
Persistent Data Management for Visual Applications�
Gökhan Kutlu, Bruce A. Draper, J. Eliot B. Moss, Edward M. Riseman, Allen R. Hanson

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

Abstract

A visual application is an application that manipulates

visual data as part of its processing. Visual applications

need to represent, manipulate, store, and retrieve both

raw and processed visual data. Existing relational and

object-oriented database systems fail to offer satisfac-

tory visual data management support because they lack

the kinds of representations, storage structures, indices,

access methods, and query mechanisms needed for vi-

sual data. We argue that extensible visual object stores

offer feasible and effective means to address the data

management needs of visual applications. ISR4 is such

a visual object store under development at the Univer-

sity of Massachusetts for the management of persistent

visual information.

1 Introduction

A visual application is an application that manipulates

visual data as part of its processing. With advances

in image analysis, visualization, and video technolo-

gies, increasingly large amounts of digital visual data

are being generated by visual applications in a tremen-

dously diverse range of domains, such as geographic,

astronomical, and environmental information manage-

ment, engineering and scientific visualization, military

intelligence, computer aided design and manufacturing

(CAD/CAM), and medical imaging.

Visual data consumed in applications consist not only

of raw sensory data such as images, but also processed

data, such as the knowledge structures used in visual in-

terpretation systems, and associated model data (such as�This work was supported in part by the Advanced Research
Projects Agency (via U.S. Army TEC) under contract num-
ber DACA76-92-C-0041, (via TACOM) under contract number
DAAE07-91-C-R035, and by the National ScienceFoundationunder
grant number CDA-8922572.

CAD/CAM models). As the scale of visual applications

grows, the need to efficiently process, store, and access

the raw and processed data becomes more acute.

Typically, a large amount of the data generated in a vi-

sual application is needed for temporary use only. A line

extraction algorithm, for example, may produce hun-

dreds (or thousands) of line segments from an image.

Although not permanent, such data may be accessed re-

peatedly by other modules (e.g., line grouping or model

matching algorithms), so the efficiency of in-memory

data representation and retrieval is critical.

On the other hand, a priori knowledge such as maps

and models, make up a permanent data base of informa-

tion that visual algorithms access repeatedly and alter

only occasionally. Similarly, generated long-term data,

such as the set of extracted line segments that make up a

site model, have to be stored for future access. Although

less voluminous per image than the temporary data men-

tioned above, this data is persistent and grows to larger

total amounts over time. It therefore must be managed

by efficient storage and access mechanisms which are

geared to the nature (e.g., spatial, temporal, 3D) of the

data.

We addressed the management of temporary data in an

earlier visual data management and process integration

tool, called ISR3 [Draper, 1994]. In this paper, we first

discuss the issues related to the management of persis-

tent data in visual applications, and the shortcomings of

current relational and object-oriented systems in dealing

with these issues. We then argue that extensible visual

object stores offer a feasible and efficient means to ad-

dress the data management needs of visual applications,

and present ISR4, a visual object store under develop-

ment at the University of Massachusetts.



2 Persistent Data Management Issues

As described below, the efficient storage and retrieval of

large volumes of permanent visual data, such as aerial

images, site models, and MRI scans, imposes require-

ments that are vastly different from those found in con-

ventional data processing. As a result, existing relational

and object-oriented database systems fail to offer the

kinds of storage structures, indexing and access meth-

ods, and query mechanisms needed for visual data.

2.1 Efficient Storage Structures

Large, Multi-dimensional Objects. One issue is how

to manage the storage and retrieval of large, multi-

dimensional objects such as images. Space- and time-

efficient storage and access of large visual objects is

critical in projects such as The National Digital Library

program at the Library of Congress, which involves pro-

viding access to a major subset of approximately 105

million items, among which are large numbers of digi-

tized pictures.

Most applications store images in files, and leave the

management of memory (page swaps, etc.) to the oper-

ating system. This approach can result in a large number

of page swaps, especially when the physical clustering of

the image on disk does not match the access pattern of the

application [Stonebraker, 1994]. Traditional database

systems do not provide appropriate data types or built-

in support for images or similar 2D objects (e.g. maps).

Adaptive clustering techniques used for clusteringmulti-

dimensional data according to patterns of access are not

mature, and the ones suggested depend on complex ac-

cess pattern statistics [Dröge, 1993, Stonebraker, 1994].

Associative clustering. As discussed above, many vi-

sual applications need to store not only raw images, but

also symbolic data extracted from (or associated with)

images. In content-based image retrieval, for example,

commonly stored data include color histograms, invari-

ants of shape moments, and texture features. Moreover,

symbolic data often need to be associated with the im-

age region they came from so that they can be retrieved

with the sub-image. In the RADIUS [Mundy, 1992] pro-

gram, for example, site models reconstructed from sets

of aerial images need to be grouped, stored, and retrieved

according to their functional areas.

Most database systems provide little control over cluster-

ing of information in external storage so that a sub-image

and the related analysis results can be stored on the same

disk page, and retrieved together efficiently.

2.2 Multi-dimensional and Temporal Indexing

Visual data that are spatial in nature, such as geometric

image structures, often need to be accessed according to

their spatial properties in an image and/or 3D world po-

sitions. Therefore, spatial indices need to be maintained

for efficient access to such data. Also needed, especially

in military intelligence and medical imaging applica-

tions, are temporal indices defined over a time-sequence

of image data. A typical medical query example is to

find the first sign of a tumor in a history of MRI data.

Unfortunately, there is a lack of effective support for

multi-dimensional and temporal indexing techniques in

existingdatabase systems. Moreover, simply adding one

or two popular indexing methods, such as n-dimensional

R-trees, is only a limited solution awaiting situations

where a completely different index is needed. Instead,

the ability to incorporate one’s own indexing mechanism

into the data management system is clearly called for.

2.3 Query Mechanisms and Optimization

Spatial, temporal, and geometric representations.

Current relational and object-oriented query languages

do not express the necessary spatial, temporal, and geo-

metric concepts and operators effectively. For example,

one must usually build specific concrete representations

of n-dimensional points, lines, curves, regions, etc., and

most systems provide no appropriate treatment of geo-

metric anomalies that arise from, for example, numerical

roundoff errors. Although one can represent concepts

such as points and lines, attempting to express notions

such as “distance” and “collinearity” leads to very inef-

ficient query processing in traditional database systems.

Moreover, explicit coding of such data types sacrifices

representational independence. Likewise, one typically

does not have the most efficient algorithms available,

e.g., from computational geometry.

Approximate, ranked retrieval. A deeper problem

with existing query languages is that they are boolean.

A fact or record either definitely lies in the query result

set or it does not. Many queries in visual applications are

more likely to be concerned with approximate matches

and/or ranked retrieval, where the goal is to find the best

answers to a query and to rank them according to their

degree of quality. A simple example would be finding

objects “near” another object: we might return a list of

objects ranked according to their distance from the query

object, up to some maximum distance and/or maximum

number of objects.



Query Optimization. In addition to query languages

being limited in concepts and operators, existing query

optimizers are not prepared to take into account geomet-

ric algorithms, spatial/temporal indexing, and ranked

retrieval. This may become a critical issue when scaling

to large systems, since query optimization frequently has

orders of magnitude impact on performance.

3 Extensible Visual Object Stores

A visual object store is an object store and its associated

tools and facilities provided to support the representa-

tion, manipulation, storage and retrieval of visual data.

An extensible visual object store will have a number

of unique features, which help overcome the problems

discussed in Section 2:� It provides a powerful core of functionalities to an-

swer the basic data management needs of an appli-

cation, including efficient built-in data types, basic

storage and retrieval ability, and efficient storage

structures, access methods, and query mechanisms

for complex visual objects.� Applications will be provided the flexibility to add

new features as needed, at all levels of the system.� Multiple policies and implementations will be

available for the database implementor to choose

from.� Buffer management and data clustering policies

will be accessible for customization and fine tuning.� Applications will be lighter-weight since the fea-

tures of the visual object store will be well in-

tegrated, and only those features needed will be

part of the application; unnecessary features will

be turned off.

4 ISR4

ISR4 [Kutlu, 1996] is an extensible visual object store

under development at the University of Massachusetts.

As shown in Figure 1, ISR4 is the integration of an ear-

lier visual data management and process integration tool

called ISR31 [Draper, 1994], with Mneme [Moss, 1990],

a persistent object store (also developed at the University

of Massachusetts).1ISR (Intermediate Symbolic Representation; [Brolio, 1989]) is
the name of a series of symbolic databases for visual information
developed at the University of Massachusetts; ISR4 is the most
recent version.

Visual data
management

Library routines

In-memory

persistent data

Buffer and file

management
Persistent

Data

on Disk

Server

Concurrency
and

Security

Visual Application

Address Space

Spatial &

Data Structures

Associative

code

data

service

Application

Software

Type info
and

Data model

transient data

In-memory

Mneme

IS
R

3
 -

 M
n

e
m

e
 I

n
te

r
fa

c
e

Extensible Visual Object Store

ISR3

Visual data

ISR4

Figure 1: ISR4 System Architecture.

Spatial and geometric representations. Embedded in

its host language C++, ISR4 allows arbitrarily complex

objects to be defined and processed, and provides an

initial set of standard visual representations, including

single-band and multi-spectral images, 2D points, lines,

edges, and regions, and 3D points, lines, surfaces, and

volumes. Moreover, as the (object-oriented) data model

is uniform throughout ISR4, complex representations

such as spatially-indexed sets of line segments or his-

tograms of image features, can transparently move be-

tween ISR3 and Mneme.

Customizable data clustering. ISR4 offers more than

storage support; it provides methods for customizing

Mneme’s buffer management and clustering policies ac-

cording to an application’s needs. For example, the

database implementor can use Mneme’s basic capabil-

ities to introduce data clustering policies that reduce

data access delays for specific applications, such as stor-

ing an image region and its computed features in the

same physical segment. Similarly, features which are

multi-dimensional in nature, such as geometric image

structures, can be clustered on disk according to user-

specified access patterns for efficient access.

An example of customizing storage and access for visual

applications is the ISR4 tile-image format, where an im-

age is clustered on disk, and only required sub-images

are brought into memory (on-demand). This ability sig-

nificantly reduces the number of page swaps during com-

mon image processing operations [Kutlu, 1996].

Concurrent, Distributed Database Operations.

Mneme supports concurrent database operations on ar-

bitrarily complex objects within a distributed setting. It

also provides customizable transaction and concurrency

support, as well as extensible caching for use in client-

server modes of operation.



Spatial and temporal indexing and query methods.

ISR3 is equipped with a hierarchy of C++ classes that

provide representations and methods for associatively

and spatially organizing and accessing sets of memory-

resident objects [Draper, 1994]. In particular, 2D ge-

ometric objects in images can be spatially stored into

two-dimensional grids [Brolio, 1989] and retrieved ac-

cording to spatial position in the image.

We are currently developing persistent versions of these

access methods. When manipulating persistent data,

these techniques can significantly reduce data access

times because only the index data structures need to be

kept in-memory when indexing persistent objects. Vi-

sual data reside on disk and are brought into memory

only when accessed, on-demand. The access data struc-

tures are stored on disk at program termination for later

use.

Mneme already provides one such standard indexing

mechanism: the B+ tree. Moreover, Mneme provides

the database programmer with a flexible and powerful

interface for building different types of indices, includ-

ing spatial indices, such as quad-trees and R-trees, and

other multi-dimensional indices.

We are also adding 3-D access mechanisms, and spa-

tial and temporal query languages and techniques to this

framework. A temporal index based on the Time In-

dex [Elmasri, 1990], and optional versioning will also

be provided to support historical queries. Once indices

are built, query languages and techniques will also be

implemented within this framework.

Extensibility. ISR4 offers generic solutions that lend

themselves to immediate use by the visual database

implementor, such as concurrent and distributed stor-

age and retrieval ability for arbitrarily complex objects.

However, a single generic solution is not suitable for

more specific needs, such as application-dependent data

structures, query methods, and indexing mechanisms.

In such cases, ISR4 provides an initial set of powerful

tools, and leaves it to the database implementor to gen-

erate representations, operators, indices, and query fa-

cilities tailored to the application. As an example, ISR4

allows—and encourages—the user to extend its initial

set of representations by adding new ones [Kutlu, 1996].

Visual data types can be easily defined and integrated

with the system using ISR4’s data definition language

(DDL). Likewise, Mneme is fully accessible for building

multi-dimensional indices, or for tuning the buffer man-

agement and data clustering policies to the application-

specific data requirements.

5 Motivating Examples

5.1 Content-based Image Retrieval

A number of current application areas exist that

would immediately benefit from using ISR4. One

is content-based image retrieval, for example, the

QBIC [Niblack, 1993] project. In QBIC, color, tex-

ture, shape and sketch features are computed for image

areas outlined by the user, and used at query time for

image retrieval. The features, which consist of objects

as complex as histograms and reduced resolution edge

maps, are currently stored in an extensible relational

database called Starburst [Lohman, 1991]. The images

themselves, on the other hand, are stored in flat files.

One can achieve better data clustering and faster data ac-

cess if the images and related features are stored using the

strategies of ISR4. First, ISR4 will directly support the

storage of QBIC objects, so there is no need for disk-to-

memory data format transformations, as in the current

transformation from tuples to objects. Second, image

features can be associated with the image region they

came from and stored and retrieved with the sub-image.

This is useful in QBIC, especially when one wants to

see which features (if any) were selected from an image

region. Accessing the region will retrieve the corre-

sponding features as well, which can then be displayed.

Feature indexing capability is also critical in QBIC. The

current B+ tree index can be used for fast object retrieval,

and different types of multi-dimensional indices can be

built and incorporated into ISR4. Along with indices,

query mechanisms can also be implemented.

5.2 Site Models for Photo-interpretation

Intelligence gathering operations provide other ap-

plications. As an example, the RADIUS project

[Mundy, 1992] is developing Image Understanding (IU)

tools for image-analysts to support automated 3D cite

model acquisition, model extension, and change detec-

tion. In a typical scenario, analysts build up a folder of

image data and other intelligence about a site. Based on

this information, analysts form a 2D map of the func-

tional areas of the site, including abstract features such

as the typical number of cars found in each parking lot.

Finally, 3D models of the permanent structures in each

area are built. Once a site model has been developed,

future images and intelligence reports can be compared

to it in a set of processes called “change detection,” in

which analysts search for any temporal change in the

functional areas, features, and/or structures in a site.



Here, 3D geometric site models plus collateral infor-

mation, such as text, maps, and representative imagery,

need to be stored in a fashion that allows efficient data

retrieval for change detection programs, as well as in-

teractive query support for photo-analysts and military

planners. Currently, the RADIUS Testbed Database

(RTDB)[Hoogs, 1994] stores complex objects such as

geometric models, collateral data, and imagery informa-

tion in a relational DBMS (Sybase), while image pixel

data are stored in flat files.

ISR4 would allow RADIUS features to be grouped,

stored, and retrieved according to their functional ar-

eas. Images would be partitioned according to func-

tional areas, and the sub-images would be clustered on

disk with their associated features. In addition to fast

access to image objects, this approach leads to better

buffer management, especially with large aerial site im-

ages, since it restricts data movement to only a small,

relevant portion of the image. Since RADIUS images

are typically 10K�10K pixels or larger, such efficient

buffering mechanisms are required. As with QBIC, spa-

tial indices, as well as query languages, can be built

using ISR4 to answer interactive queries from analysts

and planners such as ‘Give me the image (folder) of this

site in which this building appears for the first time.’ To

support historical (time-based) queries, the functional

areas can be linked over time to form a spatio-temporal

sequence, over which site structures are indexed.

In a similar manner, ISR4 can support other applica-

tions with visual representations, operators, and stor-

age management, including astronomy (sky survey)

databases, geographic and environmental information

management, CAD tools, and medical imaging.

6 Conclusion

Visual applications need to efficiently represent, ma-

nipulate, store, and retrieve both raw and processed

persistent visual data. Extensible visual object stores

offer effective means to address the data management

needs of visual applications. ISR4 is an extensible vi-

sual object object store that will offer extensive storage

and retrieval support for complex and large visual data,

customizable buffering and clustering, and spatial and

temporal indexing. In doing so, it will provide a vari-

ety of multi-dimensional access methods and query lan-

guages. Query optimization, along with approximate,

ranked query methods, are among planned future addi-

tions.

References

[Brolio, 1989] J. Brolio, B. Draper, R. Beveridge, and

A. Hanson. ISR: A Database for Symbolic Pro-

cessing in Computer Vision. IEEE Computer,

22(12):22–30, 1989.

[Draper, 1994] B. A. Draper, G. Kutlu, E. Riseman, and

A. Hanson. ISR3: Communication and Data Storage

for an Unmanned Ground Vehicle. In IEEE Inter-

national Conference on Pattern Recognition, pages

833–836, 1994.

[Dröge, 1993] G. Dröge and H.-J. Schek. Query-

Adaptive Data Space Partitioning Using Variable-

Sized Storage Clusters. In Advances in Spatial

Databases: Proceedings of the 3rd International

Symposium SSD, pages 337–356, 1993.

[Elmasri, 1990] R. Elmasri, G. Wuu, and Y. Kim. The

Time Index: An Access Structure for Temporal

Data. In Proceedings of the Conference on Very

Large Databases, Brisbane, Australia, August 1990.

[Hoogs, 1994] A. Hoogs and B. Kniffin. The RADIUS

Testbed Database: Issues and Design. In IUW, Mon-

terey, CA, volume 1, pages 269–276, Nov. 1994.

[Kutlu, 1996] G. Kutlu, B. A. Draper, J. E. B. Moss, and

E. Riseman. Support Tools for Visual Information

Management. To appear in SDAIR, 1996.

[Lohman, 1991] G. M. Lohman, B. Lindsay, H. Pira-

hesh, and K. B. Schiefer. Extensions to Starburst:

Objects, types, functions, and rules. Communica-

tions of the ACM, 34(10):94–109, 1991.

[Moss, 1990] J. Eliot B. Moss. Design of the Mneme

Persistent Object Store. ACM Transactions on In-

formation Systems, 8(2):103–139, April 1990.

[Mundy, 1992] J. L. Mundy, R. Welty, L. Quam,

T. Strat, W. Bremmer, M. Horwedel, D. Hackett,

and A. Hoogs. The RADIUS Common Develop-

ment Environment. In IUW, San Diego, CA, pages

215–228, Jan. 1992.

[Niblack, 1993] W. Niblack et. al. The QBIC Project:

Querying Images By Content Using Color, Texture,

and Shape. In SPIE, Storage and Retrieval for Image

and Video Databases, volume 1908, pages 173–187,

1993.

[Stonebraker, 1994] S. Sarawagi and M. Stonebraker.

Efficient Organization of Large Multidimensional

Arrays. In International Conference on Data Engi-

neering, volume 10, pages 328–336, 1994.


