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Abstract

Visual applications need to represent, ma-

nipulate, store, and retrieve both raw and pro-

cessed visual data. Existing relational and

object-oriented database systems fail to offer

satisfactory visual data management support

because they lack the kinds of representations,

storage structures, indices, access methods,

and query mechanisms needed for visual data.

We argue that extensible visual object stores

offer feasible and effective means to address

the data management needs of visual applica-

tions. ISR4 is such a visual object store under

development at the University of Massachusetts

for the management of persistent visual infor-

mation. ISR4 is designed to offer extensive

storage and retrieval support for complex and

large visual data, customizable buffering and

clustering, and spatial and temporal indexing,

along with a variety of multi-dimensional ac-

cess methods and query languages.

Index Terms: visual information management,

persistent object store, extensible visual object

store
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1 Introduction

A visual application is an application that ma-

nipulates visual data as part of its processing.

With advances in image analysis, visualiza-

tion, and video technologies, increasingly large

amounts of digital visual data are being gener-

ated by visual applications in a tremendously

diverse range of domains, such as geographic,

astronomical, and environmental information

management, engineering and scientific visu-

alization, military intelligence, computer aided

design and manufacturing (CAD/CAM), and

medical imaging.

Visual data consumed in applications con-

sist not only of raw sensory data such as images,

but also processed data, such as the knowledge

structures used in visual interpretation systems,

and associated model data (such as CAD/CAM

models). As the scale of visual applications

grows, the need to efficiently process, store,

and access the raw and processed data becomes

more acute.

Typically, a large amount of the data gener-

ated in a visual application is needed for tempo-

rary use only. A line extraction algorithm, for

example, may produce hundreds (or thousands)

of line segments from an image. Although not

permanent, such data may be accessed repeat-

edly by other modules (e.g., line grouping or

model matching algorithms), so the efficiency

of in-memory data representation and retrieval



is critical.

On the other hand, a priori knowledge such

as maps and models make up a permanent

data base of information that visual algorithms

access repeatedly and alter only occasionally.

Similarly, generated long-term data, such as the

set of extracted line segments that make up a

site model, have to be stored for future access.

Although less voluminous per image than the

temporary data mentioned above, this data is

persistent and grows to larger total amounts

over time. It therefore must be managed by

efficient storage and access mechanisms which

are geared to the nature (e.g., spatial, temporal,

3D) of the data.

We addressed the management of tempo-

rary data in an earlier visual data management

and process integration tool, called ISR3 [3].

In this paper, we first discuss the issues related

to the management of persistent data in visual

applications, and the shortcomings of current

relational and object-oriented systems in deal-

ing with these issues. We then argue that ex-

tensible visual object stores offer a feasible and

efficient means to address the data management

needs of visual applications, and present ISR4,

a visual object store under development at the

University of Massachusetts.

2 Current Technology

As described below, the efficient storage and

retrieval of large volumes of permanent vi-

sual data, such as aerial images, site models,

and MRI scans, imposes requirements that are

vastly different from those found in conven-

tional data processing. As a result, existing

relational and object-oriented database systems

fail to offer the kinds of storage structures, in-

dexing and access methods, and query mecha-

nisms needed for visual data.

2.1 Efficient Storage Structures

Large, Multi-dimensional Objects. One is-

sue is how to manage the storage and retrieval

of large, multi-dimensional objects such as im-

ages. Space- and time-efficient storage and ac-

cess of large visual objects is critical in projects

such as The National Digital Library program at

the Library of Congress, which involves provid-

ing access to a major subset of approximately

105 million items, among which are large num-

bers of digitized pictures.

Most applications store images in files, and

leave the management of memory (page swaps,

etc.) to the operating system. This approach can

result in a large number of page swaps, espe-

cially when the physical clustering of the image

on disk does not match the access pattern of the

application [18]. Traditional database systems

do not provide appropriate data types or built-in

support for images or similar 2D objects (e.g.

maps). Adaptive clustering techniques used for

clustering multi-dimensional data according to

patterns of access are not mature, and the ones

suggested depend on complex access pattern

statistics [4, 18].

Associative clustering. As discussed above,

many visual applications need to store not only

raw images, but also symbolic data extracted

from (or associated with) images. In content-

based image retrieval, for example, commonly

stored data include color histograms, invariants

of shape moments, and texture features. More-

over, symbolic data often need to be associated

with the image region they came from so that

they can be retrieved with the sub-image. In the

RADIUS [16] program, for example, site mod-

els reconstructed from sets of aerial images need

to be grouped, stored, and retrieved according

to their functional areas.

Most database systems provide little control

over clustering of information in external stor-

age so that a sub-image and the related analysis

results can be stored on the same disk page, and

retrieved together efficiently.
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2.2 Multi-dimensional and Temporal

Indexing

Visual data that are spatial in nature, such as

geometric image structures, often need to be

accessed according to their spatial properties in

an image and/or 3D world positions. There-

fore, spatial indices need to be maintained for

efficient access to such data. Also needed, espe-

cially in military intelligence and medical imag-

ing applications, are temporal indices defined

over a time-sequence of image data. A typical

medical query example is to find the first sign

of a tumor in a history of MRI data.

Unfortunately, there is a lack of effective

support for multi-dimensional and temporal in-

dexing techniques in existing database systems.

Moreover, simply adding one or two popular in-

dexing methods, such as n-dimensional R-trees,

is only a limited solution awaiting situations

where a completely different index is needed.

Instead, the ability to incorporate one’s own in-

dexing mechanism into the data management

system is called for.

2.3 Query Mechanisms and Optimiza-

tion

Spatial, temporal, and geometric represen-

tations. Current relational and object-oriented

query languages do not express the necessary

spatial, temporal, and geometric concepts and

operators effectively. For example, one must

usually build specific concrete representations

of n-dimensional points, lines, curves, regions,

etc., and most systems provide no appropri-

ate treatment of geometric anomalies that arise

from, for example, numerical roundoff errors.

Although one can represent concepts such as

points and lines, attempting to express notions

such as “distance” and “collinearity” leads to

very inefficient query processing in traditional

database systems. Moreover, explicit coding

of such data types sacrifices representational

independence. Likewise, one typically does

not have the most efficient algorithms available,

e.g., from computational geometry.

Approximate, ranked retrieval. A deeper

problem with existing query languages is that

they are boolean. A fact or record either def-

initely lies in the query result set or it does

not. Many queries in visual applications are

more likely to be concerned with approximate

matches and/or ranked retrieval, where the goal

is to find the best answers to a query and to

rank them according to their degree of qual-

ity. A simple example would be finding objects

“near” another object: we might return a list of

objects ranked according to their distance from

the query object, up to some maximum distance

and/or maximum number of objects.

Query Optimization. In addition to query

languages being limited in concepts and op-

erators, existing query optimizers are not pre-

pared to take into account geometric algorithms,

spatial/temporal indexing, and ranked retrieval.

This may become a critical issue when scal-

ing to large systems, since query optimization

frequently has orders of magnitude impact on

performance.

3 Extensible Visual Object

Stores

A visual object store is an object store and its as-

sociated tools and facilities provided to support

the representation, manipulation, storage and

retrieval of visual data. An extensible visual ob-

ject store will have a number of unique features,

which help overcome the problems discussed in

Section 2:

✂ It will provide a powerful core of func-

tionalities to answer the basic data man-

agement needs of an application, includ-

ing efficient built-in data types, basic

storage and retrieval ability, and efficient

storage structures, access methods, and

query mechanisms for complex visual

objects.

✂ Application programmers will be pro-

vided the flexibility to add new features

as needed, at all levels of the system.
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✂ Multiple policies and implementations

will be available for the database imple-

mentor to choose from.

✂ Buffer management and data clustering

policies will be accessible for customiza-

tion and fine tuning.

✂ Applications will be lighter-weight since

the features of the visual object store will

be well integrated, and only those fea-

tures needed will be part of the applica-

tion; unnecessary features will be turned

off.

Visual Information Management Systems. A

similar research effort has focused on the de-

velopment of Visual Information Management

Systems (VIMS) [10]. However, there is so

much variety in the application domains and

the types of visual data they employ (e.g. con-

tinuous vs. discrete, temporal vs. spatial) that

there is a need for a spectrum of VIMSs, rather

than a single, all-encompassing VIMS. On the

other hand, VIMS applications share a basic set

of common needs; they all need to represent,

manipulate, and effectively store and retrieve

visual data. Addressing these mutual needs in-

dependently for each application would result

in a duplication of effort. An extensible visual

object store offers exactly what is needed for

building application-specific VIMSs: support

for their shared basic data management needs.

4 ISR4

ISR4 is an extensible visual object store un-

der development at the University of Mas-

sachusetts. As shown in Figure 1, ISR4 is the

integration of an earlier visual data management

and process integration tool called ISR3
✄

[3],

with Mneme [14], a persistent object store (also

developed at the University of Massachusetts).

☎
ISR (Intermediate Symbolic Representation; [Brolio,

1989]) is the name of a series of symbolic databases for

visual information developed at the University of Mas-

sachusetts; ISR4 is the most recent version.
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Figure 1: ISR4 is the integration of ISR3 and

Mneme.

4.1 Overview of ISR4

Spatial and geometric representations. Em-

bedded in its host language C++, ISR4 al-

lows arbitrarily complex objects to be de-

fined and processed, and provides an initial

set of standard visual representations, includ-

ing single-band and multi-spectral images, 2D

points, lines, edges, and regions, and 3D points,

lines, surfaces, and volumes. Moreover, as

the (object-oriented) data model is uniform

throughout ISR4, complex representations such

as spatially-indexed sets of line segments or

histograms of image features can transparently

move between ISR3 and Mneme.

Customizable data clustering. ISR4 offers

more than storage support; it provides meth-

ods for customizing Mneme’s buffer manage-

ment and clustering policies according to an

application’s needs. For example, the database

implementor can use Mneme’s basic capabil-

ities to introduce data clustering policies that

reduce data access delays for specific applica-

tions, such as storing an image region and its

computed features in the same physical seg-

ment. Similarly, features which are multi-

dimensional in nature, such as geometric image

structures, can be clustered on disk according

to user-specified access patterns for efficient ac-

cess.

An example of customizing storage and ac-

cess for visual applications is the ISR4 tile-
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image format, where an image is clustered on

disk, and sub-images are brought into memory

only as needed (on-demand). This ability sig-

nificantly reduces the number of page swaps

during common image processing operations.

Concurrent, Distributed Database Opera-

tions. Mneme supports concurrent database op-

erations on arbitrarily complex objects within a

distributed setting. It also provides customiz-

able transaction and concurrency support, as

well as extensible caching for use in client-

server modes of operation.

Spatial and temporal indexing and query

methods. ISR3 is equipped with a hierarchy

of C++ classes that provide representations and

methods for associatively and spatially orga-

nizing and accessing sets of memory-resident

objects [3]. In particular, 2D geometric ob-

jects in images can be spatially stored into two-

dimensional grids [1] and retrieved according

to spatial position in the image.

We are currently developing persistent ver-

sions of these access methods. When manipu-

lating persistent data, these techniques can sig-

nificantly reduce data access times because only

the index data structures need to be kept in-

memory when indexing persistent objects. Vi-

sual data reside on disk and are brought into

memory only when accessed, on-demand. The

access data structures are stored on disk at pro-

gram termination for later use.

Mneme already provides one such standard

indexing mechanism: the B+ tree. Moreover,

Mneme provides the database programmer with

a flexible and powerful interface for building

different types of indices, including spatial in-

dices, such as quad-trees and R-trees, and other

multi-dimensional indices. A more general ac-

cess structure similar to the Generalized Search

Tree (GiST) [8] is also under construction for

Mneme, which will be extensible in both the

data types it can index and in the queries it can

support.

We are also adding 3-D access mechanisms,

and spatial and temporal query languages and

techniques to this framework. A temporal in-

dex based on the Time Index [5], and optional

versioning will also be provided to support his-

torical queries. Once indices are built, query

languages and techniques will also be imple-

mented within this framework.

Extensibility. ISR4 offers generic solutions

that lend themselves to immediate use by the

visual database implementor, such as concur-

rent and distributed storage and retrieval ability

for arbitrarily complex objects. However, a

single generic solution is not suitable for more

specific needs, such as application-dependent

data structures, query methods, and indexing

mechanisms. In such cases, ISR4 provides

an initial set of powerful tools, and leaves it

to the database implementor to generate repre-

sentations, operators, indices, and query facil-

ities tailored to the application. As an exam-

ple, ISR4 allows—and encourages—the user

to extend its initial set of representations by

adding new ones. Visual data types can be eas-

ily defined and integrated with the system us-

ing ISR4’s data definition language (DDL) (see

Section 4.3.5). Likewise, Mneme is fully acces-

sible for building multi-dimensional indices, or

for tuning the buffer management and data clus-

tering policies to the application-specific data

requirements.

4.2 The Architecture of ISR4

ISR4 has two major components: a Database

Programming Interface (DPI) based on ISR3,

and a Storage Manager (SM) based on Mneme.

The DPI provides a data definition language for

defining visual objects, a hierarchy of visual

representations, I/O support for visual data in

a variety of common file formats, and graphics

tools for displaying visual data. It also provides

an initial set of indexing techniques for storing

and retrieving (primarily 2D) data. The Storage

Manager, on the other hand, provides concur-

rent and distributed storage, and customizable

indexing, buffer management, and disk cluster-

ing support for persistent visual objects.
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Figure 2: ISR4’s Object Class Hierar-

chy includes representations for single-band

and multi-spectral images, 2D points, lines,

edges, and regions, and 3D points, lines, sur-

faces, and volumes.

4.3 The Database Programming Inter-

face

4.3.1 ISR4 Object Class Hierarchy

The DPI first answers the representational needs

of a VIMS with a hierarchy of representations

for visual objects. It is essential for a VIMS to

be equipped with a rich set of visual representa-

tions, especially if it is aimed to support a wide

range of applications. As shown in Figure 2,

the root of the ISR4 object hierarchy is the to-

ken—a basic abstraction for a visual object. A

token
✆

defines a visual object via its attributes,

and input, output, and display methods. ISR4

provides an initial set of commonly used token

classes, including (several types of) images, 2D

and 3D points, lines, regions and edges. Al-

though rich, the initial set of tokens may not be

appropriate for all applications. Likewise, an

originally appropriate representation may have

to adapt to an evolving set of data requirements.

The DPI addresses these issues by allowing the

modification or extension of its data types. A

✝
A token is really an instance of a C++ class derived

from Token, although we will refer to both the instance,

and the type as a token whenever the difference is clear

by the context.

Data Definition Language (DDL) is provided

for defining new tokens, or modifying the ex-

isting ones, and which also ensures that a new

token is transparently integrated with the rest of

the system (see Section 4.3.5).

A similar object hierarchy is given as

part of the Image Understanding Environment

(IUE;[15]). IUE is an object-oriented environ-

ment that aims to facilitate exchange of research

results within the Image Understanding (IU)

community by providing the basic data struc-

tures and operations needed to implement IU

algorithms.

ISR4 differs from IUE in that it emphasizes

flexibility, simplicity, and extensibility, while

IUE’s focus is on completeness. ISR4’s flexible

object hierarchy allows researchers to add new

objects, and define their own object relationship

constraints. IUE’s hierarchy, on the other hand,

aims to provide a standard, complete class hi-

erarchy, which specifies where any visual data

type and process falls in the taxonomy. ISR4’s

hierarchy is kept simple to mainly focus on vi-

sual objects, in an attempt to offer uniform treat-

ment of all its data types. All ISR4 objects, in-

cluding complex objects (such as a set of image

curves and spatially organized image features)

are guaranteed input, output, persistent storage,

and “display” support. Such uniform treatment

is not possible in the complex IUE object hi-

erarchy, which includes abstract mathematical

objects, such as transforms and camera models,

and procedural objects, such as tasks.

4.3.2 Associative and spatial access meth-

ods

The second DPI contribution comes in the form

of representations and methods for associa-

tively and spatially organizing and accessing

sets of memory-resident objects. Visual ob-

jects, especially features computed in an im-

age, are often loosely structured into sets or

groups [1]. For example, in content-based

query operations, related or multiply-occurring

features frequently need to be treated as single

entities, so that operations can be performed on
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the group as a whole, as when an image-analyst

executes a polygon-finder on the set of lines

(the group of features) extracted from an aerial

image in order to form building hypotheses.

At the other extreme are operations that re-

quire isolating elements in a group that satisfy

certain desired properties, such as finding the

image lines whose orientation lies within some

specified range. As shown in Figure 3, the DPI

serves both purposes with a hierarchy of C++

classes derived from token, called tokensets.

Set operations and range queries are defined on

tokensets, as well as associative access meth-

ods. In particular, geometric objects can be

spatially stored into two-dimensional grids and

retrieved according to spatial position in the im-

age [1]. As before, ISR4 is extensible, so that

other grouping techniques, such as oct-trees for

3D data can easily be implemented.

4.3.3 Flexible I/O for visual objects.

As a third form of assistance, the DPI provides

input and output support for visual data pro-

duced in operations. In the DPI, any recog-

nized token or set of tokens can be output to

a file and read back. The I/O methods allow

storing tokens in both ASCII and binary format

files. The ASCII format file, isra, allows the

inspection of tokens stored in it, while the bi-

nary format, isrb, is more compact and faster

to read. In addition to ISR4’s own formats, the

I/O routines support reading and writing image

files in many commonly used external formats.

4.3.4 Common image formats and

graphics.

A set of common image formats comprise an-

other form of support. Of all the visual data

types that need to be managed in applications,

images are the largest and most prevalent. Con-

sequently, images need special attention in a

VIMS. To address the needs of a wide variety

of applications, the DPI supports most com-

mercially available image formats, including

gif, tiff, (Khoros [17]) viff, (KBVision [19]) im,

and (soon) JPEG. This allows image processing

and image understanding operators from such

widely-distributed systems as Khoros and KB-

Vision to be applied to ISR4 data. To support

the smooth integration of any new operators

with the system, the DPI provides facilities to

convert any image format to another. External

to the DPI, ISR4 supplies interactive graphics

for displaying and inspecting most system data

objects stored in files, with an executable called

xisrdisplay.

4.3.5 ISR4 Data Definition Language

(DDL)

One way to define data types (not provided in

ISR4) is to introduce an external language for

defining the characteristics of objects, and con-

vert the descriptions with a preprocessing step

to C++ class definitions recognized by ISR4.

A second approach, which is favored here, is

to directly define objects using C++ syntax.

This eliminates the preprocessing step and the

need to learn a separate language for object

definition. While it is true that a DDL can

be more powerful in expressing object-oriented
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concepts than a programming language, the ab-

stractions provided by C++ for object defini-

tion and manipulation are sufficient to satisfy

the needs of typical VIMSs.

As mentioned earlier, a visual object is

mapped to an instance of a C++ class called

Token in ISR4. The Token type defines the

global properties of objects and the available

operations on them. All ISR4 objects derive

from Token to inherit these properties. The

definition of an ISR4 object type takes the fol-

lowing form:

class ClassName : public Token
✞
{

public :

– Presentation support methods:

name(); trace(); draw();

input(); output();

– Storage Manager support methods:

size(); traverse();

pack(); unpack();

– The object’s own public field and signa-

ture definitions

protected :

– Definitions visible only to subclasses of

ClassName

private :

– Private field and signature definitions.

};

Objects of arbitrary complexity can be de-

fined using this definition rule, as there is no

restriction on the object attributes. A token

must be introduced to the system via a set

of support methods, however, so that it can

properly be manipulated in the system. As

listed above, the support methods that need

to be supplied are name, input, output,

trace, draw, size, traverse, pack, and

unpack. These methods are very easy to gen-

erate; they require at most one line of code for

each attribute of the token. The traverse

method, for example, which visits the objects

referenced by a token, consists of calls to a sys-

tem function for every object reference it has:

class TrihedralJnct : public Token {

public:

Line2D *Segment1;

Line2D *Segment2;

Line2D *Segment3;

Point2D *Center;

// Segments

// forming the

// junction

// Junction point
};

TrihedralJnct::traverse(TravTable& tt)

{

tt.add (Segment1);

tt.add (Segment2);

tt.add (Segment3);

tt.add (Center);

// Add the object

// to the list

// of objects

// traversed.
}

Once recognized by the system, an object

can be: 1) Included in a tokenset, and accessed

associatively or spatially; 2) Stored in and re-

trieved from the persistent object store; 3) Out-

put to, and read back from a file; and 4) Dis-

played and inspected using xisrdisplay.

4.4 The Storage Manager

The Storage Manager, based on the Mneme per-

sistent object store, provides storage support for

complex visual objects. As described below

(Section 4.4.2), the Storage Manager mainly

acts as an interface that maps Database Pro-

gramming Interface requests and objects to cor-

responding Mneme requests and objects. The

actual storage and retrieval of objects, and the

associated buffer and disk management is car-

ried out by Mneme.

4.4.1 Mneme

The Mneme object store aims to provide the

illusion of a large heap of objects, directly ac-

cessible from the Storage Manager. The main

abstractions provided by Mneme to the Storage

Manager are objects, object pointers, files, ob-

ject pools, and buffer pools [13]. Mneme views

an object to be a collection of bytes and refer-

ences to other objects. Each object is uniquely

referenced by an object identifier. In Mneme,

objects are grouped together into units called

files. Each file has a special object called the

root object, which can be used to store refer-

ences to and information about the objects that
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are stored in that file. Within files, objects are

logically grouped in object pools according to

the policy under which they are managed. The

policies governing the management of objects

in a pool are dictated by a set of routines called

strategies. Mneme defines a few pool strate-

gies, although the users can supply their own

specialized strategies. Each Mneme object is a

member of exactly one pool, and each pool a

member of exactly one file.

As mentioned above, Mneme currently sup-

ports the B+ tree index for indexing visual ob-

jects on disk, and a more general customizable

access structure is under construction, which

will support different types of application-

specific indexing and queries in one structure.

4.4.2 Object Storage and Retrieval

As mentioned above, a token is defined in

the Database Programming Interface using the

ISR4 DDL. Typically, a token is born transient

when created in the space of the DPI. When it

needs to be made persistent, the DPI passes

the token and its name (to be given) to the

Storage Manager with a request to store it in

a specific file. The storage request may in-

clude clustering parameters, such as “near ob-

ject X.” Alternatively, this can be done auto-

matically by inserting the object into an index

structure which will store the object in a way

to access it rapidly. When multiple indices that

have conflicting clustering requirements need

to be kept on an object, multiple copies of the

object can optionally be made when the object

is immutable (known not to be modified after

creation).

To save storage space and reduce database

access time, ISR4 tokens are stored in Mneme

in a compact format. Before an ISR4 token

is stored, the Storage Manager maps it into

a compressed Mneme object. Similarly, the

Storage Manager retrieves a compressed object

in Mneme, and uncompresses it before pass-

ing it to the DPI. As the pack, unpack, and

traverse methods used during compression

and decompression are required as part of a to-
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Object IDs

Disk
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store
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Packed-Token on disk

DPI SM

Packed-Token

unpack

pack

unpack

pack

a)  Simple Token:

b)  Composite Token:

Figure 4: The Storage Manager provides

interface functions between the DPI and

Mneme.

ken’s definition (see Section 4.3.5), storage and

retrieval support is guaranteed for any ISR4 to-

ken, including complex objects such as a spatial

grid of line segments or a histogram of image

features.

The Storage Manager then acquires a

pointer to a corresponding empty Mneme object

in the desired file, and maps the token into the

Mneme object, compressing it in the process.

Mneme also assigns a unique id to the object.

The Storage Manager accesses the object using

its id or pointer.

In the DPI, on the other hand, access to

the token is through its given name. Since

names are not stored as part of an object in

Mneme, the Storage Manager keeps a transla-

tion table (for each Mneme file) to convert the

name to an id, and uses the id to access the

object. When the identifier of a desired object

is presented, Mneme returns a pointer to the

memory-resident object. If the object was not

previously memory resident, it is brought into

memory from the file that contains the object.

The Storage Manager then uncompresses the

object into an ISR4 token, and passes the token

to the DPI.

Storage and retrieval is more complicated

when the object to be stored or retrieved has

references to other objects (see ‘composite ob-

ject’ in Figure 4). The object references are
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converted to ids during storage, and back to di-

rect pointers during retrieval. The performance

analysis of this scheme called copy swizzling
✟

has been thoroughly investigated in [12], and is

beyond the scope of this paper.

The Storage Manager also provides meth-

ods to lock and release objects in Mneme

buffers. Mneme guarantees to keep an object

resident between the time when a pointer to

the object is first obtained and the time when

a release operation is performed on the object.

Mneme can force a released object to disk to

make space for another object. All memory-

resident objects are transferred to secondary

storage at program termination. To ensure that

the name-to-id correspondences are valid dur-

ing different executions of a program, the trans-

lation table is automatically stored in the cor-

responding Mneme file when a program termi-

nates, and restored when the file is opened.

4.5 The Tile-Image Format

ISR4’s tile-image storage and access model

achieves improved storage and access perfor-

mance by tuning the interaction between the

storage manager’s buffers and disk segments.

The idea is to divide an image into (possibly

overlapping) tiles, and represent the image by

the collection of all the tiles. The tiles are stored

as separate objects, and are brought into mem-

ory only when the image subregion covered by

the tile is being accessed. Image tiling strate-

gies are among the most straightforward, but

there are many others. One example is map-

ping multiple dimensions (eg. 2D, temporal,

function type of site models, etc.) into one di-

mension of disk clustering. Figure 5 shows a

tile-image with overlap between tiles.

The tile-image model is based on the obser-

vation that only part of an image is accessed at

a time in typical applications. In the RADIUS

project, for example, it is common to divide

✠
Swizzling refers to the replacement of id references

between memory-resident persistent objects with direct

pointers. Copy swizzling is making a separate copy of

the object being swizzled, versus carrying the swizzling

in-place, in the object manager’s buffers.

tile-y-overlap

tile-x-size tile-x-overlap

moveto

cursor

tile-y-size

Figure 5: Tile-image with tile-overlap and

Cursor.

an image and access its sub-images according

to functional area in a site model. The tile-

image model makes it possible to work on an

image even though only parts of it are memory-

resident. This is desirable especially when the

whole image does not fit into physical mem-

ory, and only a sub-image can be read at a

time. RADIUS images, for example, are typi-

cally 10K ✡ 10K and larger. On the other hand,

even when the memory is large enough to ac-

commodate the entire image, we may want to

limit the amount of buffer space we use for it,

so that there is room left for other objects, such

as the building models extracted. Typical ap-

plications that work with large images maintain

a window into the image and keep in memory

only the sub-image that falls in the window.

The model also aims to take advantage of

the fact that images are rarely modified, except

at creation time. This allows focusing on read-

only operations when optimizing buffer man-

agement for image data. For example, the parts

of the image read into memory can be accessed

directly in Mneme’s buffers (rather than creat-

ing a copy as with other tokens)—also called

in-place swizzling—and a buffer page holding

image data can be recycled without having to

worry about writing its contents back to disk.

Once created, a tile-image can be accessed
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either in a random-access mode, or a scan

mode. The two access modes represent the

two most typical access patterns found in vi-

sual applications. The random-access mode is

for cases when pixels from distant image loca-

tions are accessed consecutively, resulting in a

‘jump’ from one location to the other. Such a

pattern would arise, for example, when examin-

ing pixel values from different visual objects in

the image. The scan mode, on the other hand,

is for convolution-like image processing oper-

ations, where every pixel is visited one by one,

and some value is computed based on the pixel

and its neighbor pixels.

These access modes are provided via a cur-

sor, which is a window into the image that al-

lows access to the pixels located in the window.

In the random-access mode, the cursor can be

moved to any location in the image, whereas

in the scan mode, it is allowed to move only

locally (left, right, up, and down).

An issue related to images that still needs to

be addressed is the storage and retrieval of com-

pressed images. It is common practice to store

large images in a compressed form. It is there-

fore desirable to support transparent access to

images, where the user does not know whether

the image is compressed in the database or not.

The same problem arises when dealing with

continuous media, such as video data. Video

sequences are stored on disk in compressed

form (e.g. MPEG;[7]), but have to be transpar-

ently uncompressed during playback. This can

be achieved by presenting an image (or video

frame) to the application program only after un-

compressing it—uncompressing an image that

is not compressed being a null operation. We

may want to copy-swizzle compressed images,

in this scheme, however, since uncompressing

creates a (larger) copy of the object in any case.

5 Motivating Examples

5.1 Content-based Image Retrieval

A number of current application areas exist that

would immediately benefit from using ISR4.

One is content-based image retrieval, for ex-

ample, the QBIC [6] project. In QBIC, color,

texture, shape and sketch features are computed

for image areas outlined by the user, and used

at query time for image retrieval. The fea-

tures, which consist of objects as complex as

histograms and reduced resolution edge maps,

are currently stored in an extensible relational

database called Starburst [11]. The images

themselves, on the other hand, are stored in

flat files.

One can achieve better data clustering and

faster data access if the images and related fea-

tures are stored using the strategies of ISR4.

First, ISR4 will directly support the storage of

QBIC objects, so there is no need for disk-to-

memory data format transformations, as in the

current transformation from tuples to objects.

Second, image features can be associated with

the image region they came from and stored and

retrieved with the sub-image. This is useful in

QBIC, especially when one wants to see which

features (if any) were selected from an image

region. Accessing the region will retrieve the

corresponding features as well, which can then

be displayed. Feature indexing capability is

also critical in QBIC. The current B+ tree index

can be used for fast object retrieval, and differ-

ent types of multi-dimensional indices can be

built and incorporated into ISR4. Along with

indices, query mechanisms can also be imple-

mented.

5.2 Site Models for Photo-interpreta-

tion

Intelligence gathering operations provide other

applications. As an example, the RADIUS

project [16] is developing Image Understand-

ing (IU) tools for image-analysts to support au-

tomated 3D cite model acquisition, model ex-

tension, and change detection. In a typical sce-

nario, analysts build up a folder of image data

and other intelligence about a site. Based on

this information, analysts form a 2D map of

the functional areas of the site, including ab-

stract features such as the typical number of
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cars found in each parking lot. Finally, 3D

models of the permanent structures in each area

are built. Once a site model has been devel-

oped, future images and intelligence reports can

be compared to it in a set of processes called

“change detection,” in which analysts search

for any temporal change in the functional areas,

features, and/or structures in a site.

Here, 3D geometric site models plus collat-

eral information, such as text, maps, and repre-

sentative imagery, need to be stored in a fashion

that allows efficient data retrieval for change

detection programs, as well as interactive query

support for photo-analysts and military plan-

ners. Currently, the RADIUS Testbed Database

(RTDB)[9] stores complex objects such as geo-

metric models, collateral data, and imagery in-

formation in a relational DBMS (Sybase), while

image pixel data are stored in flat files.

ISR4 would allow RADIUS features to be

grouped, stored, and retrieved according to their

functional areas. Images would be partitioned

according to functional areas, and the sub-

images would be clustered on disk with their

associated features. In addition to fast access

to image objects, this approach leads to better

buffer management, especially with large aerial

site images, since it restricts data movement

to only a small, relevant portion of the image.

Since RADIUS images are typically 10K ✡ 10K

pixels or larger, such efficient buffering mech-

anisms are required. As with QBIC, spatial

indices, as well as query languages, can be built

using ISR4 to answer interactive queries from

analysts and planners such as ‘In the newly-

arrived set of images, give me the ones in which

there is a new structure,’ or ‘Give me the im-

age (folder) of this site in which this building

appears for the first time.’ To support historical

(time-based) queries, the functional areas can be

linked over time to form a spatio-temporal se-

quence, over which site structures are indexed.

In a similar manner, ISR4 can support other

applications with visual representations, opera-

tors, and storage management, including astron-

omy (sky survey) databases, geographic and

environmental information management, CAD

tools, and medical imaging.

6 Conclusion

Visual applications need to efficiently repre-

sent, manipulate, store, and retrieve both raw

and processed persistent visual data. Extensi-

ble visual object stores offer effective means

to address the data management needs of visual

applications. ISR4 is an extensible visual object

object store that will offer extensive storage and

retrieval support for complex and large visual

data, customizable buffering and clustering,and

spatial and temporal indexing. In doing so, it

will provide a variety of multi-dimensional ac-

cess methods and query languages. Query opti-

mization, along with approximate, ranked query

methods, are among planned future additions.
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