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Abstract

The vast amounts of on-line text now available have led to renewed interest in information
extraction (IE) systems that analyze unrestricted text, producing a structured represen-
tation of selected information from the text. This paper presents a novel approach that
uses machine learning to acquire knowledge for some of the higher level IE processing.
Wrap-Up is a trainable IE discourse component that makes intersentential inferences and
identi�es logical relations among information extracted from the text. Previous corpus-
based approaches were limited to lower level processing such as part-of-speech tagging,
lexical disambiguation, and dictionary construction. Wrap-Up is fully trainable, and not
only automatically decides what classi�ers are needed, but even derives the feature set for
each classi�er automatically. Performance equals that of a partially trainable discourse
module requiring manual customization for each domain.

1. Introduction

An information extraction (IE) system analyzes unrestricted, real world text such as newswire
stories. In contrast to information retrieval systems which return a pointer to the entire
document, an IE system returns a structured representation of just the information from
within the text that is relevant to a user's needs, ignoring irrelevant information.

The �rst stage of an IE system, sentence analysis, identi�es references to relevant objects
and typically creates a case frame to represent each object. The second stage, discourse
analysis, merges together multiple references to the same object, identi�es logical relation-
ships between objects, and infers information not explicitly identi�ed by sentence analysis.
The IE system operates in terms of domain speci�cations that prede�ne what types of infor-
mation and relationships are considered relevant to the application. Considerable domain
knowledge is used by an IE system: about domain objects, relationships between objects,
and how texts typically describe these objects and relationships.

Much of the domain knowledge can be automatically acquired by corpus-based tech-
niques. Previous work has centered on knowledge acquisition for some of the lower level
processing such as part-of-speech tagging and lexical disambiguation. N-gram statistics have
been highly successful in part-of-speech tagging (Church, 1988; DeRose, 1988). Weischedel
(1993) has used corpus-based probabilities both for part-of-speech tagging and to guide
parsing. Collocation data has been used for lexical disambiguation by Hindle (1989), Brent
(1993), and others. Examples from a training corpus have driven both part-of-speech and
semantic tagging (Cardie, 1993) and dictionary construction (Rilo�, 1993).
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This paper describes Wrap-Up (Soderland & Lehnert, 1994), the �rst system to auto-
matically acquire domain knowledge for the higher level processing associated with discourse
analysis. Wrap-Up uses supervised learning to induce a set of classi�ers from a training cor-
pus of representative texts, where each text is accompanied by hand-coded target output.
We implemented Wrap-Up with the ID3 decision tree algorithm (Quinlan, 1986), although
other machine learning algorithms could have been selected.

Wrap-Up is a fully trainable system and is unique in that it not only decides what
classi�ers are needed for the domain, but automatically derives the feature set for each
classi�er. The user supplies a de�nition of the objects and relationships of interest to the
domain and a training corpus with hand-coded target output. Wrap-Up does the rest with
no further hand coding needed to tailor the system to a new domain.

Section 2 discusses the IE task in more detail, introduces the microelectronics domain,
and gives an overview of the CIRCUS sentence analyzer. Section 3 describes Wrap-Up,
giving details of how ID3 trees are constructed for each discourse decision, how features
are automatically derived for each tree, and requirements for applying Wrap-Up to a new
domain. Section 4 shows the performance of Wrap-Up in two domains and compares its
performance to that of a partially trainable discourse component. In Section 5 we draw
some conclusions about the contribution of this research. A detailed example from the
microelectronics domain is given in an appendix.

2. The Information Extraction Task

This section gives an overview of information extraction and illustrates IE processing with
a sample text fragment from the microelectronics domain. We then discuss the need for
trainable IE components to acquire knowledge for a new domain.

2.1 An Overview of IE

An information extraction system operates at two levels. First, sentence analysis identi�es
information that is relevant to the IE application. Then discourse analysis, which we will
focus on in this paper, takes the output from sentence analysis and assembles it into a
coherent representation of the entire text. All of this is done according to prede�ned guide-
lines that specify what objects from the text are relevant and what relationships between
objects are to be reported.

Sentence analysis can be further broken down into several stages, each applying di�erent
types of domain knowledge. The lowest level is preprocessing, which segments the text into
words and sentences. Each word is assigned a part-of-speech tag and possibly a semantic
tag in preparation for further processing. Di�erent IE systems will do varying amounts of
syntactic parsing at this point. Most research sites that participated in the ARPA-sponsored
Message Understanding Conferences (MUC-3, 1991; MUC-4, 1992; MUC-5, 1993) found
that robust, shallow analysis and pattern matching performed better than more elaborate,
but brittle, parsing techniques.

The CIRCUS sentence analyzer (Lehnert, 1990; Lehnert et al., 1992) does shallow syn-
tactic analysis to identify simple syntactic constituents, and to distinguish active and passive
voice verbs. This shallow syntactic analysis is su�cient for the extraction task, which uses
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local linguistic patterns to instantiate case frames, called concept nodes (CN's) used by
CIRCUS.

Each CN de�nition has a trigger word and a syntactic pattern relative to that word.
Whenever the trigger word occurs in the text, CIRCUS looks in one of the syntactic bu�ers
for appropriate information to extract. Some CN de�nitions will extract information from
the subject or from the direct object, �rst testing for active or passive voice. Other CN
de�nitions look for a prepositional phrase with a particular preposition. Examples of CN
extraction patterns from a particular domain are shown in Section 2.3.

Discourse analysis starts with the output from the sentence analyzer, in this case a set
of concept nodes representing locally extracted information. Other work on discourse has
often involved tracking shifts in topic and in the speaker/writer's goals (Grosz & Sidner,
1986; Liddy et al., 1993) or in resolving anaphoric references (Hobbs, 1978). Discourse
processing in an IE system may concern itself with some of these issues, but only as a
means to its main objective of transforming bits and pieces of extracted information into a
coherent representation.

One of the �rst tasks of discourse analysis is to merge together multiple references to
the same object. In a domain where company names are important, this will involve rec-
ognizing the equivalence of a full company name (\International Business Machines, Inc.")
with shortened forms of that name (\IBM") and generic references (\the company", \the
U.S. computer maker"). Some manually engineered rules seem unavoidable for coreference
merging. Another example is merging a domain object with a less speci�c reference to that
object. In the microelectronics domain a reference to \DRAM" chips may be merged with
a reference to \memory" or an \I-line" process merged with \lithography."

Much of the work of discourse analysis is to identify logical relationships between ex-
tracted objects, represented as pointers between objects in the output. Discourse analysis
must also be able to infer missing objects that are not explicitly stated in the text and in
some cases split an object into multiple copies or discard an object that was erroneously
extracted.

The current implementation of Wrap-Up begins discourse processing after coreference
merging has been done by a separate module. This is primarily because manual engineering
seems unavoidable in coreference. Work is underway to extend Wrap-Up to include all of IE
discourse processing by incorporating a limited amount of domain-speci�c code to handle
such things as company name aliases and generic references to domain objects.

Wrap-Up divides its processing into six stages, which will be described more fully in
Section 3. They are:

1. Filtering out spuriously extracted information
2. Merging objects with their attributes
3. Linking logically related objects
4. Deciding when to split objects into multiple copies
5. Inferring missing objects
6. Adding default slot values

At this point an example from a speci�c domain might help. The following sections in-
troduce the microelectronics domain, then illustrate sentence analysis and discourse analysis
with a short example from this domain.
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2.2 The Microelectronics Domain

The microelectronics domain was one of the two domains targetted by the Fifth Message
Understanding Conference (MUC-5, 1993). According to the domain and task guidelines
developed for the MUC-5 microelectronics corpus, the information to be extracted are mi-
crochip fabrication processes along with the companies, equipment, and devices associated
with these processes. There are seven types of domain objects to be identi�ed: entities (i.e.
companies), equipment, devices, and four chip fabrication processes (layering, lithography,
etching, and packaging).

Identifying relationships between objects is of equal importance in this domain to iden-
tifying the objects themselves. A company must be identi�ed as playing at least one of four
possible roles with respect to the microchip fabrication process: developer, manufacturer,
distributor, or purchaser/user. Microchip fabrication processes are reported only if they are
associated with a speci�c company in at least one of these roles. Each equipment object
must be linked to a process which uses that equipment, and each device object linked to
a process which fabricates that device. Equipment objects may point to a company as
manufacturer and to other equipment as modules.

The following sample from the MUC-5 microelectronics domain has two companies in the
�rst sentence, which are associated with two lithography processes from the second sentence.
GCA and Sematech are developers of both the UV and I-line lithography processes, with
GCA playing the additional role of manufacturer. Each lithography process is linked to the
stepper equipment mentioned in sentence one.

GCA unveiled its new XLS stepper, which was developed with

assistance from Sematech. The system will be available in

deep-ultraviolet and I-line configurations.

Figure 1 shows the �ve domain objects extracted by sentence analysis and the �nal
representation of the text after discourse analysis has identi�ed relationships between ob-
jects. Some of these relationships are directly indicated by pointers between objects. The
roles that companies play with respect to a microchip fabrication process are indicated by
creating a \microelectronics-capability" object with pointers to both the process and the
companies.

2.3 Extraction Patterns

How does sentence analysis identify GCA and Sematech as company names, and extract the
other domain objects such as stepper equipment, UV lithography and I-line lithography?
The CN dictionary for this domain includes an extraction pattern \X unveiled" to identify
company names. The subject of the active verb \unveiled" in this domain is nearly always
a company developing or distributing a new device or process. However, this pattern will
occasionally pick up a company that fails the domain's reportability criteria. A company
that unveils a new type of chip should be discarded if the text does not specify the fabrication
process.

Extracting the company name \Sematech" is more di�cult since the pattern \assistance
from X" is not a reliable predictor of relevant company names. There is always a trade-o�
between accuracy and complete coverage in deciding what extraction patterns are reliable
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Entity

  Type:  company

  Name: GCA

Entity

  Type:  company

  Name: Sematech

Equipment

  Type:  stepper

  Name: XLS

Lithography

  Type: UV

Lithography

  Type: I-line

Template

  Contents:

ME-Capability

  Manufacturer:

  Developer:

  Process:

Lithography

  Type: UV

  Equipment:

ME-Capability

  Manufacturer:

  Developer:

  Process:

Lithography

  Type: I-line

  Equipment:

Entity

  Type:  company

  Name: Sematech

Entity

  Type:  company

  Name: GCA

Equipment

  Type:  stepper

  Name: XLS

  Manufacturer:

  Status: in-development

A. Five concept nodes extracted by sentence analysis.

B. Final representation of the text after discourse analysis.

Figure 1: Output of (A) sentence analysis and (B) discourse analysis

enough to include in the CN dictionary. Including less reliable patterns increases coverage
but does so at the expense of spurious extraction. The more speci�c pattern \developed
with assistance from X" is reliable, but was missed by the dictionary construction tool
(Rilo�, 1993).

For many of the domain objects, such as equipment, devices, and microchip fabrication
processes, the set of possible objects is prede�ned and a list of keywords that refer to these
objects can be created. The extraction pattern \unveiled X" looks in the direct object
of the active verb \unveiled", instantiating an equipment object if a keyword indicating
an equipment type is found. In this example an equipment object with type \stepper" is
created with the equipment name \XLS". The same stepper equipment is also extracted by
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the pattern \X was developed", which looks for equipment in the subject of the passive verb
\developed". This equipment object is extracted a third time by the keyword \stepper"
itself, which is su�cient to instantiate a stepper equipment object whether or not it occurs
in a reliable extraction pattern.

The keyword \deep-ultraviolet" and the extraction pattern \available in X" are used to
extract a lithography object with type \UV" from the second sentence. Another lithography
object of type \I-line" is similarly extracted. Case frames are created for each of the objects
identi�ed by sentence analysis. This set of objects becomes input for the next stage of
processing, discourse analysis.

2.4 Discourse Processing

In the full text from which this fragment comes, there are likely to be other references to
\GCA" or to \GCA Corp." One of the �rst jobs of discourse analysis is to merge these
multiple references. It is a much harder task to merge pronominal references and generic
references such as \the company" with the appropriate company name. This is all part of
the coreference problem that is handled by processes separate from Wrap-Up.

The main job of discourse analysis is to determine the relationships between the objects
passed to it by sentence analysis. Considerable domain knowledge is needed to make these
discourse-level decisions. Some of this knowledge concerns writing style, and speci�c phrases
writers typically use to imply relationships between referents in a given domain. Is the
phrase \<company> unveiled <equipment>" su�cient evidence to infer that the company
is the developer of a microelectronics process? The word \unveiled" alone is not enough,
since a company that unveiled a new DRAM chip may not be the developer of any new
process. It may simply be using someone else's microelectronics process to produce its chip.
Such inferences, particularly those about what role a company plays in a process, are often
so subtle that two human analysts may disagree on the output for a given text. A human
performance study for this task found that experienced analysts agreed with each other on
only 80% on their text interpretations in this domain (Will, 1993).

World knowledge is also needed about the relationships possible between domain ob-
jects. A lithography process may be linked to stepper equipment, but steppers are never
used in layering, etching, or packaging processes. There are delicate dependencies about
what types of process are likely to fabricate what types of devices. Knowledge about the
kinds of relationships typically reported in this domain can also help guide discourse pro-
cessing. Stories about lithography, for example, often give the developer, manufacturer,
or distributor of the process, but these roles are hardly ever mentioned for packaging pro-
cesses. Companies associated with packaging tend to be limited to the purchaser/user of
the packaging technology.

A wide range of domain knowledge is needed for discourse processing, some of it related
to world knowledge, some to writing style. The next section discusses the need for train-
able components at all levels of IE processing, including discourse analysis. Wrap-Up uses
machine learning techniques to avoid months of manual knowledge engineering otherwise
required to develop a speci�c IE application.
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2.5 The Need for Trainable IE Components

The highest performance at the ARPA-sponsored Fifth Message Understanding Conference
(MUC-5, 1993) was achieved at the cost of nearly two years of intense programming e�ort,
adding domain-speci�c heuristics and domain-speci�c linguistic patterns one by one, fol-
lowed by various forms of system tuning to maximize performance. For many real world
applications, two years of development time by a team of half a dozen programmers would
be prohibitively expensive. To make matters worse, the knowledge used in one domain
cannot be readily transferred to other IE applications.

Researchers at the University of Massachusetts have worked to facilitate IE system de-
velopment through the use of corpus-driven knowledge acquisition techniques (Lehnert et
al., 1993). In 1991 a purely hand-crafted UMass system had the highest performance of
any site in the MUC-3 evaluation. The following year UMass ran both a hand-crafted sys-
tem and an alternate system that replaced a key component with output from AutoSlog, a
trainable dictionary construction tool (Rilo�, 1993). The AutoSlog variant exhibited perfor-
mance levels comparable to a dictionary based on 1500 hours of manual coding. Encouraged
by the success of this one trainable component, an architecture for corpus-driven system
development was proposed which uses machine learning techniques to address a number
of natural language processing problems (Lehnert et al., 1993). In the MUC-5 evaluation,
output from the CIRCUS sentence analyzer was sent to TTG (Trainable Template Gener-
ator), a discourse component developed by Hughes Research Laboratories (Dolan, et al.,
1991; Lehnert et al., 1993). TTG used machine learning techniques to acquire much of the
needed domain knowledge, but still required hand-coded heuristics to turn this acquired
knowledge into a fully functioning discourse analyzer.

The remainder of this paper will focus on Wrap-Up, a new IE discourse module now
under development which explores the possibility of fully automated knowledge acquisition
for discourse analysis. As detailed in the following sections, Wrap-Up builds ID3 decision
trees to guide discourse processing and requires no hand-coded customization for a new
domain once a training corpus has been provided. Wrap-Up automatically decides what
ID3 trees are needed for the domain and derives the feature set for each tree from the output
of the sentence analyzer.

3. Wrap-Up, a Trainable IE Component

This section describes the Wrap-Up algorithm, how decision trees are used for discourse
analysis, and how the trees and tree features are automatically generated. We conclude
with a discussion of the requirements of Wrap-Up and our experience porting to a new
domain.

3.1 Overview

Wrap-Up is a domain-independent framework for IE discourse processing which is instanti-
ated with automatically acquired knowledge for each new IE application. During its training
phase, Wrap-Up builds ID3 decision trees based on a representative set of training texts,
paired against hand-coded output keys. These ID3 trees guide Wrap-Up's processing during
run time.
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At run time Wrap-Up receives as input all objects extracted from the text during sen-
tence analysis. Each of these objects is represented as a case frame along with a list of
references in the text, the location of each reference, and the linguistic patterns used to
extract it. Multiple references to the same object throughout the text are merged together
before passing it on to Wrap-Up. Wrap-Up transforms this set of objects by discarding
spurious objects, merging objects that add further attributes to an object, adding pointers
between objects, and inferring the presence of any missing objects or slot values.

Wrap-Up has six stages of processing, each with its own set of decision trees designed
to transform objects as they are passed from one stage to the next.

Stages in the Wrap-up Algorithm:

1. Slot Filtering

Each object slot has its own decision tree that judges whether the slot contains reliable
information. Discard the slot value from an object if a tree returns \negative".

2. Slot Merging

Create an instance for each pair of objects of the same type. Merge the two objects
if a decision tree for that object type returns \positive". This stage can merge an
object with separately extracted attributes for that object.

3. Link Creation

Consider all possible pairs of objects that might possibly be linked. Add a pointer
between objects if a Link Creation decision tree returns \positive".

4. Object Splitting

Suppose object A is linked to both object B and to object C. If an Object Splitting
decision tree returns \positive", split A into two copies with one pointing to B and
the other to C.

5. Inferring Missing Objects

When an object has no other object pointing to it, an instance is created for a decision
tree which returns the most likely parent object. Create such a parent and link it to
the \orphan" object unless the tree returns \none". Then use decision trees from the
Link Creation and Object Splitting stages to tie the new parent in with other objects.

6. Inferring Missing Slot Values

When an object slot with a closed class of possible values is empty, create an instance
for a decision tree which returns a context-sensitive default value for that slot, possibly
\none".

3.2 Decision Trees for Discourse Analysis

A key to making machine learning work for a complex task such as discourse processing
is to break the problem into a number of small decisions and build a separate classi�er
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for each. Each of the six stages of Wrap-Up described in Section 3.1 has its own set of
ID3 trees, with the exact number of trees depending on the domain speci�cations. The
Slot Filtering stage has a separate tree for each slot of each object in the domain; the Slot
Merging stage has a separate tree for each object type; the Link Creation stage has a tree
for each pointer de�ned in the output structure; and so forth for the other stages. The
MUC-5 microelectronics domain (as explained in Section 2.2) required 91 decision trees: 20
for the Slot Filtering stage, 7 for Slot Merging, 31 for Link Creation, 13 for Object Splitting,
7 for Inferring Missing Objects , and 13 for Inferring Missing Slot Values.

An example from the Link Creation stage is the tree that determines pointers from
lithography objects to equipment objects. Every pair of lithography and equipment objects
found in a text is encoded as an instance and sent to the Lithography-Equipment-Link tree.
If the classi�er returns \positive", Wrap-Up adds a pointer between these two objects in
the output to indicate that the equipment was used for that lithography process.

The ID3 decision tree algorithm(Quinlan, 1986) was used in these experiments, although
any machine learning classi�er could be plugged into the Wrap-Up architecture. A vector
space approach might seem appropriate, but its performance would depend on the weights
assigned to each feature (Salton et al., 1975). It is hard to see a principled way to assign
weights to the heterogeneous features used in Wrap-Up's classi�ers (see Section 3.3), since
some features encode attributes of the domain objects and others encode linguistic context
or relative position in the text.

Let's look again at the example from Section 2.2 with the \XLS stepper" and see how
Wrap-Up makes the discourse decision of whether to add a pointer from UV lithogra-
phy to this equipment object. Wrap-Up encodes this as an instance for the Lithography-
Equipment-Link decision tree with features representing attributes of both the lithography
and equipment objects, their extraction patterns, and relative position in the text.

During Wrap-Up's training phase, an instance is encoded for every pair of lithography
and equipment objects in a training text. Training instances must be classi�ed as positive or
negative, so Wrap-Up consults the hand-coded target output provided with the training text
and classi�es the instance as positive if a pointer is found between matching lithography and
equipment objects. The creation of training instances will be discussed more fully in Section
3.4. ID3 tabulates how often each feature value is associated with a positive or negative
training instance and encapsulates these statistics at each node of the tree it builds.

Figure 2 shows a portion of a Lithography-Equipment-Link tree, showing the path used
to classify the instance for UV lithography and XLS stepper as positive. The parenthetical
numbers for each tree node show the number of positive and negative training instances rep-
resented by that node. The a priori probability of a pointer from lithography to equipment
in the training corpus was 34%, with 282 positive and 539 negative training instances.

ID3 uses an information gain metric to select the most e�ective feature to partition
the training instances (p.89-90, Quinlan, 1986), in this case choosing equipment type as
the test at the root of this tree. This feature alone is su�cient to classify instances with
equipment type such as modular equipment, radiation source, or etching system, which have
only negative instances. Apparently these types of equipment are never used by lithography
processes (a useful bit of domain knowledge).

The branch for equipment type \stepper" leads to a node in the tree representing 202
positive and 174 negative training instances, raising the probability of a link to 54%. ID3
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(282 pos, 539 neg)

Equipment-type

(202 pos, 174 neg)

Lithography-type

(27 pos, 14 neg)

Distance

Stepper

UV

(0 pos, 11 neg)

(0 pos, 125 neg) (80 pos, 141 neg)

(0 pos, 15 neg)

(15 pos, 27 neg)

(2 pos, 31 neg) (87 pos, 20 neg)

(6 pos, 25 neg)

(0 pos, 1 neg)

(4 pos, 0 neg)

(18 pos, 12 neg)

modular-

equipment

radiation-

source

lithography-

system

etching-

system

G-line E-beam I-line
optical

-2 0
-1

... ...

... ...

... ...

Figure 2: A decision tree for pointers from lithography to equipment objects.

recursively selects a feature to partition each partition, in this case selecting lithography
type. The branch for UV lithography leads to a partition with 27 positive and 14 negative
instances, in contrast to E-beam and optical lithography which have nearly all negative
instances. The next test is distance, with a value of -1 in this case since the equipment
reference is one sentence earlier than lithography. This branch leads to a leaf node with
4 positive and no negative instances, so the tree returns a classi�cation of positive and
Wrap-Up adds a pointer from UV lithography to the stepper.

This example shows how a decision tree can acquire useful domain knowledge: that
lithography is never linked to equipment such as etching systems, and that steppers are
often used for UV lithography but hardly ever for E-beam or optical lithography. Knowledge
of this sort could be manually engineered rather than acquired from machine learning, but
the hundreds of rules needed might take weeks or months of e�ort to create and test.

Consider another fragment of text and the tree in Figure 3 that decides whether to add
a pointer from the PLCC packaging process to the ROM chip device.

: : :a new line of 256 Kbit and 1 Mbit ROM chips. They are

available in PLCC and priced at : : :

The instance which is to be classi�ed by a Packaging-Device-Link tree includes features for
packaging type, device type, distance between the two referents, and the extraction patterns
used by sentence analysis.
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(325 pos, 750 neg)

Distance

(60 pos, 70 neg)

Device-type

(13 pos, 2 neg)

pp-available-1

(0 pos, 12 neg)
(7 pos, 40 neg) (130 pos, 93 neg)

(0 pos, 12 neg)

(6 pos, 2 neg)
(0 pos, 11 neg) (1 pos, 4 neg)

(0 pos, 19 neg)

(13 pos, 0 neg) (0 pos, 2 neg)

... ...

... ...

-1

ROM

true false

EPROM
memory DRAM

none

-50
-20 0

50

Figure 3: A tree for pointers from packaging to device objects.

ID3 selects \distance" as the root of the tree, a feature that counts the distance in sen-
tences between the packaging and device references in the text. When the closest references
were 20 or more sentences apart, hardly any of the training instances were positive. The
distance is -1 in the example text, with ROM device mentioned one sentence earlier than
the PLCC packaging process. As Figure 3 shows, the branch for distance of -1 is followed
by a test for device type. The branch for device type ROM leads to a partition with only
15 instances, 13 positive and 2 negative. Those with PLCC packaging found in the pattern
\available in X" (encoded as pp-available-1) were positive instances.

These two trees illustrate how di�erent trees learn di�erent types of knowledge. The
most signi�cant features in determining whether an equipment object is linked to a lithogra-
phy process are real world constraints on what type of equipment can be used in lithography.
This is reected in the tree in Figure 2 by choosing equipment type as the root node fol-
lowed by lithography type. There is no such overriding constraint on what type of device
can be linked to a packaging technique. Here linguistic clues play a more prominent role,
such as the relative position of references in the text and particular extraction patterns.
The following section discusses how these linguistic-based features are encoded.

3.3 Generating Features for ID3 Trees

Let's look in more detail at howWrap-Up encodes ID3 instances, using information available
from sentence analysis to automatically derive the features used for each tree. Each ID3
tree handles a discourse decision about a domain object or the relationship between a pair
of objects, with di�erent stages of Wrap-Up involving di�erent sorts of decisions.
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The information to be encoded about an object comes from concept nodes extracted
during sentence analysis. Concept nodes have a case frame with slots for extracted infor-
mation, and also have the location and extraction patterns of each reference in the text.
Consider again the example from Section 2.2.

GCA unveiled its new XLS stepper, which was developed with

assistance from Sematech. The system will be available in

deep-ultraviolet and I-line configurations.

Sentence analysis extracts �ve objects from this text: the company GCA, the equip-
ment XLS stepper, the company Sematech, UV lithography, and I-line lithography. One of
several discourse decisions to be made is whether the UV lithography uses the XLS stepper
mentioned in the previous sentence. Figure 4 shows the two objects that form the basis of
an instance for the Lithography-Equipment-Link tree.

Lithography

  Type: UV

Extraction Patterns:

  pp-available-in

  keyword-deep-ultraviolet

Equipment

  Type: stepper

  Name: XLS

Extraction Patterns:

  obj-active-unveiled

  subj-passive-developed

  keyword-stepper

Figure 4: Two objects extracted from the sample text

Each object includes the location of each reference and the patterns used to extract
them. An extraction pattern is a combination of a syntactic pattern and a speci�c lexical
item or \trigger word" (as explained in Section 2.1). The pattern pp-available-in means that
a reference to UV lithography was found in a prepositional phrase following the triggers
\available" and \in".

Figure 5 shows the instance for UV lithography and XLS stepper. It encodes the at-
tributes and extraction patterns of each object and their relative position in the text. Wrap-
Up encodes each case frame slot of each object using the actual slot value for closed classes
such as lithography type. Open class slots such as equipment names are encoded with the
value \t" to indicate that a name was present, rather than the actual name. Using the
exact name would result in an enormous branching factor for this feature and might overly
inuence the ID3 classi�cation if a low frequency name happened to occur only in positive
or only in negative instances.

Extraction patterns are encoded as binary features that include the trigger word and
syntactic pattern in the feature name. Patterns with two trigger words such as \pp-available-
in" are split into two features, \pp-available" and \pp-in". For instances that encode a pair
of objects these features will be encoded as \pp-available-1" and \pp-in-1" if they refer to
the �rst object. The count of how many such extraction patterns were used is also encoded
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(lithography-type . UV)    

(extraction-count-1 . 3)

(pp-available-1 . t) 

(pp-in-1 . t) 

(keyword-deep-ultraviolet-1 . t)

(equipment-type . stepper)

(equipment-name . t)

(extraction-count-2 . 3)

(obj-unveiled-2 . t)

(subj-passive-developed-2 . t)

(keyword-stepper-2 . t) 

(common-triggers . 0) 

(common-phrases . 0)

(distance . -1)

Figure 5: An instance for the Lithography-Equipment-Link tree.

for each object. The feature \extraction-count" was motivated by the Slot Filtering stage
since objects extracted several times are more likely to be valid than those extracted only
once or twice from the text.

Another type of feature, encoded for instances involving pairs of objects, is the relative
position of references to the two objects, which may be signi�cant in determining if two
objects are related. One feature easily computed is the distance in sentences between
references. In this case the feature \distance" has a value of -1, since XLS stepper is found
one sentence earlier than the UV lithography process. Another feature that might indicate
a strong relationship between objects is the count of how many common phrases contain
references to both objects. Other features list \common triggers", words included in the
extraction patterns for both objects. An example of this would be the word \using" if the
text had the phrase \the XLS stepper using UV technology".

It is important to realize what is not included in this instance. A human making this
discourse decision might reason as follows. The sentence with UV lithography indicates
that it is associated with \the system", which refers back to \its new XLS stepper" in the
previous sentence. Part of this reasoning involves domain independent use of a de�nite
article, and part requires domain knowledge that \system" can be a nonspeci�c reference
to an equipment object. The current version of Wrap-Up does not look beyond information
passed to it by sentence analysis and misses the reference to \the system" entirely.

Using speci�c linguistic patterns resulted in extremely large, sparse feature sets for most
trees. The Lithography-Equipment-Link tree had 1045 features, all but 11 of them encoding
extraction patterns. Since a typical instance participates in at most a dozen extraction
patterns, a serious time and space bottle neck would occur if the hundreds of linguistic
patterns that are not present were explicitly listed for each instance. We implemented a
sparse vector version of ID3 that was able to e�ciently handle large feature spaces by only
tabulating the small number of true-valued features for each instance.

As links are added during discourse processing, objects may become complex, including
many pointers to other objects. By the time Wrap-Up considers links between companies
and microelectronics processes, a lithography object may have a pointer to an equipment
object or to a device object, and the equipment object may in turn have pointers to other
objects. Wrap-Up allows objects to inherit the linguistic context and position in the text
of objects to which they point. When object A has a pointer to object B, the location and
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extraction patterns of references to B are treated as if they references to A. This version
of inheritance is helpful, but a little too strong, ignoring the distinction between direct
references and inherited references.

We have looked at the encoding of instances for isolated discourse decisions in this
section. The entire discourse system is a complex series of decisions, each a�ecting the
environment used for further processing. The training phase must reect this changing
environment at run time as well as provide classi�cations for each training instance based
on the target output. These issues are discussed in the next section.

3.4 Creating the Training Instances

ID3 is a supervised learning algorithm that requires a set of training instances, each labeled
with the correct classi�cation for that instance. To create these instances Wrap-Up begins
its tree building phase by passing the training texts to the sentence analyzer, which creates
a set of objects representing the extracted information. Multiple references to the same
object are then merged to form the initial input to Wrap-Up's �rst stage. Wrap-Up encodes
instances and builds trees for this stage, then repeats the process using trees from stage one
to build trees for stage two, and so forth until trees have been built for all six stages.

As it encodes instances, Wrap-Up repeatedly consults the target output to assign a
classi�cation for each training instance. When building trees for the Slot Filtering stage
an instance is classi�ed positive if the extracted information matches a slot in the target
output. Consider the example of a reference to an \Ultratech stepper" in a microelectronics
text. Sentence analysis creates an equipment object with two slots �lled, equipment type
stepper and equipment name \Ultratech". This stage of Wrap-Up has a separate ID3 tree
to judge the validity of each slot, equipment type and equipment name.

Suppose that the target output has an equipment object with type \stepper" but that
\Ultratech" is actually the manufacturer's name and not the equipment model name. The
equipment type instance will be classi�ed positive and the equipment name instance classi-
�ed negative since no equipment object in the target output has the name Ultratech.

Does this instance include features that capture why a human analyst would not consider
\Ultratech" to be the equipment name? The human is probably using world knowledge
to recognize Ultratech as a familiar company name and recognize other names such as
\Precision 5000" as familiar equipment names. Knowledge such as lists of known company
names and known equipment names is not presently included in Wrap-Up, although this
could be derived easily from the training corpus.

To create training instances for the second stage of Wrap-Up, the entire training corpus
is processed again, this time discarding some slot values as spurious according to the Slot
Filtering trees before creating instances for Slot Merging trees. An instance is created for
each pair of objects of the same type. If both objects can be mapped to the same object in
the target output, the instance is classi�ed as positive. For example, an instance would be
created for a pair of device objects, one with device type RAM and the other with size 256
KBits. It is a positive instance if the output has a single device object with type RAM and
size 256 KBits.

By the time instances are created for later stages of Wrap-Up, errors will have crept in
from previous stages. Errors in �ltering, merging, and linking will have resulted in some
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objects retained that no longer match anything in the target output and some objects that
only partially match the target output. Since some degree of error is unavoidable, it is
best to let the training instances reect the state of processing that will occur later when
Wrap-Up is used to process new texts. If the training is too perfectly �ltered, merged, and
linked, it will not be representative of the underlying probabilities during run time use of
Wrap-Up.

In later stages of Wrap-Up objects may become complex and only partially match any-
thing in the target output. To aid in matching complex objects, one slot for each object
type is identi�ed in the output structure de�nition as the key slot. An object is considered
to match an object in the output if the key slots match. Thus an object with a missing
equipment name or spurious equipment name will still match if equipment type, the key
slot, matches. If object A has a pointer to an object B, the object matching A in the output
must also have a pointer to an object matching B.

Such recursive matching becomes important during the Link Creation stage. Among the
last links considered in microelectronics are the roles a company plays towards a process. A
company may be the developer of an x-ray lithography process that uses the ABC stepper,
but not developer of the x-ray lithography process linked to a di�erent equipment object.
Wrap-Up needs to be sensitive to such distinctions in classifying training instances for trees
in the Link Creation and Object Splitting stages.

Instances in the Inferring Missing Objects stage and the Inferring Missing Slot Values
stage have classi�cations that go beyond a simple positive or negative. An instance for the
Inferring Missing Objects stage is created whenever an object is found during training that
has no higher object pointing to it. If a matching object indeed exists in the target output,
Wrap-Up classi�es the instance with the type of the object that points to it in the output.
For example a training text may have a reference to \stepper" equipment, but have no
mention of any process that uses the stepper. The target output will have a lithography
object of type \unknown" that points to the stepper equipment. This is a legitimate in-
ference to make, since steppers are a type of lithography equipment. The instance for the
orphaned stepper equipment object will be classi�ed as \lithography-unknown-equipment".
This classi�cation gives Wrap-Up enough information during run time to create the appro-
priate object.

An instance for Inferring Missing Slot Values is created whenever a slot is missing from
an object which has a closed class of possible values, such as the \status" slot for equipment
objects, that has the value of \in-use" or \in-development". When a matching object is
found in the target output, the actual slot value is used as the classi�cation. If the slot is
empty or no such object exists in the output, the instance is classi�ed as negative. As in
the Inferring Missing Objects stage, negative is the most likely classi�cation for many trees.

Next we consider the e�ects of tree pruning and con�dence thresholds that can make
the ID3 more cautious or more aggressive in its classi�cations.

3.5 Con�dence Thresholds and Tree Pruning

With any machine learning technique there is a tendency toward \over�tting", making
generalizations based on accidental properties of the training data. In ID3 this is more
likely to happen near the leaf nodes of the decision tree, where the partition size may
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grow too small for ID3 to select features with much predictive power. A feature chosen
to discriminate among half a dozen training instances is likely to be particular to those
instances and not useful in classifying new instances.

The implementation of ID3 used by Wrap-Up deals with this problem by setting a prun-
ing level and a con�dence threshold for each tree empirically. A new instance is classi�ed by
traversing the decision tree from the root node until a node is reached where the partition
size is below the pruning level. The classi�cation halts at that node and a classi�cation of
positive is returned if the proportion of positive instances is greater than or equal to the
con�dence threshold.

A high con�dence threshold will make an ID3 tree cautious in its classi�cations, while
a low con�dence threshold will allow more positive classi�cations. The e�ect of changing
the con�dence threshold is more pronounced as the pruning level increases. With a large
enough pruning level, nearly all branches will terminate in internal nodes with con�dence
somewhere between 0.0 and 1.0. A low con�dence threshold will classify most of these
instances as positive, while a high con�dence threshold will classify them as negative.

Wrap-Up automatically sets a pruning level and con�dence threshold for each tree using
tenfold cross-validation. The training instances are divided into ten sets and each set is
tested on a tree built from the remaining nine tenths of the training. This is done at
various settings to �nd settings that optimize performance.

The metrics used in this domain are \recall" and \precision", rather than accuracy.
Recall is the percentage of positive instances that are correctly classi�ed, while precision is
the percentage of positive classi�cations that are correct. A metric which combines recall
and precision is the f-measure, de�ned by the formula f = (�2 + 1)PR=(�2P +R) where �
can be set to 1 to favor balanced recall and precision. Increasing or decreasing � for selected
trees can �ne-tune Wrap-Up, causing it to select pruning and con�dence thresholds that
favor recall or favor precision.

We have seen how Wrap-Up automatically derives the classi�ers needed and the feature
set for each classi�er, and how it tunes the classi�ers for recall/precision balance. Now
we will look at the requirements for using Wrap-Up, with special attention to the issue of
manual labor during system development.

3.6 Requirements of Wrap-Up

Wrap-Up is a domain-independent architecture that can be applied to any domain with
a well de�ned output structure, where domain objects are represented as case frames and
relationships between objects are represented as pointers between objects. It is appropriate
for any information extraction task in which it is important to identify logical relationships
between extracted information. The user must supply Wrap-Up with an output de�nition
listing the domain objects to be extracted. Each output object has one or more slots, each of
which may contain either extracted information or pointers to other objects in the output.
One slot for each object is labeled as the key slot, used during training to match extracted
objects with objects in the target output.

If the domain and application are already well de�ned, a user should be able to create
such an output de�nition in less than an hour. For a new application, whose informa-
tion needs are not established, there is likely to be a certain amount of trial and error in
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developing the desired representation. This need for a well de�ned domain is not unique
to discourse processing or to trainable components such as Wrap-Up. All IE systems re-
quire clearly de�ned speci�cations of what types of objects are to be extracted and what
relationships are to be reported.

The more time consuming requirement of Wrap-Up is associated with the acquisition of
training texts and most importantly, hand-coded target output. While hand-coded targets
represent a labor-intensive investment on the part of domain experts, no knowledge of
natural language processing or of machine learning technologies is needed to generate these
answer keys, so any domain expert can produce answer keys for use by Wrap-Up. A
thousand microelectronics texts were used to provide training for Wrap-Up. The actual
number of training instances from these training texts varied considerably for each decision
tree. Trees that handled the more common domain objects had ample training instances
from only two hundred training texts, while those that dealt with the less frequent objects
or relationships were undertrained from a thousand texts.

It is easier to generate a few hundred answer keys than it is to write down explicit and
comprehensive domain guidelines. Moreover, domain knowledge implicitly present in a set
of answer keys may go beyond the conventional knowledge of a domain expert when there
are reliable patterns of information that transcend a logical domain model. Once available,
this corpus of training texts can be used repeatedly for knowledge acquisition at all levels
of processing.

The architecture of Wrap-Up does not depend on a particular sentence analyzer or a
particular information extraction task. It can be used with any sentence analyzer that uses
keywords and local linguistic patterns for extraction. The output representation produced
by Wrap-Up could either be used directly to generate database entries in a MUC-like task
or could serve as an internal representation to support other information extraction tasks.

3.7 The Joint Ventures Domain

After Wrap-Up had been implemented and tested in the microelectronics domain, we tried
it on another domain, the MUC-5 joint ventures domain. The information to be extracted
in this domain are companies involved in joint business ventures, their products or services,
ownership, capitalization, revenue, corporate o�cers, and facilities. Relationships between
companies must be sorted out to identify partners, child companies, and subsidiaries. The
output structure is more complex than that of microelectronics, with back-pointers, cycles
in the output structure, redundant information, and longer chains of linked objects.

Figure 6 shows a text from the joint ventures domain and a diagram of the target output.
With all the pointers and back-pointers, the output for even a moderately complicated text
becomes di�cult to understand at a glance. This text describes a joint venture between a
Japanese company, Rinnai Corp., and an unnamed Indonesian company to build a factory
in Jakarta. A tie-up is identi�ed with Rinnai and the Indonesian company as partners
and a third company, the joint venture itself, as a child company. The output includes an
\entity-relationship" object which duplicates much of the information in the tie-up object.
A corporate o�cer, the amount of capital, ownership percentages, the product \portable
cookers", and a facility are also reported in the output.
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   RINNAI CORP., JAPAN'S LEADING GAS APPLIANCE MANUFACTURER, WILL SET UP

A JOINT VENTURE IN INDONESIA IN AUGUST TO PRODUCE PORTABLE COOKERS FOR 

LOCAL USERS, PRESIDENT SUSUMU NAITO SAID MONDAY.

   THE NEW FIRM WILL BE CAPITALIZED AT ONE MILLION DOLLARS, OF WHICH 

RINNAI IS SCHEDULED TO PUT UP 50 PCT AND A LOCAL DEALER 50 PCT, HE SAID.

   IT WILL MANUFACTURE 3,000 TO 4,000 UNITS A MONTH INITIALLY AT A PLANT

IN A 26,000-SQUARE-METER SITE IN JAKARTA, NAITO SAID, ADDING RINNAI AIMS

TO START FULL-SCALE PRODUCTION NEXT SPRING.

   THE NAGOYA-BASED COMPANY HAS NOW SEVEN OVERSEAS PRODUCTION UNITS.

Template

  Doc-Nr: 1485

  Content:

Tie-Up

  Status: existing

  Entity:

  Joint-venture:

  Ownership:

  Activity:
Entity

  Type: company

  Location: Indonesia

  Relationship:

  Facility:

Entity

  Type: company

  Name: Rinnai Corp

  Aliases: "Rinnai"

  Location: Nagoya, Japan

  Relationship:

  Person:

Entity

  Type: company

  Nationality: Indonesia

  Relationship:

Facility

  Type: factory

  Location: Jakarta,

                 Indonesia

Person

  Name: Susumu Naito

  Position: pres

  Entity:

Relationship

  Entity-1:

  Entity-2:

  Relation: child

  Status: future

Activity

  Site: (        )

  Industry:

Industry

 Type: Production

  Product:

    "portable 

     cookers"

Ownership

  Capital: 1000000 $

  Ownership-Percent: (     50) (     50)

  Owned:

Figure 6: A sample text and target output from the joint ventures domain.
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Some special handling was required for the joint ventures domain since the output
structure de�ned for the MUC-5 evaluation included some slots such as activity site and
ownership percent whose values had a mixture of extracted information and pointers. These
slot values have their own internal structure and can be thought of as pseudoobjects, an
activity site object with pointers to a facility object and a company, and an ownership
percent object with a pointer to a company and another slot giving a numeric value. These
pseudoobjects were reformulated as standard objects conforming to the requirements of
Wrap-Up, the activity site slot pointing to an activity site object and so forth. These were
then transformed back into the complex slot �lls when printing the �nal representation of
the output.

The output speci�cations for joint ventures were less well-behaved in other ways, with
graph cycles, back pointers, and redundant objects whose content must agree with informa-
tion elsewhere in the output. Modi�cations to Wrap-Up were needed to relax some implicit
requirements for the domain structure, allowing graph cycles and giving special handling
to any pointer slot which the user has labeled in the output de�nition as a back pointer.

Joint ventures also has some implicit constraints on relationships between objects. A
company can play only a single role in a tie-up or a joint venture relationship: it cannot be
both a joint venture child and also a parent or partner company. Wrap-Up had di�culty
learning this constraint and performed better when certain pointer slots were labeled with
a \single-role" constraint in the output de�nition.

This strategy of letting the user indicate constraints by annotating slots in the output
de�nition was implemented in an ad hoc fashion. A more general approach would allow the
user to declare several types of constraint on the output. A pointer slot may be required
or optional, may have at most one pointer or allow several. Some slots of an object may be
mutually exclusive, an entry in one prohibiting an entry in another slot. There may be a
required agreement between the value of a slot in one object and a slot in another object. A
fully domain-independent discourse tool needs a mechanism to implement such generalized
constraints.

4. System Performance

As a point of comparison for the performance of Wrap-Up, the UMass/Hughes system was
run with the TTG discourse module, which had been used in the o�cial MUC-5 evalua-
tion. Overall system performance with Wrap-Up was compared to performance with TTG,
holding the rest of the system constant.

Wrap-Up takes the idea of TTG and extends it into a fully trainable system. TTG
used decision trees to acquire domain knowledge, but often relied on hand-coded heuristics
to apply that acquired knowledge, in particular the decisions about splitting or merging
objects, which Wrap-Up handles during its Object Splitting stage; inferring missing objects,
which Wrap-Up does in its Inferring Missing Objects stage; and adding context sensitive
default slot values, which Wrap-Up does in its Inferring Missing Slot Values stage.

Several iterations of hand tuning were required to adjust thresholds for the decision trees
produced by TTG, whereas Wrap-Up found thresholds and pruning levels to optimize recall
and precision for each tree automatically. After a day of CPU time devoted to decision tree
training, Wrap-Up produced a working system and no further programming was needed.
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The comparison with TTG was made for both the microelectronics domain and the
joint ventures domain. The metrics used here are recall and precision. Recall is the per-
centage of possible information that was reported. Correctly identifying two out of �ve
possible company names gives recall of 40. Precision is the percent correct of the reported
information. If four companies are reported, but only two of them correct, precision is 50.
Recall and precision are combined into a single metric by the f-measure, de�ned as f =
(�2 + 1)PR=(�2P +R), with � is set to 1 for balanced recall and precision.

4.1 The Microelectronics Domain

Wrap-Up's scores on the o�cial MUC-5 microelectronics test sets were generally a little
higher than to those of TTG, both in overall recall and precision.

Wrap-Up TTG

Rec. Prec. F

Part 1

Part 2

Part 3

Rec. Prec. F

32.3   44.4   37.4

36.3   38.6   37.4

34.6   37.7   36.1

27.1   39.5   32.1

32.7   37.0   34.7

34.7   40.5   37.5

34.4   40.2   36.8 31.5   39.0   34.8Avg.

Figure 7: Performance on MUC-5 microelectronics test sets

To put these scores in perspective, the highest scoring systems in the MUC-5 evaluation
had f-measures in the high 40's. This was a di�cult task both for sentence analysis and
discourse analysis.

Another way to assess Wrap-Up is to measure its performance against the baseline
provided by output from sentence analysis. Lack of coverage by the sentence analyzer
places a ceiling on performance at the discourse level. In test set part 1 there were 208
company names to be extracted. The CIRCUS analyzer extracted a total of 404 company
names, with only 131 correct and 2 partially correct, giving a baseline of 63% recall and 33%
precision for that slot. Wrap-Up's Entity-Name-Filter tree managed to discard a little over
half of the spurious company names, keeping 77% of the good companies. This resulted in
49% recall and 44% precision for this slot, raising the f-measure by 5 points, but doing so
at the expense of recall.

Limited recall for extracted objects is compounded when it comes to links between
objects. If half the possible companies and a third of the microelectronics processes are
missing, discourse processing has no chance at a large proportion of the possible links
between companies and processes.

Although precision is often increased at the expense of recall, Wrap-Up also has mecha-
nisms to increase recall slightly. When the Inferring Missing Objects stage infers a missing
process from an equipment object or the Object Splitting stage splits a process that points
to multiple equipment, Wrap-Up can sometimes gain recall above that produced by the
sentence analyzer.
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4.2 The Joint Ventures Domain

In the joint ventures domain Wrap-Up's scores on the MUC-5 test sets were a little lower
than the o�cial UMass/Hughes scores. Wrap-Up tended to have lower recall but slightly
higher precision.

Wrap-Up TTG

Rec. Prec. F

Part 1

Part 2

Part 3

Rec. Prec. F

23.5   52.9   32.5

22.7   53.6   31.9

23.3   51.4   32.1

26.0   53.9   35.1

26.0   52.1   34.7

27.7   49.7   35.6

23.2   52.7   32.2 26.5   52.0   35.1Avg.

Figure 8: Performance on MUC-5 joint ventures test sets

The performance of Wrap-Up and TTG is roughly comparable for each of the two
domains. Both systems tend to favor the domain in which they were �rst developed, Wrap-
Up developed in microelectronics then ported to joint ventures, while the opposite was true
for TTG. A certain amount of bias has probably crept into design decisions that were meant
to be domain independent in each system. The higher scores of TTG for joint ventures are
partly due to hand-coded heuristics that altered output from TTG before printing the �nal
output, something that was not done for TTG in microelectronics or for Wrap-Up in either
domain.

The most noticeable di�erence between Wrap-Up and TTG output in the joint ventures
domain was in the �ltering of spuriously extracted company names. Discourse processing
started with 38% recall and 32% precision from sentence analysis for company names. Both
systems included a �ltering stage that attempted to raise precision by discarding spurious
companies, but did so at the expense of discarding some valid companies as well. Each
system used threshold settings to control how cautiously or aggressively this discarding is
done (as in the example from Section 3.5). TTG's were set by hand and Wrap-Up's were
selected automatically by cross-validation on the training set. TTG did only mild �ltering
on this slot, resulting in a gain of 2 precision points but a drop of 6 recall points. Wrap-Up
chose aggressive settings and gained 13 precision points but lost 17 points in recall for this
slot.

As a result, Wrap-Up ended up with only two thirds as many correct companies as
TTG. This in turn meant two thirds as many pointers to companies in tie-ups and entity
relationships. For other objects Wrap-Up scored higher recall than TTG, getting more than
three times the total recall for activity, industry, and facility objects.

5. Conclusions

With the recent accessibility of large on-line text databases and news services, the need for
information extraction systems is growing. Such systems go beyond information retrieval
and create a structured summary of selected information contained within relevant docu-
ments. This gives the user the ability to skim vast amounts of text, pulling out information
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on a particular topic. IE systems are knowledge-based, however, and must be individually
tailored to the information needs of each application.

Some research laboratories have focused on sophisticated user interfaces to ease the
burden of knowledge acquisition. GE's NLToolset is an example of this approach (Jacobs et
al., 1993), while BBN typi�es systems that combine user input with corpus-based statistics
(Ayuso et al., 1993). The University of Massachusetts has been moving in the direction
of machine learning to create a fully trainable IE system. The ultimate goal is a turnkey
system that can be tailored to new information needs by users who have no special linguistic
or technical expertise.

Wrap-Up embodies this goal. The user de�nes an informationneed and output structure,
and provides a training corpus of representative texts with hand-coded target output for
each text. Wrap-Up takes it from there and instantiates a fully functional IE discourse
system for the new domain with no further customization needed by the user. Wrap-Up
is the �rst fully trainable system to handle discourse processing, and it does so with no
degradation in performance. It automatically decides what classi�ers are needed based on
the domain output structure and derives the feature set for each classi�er from sentence
analyzer output.

The most intriguing aspect of Wrap-Up is the automatic generation of features. How
e�ective was this, and what did the trees actually learn? The greatest leverage seems to
come from features that encode attributes of domain objects. The trees in microelectronics
often based their classi�cation on probabilities conditioned on the device type, equipment
type, or process type. The example tree in Section 3.2 �rst tested the equipment type and
lithography type in determining whether a piece of equipment was used for a lithography
process. This type of real world domain knowledge was the most important thing that
Wrap-Up learned about microelectronics.

Useful knowledge was also provided by features that encoded the relative position of
references in the text. Distance, measured in number of sentences apart, played a prominent
role in many classi�cations, with other trees relying on more �ne-grained features such as
the number of times both references were in the same noun phrase or had overlapping
linguistic context.

An enhancement toWrap-Up's feature generation would be to increase its expressiveness
about relative position. In addition to direct references to object A and object B, Wrap-Up
could look for indirect references to A (pronominal or anaphoric) found near references to
B and vice versa. The instance shown in Section 3.3 is an example where features for such
indirect relationships might be useful.

Wrap-Up currently encodes an instance for each pair of objects that might be related,
but is incapable of expressing the rule \attach object B to the most recent object of type A."
It is blind to the existence of other objects that are alternate candidates to the relationship
being considered. Features could be encoded to reect whether object A is the most recently
mentioned object of its type.

The features that were least successful and most tantalizing were those that encoded the
local linguistic context, the extraction patterns. These included an exact lexical item and
were nearly all of such low frequency that they added noise more often than aiding useful
discriminations. Tree pruning was only a partial solution, and an experiment in combining
semantically similar terms only caused a sharp drop in classi�cation accuracy.
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Low frequency terms are a built-in problem for any system that processes unrestricted
text. Dunning (93) estimated that 20-30% of typical English news wire reports are composed
of words of frequency less than one in 50,000 words. Yet the discourse decisions made
by a human reader often seem to hinge on the use of one of these infrequent terms. It
is a challenging open question to �nd methods to utilize local linguistic context without
drowning in the noise produced by low frequency terms.

Finding a mechanism for choosing appropriate features is more critical than which ma-
chine learning algorithm is applied. ID3 was chosen as easy to implement, although other
approaches such as vector spaces are worth trying. It is not obvious, however, how to craft
a weighting scheme that gives greatest weight to the most useful features in the vector
space and nearly zero to those not useful in making the desired discrimination. Cost and
Salzberg (1993) describe a weighting scheme for the nearest neighbor algorithm that looks
promising for lexically-based features. Another candidate for an e�ective classi�er is a back
propagation network, which might naturally converge on weights that give most inuence
to the most useful features.

We hope that Wrap-Up will inspire the machine learning community to consider analysis
of unrestricted text as a fruitful application for ML research, while challenging the natural
language processing community to consider ML techniques for complex processing tasks.
In a broader context, Wrap-Up provides a paradigm for user customizable system design,
where no technological background on the part of the user is assumed. A fully functional
system can be brought up in a new domain without the need for months of development
time, signifying substantial progress toward fully scalable and portable natural language
processing systems.

Appendix A: Walk-through of a Sample Text

To see the Wrap-Up algorithm in action, consider the sample text in Figure 9. The
desired output has the company, Mitsubishi Electronics America, Inc., linked as pur-
chaser/user to two packaging processes, TSOP and SOJ packaging. Each of these processes
point to the device, 1 Mbit DRAM. The packaging material, plastic, should be attached
to TSOP but not SOJ. All other details from the text are considered extraneous to the
domain.

After sentence analysis, followed by the step that merges multiple references, there are
eight objects passed as input to Wrap-Up. Sentence analysis did fairly well in identifying
the relevant information, only missing \1 M" as a reference to 1 MBits. Three of the
eight objects are spurious and should be discarded during Wrap-Up's Slot Filtering stage.
According to domain guidelines, the name \Mitsubishi Electronics America, Inc." should
be reported, not \The Semiconductor Division ...". The packaging material EPOXY and
the device MEMORY should also be discarded.

The Slot Filtering stage creates an instance for each slot of each object. The Entity-
Name-Filter tree classi�es \Mitsubishi Electronics America, Inc." as a positive instance,
but \The Semiconductor Division ..." as negative and it is discarded. The most reliable
discriminator of valid company names is \extraction-count", which was selected as root
feature of this tree. Training instances participating in several extraction patterns were
twice as likely to be valid as those extracted only once or twice. This held true in this text.
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The Semiconductor Division of Mitsubishi Electonics America, Inc. now offers

1M CMOS DRAMs in Thin Small-Outline Packaging (TSOP*), providing the 

highest memory density available in the industry.  Developed by Mitsubishi, 

the TSOP also lets designers increase system memory density with standard and 

reverse or "mirror image," pin-outs.  Mitsubishi's 1M DRAM TSOP provides 

the density of chip-on-board but with much higher reliability because the 

plastic epoxy-resin package allows each device to be 100% burned-in and fully 

tested.  *Previously referred to as VSOP (very small-outline package) or USOP 

(ultra small-outline package).  The 1M DRAM TSOP has a height of 1.2 mm, a 

plane measurement of 16.0 mm x 6.0 mm, and a lead pitch of 0.5 mm, making 

it nearly three times thinner and four times smaller in volume than the 1M 

DRAM SOJ package.  The SOJ has a height of 3.45 mm, a plane dimension of 

17.15 mm x 8.45 mm, and a lead pitch of 1.27 mm.  Additionally, the TSOP 

weighs only 0.22 grams, in contrast with the 0.75 gram weight of the SOJ.

       Full text available on PTS New Product Announcements.

Figure 9: A microelectronics text

Entity

  Type: company

  Name: The Semiconductor Division of

             Mitsubishi Electronics America, Inc.

Entity

  Type: company

  Name:Mitsubishi Electronics 

            America, Inc.

Device

  Type: DRAM

Packaging

  Type: TSOP

Device

  Type: MEMORY

Packaging

  Material: EPOXY

Packaging

  Type: SOJ

Packaging

  Material: PLASTIC

Figure 10: Input to Wrap-Up from the sample text
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\Mitsubishi Electronics America, Inc." had extraction count of 5, while the spurious name
was extracted from only 2 patterns.

As the Slot Filtering stage continues, the packaging material EPOXY is classi�ed neg-
ative by the Packaging-Material-Filter tree, whose root test is packaging type. It turns out
that EPOXY was usually extracted erroneously in the training corpus. This contrasts with
the material PLASTIC which was usually reliable and is classi�ed positive. Both TSOP and
SOJ packaging types are classi�ed positive by the Packaging-Type-Filter tree. Instances for
these types were usually positive in the training set, particularly when extracted multiple
times from the text. The Device-Type-Filter tree, with root feature device type, �nds that
DRAM is a reliable device type but that MEMORY was usually spurious in the training
corpus. It should usually be merged with a more speci�c device type.

The Slot Merging stage of Wrap-Up then considers each pair of remaining objects of
the same type. There are three packaging objects, one with type TSOP, one with material
PLASTIC, and one with type SOJ. The Packaging-Slotmerge tree easily rejects the TSOP-
SOJ instance, since packaging objects never had multiple types in training. After testing
that the second object has no packaging type, the feature \distance" is tested. This led to a
positive classi�cation for TSOP-PLASTIC, which are from the same sentence, and negative
for SOJ-PLASTIC, with nearest references two sentences apart. At this point four objects
remain:

Entity

  Type: company

  Name:Mitsubishi Electronics

            America, Inc.

Device

  Type: DRAM

Packaging

  Type: TSOP

  Material: PLASTIC

Packaging

  Type: SOJ

The Link Creation stage considers each pair of objects that could be linked according
to the output structure. The �rst links considered are pointers from packaging to device
objects. Separate instances for the Packaging-Device-Link tree are created for the possible
TSOP-DRAM link and for the possible SOJ-DRAM link. Although only 25% of the training
instances were positive, the tree found that 78% were positive with packaging type TSOP
and \distance" of 0 sentences, and 77% were positive with packaging type SOJ and device
type DRAM. After testing a few more features, the tree found each of these instances
positive and pointers were added in the output. Notice how this tree interleaves knowledge
about types of packaging and types of devices with knowledge about relative position of
references in the text.

The next Link Creation decision concern the roles Mitsubishi plays towards each of the
packaging processes. The output structure has a \microelectronics-capability" object with
one slot pointing to a lithography, layering, etching, or packaging process, and four other
slots (labeled developer, manufacturer, distributor, and purchaser/user) pointing to com-
panies. Wrap-Up accordingly encodes four instances for Mitsubishi and TSOP packaging,
one for each possible role. The same is done for Mitsubishi and SOJ packaging.

Instances for Mitsubishi in the roles of developer, manufacturer, and distributor were all
classi�ed as negative. Training instances for these trees had almost no positive instances.
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Entity

  Type: company

  Name: Mitsubishi 

             Electronics

             America, Inc.

Template

  Doc-Nr: 2523814

  Contents:

Packaging

  Type: TSOP

  Material: plastic

  Device:

Packaging

  Type: SOJ

  Device:

Device

  Type: DRAM

ME-Capability

  Purchaser/User:

  Developer:

  Process:

ME-Capability

  Purchaser/User:

  Process:

Figure 11: Final output after links have been added

It seems that stories about packaging processes in this corpus are almost exclusively about
companies purchasing or using someone else's packaging technology.

There are seldom explicit linguistic clues about the relationship of a company to a process
in this corpus, so the Packaging-User-Link tree tests �rst for the relative distance between
references. Only 20% of training instances were positive, but when distance was 0 it jumped
to 43% positive. Mitsubishi is in the same sentence with TSOP and the Mitsubishi-SOJ
instance also has distance of 0 by inheritance. Even though the nearest reference to SOJ is
two sentences after Mitsubishi, SOJ is linked to DRAM which occurs in the same sentence
as Mitsubishi. Both instances are classi�ed positive after further testing for packaging type
and other features.

The last discourse decision in the Link Creation stage is to add pointers to each mi-
croelectronics capability from a \template object", created as a dummy root object in this
domain's output. The Object Splitting stage �nally gets to make a decision, albeit a vacuous
one, and decides to let the template object point to multiple objects in its \content" slot.
There were no \orphan" objects or missing slot values for the last two stages of Wrap-Up
to consider. The �nal output for this text is shown in Figure 11.
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