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Abstract

Domain-speci�c text analysis requires a dictio-
nary of linguistic patterns that identify refer-
ences to relevant information in a text. This
paper describes CRYSTAL, a fully automated
tool that induces such a dictionary of text ex-
traction rules. We discuss some key issues in
developing an automatic dictionary induction
system, using CRYSTAL as a concrete exam-
ple. CRYSTAL derives text extraction rules
from training instances and generalizes each
rule as far as possible, testing the accuracy of
each proposed rule on the training corpus. An
error tolerance parameter allows CRYSTAL to
manipulate a trade-o� between recall and pre-
cision. We discuss issues involved with creat-
ing training data, de�ning a domain ontology,
and allowing a exible and expressive represen-
tation while designing a search control mecha-
nism that avoids intractability.

1 Domain-speci�c Text Analysis

Considerable domain knowledge is needed by a system
that analyzes unrestricted text and identi�es informa-
tion relevant to a particular domain. The text analysis
system must consider domain-speci�c vocabulary and se-
mantics, as well as linguistic patterns typically used in
references to domain objects. A system tailored to ex-
tracting information from newswire stories about ter-
rorism might identify the subject of the passive verb
\kidnapped" as the victim of a kidnapping event. On
the other hand, if the system is to analyze medical pa-
tient records, it will need a totally di�erent set of rules
that identify references to various types of diagnoses and
symptoms.
The University of Massachusetts BADGER text anal-

ysis system instantiates a set of case frames called \con-
cept nodes" (CN's) to represent information extracted
from a document, using a dictionary of rules called CN
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de�nitions. BADGER performs selective concept extrac-
tion similar to that of its predecessor, the CIRCUS sys-
tem [Lehnert, 1991; Lehnert et al., 1993].
Creating CN de�nitions by hand is a laborious task,

which requires both knowledge of the domain and a deep
understanding of the text analysis system. Researchers
at UMass spent about 1500 hours creating a dictionary
of CN de�nitions for the ARPA-sponsored 1991 MUC-3
evaluation, whose domain was Latin American terrorism.
The following year a partially automated dictionary con-
struction tool, AutoSlog [Rilo�, 1993], was developed.
AutoSlog automatically created a set of proposed CN
de�nitions which required less than 8 hours of review
by a \human in the loop". The AutoSlog CN dictionary
acheived 98% of the performance of the hand-crafted dic-
tionary.
The CRYSTAL system presented in this paper [Soder-

land et al., 1995], carries the idea of AutoSlog further.
It creates a dictionary of CN de�nitions with greater
expressiveness that that of AutoSlog, and is fully auto-
matic.

2 Concept Node De�nitions

A CN de�nition speci�es a set of syntactic and seman-
tic constraints that must be satis�ed for the de�nition
to apply to a segment of text. Before the CN de�nition
is applied, BADGER must segment the input text and
identify the syntactic constituents of each segment such
as subject, verb phrase, direct and indirect object, and
prepositional phrases. BADGER looks up the semantic
class of each word in a domain-speci�c semantic lexicon
and instantiates a concept node with the extracted in-
formation if all constraints are met.
Examples in this paper are from a medical domain,

where the task is to analyze hospital discharge reports,
and identify references to \diagnosis" and to \sign or
symptom". These are further classi�ed with subtypes.

Diagnosis: Sign or Symptom:
con�rmed present
ruled out absent
suspected presumed
pre-existing unknown
past history



The example shown in Figure 1 is a CN de�nition from
this domain that identi�es references to absent symp-
toms. This CN de�nition extracts the phrase in the di-
rect object bu�er when the subject bu�er has the se-
mantic class <patient>, the verb is \denies" in the ac-
tive voice, and the direct object has the semantic class
<sign or symptom>.

CN-type: sign_or_symptom

Subtype: absent

Extract from Direct Object

Active voice verb

Subject constraints:

     head class <patient>

Verb constraints:

     words include "DENIES"

Direct Object constraints:

     head class <sign_or_symptom>

Figure 1: A CN de�nition to identify \sign or symptom,
absent"

This CN de�nition would extract \any episodes of nau-
sea" from the sentence \The patient denies any episodes
of nausea". It would fail to apply to the sentence \The
patient denies a history of asthma", since asthma is of
semantic class <disease or syndrome>, which is not a
subclass of <sign or symptom>.
In this paper we will describe how CRYSTAL induces

a set of CN de�nitions from training instances. CRYS-
TAL will be used as a concrete example to ground a dis-
cussion of various aspects of using machine learning to
generate text extraction rules. We will discuss prepara-
tion of a training corpus, de�nition of a domain ontology,
representation of training instances and extraction rules,
and designing search control to handle an intractable
problem e�ciently.

3 Overview of Dictionary Induction

CRYSTAL derives a domain-speci�c dictionary of text
extraction rules from a training corpus, initializing the
dictionary with a CN de�nition for each positive training
instance. These initial CN de�nitions are designed to
extract the relevant phrase in the training instance that
motivated them, but are too speci�c to apply broadly to
previously unseen sentences.
Figure 2 shows the initial CN de�nition derived

from the sentence fragment \Unremarkable with the
exception of mild shortness of breath and chronically
swollen ankles." The domain expert has marked \short-
ness of breath" and \swollen ankles" with CN type
\sign or symptom" and subtype \present". When BAD-
GER analyzes this sentence, it assigns the complex
noun phrase \the exception of mild shortness of breath
and chronically swollen ankles" to a single prepositional
phrase bu�er. When a complex noun phrase has mul-
tiple head nouns or multiple modi�ers, the class con-
straint becomes a conjunctive constraint. Class con-
straints on words such as \unremarkable" that are of
class <root class> are dropped as vacuous.

CN-type: sign_or_symptom

Subtype: present

Extract from Prepositional Phrase "WITH"

Verb = <NULL>

Subject constraints:

     words include "UNREMARKABLE"

Prepositional Phrase constraints:

     preposition = "WITH"

     words include "THE EXCEPTION OF MILD

                              SHORTNESS OF BREATH

 AND CHRONICALLY SWOLLEN 

ANKLES"

     head class <sign_or_symptom>, 

                        <physiologic_function>,

                        <body_part>

     modifier class <sign_or_symptom>

Figure 2: An initial CN de�nition, including all exact
words and classes

Before the induction process begins, CRYSTAL can-
not predict which characteristics of an instance are es-
sential to the CN de�nition and which are merely acci-
dental features. So CRYSTAL encodes all the details of
the text segment as constraints on the initial CN de�ni-
tion, requiring the exact sequence of words and the exact
sets of semantic classes in each syntactic bu�er.
The main work of CRYSTAL is to gradually relax

the constraints on these initial de�nitions to broaden
their coverage, while merging similar de�nitions to form
a more compact dictionary. Semantic constraints are re-
laxed by moving up the semantic hierarchy or by drop-
ping the constraint. Exact word constraints are relaxed
by dropping all but a subsequence of the words or drop-
ping the constraint. The combinatorics on ways to re-
lax constraints becomes overwhelming. There are over
57,000 possible generalizations of the initial CN de�ni-
tion in Figure 2.
The goal of generalizing is to drop constraints derived

from accidental features of the motivating instance while
retaining constraints that identify positive instances and
constraints that eliminate negative instances. Relaxing
constraints enough to unify a CN de�nition with a sim-
ilar CN de�nition tends to accomplish these goals.
CRYSTAL �nds useful generalizations of an initial CN

de�nition, D, by locating a highly similar CN de�nition,
D'. A new de�nition, U, is then created with constraints
relaxed just enough to unify D and D'. This involves
dropping constraints that the two do not have in com-
mon and �nding a common ancestor of their semantic
constraints. The new CN de�nition, U, is then tested
against the training corpus to make sure that it does not
extract phrases that were not marked with the CN type
and subtype being learned.
If U is a valid CN de�nition, CRYSTAL deletes from

the dictionary all de�nitions covered by U, thus reduc-
ing the size of the dictionary while still covering all the
positive training instances. In particular, D and D' will
be deleted. Then U becomes the current CN de�nition
and this process is repeated, using similar CN de�nitions



The CRYSTAL algorithm:

Initialize Dictionary and Training Instances Database
Do until no more initial CN de�nitions in Dictionary

D = an initial CN de�nition from Dictionary
Loop

D' = the most similar CN de�nition to D
If D' = NULL, exit loop
U = the uni�cation of D and D'
Test the coverage of U in Training Instances
If the error rate of U > Tolerance

exit loop
Delete all CN de�nitions covered by U
Set D = U

Add D to the Dictionary
Return the Dictionary

to guide the further relaxation of constraints. Eventu-
ally a point is reached where further relaxation would
produce a CN de�nition that exceeds some pre-speci�ed
error tolerance. At that point, CRYSTAL begins the
generalization process on another initial CN de�nition
until all initial de�nitions have been considered for gen-
eralization.
CRYSTAL's learning algorithm is similar to the in-

ductive concept learning described by Mitchell [1982]
and that described by Michalski [1983]. Each uses a
data-driven search to �nd the most general rule that
covers positive training instances without covering nega-
tive instances. CRYSTAL is more robust than Mitchell's
version space algorithm, which assumes no noise in the
training and searches for a single concept to cover all
positive instances. Michalski sees his approach in terms
of a minimum covering set problem, where the goal is a
minimal set of generalizations that cover all the positive
instances. This is exactly the goal of CRYSTAL.

4 Experimental Results

Experiments were conducted with 337 hospital discharge
reports, with a total of 13,000 instances, of which 5,100
were \diagnosis" and 1,900 were \sign or symptom".
These were partitioned into a training set and a blind
test set, then dictionaries of CN de�nitions were induced
from the training set and evaluated on the test set.
Performance is measured here in terms of recall and

precision, where recall is the percentage of possible
phrases that the dictionary extracts and precision is the
percentage correct of the extracted phrases. For instance
if there are 50 phrases that could possibly be extracted
from the test set by a dictionary, but the dictionary ex-
tracts only 20 of them, recall is 40%. If the dictionary
extracts 25 phrases, only 20 of them correct, precision is
80%.
Thesetting of an error tolerance parameter can be used

to manipulate a trade-o� between recall and precision of
a dictionary. Figure 3 shows performance of a dictio-
nary of CN de�nitions that identify \sign or symptom"
of any subtype, where the error tolerance is varied from
0.0 to 0.4. The results shown here are the averages of 50
random partitions of the corpus into 90% training and
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Figure 3: E�ect of the error tolerance setting on perfor-
mance

10% test documents for each error tolerance.
To assess the learning curve as training size increases,

we chose the partition size for training to be 10%, 30%,
50%, 70%, and 90%. This was done 50 times for each
training size and results averaged as before. The number
of positive training instances in a partition depends on
what CN type and subtype is being learned. Figure 4
shows recall for the most frequent CN type and subtypes
as the number of positive training instances increases.
The error tolerance is set at .20 for this experiment.
These results are for CN de�nitions acting in isolation,

which explains the di�erent coverage of the subtype \ab-
sent" and \present" for \sign or symptom". CRYSTAL
is able to add a constraint requiring the word \no" for
absent symptoms, but has no mechanism to require the
absence of \no" for present symptoms. Additional noun
phrase analysis rules are needed to handle conjunction,
disjunction and the scoping of negation. Future work
will address these issues by moving to a granularity of
simple noun phrase within syntactic bu�ers and scoping
for negation before applying CRYSTAL's CN de�nitions.

5 Issues in Automatic Dictionary

Induction

With CRYSTAL serving as a concrete example, we now
turn to a discussion of some of the design and implemen-
tation issues involved in automatic dictionary induction.

5.1 Preparing a Training Corpus

CRYSTAL uses a supervised learning approach to induce
rules that identify relevant information in the text. This
requires a set of positive and negative training instances
of the information to be extracted.
As will often be the case, the text analysis task was

initially ill-de�ned for the hospital discharge report do-
main, and our �rst challenge was to specify a taxonomy
of what information was to be considered relevant in this
domain. We worked closely with a physician to de�ned
a taxonomy of subtypes of \diagnosis" and of \sign or
symptom".
Annotation of training texts was done by the physician

and three nurses, using a point-and-click interface that



100

90

80

70

60

50

40

30

20

10

0

1000 2000 3000 4000 5000

Symptom, absent

Symptom, present

Symptom, any

Diagnosis, any

Diagnosis, 

ruled out

Diagnosis, pre-existing

Recall

Positive Training Instaces

Figure 4: Learning curve: recall increases with the num-
ber of training instances

inserted SGML style tags around phrases to label them
with the appropriate CN type and subtype. As actual
tagging began, the task speci�cation was further re�ned
through discussion with the physician who served as our
domain expert. The general guidelines were to tag sim-
ple phrases, but deciding exactly which phrase to label
was not always straightforward.
The sentence \Abdomen was swollen but nontender"

is tagged as follows to indicate that \swollen" has CN
type \sign or symptom" with subtype \present" and that
\nontender" has CN type \sign or symptom" with sub-
type \absent".

Abdomen was <SP> swollen </SP> but
<SA> nontender </SA> .

In sentences where the descriptive phrase is essentially
empty of content, such as \unremarkable" or \normal",
we debated what phrase should be tagged. In such cases
the body part itself is tagged as sign or symptom, absent.
An example of this is \Abdomen was unremarkable",
which is annotated as follows.

<SA> Abdomen </SA> was unremarkable.

Consistency in training is essential if a supervised
learning algorithm is to succeed in �nding compact rep-
resentations of the rules to be learned. In particular,
a phrase that is accidentally missed during tagging will
become a negative training instance. Coding guidelines
and careful quality control are essential.

5.2 Creating a Domain Ontology

Precisely de�ning a taxonomy of relevant information
is only part of creating a domain ontology. CRYSTAL
also requires a semantic hierarchy and a semantic lex-
icon that maps terms into semantic classes in that hi-
erarchy. Early in CRYSTAL's development, we created
our own ad hoc semantic hierarchy and semantic lexicon
with some assistance from our domain expert. This was

replaced by one derived from the Uni�ed Medical Lan-
guage Systems (UMLS) on-line medical MetaThesaurus
and Semantic Network [Lindberg et al., 1993]. UMLS is
under developement by the National Library of Medicine
and represents a knowledge source far superior to our ad
hoc e�orts, but is itself under development and is still
weak in coverage of terms for clinical �ndings.
Our ad hoc semantic hierarchy grouped together se-

mantic classes that occur in similar contexts for our task.
For example the words \patient", \woman", \female",
and \she" all belong to the semantic class <human> in
the ad hoc hierarchy. In the UMLS hierarchy these have
widely scattered semantic classes. A \patient" is of class
<patient or disabled group> which is a descendant of
<idea or concept>. A \woman" is of class <human>
which is a <physical object>. A \female" is of class
<organism attribute> which is an <idea or concept>,
and \she" is not even listed in the semantic lexicon.
UMLS also places the class <sign or symptom> in

a subtree so far removed from <disease or syndrome>
that their only common ancestor is the root of the en-
tire hierarchy. Our ad hoc hierarchy gave them a com-
mon ancestor that at least distinguished them from non-
medical terms.
Some rules that can be expressed compactly with our

ad hoc semantic hierarchy require a disjunction or sev-
eral rules using UMLS. We would expect CRYSTAL to
require a larger training set when using UMLS than with
the task-speci�c hierarchy. On the other hand, with 134
classes as opposed to 27 in the ad hoc hierarchy, UMLS
could be expected to support �ner grained distinctions.
For training sizes up to 50 documents, a CN dictionary

based on UMLS lagged behind the task-speci�c ontology
in coverage. Figure 5 compares recall of CN dictionaries
based on UMLS and on the ad hoc ontology. Both are
dictionaries that identify CN type \sign or symptom" of
any subtype, using error tolerance of 0.20.
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Figure 5: Comparing recall with UMLS and with an ad
hoc ontology

5.3 Expressiveness of Extraction Rules

The representation of training instances and rules is a
fundamental design decision, particularly when dealing
with a complex phenomenon such as natural language.
A richly expressive representation will often cause an un-
acceptable increase in computational complexity, while



a simpler representation glosses over important distinc-
tions.
One issue is the scope of the \local context" to be

included in text extraction rules. Shall we include all
phrases in the same clause as potentially important to
the context or exclude some parts of the clause to make
processing more tractable? Another issue is the gran-
ularity of representation. Should the representation in-
clude exact words, or the semantic classes of words, or a
combination of words and classes?
The CN de�nitions that CRYSTAL generates may in-

clude constraints on any or all syntactic bu�ers in a
text segment as analyzed by BADGER. A segment is
generally a simple clause with bu�ers such as subject,
verb phrase, direct or indirect object, and prepositional
phrases. Each bu�er may be constrained to include a se-
quence of speci�c words, to have speci�c semantic classes
in the head noun, or to have speci�c semantic classes in
the modi�ers. The verb can be further constrained as
active or passive voice.
This representation gives CRYSTAL great exibility

in the rules that can be expressed. Identifying relevant
information in a prepositional phrase might depend on
the semantic class of the phrase itself and the exact word
of the verb. In another case the important context may
be a sequence of exact words in the subject bu�er and
the semantic class of the direct object. CRYSTAL has
a more expressive representation than other published
systems that induce text extraction rules.
PALKA [Moldovan and Kim, 1992; Moldovan et al.,

1993] includes an induction step similar to CRYSTAL's.
PALKA constructs an initial \Frame-Phrasal pattern
structure" (FP-structure) from each example clause that
contains relevant information. The FP-structure con-
strains the root form of the verb, but allows no other
exact word constraints. PALKA learns semantic con-
straints on each noun group (e.g. subject, direct object)
in the clause, and on prepositional phrases containing
relevant information. Other prepositional phrases are
omitted from the FP-structure.
AutoSlog [Rilo�, 1993], the precursor of CRYSTAL,

also generates CN de�nitions from motivating instances
in the text. AutoSlog uses heuristics to select certain ex-
act words from an instance as \trigger words". Semantic
constraints on the extracted bu�er are set in advance by
the user rather than learned. AutoSlog lacks automatic
generalization to �nd the best level in a semantic hier-
archy.
Unlike AutoSlog and PALKA, CRYSTAL makes no a

priori decision on which constituents are to be included
in its CN de�nitions. Any constraints including those on
the verb may be retained or dropped during CRYSTAL's
induction. The following section discusses the search
control strategy to handle the large branching factor that
results from CRYSTAL's expressive representation.

5.4 Search Control: Avoiding
Intractability

Since each CN de�nition may have several constraints
and a variety of ways to relax each constraint, there are
an exponential number of generalizations possible for a

given CN de�nition. CRYSTAL has the challenge of
producing a near optimal dictionary while avoiding in-
tractability and maintaining a rich expressiveness of its
CN de�nitions.
CRYSTAL reduces the intractable problem of con-

straint relaxation to the easier problem of �nding a sim-
ilar CN de�nition. Relaxing the constraints to unify a
CN de�nition with a similar de�nition has the e�ect of
retaining the constraints shared with another valid def-
inition and dropping accidental features of the current
de�nition. This is also guaranteed to produce a CN de�-
nition with greater coverage than either of the de�nitions
being uni�ed.
Finding similar de�nitions e�ciently is achieved by

indexing the CN de�nitions database by verbs and by
extraction bu�ers. In this way, CRYSTAL can retrieve
a list of similar CN de�nitions which is small relative
to the entire database. Each of these is tested with a
distance metric that counts the number of relaxations
required to unify the two de�nitions.
Testing a generalized CN de�nition's error rate on

the training corpus is actually done on the Training In-
stances Database, a database of instances which have
already been segmented by the BADGER sentence ana-
lyzer. This database is indexed on verbs, including the
<null> verb for sentence fragments, so only a small per-
cent of training instances are typically tested. CRYS-
TAL drops the constraint on exact verb only after relax-
ing all other constraints as far as possible, to take full
advantage of the e�ciency of indexing by verb.
With this control strategy, CRYSTAL is able to induce

a dictionary with all CN types and subtypes from 13,000
instances in about nine minutes of clock time on a DEC
ALPHA AXP 3000 using 40 MB of memory.
CRYSTAL's control structure avoids combinatorial

explosion and back-tracking, but cannot guarantee that
CRYSTALmakes optimal choices of which constraints to
relax. This does not seem to be a problem in practice.
The CN de�nitions that CRYSTAL generates seems to
be generalized as far as possible given the training data.

6 Future Work

Our experience with a variety of domains shows that
local context is generally su�cient for identifying rele-
vant information. Sometimes, however, the context of
bu�ers in the same clause is not su�cient. When the
documents have section headers or other indications of
discourse boundaries, this often inuences the meaning
of a phrase. A reference in the \Past Medical History"
section of a hospital discharge report takes on a di�er-
ent meaning than a similar reference in the \Physical
Examination" section.
Consider the following example, where \hypertension"

is tagged as a pre-existing diagnosis. CRYSTAL's initial
CN de�nition could be extended to include a constraint
that the current section be Past Medical History. If the
most similar CN de�nition was also from that section,
this constraint would be retained, otherwise it would be
dropped during induction.

PAST MEDICAL HISTORY:
Signi�cant for <DE> hypertension </DE>



In some cases it would be useful to include context
from an adjacent text segment in the extraction rule.
This is particularly so, given the tendency of the BAD-
GER sentence analyzer to break a sentence into separate
segments when it encounters a conjunction. CRYSTAL's
initial CN de�nitions could be extended to include con-
straints on bu�ers from neighboring clauses. This more
distant context will usually be dropped during the induc-
tion process when a CN de�nition is uni�ed with another
that does not have similar constraints on a neighboring
text segment.
Another improvement we intend to make to BADGER

and CRYSTAL is to use a �ner granularity of syntactic
analysis. The current version applies CN de�nitions at
the level of syntactic bu�er (subject, verb, direct ob-
ject, prepositional phrase). The CN de�nition does not
pinpoint which simple noun phrase contains the relevant
information. The next version of BADGER will segment
the syntactic bu�ers into simple noun (or verb) phrases,
also handling the scoping of negation. This will enable
CRYSTAL to learn CN de�nitions that identify simple
noun phrases and verb phrases.
Perhaps the most useful enhancement to CRYSTAL

would be to add a mechanism that learns exceptions to
rules. As it now stands CRYSTAL can only learn pos-
itive constraints. There are some cases where the most
compact extraction rule has a constraint that a bu�er
not include a certain word or semantic class.
As it relaxes constraints on a CN de�nition, CRYS-

TAL reaches a point where there are excessive extrac-
tion errors. Rather than abandon the overly generalized
CN de�nition, CRYSTAL could examine the negative
training instances covered by the de�nition. A negative
constraint would then be added to exclude some feature
in common to several negative instances. If the CN de�-
nition is now within error tolerance, generalization would
continue as before.
Suppose that training instances with the semantic

class <pathological function> in the direct object bu�er
are usually positive instances of \sign or symptom".
However, instances with the word \chronic" in the direct
object as well as <pathological function> are tagged as
\diagnosis" and are thus negative training instances for
\sign or symptom". If CRYSTAL had the ability to
specify a constraint that the direct object not contain
the word \chronic", it would have a reliable extraction
rule for \sign or symptom". Otherwise it would miss out
on a useful generalization.

7 Conclusions

CRYSTAL operates as a fully automated knowledge ac-
quisition tool, capable of creating a high quality dictio-
nary of text extraction rules. Because it tests each pro-
posed extraction rule against the training corpus, CRYS-
TAL is able to generalize each rule as much as possi-
ble without creating excessive extraction errors. The
error tolerance parameter allows CRYSTAL to operate
robustly in the face of noisy training, and allows the user
to manipulate a trade-o� between recall and precision.
The expressiveness of CRYSTAL's CN de�nitions

causes an enormous branching factor in the search for

an optimal level to relax the constraints in each CN def-
inition. CRYSTAL overcomes the intractablility of the
search problem by letting uni�cation with a similar CN
de�nition guide the induction process. This search con-
trol has worked out well in practice and allows e�cient
processing, while retaining a exibility of expression that
lets CRYSTAL capture subtle distinctions in its text ex-
traction rules.
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