7 18.0

Real Clusters 98.8 6.7 90.4 21.2

Char. Pos. 99.8 2.9 84.7 31.3

No Additional Features 99.4 4.7 88.3 23.6

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 67.7 42.9 6.4 23.1

Char. Pos. (β(Di) → Ti) 85.2 35.5 10.6 30.8

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 1.8 98.9 10.0

Perfect Clusters 99.9 3.1 97.8 14.0

Char. Pos., Real Clusters 99.5 6.8 94.4 22.3

Real Clusters 98.6 10.9 91.3 27.2

Char. Pos. 99.7 4.9 84.9 35.3

No Additional Features 99.3 7.8 88.8 30.5

Table 10. βhand Precision

Document Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 74.9 5.2 8.3 8.9

Char. Pos. (β(Di) → Ti) 85.4 3.6 10.5 6.5

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 0.1 99.1 1.0

Perfect Clusters 99.9 0.2 98.2 1.5

Char. Pos., Real Clusters 99.6 0.8 95.0 3.9

Real Clusters 98.9 1.2 92.5 4.1

Char. Pos. 99.8 0.6 85.3 19.4

No Additional Features 99.4 0.8 90.4 5.8

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 77.1 21.1 9.6 23.4

Char. Pos. (β(Di) → Ti) 86.9 15.9 13.2 25.8

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 0.8 98.9 7.3

Perfect Clusters 99.9 1.1 97.9 9.3

Char. Pos., Real Clusters 99.7 2.8 94.8 16.5

Real Clusters 99.1 5.1 92.3 19.3

Char. Pos. 99.8 2.4 86.1 30.5

No Additional Features 99.6 3.8 90.3 22.0

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 74.7 43.5 7.9 27.0

Char. Pos. (β(Di) → Ti) 85.2 35.5 10.6 30.8

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 1.7 99.1 9.4

Perfect Clusters 99.9 2.9 98.2 13.1

Char. Pos., Real Clusters 99.6 6.3 95.1 21.6

Real Clusters 98.9 10.2 92.5 26.3

Char. Pos. 99.8 4.6 85.8 35.0

No Additional Features 99.5 7.4 90.2 29.8

Table 11. βhand Recall



Document Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 50.4 17.8 4.2 4.0

Linear Aligner BACK 47.2 10.6 4.3 5.1

Char. Pos. (Ti → β(Di)) 59.8 12.5 6.7 4.3

Char. Pos. (β(Di) → Ti) 65.3 12.0 6.0 4.9

Upper Bound 88.4 8.3 88.4 8.3

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 77.9 10.1 70.7 13.3

Perfect Clusters 75.6 10.5 71.0 10.9

Real Clusters 71.9 10.4 61.4 12.0

Char. Pos. Real Clusters 75.5 10.0 58.8 18.8

Char. Pos. 75.2 10.2 51.5 22.4

No Additional Features 71.4 10.2 58.7 14.3

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 51.3 38.8 4.9 16.6

Linear Aligner BACK 46.4 39.7 4.5 14.3

Char. Pos. (Ti → β(Di)) 61.7 29.7 7.4 18.6

Char. Pos. (β(Di) → Ti) 64.1 28.8 6.3 15.9

Upper Bound 88.5 17.1 88.5 17.1

Dynamic Time Warping (using Basic Features + )

Char. Pos. Perfect Clusters 76.0 26.6 66.9 32.0

Perfect Clusters 73.7 28.0 67.0 31.1

Real Clusters 70.3 29.3 58.0 33.7

Char. Pos. Real Clusters 73.8 27.6 56.1 35.6

Char. Pos. 73.5 27.4 49.5 37.0

No Additional Features 69.8 29.3 55.4 34.2

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 48.3 50.0 4.3 20.2

Linear Aligner BACK 46.4 49.9 4.4 20.5

Char. Pos. (Ti → β(Di)) 58.3 49.3 6.5 24.7

Char. Pos. (β(Di) → Ti) 64.4 47.9 5.9 23.6

Upper Bound 87.3 33.3 87.3 33.3

Dynamic Time Warping (using Basic Features + )

Char. Pos. Perfect Clusters 76.9 42.2 70.2 45.8

Perfect Clusters 74.6 43.5 70.2 45.7

Real Clusters 70.9 45.4 60.5 48.9

Char. Pos., Real Clusters 74.5 43.6 58.6 49.3

Char. Pos. 74.2 43.7 51.2 50.0

No Additional Features 70.5 45.6 57.6 49.4

Table 12. βauto Edit Distance

Document Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 70.1 5.9 7.3 7.6

Char. Pos. (β(Di) → Ti) 85.4 3.6 11.1 6.4

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 0.2 98.8 1.2

Perfect Clusters 99.9 0.3 97.6 1.8

Char. Pos., Real Clusters 99.4 1.0 94.1 4.4

Real Clusters 98.6 1.6 90.9 4.7

Char. Pos. 99.7 0.7 84.2 19.3

No Additional Features 99.2 1.1 88.4 6.4

Line Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 72.5 24.9 8.0 20.6

Char. Pos. (β(Di) → Ti) 86.9 15.9 13.8 25.8

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 1.0 98.5 9.2

Perfect Clusters 99.9 1.5 97.2 11.9

Char. Pos., Real Clusters 99.6 3.7 93.8 18.4

Real Clusters 98.9 6.4 90.7 21.6

Char. Pos. 99.8 3.0 84.7 31.6

No Additional Features 99.4 4.9 88.2 24.6

Box Level Averaging:

Line

by

Line

Std.

Dev.

Full

Page

Std.

Dev.

Baseline Algorithms

Linear Aligner FRONT 100.0 0.0 100.0 0.0

Linear Aligner BACK 100.0 0.0 100.0 0.0

Char. Pos. (Ti → β(Di)) 69.9 45.9 7.0 25.5

Char. Pos. (β(Di) → Ti) 85.2 35.5 11.2 31.5

Upper Bound 100.0 0.0 100.0 0.0

Dynamic Time Warping (using Basic Features + )

Char. Pos., Perfect Clusters 100.0 2.0 98.9 10.6

Perfect Clusters 99.9 3.4 97.7 14.9

Char. Pos., Real Clusters 99.5 7.4 94.2 23.4

Real Clusters 98.6 11.7 91.0 28.6

Char. Pos. 99.7 5.3 84.6 36.1

No Additional Features 99.3 8.6 88.2 32.2

Table 13. βhand Edit Distance


