
Retrieval and Reasoning in Distributed Case

Bases
�

M V Nagendra Prasad, Victor R Lesser and Susan Lander

Computer Science Department, LGRC

University of Massachusetts

Amherst, MA 01003

nagendra,lesser,lander@cs.umass.edu
Department of Computer Science

University of Massachusetts

UMass Computer Science Technical Report

Abstract

Recent explosion in networked information resources has been attracting much attention to the

problem of automated methods for gathering information in response to a query from a user.

However, most of this literature deals with locating, gathering and selecting the best response

to a query from among a multitude of responses from different sources. In this paper, we deal

with a different model of response to a query. No single source of information may contain the

complete response to a query and hence may necessitate piecing together mutually related partial

responses from disparate and possibly heterogeneous sources. We present a system for cooperative

retrieval and composition of a case in which sub-cases are distributed across different agents in a

multi-agent system. From a Gestalt perspective, a good overall case may not be the one derived

from the summation of best subcases. Each agent’s partial view may result in local cases that are

best matches based on the local view. However, these local cases when assembled may not result

in the best overall case in terms of global measures. We propose a negotiation-driven case retrieval

algorithm as an approach to dynamically resolving inconsistencies between different case pieces

during the retrieval process.

✁
The work reported here is supported in part by NSF Center for Intelligent Information Retrieval, ARPA

contract N00014-92-J-1698, Office of Naval Research contract N00014-92-J-1450, the National Science
Foundation contract CDA 8922572. The content of the information does not necessarily reflect the position
or the policy of the Government and no official endorsement should be inferred.

1 Introduction

Recent explosion in networked information resources has been attracting much attention towards

automated methods for gathering information in response to a query from a user [1, 4, 21]. However,

most of this literature deals with locating, gathering and selecting the best response to a query from

among a multitude of responses from different sources. In this paper, we deal with a different model

of response to a query. No single source of information may contain the complete response to a query

and hence may necessitate piecing together mutually related partial responses from disparate and

possibly heterogeneous sources[21]. For example, imagine a multi-agent parametric mechanical

design system where each agent has to contribute a component to assemble a complete design. An

agent has to obtain its components from manufacturer-specified catalogue casebases that may be

distributed across the Internet. For example, it may treat WWW-accessible distributed component

database system like PARTNET[5, 22] as its case-base from which to draw its component. In

addition to the constraints arising from the overall design requirements, constraints on a component

could also arise from the specifications of other components in the design. A response to a query

in the form of a specification of design requirements consists of the integrated set of components

forming the design. Central to the presentation in this paper is the view that a complex query is

presented to a set of agents, each of which is responsible for retrieving information relevant to a

part of the query. The agents negotiate to piece together a mutually acceptable response to the

query. More specifically, we deal with agents retrieving pieces of a distributed case to assemble a

composite case from them.

How do distributed case bases arise in these systems? A system that performs rote learning

by storing good cases, where each agent stores its own local case in its case base, could give rise

to such a Distributed Case Base (DCB). However, this may not be the only way. In the case of a

set of reusable agents[16], each agent could have acquired its own independent problem-solving

experiences by participating in different teams of agents. Or a Case-Knowledge Engineer could

design each of the case bases by giving them episodes from his collection of cases. Another

scenario one could envisage is the existence of casebases spread across a communication network,

like PARTNET on World Wide Web.

A multi-agent system comprises a group of intelligent agents working towards a set of common

global goals or separate individual goals that interact[3]. In such a system, each of the agents

may not be individually capable of achieving the global goal and/or their goals have interactions

and hence a need for coordination among the set of agents arises. Due to its partial view of

the problem-solving situation, an agent may have access only to a part of the environment, and

communication bandwidth limitations and heterogeneity of representations may limit its view of

other agents’ state. Given these uncertainties[18], an agent may have to do evidential reasoning

and focused negotiation to resolve them to the extent that it can make positive contributions to the

on-going problem solving process. More specifically, in a distributed case-based reasoning system

(DCBR), each agent’s partial view may result in best local cases that when assembled may not

result in the best overall case in terms of global measures. This gives rise to a need for the agents

to cooperatively access their casebases to retrieve the “best sub-cases” which can be combined in a

consistent manner to provide a complete case most useful for the present problem-solving situation.

This paper is concerned with this kind of cooperative retrieval of compatible distributed cases. In

1

our work on Negotiated Search[17]
✁

and DRESUN[6], we proposed certain general mechanisms

for performing distributed search in multi-agent systems. We draw upon our experience with these

methods to extend them to case-based systems in a distributed environment.

The issue of distributed casebases, to our knowledge, has not been studied in the multi-agent

context. Barletta et al[2] and Redmond et al [23] deal with distributed cases in single agent

systems. In these approaches, each case is divided into subcases or snippets and a snippet is

indexed using both global goals and the local context of that snippet within the case. This kind of

elaborate engineering in the form of indexing the case pieces using both global and local problem

solving contexts may not be feasible for multi-agent CBR systems. The agents may only have a

partial view of the global problem solving context and the internal context of a case piece. Case

bases for individual agents may be built independently, without the knowledge of the kinds of

problem solving systems in which they are going to participate. In this paper, we propose an

alternative to using elaborate indexing to avoid interactions when case pieces are re-instantiated in

a new problem solving context. Case pieces are iteratively retrieved and assembled into a case,

dynamically resolving any conflicts that arise during the process through negotiation among the

participant agents. There are a few other important issues to note here. It may be that even though

the cases for individual agents were derived from past problem-solving experience, there could be

combinations of these subcases that may be assembled into a case that the system as a whole has

never seen before. As discussed later, this has some important implications in DCBs. In addition,

local case integration does not require that the overall case be completely represented at any one

node; in certain situations, the distributed case components are integrated only by their mutual

consistency.

The rest of the paper is organized as follows. Section 2 discusses the Negotiated Retrieval

strategy for distributed cases. Section 3 introduces the CBR-TEAM system as our domain to

illustrate the algorithm, and provides a trace of the system run on an example. Section 4 presents

some empirical results from runs of an abstract version of CBR-TEAM. Section 5 relates our

work to some of the existing literature and Section 6 concludes the paper with a discussion of the

implications of the proposed mechanism and future work.

2 Negotiated Case Retrieval

Reasoning with cases drawn from a casebase that is a component of a DCB presents an agent with

additional uncertainties versus single agent CBR systems. As discussed previously, each agent has

to rely on its possibly incomplete local view of problem-solving to retrieve a local case that best

contributes to the overall case. However, a combination of the best local cases for the agent set need

not lead to a best overall case because it may happen that the sub-cases cannot be effectively put

together or there may be requirements on the solution that cannot be ascertained until the sub-cases

are aggregated. Thus, agents need to augment their local views with constraining information from

other agents to achieve the retrieval and assembly of a better overall case.

A simple way to overcome the problem of distributed retrieval is to let the set of agents form

their DCB by each agent storing its sub-case when the agents come across a good case and labeling

the sub-cases under the same unique label. During retrieval, each agent retrieves a set of sub-cases✁
In this paper, we view negotiation as a form of goal-directed communication among agents.

2

which are good matches. Each of the agents exchanges the labels of its locally retrieved cases

with other agents and the agents try to assemble a complete case with a unique label. If they fail,

they can expand their retrieval set, or if most of the case is assembled under a unique label, those

agents with incompatible labels can do another round of retrieval for sub-cases with the label of

the overall case
✂
. However, this strategy may not work due to a variety of reasons. The casebases

may not be formed with the same set of agents participating in the task. They may be formed in

any of the ways discussed previously. This eliminates the possibility of labeling the corresponding

local cases belonging to a unique case by the same label; local cases are not assembled from the

cases seen by these agent sets. In addition, the agent sets may themselves be varying - some agents

may go off-line and some other new ones may come on-line - during the problem-solving process.

Yet another reason for the infeasibility of this strategy is the possible heterogeneity of the different

agents. Unique labeling schemes may not be possible in heterogeneous systems with disparate

representations.

In view of the discussion above, we propose that the agents need to perform a coordinated

retrieval of local cases through communication of relevant non-local information. We will now

elaborate on a negotiated case retrieval (NCR) strategy which is more general than the unique

labeling scheme. The NCR strategy involves each agent asynchronously executing one of the set of

possible operations: initiate a seed subcase, extend an existing partial case, merge existing partial

subcases or inform others about a new partial case. Initiating a seed subcase involves an agent

retrieving a local subcase from its local casebase using the local problem solving state and the

relevant portion of the user specification and forming a seed subcase which can be extended by

local cases from other agents to obtain a complete case. An agent intending to extend a subcase

from another agent obtains the subcase’s relevant feature values that serve as an anchor for the

local case retrieval, the result of which is integrated with the corresponding partial case. Merge is

similar to the extend operation. An agent intending to merge one of its chosen partial cases with

another agent’s partial case obtains the relevant feature values and performs the merge operation.

The inform operation involves an agent telling others about the existence of a newly formed partial

case that results from the local execution of one of the three previous operators. An extend or

merge operation involves checking for any violations of local constraints by the set of feature

values from the non-local partial subcase and the local case or partial subcase. Detection of such

violations leads to an interaction process among the agents by which they negotiate on conflict

resolution alternatives. The negotiation process involves an agent communicating feedback to other

agents on the causes and possible resolutions for each of the constraint violations. The receiving

agents assimilate this feedback, leading to an enhanced view of the global requirements for future

operations. The subsequent initiation or extend or merge is more likely to avoid the same conflicts.

Thus, our problem is cast as a distributed constraint optimization problem[16] implying that not

all constraints need to be satisfied in a solution. As many constraints are satisfied as is possible.

Constraints have differing amounts of flexibility. Some may be hard, meaning that they must be

satisfied in any legal solution. Some others may be soft constraints that may be relaxed as and when

needed. Figure 1 shows the conceptual view of a two agent DCBR system. Before we formally

present our NCR strategy, we need to introduce some notation.

Let the set of agents be denoted by
✄

. Let ☎✝✆ denote the locally known constraint set of agent✂
Note that even this strategy is not a solution to all problems that can arise in this scenario and in the

worst case, the labeled sub-case retrieval is as complex as unlabeled sub-case retrieval.

3

AGENT i AGENT j

Ω
i1

 = f
1
(θ

1
 ... θ

s1
)

Ω
iu

 = f
t
(θ

1
 ... θ

su
)

.

.

Ω
j1

 = g
1

(θ
1

 ... θ
s1

)

Ω
jv

 = g
t
(θ

1
 ... θ

sv
)

.

.

Feedback (set of advises)

Σ11

Σ

Σ13

12

Σ21

Σ22

LOCAL CASEBASE i LOCAL CASEBASE j

Initiate

Extend

Merge

Inform

Send Feedback

Assimilate Feedback

<operators>

<constraints
 at time t>

<emerging
 solutions>

<emerging
 solutions>

Initiate

Extend

Merge

Inform

Send Feedback

Assimilate Feedback

<operators>

<constraints
 at time t>

Figure 1: Schematic for Negotiated Case Retrieval

✞ ✆ . Let ☎✠✟ ✆ , ✡☞☛✍✌✎☛✑✏✒☎✓✆✔✏ represent the p th constraint at
✞ ✆ and let ✕✖✟✆ represent the set of features

on which ☎ ✟ ✆ is defined.

Let the user-specified query be denoted by ✗ . The part of the query that is relevant to
✞ ✆ is

denoted by ✗✘✆ which is cast as a set of constraints ☎✚✙ ✆✜✛ ☎✓✆ . Casting both user specifications

and the set of required subcase consistency constraints as the set of hard constraints for an agent

gives us a uniform way to ensure that the user specifications are satisfied and the subcases are

mutually acceptable. Subcase consistency constraints arise from the knowledge an agent has about

the requirements of the context in which its local subcase can usefully participate ✢ . The output

of the system is a case, whose subcases are mutually acceptable to the entire set of agents. As

discussed previously, the subcases need not all reside at a single physical site and may be integrated

just by their mutual consistency.

Let a locally retrieved case t by agent
✞ ✆ be denoted by ✣✥✤✆ (we simply denote it as ✣ ✆ when the

name of the case is not important). A partial case s, denoted by ✦✘✧ , is composed of one or more

locally retrieved cases (from different agents):

✦★✧✪✩ ✣ ✤✬✫✆ ✫ ✣ ✤✮✭✆ ✭✰✯✱✯✲✯ ✣ ✤✬✳✆ ✳
where ✡☞☛✵✴✶☛✑✏ ✄ ✏

✢ For example in TEAM[16], from which our DCBR system draws its inspiration, an agent’s sub-design

possesses shared features with another agent’s sub-design. Pump and Motor share a parameter required-

power. Both agents have to arrive at the same value for the required-power parameter. This is equivalent to

having a constraint Pump-required-power = Motor-required-power.

4

We will introduce a simple example from the ABSTRACT-TEAM system to be discussed in

the later sections. Let the agent set be ✷ ✞ ✁ , ✞ ✂✹✸ . In ABSTRACT-TEAM, a query is denoted by

specifying the ranges of the features ✺ ✂ and ✺✼✻ . For example ✽ ✯ ✽✼✾✿☛✑✺ ✂ ☛✑❀ ✯ ✽ & ✡✲✽✿☛✑✺❁✻❂☛❃✡✱❄ .✗ ✁ is ✽ ✯ ✽✼✾❅☛❆✺ ✂ ☛❇❀ ✯ ✽ and ✗ ✂ is ✡✱✽❅☛❈✺✼✻✘☛❉✡✲❄ . In our example,
✞ ✁ retrieves a local case which is

simply a set of three features ✷❁✺ ✁ , ✺ ✂ , ✺ ✢ ✸ and
✞ ✂ retrieves a local case ✷❁✺❁❊ , ✺✼❋ , ✺❍● , ✺✼✻ ✸ . ☎ ✁ contains

four constraints ✷ C1: ✺ ✂✶■ ✽ ✯ ✽✼✾ , C2: ✺ ✂ ☛❏❀ ✯ ✽ , C3: ✺❑❊ ■ ✽ ✯ ❄❁❄ , C4: ✺❑❊✶☛❃✽ ✯ ▲ ❄ , ✸ ❊ and ☎ ✂ has three

constraints ✷ C5: ✺▼✻ ■ ✡✲✽ ✯ ✽ , C6: ✺✼✻◆☛❖✡✱❄ ✯ ✽ , C7: ✺ ✂ ☛❇✽ ✯ ✡ ✸ .
A case has a number associated attributes that involve measures of certain characteristics of a

case and are functions of the feature values of a case. Examples of attributes include reliability,

quality, uncertainty and cost. In addition to being acceptable to all agents, it is desirable that a case be

optimized along the attribute set. These requirements lead to organization of an agent’s constraints

as soft constraints and hard constraints where the former set represents solution preferences and

the later set represents those constraints that are relaxed only as a result of explicit recognition by

the agents that the set is too constrained to lead to a mutually acceptable solution[19]. Relaxing a

soft constraint may only involve penalties in terms of loss of optimality in the desirable attributes.

For example, relaxing a soft constraint in a multi-agent design system like CBR-TEAM (to be

discussed below) leads to less reliable components. Softness of a constraint represents its degree

of flexibility with some constraints being softer than others. On the other hand, hard constraints

are generally not relaxed except with an explicit understanding that the resulting responses satisfy

the query specifications only partially or are consistent with only a subset of the agents.

More formally, let a local solution space P be defined as a region in an n-dimensional feature-

space ◗❙❘ . Each point in this space represents a local case of n features. The set of hard-constraints

in an agent defines P . We can then define subspaces of P that represent satisfaction of various sets

of soft-constraints in addition to the set of hard constraints. Given P❯❚ , a subspace of P satisfying

a set of soft-constraints ❱ and the set of hard constraints, relaxing a constraint ❱ ✆✜❲ ❱ leads to a

subspace P ❚❨❳❩❚❭❬ such that

P❪❚ ✛ P❪❚❨❳▼❚❭❬ ✛ P
An agent iteratively identifies those regions in its local solution space P that satisfy as many of the

soft constraints as possible and the relevant non-local requirements of the other agents.

Adding a locally retrieved subcase ✣ ✤✮❫✆ ❫ to ✦ ✧ to form ✦◆❴✧ is represented as:

✦✘❴✧ ✩ ✦ ✧ ✣ ✤ ❫✆ ❫
Let the set of features for ✦ ✧ be represent by ✕ ✦ ✧ . Note that the feature set ✕ ✟❵ of a constraint☎ ✟ ❵ may involve features that are not members of the feature set of the local subcase. Such features

are called non-local features (or non-local parameters). For example, ✺❛❊ is a non-local parameter

for
✞ ✁ .
A projection of a partial case ✦ ✧ onto ☎ ❵ , the constraint set of agent

✞ ❵ , represents the set of

features from ✦ ✧ that participate in some constraint of ☎ ❵ .
✦ ❵ ✧ ✩ ✷❁✺✓✏✒✺ ❲ ✕ ✦★✧✠❜✿❝ ✁❡❞ ✟ ❞❣❢ ❤❥✐✲❢ ✺ ❲ ✕ ✟❵ ✸❊

In a specific problem-solving situation, an agent can substitute for its local features from the problem-

specification in its local constraint to get new constraints that are described only on non-local features.

Though the example here deals with simple numerical constraints, note that the mechanisms presented in

the paper are general enough to deal with constraints of any form.

5

An agent
✞ ✆ wanting to obtain the projection of a partial case ✦ ✧ = ✣ ✤✬✫✆ ✫ ✣ ✤✮✭✆ ✭ ✯✱✯✲✯ ✣ ✤ ✳✆ ✳ communicates

with agents ❦ ✁♠❧ ❦ ✂♥❧ ✯✲✯✲✯ ❧ ❦❡♦ to obtain the those relevant feature values that were not already commu-

nicated to the agent previously. An agent
✞ ✆ ✐ , upon a request for the value of a particular feature

in a local case ✣ ✤ ✐✆ ✐ , responds with transmission of the value to the requesting agent. Each agent’s

organizational knowledge
❋

about the distribution of relevant features among the set of agents can

aid it in deciding which agents to ask for what features. Projection is the minimum information an

agent needs to check the consistency of a partial case against its local constraint set. However, an

agent which anticipates and intends to serve the needs of other agents may obtain more information

than the projection and pass it on to these other agents, saving them the need to communicate

with a number of agents to obtain a projection. We have here a trade-off between the number of

communication events versus the amount of information communicated in these events. An agent

obtaining more information than a projection increases the number of bytes of communication but

can reduce the necessity for some other agents to communicate with a number of agents to obtain

their projections and consequently reduces the communication events.

For example, in order to check a partial case against ☎ ✁ , ✞ ✁ has to obtain its projection by

requesting
✞ ✂ for the value of feature ✺✼❊ of the corresponding local case, as ✺✼❊ is the only feature

participating in some constraint in ☎ ✁ and is not available locally. Similarly,
✞ ✂ requests

✞ ✁ for

the value of feature ✺ ✂ of the corresponding local case to validate a partial case against ☎ ✂ .
Each agent can choose to execute one of the following operators at a particular instance of time.

♣ Initiate a seed subcase:

Input: Agent
✞ ✆ that chooses to initiate a seed subcase uses the problem specification ✗q✆ ,

and locally known problem-solving state.

Output: A partial case ✦ ✧ = ✣ ✆✧✞ ✆ retrieves a subcase from its local casebase and forms a partial subcase with just one

local subcase. It uses the problem specification ✗✜✆ and the presently available information

on the problem-solving state (including previously tried solutions, conflicts they caused and

feedback in the form of violated constraints from other agents) to achieve this task
●
.

♣ Extend an existing partial case:

Input: ✦ ✆ ✧ to
✞ ✆

Output: ✦◆❴✧ = ✦ ✧ ✣ ✤✆ or a failure to extend.✞ ✆ decides to extend a partial subcase ✦ ✧ residing at
✞ ❵ and obtains the projection with

respect to the local constraints ☎✚✆ . It tries to retrieve a local case based on the information

available in ✦ ✆ ✧ and the locally known problem solving state.
✞ ✆ can either succeed or fail to

return a subcase or return an infeasible subcase that violates some constraints in the set ☎◆✆ .
If any violations are detected due to poor or infeasible values for features then feedback is

provided to the relevant agents (the feedback process is discussed in detail below). Note that

the extension operation need not assemble all the local cases in ✦r❴✧ at any one physical site.❋
Organizational knowledge consists of a specification of general node interaction patterns[9] or static

meta-level information about knowledge/case organization in the local databases of the agents.●
In general, a locally retrieved subcase is re-instantiated in the present context during this operation.

Adaptation of the retrieved subcase to the new context could also be performed in some systems.

6

It just needs to record the labels of all the subcases that can be assembled without any local

constraint violations with regard to the relevant agents.

♣ Merge existing partial subcases:

Input: ✦ ✆ ✧ and ✦ ✆ ✤ to
✞ ✆

Output: ✦✠s = ✦ ✧ ✦ ✤
An agent

✞ ✆ tries to merge two partially assembled composite cases ✦t✧✈✉ and ✦✇✧ ✐ from agent✞r①
and

✞ ❵ respectively. Merging involves obtaining projections ✦ ✆ ✧✈✉ and ✦ ✆ ✧ ✐ and testing for

violations on the set ☎ ✆ . If any violations are detected due to poor or infeasible values for

parameters then feedback is provided to the relevant agents
✻
.

♣ Inform other agents about a partial subcase:

Input: A set of partial cases that are the result of initiate or extend or merge operations at an

agent
✞ ✆ .

Output: A message sent to other agents.

An agent
✞ ✆ forms a new partial case ✦✰s due the successful execution of an operation like

initiate or extend or merge. Other agents have to be informed of the existence of this new

partial case so that they can make their decisions on the next operator to execute taking into

consideration this new partial case. An agent need not immediately inform all the others of

the existence of every new partial case it forms. It can decide to inform the existence of only

the “best” ones or to inform once every few time units, all the new partial cases that emerged

during the last time window. An agent may also decide to inform others about more than

just the existence of the cases. It may inform others about certain features or attributes of the

partial cases to aid them in their choice and execution of their operators.

Agents perform an asynchronous parallel distributed search to obtain a good overall case from

case pieces. At a given point in time, there may be more than one developing partial case.

Negotiation process involves an agent delivering feedback to another agent that in turn may

decide to accept it. The details of this process are discussed below ② .
A partial case ✦ ✧ is consistent with respect to ☎ ❵ if the feature values of the partial case do not

violate any constraint in ☎ ❵ . We denote this by ❱♥③✱④⑥⑤✹❦⑦⑤✲⑧⑩⑨♠④✥⑧ ☎ ❵❩❶❷✕ ✦★✧✲❸ . Two subcases ✦ ✧ and ✦ ✤ are

said to be consistent with respect to
✞ ❵ if the projections of ✦ ✧ and ✦ ✤ with respect to ☎ ❵ , ✦ ❵ ✧ and✦ ❵✤ do not violate any constraints in ☎ ❵ , i.e. ❱♥③✱④⑥⑤✹❦⑦⑤✲⑧⑩⑨♠④✥⑧ ☎ ❵ ❶❷✕ ✦ ❵ ✧t❹ ✕ ✦ ❵✤ ❸ .Agent

✞ ❵ has a set of predicates ❺ ❵ = ✷❍❻ ✁ ❵ , ❻ ✂ ❵ , ..., ❻ ❘ ❵ ✸ which are applied to any detected

inconsistent partial case projections ✷❩✦ ❵ ✧ , ✦ ❵✤ ✸ . Associated with each ❻♥✆ ❵ is a set of advice that can

act as a feedback to the agents corresponding to the subcases involved in the detected conflicts.❼ ❻♠✆ ❵ ✩❖✷❍❽ ✁❻♠✆ ❵ ❧ ❽ ✂❻⑩✆ ❵ ❧ ✯✬✯❾✯✬✯ ❧ ❽➀❿❻♠✆ ❵ ✸✻
Though we talk of applying the entire set of constraints at an agent at once, this process could be

distributed in time. An agent could apply different subsets of its local constraints at different times and

perform evidential reasoning on partially satisfied sets of solutions to decide on further application of

constraints like in DRESUN[6].② A similar method for generating feedback has been presented in [7].

7

➁❂➂❂➂➄➃ ➅➄➆r➇➄➈ ✩ ➉➊✷ ❼ ❻⑩✆ ❵❩➋ ❻⑩✆ ❵ ❶➌✦ ❵ ✧ ❧ ✦ ❵✤ ❸ ❦➌⑤✍⑧❨➍❑➎➏⑨ ✸
The set of advice could range from domain independent strategies to highly domain specific

ones. For example

1. Broaden the Retrieval: If the retrieval is similarity based i.e. based on numerical measures

of “closeness” of the retrieval feature vector to the corresponding feature vector of a retrieved

case, then broaden the search by obtaining cases with poorer similarity values.

2. Some CBR systems retrieve a case and use an adaptation strategy to massage the retrieved

case to fit the new situation. An agent could advise another agent to modify the retrieved

case in a different way - use a different adaptation strategy.

3. Each agent is expected to have some knowledge of the importance of a particular parameter’s

values and constraints, based on which it can advise another agent to relax a soft constraint

involving certain parameters.

4. An agent can advise another agent to change the values or ranges of certain parameters in

order to obtain better local solutions.

5. More Generic Retrieval: When an agent detects lack of progress either locally or at other

agents (based on the projections it receives from those agents) it could advise some of them

to relax their hard constraints. This is expected to take the retrieval process to qualitatively

different regions of the case base. Just as with soft constraints, the choice of which constraint

to relax is based on system-wide knowledge of some sort or on generic strategies each agent

possesses.

6. An agent recognizes particular features of the solution space and decides to use a more

efficient customized search strategy. It can advise the other agent to play a particular role in

this customized search. Lander[16] presents a good example of a customized search called

linear compromise where agents, upon recognizing the linear nature of their solution space,

decide to exchange end points and extrapolate between them to find the intersection point as

a mutual compromise solution.

For example, in ABSTRACT-TEAM, the feedback is very simple. When an extend or merge

violates a constraint, the constraint is communicated as feedback to agents whose local case features

include the feature on which the constraint is defined. For example, agent
✞ ✂ tries to merge its

locally retrieved case ((✺❩✻ = 12) (✺❑● = 0.0058) (✺▼❋ 0.00154) (✺❁❊ = 1.55)) with
✞ ✁ ’s local case ((✺ ✢ =

0.69) (✺ ✂ = 0.48) (✺ ✁ = 5)) and finds that the constraint C7: ✺ ✂ ☛❇✽ ✯ ✡ is violated. For each agent
✞ ✆ ,

the ❻♠✆ ❵ is simply the violated(☎ ❵✆). Each
❼◆➐ ✆✮➑❨➒➔➓ ✤✮→❷➣♠↔ ☎ ❵✆❍↕ is ✷❁☎ ❵✆ ✸ . In our example,

✞ ✂ communicates

C7 to
✞ ✁ .

Thus, in addition to the three operators we discussed previously for creating and extending

partial subcases, agents also have the following two operators for communicating and assimilating

feedback to/from other agents.

8

♣ Send FEED BACK on conflicts:

Agent
✞ ✆ , upon detection of conflicts during a merge or an extend, creates the FEED BACK

set and communicates a subset of it to the relevant agents.

♣ Assimilate FEED BACK from other agents:

The process of assimilation enhances an agent’s view of the global requirements. Agent✞ ✆ , upon receiving a FEED BACK set, assimilates it into its local constraint set, creating

a new and updated ☎✇✆ . Assimilation may involve processes like relaxing a constraint ☎ ❵✆ ,
or adding a new constraint to ☎✇✆ . Note that the assimilation of FEED BACK need not

be instantaneous and different advice may be assimilated at different times. For example,

advice may be assimilated only after it is repeatedly received for at least ‘x’ times. In

addition, assimilation may be specialized based on context i.e. the feedback assimilated is

applicable only in specific contexts at the local agent. For example, a particular constraint

may be applicable only if certain features are within certain ranges of values[8]. In addition,

assimilation process may also involve transformations where an agent uses the feedback

from other agents to generate its own local constraints rather than directly incorporating the

feedback. Such a transformation may follow a process similar to that of generating feedback,

where a series of transformation operators may be applied to each piece of advice to generate

local constraints.

In both the CBR-TEAM and ABSTRACT-TEAM systems to be discussed later, the constraints

are numerical and apply to a single parameter. The feedback generated from the violation of such

a constraint simply consists of that constraint. Thus agent
✞ ✁ receives the constraint ✺ ✂ ☛❉✽ ✯ ✡ as

feedback and the next local case retrieval avoids any case with feature ✺ ✂ ☛✑✽ ✯ ✡ . However, note

that the feedback strategies enumerated above are more general and apply to situations involving

more than just single parameter constraint violations. For example, say agent
✞ ✆ detects a violation

of a constraint ❺ ✂⑩➙➜➛ ❺ ✂ ➋ ➇ ☛❉✡ , where the capacitor value C is a non-local feature. Based on the

domain knowledge,
✞ ✆ may advise agent

✞ ①
whose local case contains C as its feature, asking it

to initiate a case with capacitance in the next range of Farads. When this case is merged at a later

time with a local case of
✞ ✆ , there is a lesser chance that the same constraint is violated again.

How do the agents decide on which operator to instantiate next and what partial cases on which

to apply the chosen operator? This decision is intricately tied to the domain. Domain imperatives

dictate the preconditions for each of these operators. These preconditions can either be coded in

by the DCBR designer or can be learned ➝ . The specifics of domain heuristics for the choice of

operators and partial cases to work on at a given time are beyond the scope of this paper.

Termination criteria depend on problem solving requirements. Various termination criteria

ranging from simple heuristics to complicated decision theoretic methods have been proposed for

multi-agent systems[8]. One simple criteria used in our DCBR systems to be discussed later is as

follows: Any agent that detects a case that has subcase contributions by all the relevant agents and

has been validated against their local constraints issues a termination message to all the agents.

More formally, a complete case ✦✰s➞✩❇✣ ✆ ✫ ✣ ✆ ✭ ✯✲✯✲✯ ✣ ✆ ✳ is defined as:➟ ✣ ✆ ❫❯➠ ✣ ✆✮➡❩➢ ✦❯s ❦ ❿➥➤✩➦❦ ❘ ❜ ➟ ✞ ➓ ➢➨➧ ❝ ✣ ✆ ❫ ➢ ✦❯s ❦ ❿ ✩❇➩ ❜ ❱♥③✹④➏⑤✹❦⑦⑤✲⑧♠⑨♠④❪⑧ ☎✇➓ ❶❷✕ ✦❯s ❸
➝ NagendraPrasad, Lander and Lesser[20] discuss in detail the issues in learning the order of instantiation

of such operators.

9

Algorithms similar to those of the negotiated retrieval already exist in the literature on multi-

agent systems. DENEGOT system[19] presents a distributed negotiation algorithm for distributed

planning and TEAM presents a negotiated search algorithm for distributed search among a set

of heterogeneous agents[16]. Negotiated retrieval is specifically tailored to distributed casebases

with strategies for broadening and deepening a search in a casebase not necessarily applicable to

planning domains dealt with in DENEGOT. In addition, negotiating over conflicts in subcases can

be qualitatively different from negotiations over plans in DENEGOT. For example, detection of

interactions in DENEGOT involves elaborate reasoning about the local plans. In Case Based Sys-

tems, elaborate reasoning about cases may be infeasible because cases often implicitly encompass

a lot of knowledge about subgoal interactions. Thus we resort to weak declarative constraint based

knowledge to reason about possible interactions between subcases. The strategies in negotiated

retrieval include the strategies in negotiated search as a subset. In this sense, negotiated retrieval

is more general than negotiated search. In addition, negotiated search as discussed in Lander[16]

imposes a sequentiality in search by giving an agent only two options — either extend an existing

solution or initiate a new solution which other agents sequentially extend.

The following section presents a multi-agent system that incorporates a restricted form of

negotiated retrieval (i.e. negotiated search as discussed in Lander[16]) and then shows a brief trace

from the system. In the section on experiments, we discuss an abstract DCBR system and show

some early empirical results on the negotiated retrieval mechanism.

3 CBR-TEAM: A Multi-Agent Design System

We now present a multi-agent system called CBR-TEAM whose core is derived from TEAM[16].

TEAM is a parametric design system that uses a cooperative heterogeneous set of reusable agents,

each of which has the capability to produce a component of the overall design which is stored in a

centralized blackboard. The TEAM system has six domain agents for the design of six components

in a steam condenser and a critic agent that checks for certain features in the assembled design. It

is a multi-strategy inferencing system[16] in which different strategies are seamlessly integrated

into a design framework. The interactions between the components generate constraints for these

strategies leading agents to iteratively negotiate on their results to find an acceptable design. When

the components of the individual agents are being assembled, violation of constraints due to

mismatches on mutually known parameters leads to information exchange followed by redesign.

Agents whose components do not “match” are said to be in conflict. The conflicting set of

agents negotiate a resolution which involves a search guided by numerical-valued constraints on

the mutually known parameters, or other strategies like linear compromise[16]. CBR-TEAM is a

modification of the TEAM system and comprises a subset of the agents that retrieve and use suitable

members from catalogues of manufacturer-specified models for designing their components. These

agents use the negotiated retrieval strategy where a new sub case is retrieved by each of the agents

in conflict. This retrieval is guided by a set of simple numerical-valued constraints on the shared

interface parameters. Interface parameters are those features of a case that are shared by more

than one agent. All the relevant agents have to reach an agreement on the values of the shared

parameters. We will discuss CBR-TEAM in more detail below.

The user gives a problem specification which consists of minimum head size for the pump in the

required design. There are three agents named Motor-agent, Pump-agent and Vbelt-agent which

10

are responsible for design of the motor, pump and Vbelt components respectively. Each of these

agents retrieves a suitable design from a catalogue of manufacturer specified designs. Indexing

into a catalogue is based on design requirements and also the requirements of the components of

other agents that may interact with the components of this agent. An agent does an initiate if it

had no subcase to extend. If a conflict is detected a send operation is performed with the constraint

that was violated. When an agent receives feedback from others, it immediately assimilates the

feedback. The retrieved local cases are placed in a central blackboard and hence there is no need

for an inform operator. Any partial case generated by an agent is completely visible to all the

other agents. During the initial phase of retrieval, the agents may have only partial information

on the requirements of other interacting components. So, each of the agents chooses the lowest

cost design based on the information available to it. Trying to assemble these components into an

overall design may lead to conflicts due to mismatches in the parameters that are shared by two or

more components. For example, Vbelt and Pump have required-pump-power as a shared parameter

and both the Vbelt agent and the Pump agent impose their own set of constraints on this parameter.

A mismatch on this parameter involves one agent assigning a value to the parameter that violates

the constraints in another agent. Each of the agents negotiate with the other agents in conflict to

resolve any mismatches. This is done by posting locally generated requirements on the shared

parameters that are involved in the conflict to the relevant agents. The agents then do another round

of retrieval using the previous information and the new requirements from other agents to get better

cases to be assembled into a design that does not produce the same conflict.

CBR-TEAM does not allow relaxation of hard constraints. It relaxes only soft constraints.

Soft constraints are arbitrarily divided into four levels, 1 to 4, with 4 being the level that involves

least loss of desirability if a constraint at this level is relaxed. Soft constraints are tied to the cost

attribute of a component. Lower cost components satisfy more soft constraints. Violations of any

hard constraints, considered to be at level 0, leads to failure. Another feature of CBR-TEAM is

unilateral relaxation. When an agent finds that its progress has been stagnated for a long time, it

unilaterally relaxes its local requirements so as to allow retrieval of subcases with poorer similarity

to the requirements.

Note that the retrieval process is iterative and can happen many times until a case of required

quality is obtained.

Below we give a simplified example trace of CBR-TEAM during a design session
✁❷➫

. Problem

specification, known to all the agents (that understand it) is the minimum head for the pump.

An illustrative subset of constraints for the Motor agent includes:✡ ✯ motor-horse-power ■ pump-required-power❧✰➭ ⑨♠➯➲⑨ ➭ ✽❀ ✯ motor-drive-speed ■ ✡✲❀✼✽❁✽ , level 0✾ ✯ pump-required-power ☛❇❄ ✯ ✽ , level 1➳ ✯ pump-required-power ☛ ➳ ✯ ✽ , level 3

For the Pump agent:✡ ✯ motor-horse-power ■ pump-required-power ❧❯➭ ⑨⑩➯➲⑨ ➭ ✽❀ ✯ pump-required-power ☛❇✾❁✽ , level 0

For the Vbelt agent:✁➵➫
There are a number of other constraints, but we just show an illustrative subset here.

11

✡ ✯ motor-drive-speed ☛❉✡✲❀➸✡✱❄✼✾ ✯➻➺ ❄ , level 0

Initially, all three agents have a local partial view of the problem solving situation. The agents

have certain local constraints on the parameters, and based on these constraints they retrieve a

template and develop the best component design. The Pump agent retrieves a PUMP TEMPLATE

“model4-impeller43-wfr1”to build PUMP “pp pump 1”. The Motor agent attempts to extend this

by retrieving MOTOR TEMPLATE “motor10” and building MOTOR "mp motor 1”. However, it

detects that this leads to a violation of soft constraints and hence enters into a negotiation with all

the relevant agents (those that know about the parameters involved in conflict). In CBR-TEAM,

the negotiation process is simple. The agent that detects any conflict on a parameter simply

communicates the constraints whose violation led to the detection of that conflict. In this example,

the Motor Agent detects and communicates conflict on the required power parameter. It sends out

the constraint — (pump-required-power ☛ ➳ ✯ ✽ , 3) to the Pump agent. The Vbelt agent fails to

retrieve any templates based on the local constraints.

The following figures show the designs formed by the Pump and Motor agents during this step.

The Pump agent uses “model4-impeller43-wfr1” to build PUMP “pp pump 1” which basically

consists of slots filled in by parameters from the template and some other slots filled in by functions

for calculating case attributes.

PUMP pp_pump_1 an object of class PUMP

MODEL: "model4-impeller43-wfr1"

WATER-FLOW-RATE: 104.125

MAX-HEAD: 288.63

AVAILABLE-HEAD: 257.5425

PUMP-REQUIRED-POWER: 10.987118

RUN-SPEED-RANGE: (2700.0 3300.0)

PUMP-RUN-SPEED: 3000

COST: 228.0625

WEIGHT: 50.503906

EVALUATION: (:PUMP-AGENT :GOOD)

ACCEPTABILITY: :ACCEPTABLE

The Motor agent retrieves MOTOR-TEMPLATE “motor10” from the template database to

build MOTOR "mp motor 1".

MOTOR "mp_motor_1" an object of class MOTOR

MODEL: "motor10"

PUMP-REQUIRED-POWER: 10.987118

SPEED-RANGE: NIL

WEIGHT-RANGE: NIL

HORSEPOWER: 15.0

MOTOR-DRIVE-SPEED: 2400

COST: 650.0

WEIGHT: 150

EVALUATION: (:MOTOR-AGENT :FAIR)

ACCEPTABILITY: :UNACCEPTABLE

The Vbelt agent fails to retrieve any templates based on the local constraints. These constraints

are not tight enough to retrieve any templates that pass the tests setup by the local filters.

Note that during the time the Motor agent is extending a partial case seeded by the Pump

agent, the Pump and Vbelt agents themselves could be initiating other seed subcases due to the

12

asynchronous nature of the distributed search.

Given the increased awareness of the Motor agent’s requirements, the Pump agent attempts a

new round of retrieval and generates PUMP “pp pump 4”. It takes the Motor agent’s communicated

constraints into consideration while doing this. The Motor agent thus successfully adds its subcase

MOTOR “mp motor 4” and the Vbelt agent adds VBELT “vbelt 1” giving the final design.

The Pump agent retrieves PUMP-TEMPLATE “model4-impeller43-wfr2” from the pump tem-

plate database to build PUMP “pp pump 4”.

PUMP "pp_pump_4" an object of class PUMP

MODEL: "model4-impeller43-wfr2"

WATER-FLOW-RATE: 0.5

MAX-HEAD: 288.63

AVAILABLE-HEAD: 288.63

PUMP-REQUIRED-POWER: 0.1

RUN-SPEED-RANGE: (2700.0 3300.0)

PUMP-RUN-SPEED: 3000

COST: 228.0625

WEIGHT: 50.503906

EVALUATION: (:PUMP-AGENT :GOOD)

ACCEPTABILITY: :ACCEPTABLE

The Motor agent retrieves MOTOR-TEMPLATE “motor1” from the template database to build

MOTOR “mp motor 4”.

MOTOR "mp_motor_4" an object of class MOTOR

MODEL: "motor1"

PUMP-REQUIRED-POWER: 0.1

SPEED-RANGE: NIL

WEIGHT-RANGE: NIL

HORSEPOWER: 1.0

MOTOR-DRIVE-SPEED: 2400

COST: 100.0

WEIGHT: 33

EVALUATION: (:MOTOR-AGENT :EXCELLENT)

ACCEPTABILITY: :ACCEPTABLE

The Pump agent and the Motor agent have retrieved satisfactory design templates and the

Vbelt agent needs to attempt a retrieval of a Vbelt template. The power parameter from PUMP

“pp pump 4” and the drive speed parameter from MOTOR “mp motor 4” are the shared parameters

for the Vbelt-agent that are used to determine the retrieval of VBELT-TYPE-TEMPLATE 3VX

13

that in turn is used by the Vbelt agent to design VBELT “vbelt 1”.

VBELT vbelt_1 an object of class VBELT

BELT-TYPE: :3VX

BELT-LENGTH: 25.0

DRIVE-DIAMETER: 2.5

LOAD-DIAMETER: 2.2

NUMBER-OF-BELTS: 1

REQUIRED-POWER: 0.1

MOTOR-DRIVE-SPEED: 2400

LOAD-SPEED: 2727.2727

BELT-FORCE: 7.3234771990515d0

LOAD-PULLEY-WEIGHT: 1.0621228

BELT-LIFE: 334905.70545380004d0

COST: 34.864

WEIGHT: 2.3162665

EVALUATION: (:VBELT-AGENT :EXCELLENT)

ACCEPTABILITY: :ACCEPTABLE

This completes the design consisting of PUMP “pp pump 4”, MOTOR “mp motor 4” and

VBELT “vbelt 1”.

4 Experimental Results

In order to get a better insight into the proposed negotiated retrieval mechanism for distributed

casebases, we built an abstract version of CBR-TEAM, called the ABSTRACT-TEAM. It captures

the essential aspects of CBR-TEAM, while stripping it of domain-specific complexities. The rest of

this section will discuss ABSTRACT-TEAM in some detail and follows it with some experimental

results demonstrating the benefits of negotiated retrieval.

Agents in ABSTRACT-TEAM have to assemble a mutually consistent composite case from

local cases retrieved from local casebases. Each agent possesses constraints which may be defined

on both local and non-local features. Each agent has a local casebase which is a list of feature

vectors. At this point of our work, the control for negotiated retrieval was intentionally kept simple

to avoid obfuscating some of the more important issues that we wanted to gain insight into. During

Phase I, each of the agents retrieves best local case in parallel, based on local constraints derived

from problem specification and initiates a seed partial case. In this phase, each agent constrains its

local retrieval to avoid cases which violate constraints on local features. During Phase II, an agent

informs the other agents about the existence of a new partial case. During Phase III, each agent

tries to merge its local partial case with partial cases from the other agents. Each agent obtains the

relevant projections from other agents and checks the feature values against its local constraint set

for violations. If a violation is detected, the corresponding constraint is conveyed to the relevant

agents and is immediately assimilated. A new iteration of negotiated retrieval is then initiated, but

this time with an enhanced view of the problem-solving requirements for at least one agent.

For the experiments reported below, we used the example discussed in Section 2. A case of
✞ ✁

consisted of three features, and a local casebase was built by randomly generating feature vectors

and their corresponding costs. Cases for
✞ ✂ had four features and a local casebase was similarly

generated. Constraints that could be communicated to other agents had a representation similar

to that in CBR-TEAM; numeric-valued constraints on single features. At present
✞ ✁ has a single

constraint that it could communicate to
✞ ✂ and

✞ ✂ has two constraints that it can communicate to

14

✞ ✁ . ABSTRACT-TEAM in the experiments below had only hard constraints and hence did not

deal with optimizing any attributes on a case. Composite case had seven features corresponding

to three from
✞ ✁ and four from

✞ ✂ . Problem specification consists of required ranges on certain

features
✁❡✁

.

Figure 2 shows the time taken by agents executing negotiated retrieval to obtain a mutually

acceptable best case
✁❨✂

. Thirty runs at each casebase size are plotted. The casebases are initialized

to be different for each run. The mean time shows an almost linear rise with the casebase size. The

rectangular boxes show interquartile ranges — the top and bottom of a rectangle shows the 75th

and 25th quantiles. The median or the 50th quantile is shown as a line in the body of the box.

0

10

20

30

40

50

60

50 70 90 110 150 200 250 300

Case Base Size

N
R
A

R
e
t
r
i
e
v
a
l

T
i
m
e

Figure 2: Negotiated Retrieval Time versus Casebase Size

We next compared the negotiated retrieval against a simpler algorithm which involves retrieval

and conflict detection but no explicit feed back through negotiation and exchange of constraints.

Thus, detection of conflict simply leads to another round of retrieval. We again conducted thirty

runs at each casebase size, noting the time difference between the simple retrieval algorithm and the

negotiated retrieval algorithm for each casebase. Figure 3 shows that the difference rises sharply

with the casebase size with the simple retrieval algorithm taking increasingly larger times compared

to negotiated retrieval
✁ ✢ .✁❡✁

Note that our description of ABSTRACT-TEAM does not highlight the fact that in a more general

system some of the constraints are emergent - some of the requirements on the solutions emerge as the

problem solving progresses. In addition, the constraints exchanged could be context-dependent meaning

that they are applicable only in certain contexts which are known only during the problem solving and not

apriori. Thus simply exchanging all the constraints at the beginning of problem solving is not a feasible

method for the problem solving process described here.✁➼✂
The exact units of time are unimportant here. We used (get-internal-run-time) provided by Harlequin’s

Lispworks development environment.✁ ✢ CBR-TEAM has certain constraints that can be communicated and certain others that cannot be, due

to its limited form of representation on communicable constraints. If the detected conflict is due to a non-

15

0

100000

200000

50 70 90 110 150 200 250 300

Case Base Size

D
i
f
f
e
r
e
n
c
e

T
i
m
e
s

Figure 3: Difference in times of the simple retrieval algorithm and negotiated retrieval

5 Related Work

Much of the CBR literature is concerned with casebases of a single agent. There has been some

work in breaking a single case into pieces and reasoning with these pieces in a single agent context.

MEDIATOR[15] represents large cases monolithically with pieces embedded as parts which can

be located within a larger case. A case is indexed both by its own indices and those of its pieces.

This sort of representation is different from the the distributed casebase scenario we discussed in

the paper. In a multi-agent system, there may be no monolithic case until the subcases are retrieved

and assembled.

Barletta and Mark[2] break cases into pieces where each piece is a sequence of actions used

to recover from a hypothesized fault. JULIANA[25] and CELIA[23] implement a distributed case

representation tha t is closer in spirit to the work described here. Cases are broken into pieces

called snippets, each of which represents the pursual of a goal. These snippets are linked to other

causally related snippets. Following the links can reconstruct a full case. Each snippet has a

pointer to the case header, its goal and the context in which it is embedded. During problem

solving, an individual snippet can be retrieved and used to pursue a subgoal related to its goal. The

next subgoal can be pursued using a snippet from an entirely different case. In all these systems,

both the global context and the internal context of a piece in a case are carefully extracted and

used as indices for that piece to avoid inconsistencies among pieces participating in a problem

solving run. However, in multi-agent systems the agent casebases may be developed in disparate

situations making it impractical to follow this strategy. So negotiated retrieval tries to deal with

incompatibilities between pieces by detecting and resolving them at the retrieval time.

Rissland et al[24] discuss a CBR system called FRANK for report generation. Based on user’s

communicable constraint, then the corresponding agent can only reject a composite solution without being

able to give any feedback, just as in the simple retrieval algorithm above. However, if the conflict detected

is communicable, then the behavior is similar to negotiated retrieval. Thus, the overall performance of the

system will lie somewhere in between the spectrum whose ends are represented by negotiated retrieval and

the simple retrieval algorithm.

16

preferences and requirements, a report type is selected. Each report type is associated with groups of

strategies which act as indices into a library of plans. A plan is selected and instantiated to generate

a report. Among other things, FRANK includes various types of responses to a failure to retrieve an

adequate set of plans. It exploits information about failures to select better alternatives.The system

tries alternative plans under the present group of strategies for report generation. Failing that, the

systems tries alternative grouping of strategies. If this leads to a failure, the system changes the

report type that it is trying to generate. This sort of broadening of allowed strategies upon failure

is similar to the broadening of retrieval in our algorithm.

The negotiated retrieval algorithm benefits from a long history of thought in DAI and Multi-

agent systems. Lesser[18] discusses the importance of interactions among subgoals and data

distributed across a set of agents in distributed problem solving. Selectively sharing relevant partial

results of a local search or data can enhance the global problem solving quality and efficiency

without paying a large price for communication. In some recent studies, Decker and Lesser[12]

further quantify these observations and discuss various trade-offs involved in communication vs

enhanced problem solving efficiency. However, much of the past work in DAI has primarily

focussed on exploiting interactions among subgoals to resolve control uncertainty. This paper

deals with explicit detection of inconsistencies among the local solutions and subsequent focussed

resolution of these inconsistencies[7]. In negotiated retrieval, feedback on the causes of conflicts

detected leads to an improved retrieval in subsequent rounds where these conflicts are avoided. An

agent which assimilates feedback from other agents enhances its view of global problem solving

requirements leading to an improved retrieval process.

Sycara’s work on PERSUADER[26] deals with a negotiation model for multi-agent compromise

where a mediator agent tries to persuade parties (labor and management) in conflict. The model

generates proposals and counterproposals seeking to reduce the differences between the interests

of the parties involved by incrementally modifying their beliefs to converge on common interests.

PERSUADER draws upon a variety of techniques like case-based reasoning and multi-attribute

utility theory to construct compromise solutions through incremental modifications to solution parts

rather than by a composition of partial solutions.

6 Conclusion & Future Work

This paper makes an initial foray into methods for performing retrieval of cases distributed across

multiple agents. Constraints emerge dynamically, as a result of the on-going problem solving

activity. Negotiated retrieval performs focused exchange of information on these constraints to

achieve a more coordinated distributed case retrieval. Our future work includes deploying and

testing the system on real domains like networked information retrieval.

7 Acknowledgments

The first author would like to thank Qiegang Long for providing the initial encouragement to work

on the ideas presented here and also for providing constructive criticism at various stages of the

work. The authors would like to thank K. Decker, D. Nieman, Tim Oates, Z. Rubinstien and D.

Skalak for reading draft versions of the paper and providing useful inputs.

17

References

[1] Arens,Y., Chee, C. Y., Hsu, C., and Knoblock, C. A., “Retrieving and integrating data

from multiple information sources”, in International Journal on Intelligent and Cooperative

Information Systems, 2 (2), 1993, pp. 127-158.

[2] R. Barletta and W. Mark., “Breaking cases into pieces”, In Proceedings of Case-Based

Reasoning Workshop, St. Paul, MN., 1988, pp 12-17.

[3] A. H. Bond and L. Gasser, Eds., Readings in Distributed Artificial Intelligence, Morgan

Kaufmann Publishers, 1988.

[4] M. C. Bowman, P. B. Danzig, U. Manber, and M. F. Schwartz, “Scalable Internet Resource

Discovery: Research Problems and Approaches”, Communications of the ACM, 37(8), 1994,

pp 98 - 107, cntd on 114.

[5] D. R. Brown, R. Mecklenburg, D. L. Crandall, K. Y. Hwang, and R. Haddad, “Distributed

Component Information in Engineering Design”, 1995, submitted for review.

[6] N. Carver, Z. Cvetanovic, and V. Lesser., “Sophisticated Cooperation in FA/C Distributed

Problem Solving Systems”, in Proceedings of AAAI-91, 1991, pp 191-198.

[7] N. Carver, Q. Long, and V. R. Lesser, “Reasoning About Inconsistency in Cooperative

Distributed Problem Solving”, 1995, Forthcoming Technical Report, Department of Computer

Science, University of Massachusetts, Amherst.

[8] S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer, “Multistage Negotiation for

Distributed Constraint Satisfaction”, IEEE Systems, Man, and Cybernetics, 21(6), pp 1462-

1477.

[9] D. D. Corkill and V. R. Lesser, “The use of meta-level control for coordination in a distributed

problem solving network”, in Proceedings of the Eighth International Joint Conference on

Artificial Intelligence, pp 748-756, Karlsruhe, FRG, 1983.

[10] D. D. Corkill, A Framework for Organizational Self-design in Distributed Problem-solving

Networks, Ph.D. Dissertation, Dept. of Computer Science, University of Massachusetts,

Amherst, 1983.

[11] K. Decker and V. R. Lesser, “Generalizing the Partial Global Planning Algorithm”, Interna-

tional Journal of Intelligent and Cooperative Information Systems, 1(2), 1992.

[12] K. Decker and V. R. Lesser, “ Quantitative Modeling of Complex Computational Task Envi-

ronments”, in Proceedings of the Eleventh National Conference on Artificial Intelligence, pp

217-224, Washington, 1993.

[13] E. H. Durfee and V. R. Lesser, “Partial Global Planning: A coordination framework for

distributed hypothesis formation”, IEEE Transactions on Systems, Man, and Cybernetics,

21(5):1167-1183, September 1991.

18

[14] Kolodner, J. L., Case-Based Reasoning, Morgan Kaufmann Pub., 1993.

[15] Kolodner, J. L. and Simpson, R. L., , “The MEDIATOR: Analysis of an early case-based

problem solver”, Cognitive Science 13(4), 1989, pp 507-549.

[16] Lander, S. E., Negotiated Search in Heterogeneous Multi-Agent Systems, Ph.D. thesis, De-

partment of Computer Science, University of Massachusetts, Amherst, 1993.

[17] Lander, S. E and Lesser, V. R., Understanding the Role of Negotiation in Distributed Search

Among Heterogeneous Agents, in Proceedings of the International Joint Conference on

Artificial Intelligence, Chambery, France, 1993, pp 438 - 444.

[18] Lesser, V. R., “A retrospective view of FA/C distributed problem solving”, IEEE Systems,

Man, and Cybernetics, 21(6), pp 1346-1363.

[19] Moehlman, T., Lesser, V. R., and Buteau, B., “Decentralized Negotiation: An Approach to

the Distributed Planning Problem,” Group decision and Negotiation, 1(2), Kluwer Academic

Publishers, 1992, pp 161-192.

[20] Nagendraprasad, M. V., Lesser, V. R., and Lander, S. E., “Learning Organizational Roles in a

Multi-agent System”, Submitted for publication, 1994.

[21] Tim Oates, M V NagendraPrasad, V. R. Lesser, “Cooperative Information Gathering: A

Distributed Problem Solving Approach”, Technical Report 94-66, Dept. of Computer Science,

University of Massachusetts, Amherst, 1994.

[22] Partnet: http://part.net

[23] Redmond, M.A., “Distributed cases for case-based reasoning: Facilitating use of multiple

cases”, In Proceedings of AAAI-90, Cambridge, MA, AAAI Press/MIT Press, 1990, pp

304-309.

[24] Rissland, E., Daniels, J., Rubinstein, B., and Skalak, D., “Case-Based Diagnostic Analysis

in a Blackboard Architecture”, in the Proceedings of the Eleventh National Conference on

Artificial Intelligence, pp 66-72, Washington, 1993.

[25] Shinn, H.S., “The Role of mapping in analogical transfer”, In Proceedings of the Tenth Annual

Conference of the Cognitive Science Society, Northvale, NJ:Erlbaum, 1988.

[26] Sycara, E.P., Resolving Adversarial Conflicts: An Approach to Integrating Case-Based and

Analytic Methods, Ph.D. thesis, Technical Report No. GIT-ICS-85/18, School of Information

and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1987.

19

