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Abstract

The salience of symmetry for patterns in the human visual system has been noted by
a number of observers from Mach onwards. Psychophysical studies show that symmetry
is important both for shape recognition and for figure-ground segregation. Here, a
computational scheme for detecting local symmetry as an aid to detecting significant

structures in images is presented. It is based on filtering with Gaussian derivatives.
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The technique is shown to be applicable to intensity images as well as edge images
and point sets. It is also shown how the method may be extended to detecting skew
symmetry of rotational patterns. Finally, a brief discussion of related psychophysical

work is presented.



1. Introduction

The salience of symmetry for patterns in the human visual system has been noted by a
number of observers from Mach onwards. It has been speculated (theorized?) that symmetry
places an important role in the perception of shape [19, 17]. Rock and others have argued
that symmetry axes provide a local coordinate system which characterize a shape [19, 18].
Marr [17], for example, uses symmetry axes to assign an object-based coordinate system in
the 2 1/2-D sketch. In computer vision, the role of (reflection) symmetry in defining shape
has been explored by a number of researchers [3, 4, 5, 9]. Many of these methods [4, 3, 5]
are based on point and line segment data that already correspond to a segmented object or

pattern.

The presence of symmetry, however, is often a strong cue for figure-ground segre-
gation in biological vision [21]. Symmetries can heavily influence the distinctiveness of an
object/figure in relation to its background and. For example, the bodies of many animals are
often characterized by a strong symmetry axis running from top to bottom. [18]. Symmetry

may therefore be useful in object identification.

In this paper, we approach the problem of finding rotational and reflectional symme-
tries as an aid to detection of significant structure in an image. Given that one cannot rely
on pre-segmented data for computing symmetries if segmentation is the goal, we propose the
use of Gaussians and their derivatives at multiple scales as a way of detecting symmetries.
This paper aims to demonstrate that symmetry axes can be detected using Gaussian deriva-
tives. Their use in segmentation will be explored in a future paper. In general besides the
useful symmetry axes, a symmetry detector will respond to homogeneous regions - which
are trivially symmetric. Although broad homogeneous regions can be rejected with ease,

narrow homogeneous regions are much harder to reject. This is because the edges of such



a homogeneous region will lie within any filter giving rise to a symmetric response. The
narrow homogeneous region therefore gives rise to a ridge or valley. It is shown here that
ridges and valleys are special kinds of symmetries and the symmetry detector will therefore

respond to them.

Gaussian derivatives may be expressed in terms of Gaussian weighted moments. The
conditions for rotational and reflectional symmetry using Gaussian weighted moments can
be derived in the same manner as for “ordinary” moments [1]. An important advantage
gained is that the scale associated with the Gaussian derivatives automatically limits the

extent of the signal over which the moments are derived.

The importance of scale is demonstrated by the following example. Consider a 1-D
signal which is symmetric over an interval [-a,a]. Outside of this interval the signal is not
symmetric (see figure 1). “Ordinary” moments will not detect the symmetry because the
entire signal is not symmetric. However, Gaussian weighted moments or Gaussian derivatives
will detect the symmetry over a set of scales, if the scales are chosen to make the contributions

of the asymmetric part negligible.

There is considerable evidence that primate visual systems use spatial filters at mul-
tiple scales in the early stages of processing. These are often modelled as Gabor or Gaussian
derivative filters [20]. A number of different visual processes have been modelled using Gaus-
sian derivative filters, for example, texture segmentation [15], blob detection [13], shape from
texture [14]. The use of Gaussian derivative filters at multiple scales is, therefore, consistent
with this paradigm and with data on the primate visual system. Further, psychophyical

studies on symmetry show that [12, 18, 7]

1. symmetry detection is pre-attentive.



2. channel separation occurs before symmetry detection.

3. symmetry detection is local.

4. vertical and horizontal symmetry are detected most easily. Diagonal symmetry is

detected with less ease.

The relationship of the scheme proposed here for detecting (reflection) symmetry with these

psychophysical facts will be discussed later in the paper.

Since it is the Gaussians which are differentiated rather than the image itself, discon-
tinuous images can be used for symmetry detection. Thus the method proposed to detect
symmetry will detect them in edge images and point sets also. In principle the technique will
also work on angle images - ie. images where the pixel values are replaced by the gradient

angle. Thus a unified framework to detect all kinds of symmetries is provided.

Closely related to symmetry detection is the idea of detecting ridges and blobs. Ridges
may be defined as reflection symmetries characterized by a bright bar surrounded by a
dark background. Blobs are rotational symmetries characterized by a bright region wholly

enclosed by a dark background.

Another interesting notion in symmetry is the idea of detecting skewed symmetry
i.e. the symmetric pattern lies on a plane which is not parallel to the image plane. In the
case of rotationally symmetric patterns, skewed symmetry imposes certain conditions on the

Gaussian derivatives and these are derived.

This paper is organized as follows. First an intuitive notion of how symmetry can be
characterized by the derivatives of a function is derived. this is formalized using the moments
of an image is given. Since global moments over an image are rarely useful for detecting

symmetry, the derivation is adapted to use Gaussian weighted moments. This is essentially



equivalent to using Gaussian derivatives. Images are rarely perfectly symmetric, rather thery
are approximately symmetric. The notion of approximate symmetry is discussed and is
followed by a discussion of ridges and blobs. An algorithm for detecting symmetry in images
is then provided and experiments on some real images are shown. The symmetry conditions
discussed above are not only valid for image intensities, but also for edges and points and
this is briefly discussed. The remaining sections of the paper discuss skew symmetry and

how rotational skew symmetry can be detected.

1.1 Brief Review of Previous Work in Symmetry

A fair amount of previous work in symmetry [3, 4, 5] assumes that the object has
been previously segmented and an edge outline obtained. Local symmetry axes are then

computed to obtain a shape description in terms of a line skeleton.

Although there has been a considerable amount of literature on symmetry in computer
vision (see Zabrodsky [22] for a good review), very little has been concerned with using
symmetry for segmentation in images. Reisfeld et al [8] developed a symmetry operator to
find highly symmetric points in a face. They used this operator to detect faces. Zabrodsky
[22] developed a general symmetry operator which she applied to detecting symmetry axes

in faces. For an excellent review of previous work in computer vision on symmetry see

1.2 Contributions

The contribution of this paper is to show that Gaussian derivatives at multiple scales
can be used to detect reflection and rotation symmetry without any apriori segmentation.
The use of Gaussian derivatives to detect skew symmetry for rotationally symmetric patterns
is also derived. Experiments on real images are shown to illustrate these ideas. It is shown

that ridges and valleys are special kinds of symmetries and they are also detected by the



symmetry detector.

2. Basic Ideas

An intuitive notion for characterizing symmetry can be obtained by looking at the
derivatives of a function. Doing so provides an insight into the close connections between

symmetry detection and finding ridges in images.

Consider a twice differentiable function F(x). Let F(x) have a maximum at a. Then
from elementary calculus

VF(a)=0 (1)

and

F'(a) <0 (2)

Consider a 2D function f(x,y) which is mirror symmetric. Without loss of generality, assume
that it is mirror symmetric about the y-axis. Consider the 1-D function f(x,b) for a fixed

value of b. By mirror symmetry, f(x,b) must be even and hence can be written as

9(x) = f(z,0) = [f(z,b) + f(=x,b)]/2 (3)

Now it is trivial to show that all the odd derivatives of g are odd functions and all the even
derivatives of g are even functions. This implies that all the odd derivatives of g at x = 0
must be zero and all the even derivatives of g attain their maximum at x = 0. It follows

that all the odd derivatives have zero crossings at x = 0.

An implied assumption here is that the direction of the symmetry axis is known. The
direction can be derived by finding the two principal second directional derivatives. The
symmetry axis must lie along one of them. If the first derivative along the perpendicular

direction is zero, then there is declared to be a valid symmetry axis. i.e. if x" or y’ is a



symmetry axis [(x",y’) = R (x,y)] then
R'™Vf = (0,k)or(k,0) (4)
RUf"(w,y)R = X (5)

where R = R(f) is a 2-D rotation matrix and ¥ is a 2 by 2 diagonal matrix. This definition
is consistent with the symmetry conditions derived in the next section using moments. Thus

symmetry is defined using the extremum values of the function f(x,y).

One can deal with rotational symmetry in similar fashion. For example, let a function

f(x,y) have rotational symmetry of order n. This implies that
f(x) = f(Rx) (6)
where R = R(f) is a 2D rotation matrix and § = 2I1/n. Differentiating gives
V/f(x) = R"Vf(Rx) (7)
and further differentiating gives
f"(x) = R'f'(Rx)R (8)
Now the centers of rotational symmetries are fixed points and therefore

V(0) = R"Vf(0) (9)

["(0) = R"f"(O)R (10)

which implies that Vf(0) = 0 and f”(0) = k L.

The notion of symmetry dealt with here is an infinitesmal one i.e. if f(x,y) is symmetric
about the y-axis at (0,y), then the neighbourhood over which this function is symmetric is

(—e,€)i.e.f(e,y) = f(—€,y). This is not very useful for a number of reasons. An image



has a large number of extremum points at a small scale - i.e. a large number of possible
symmetries. Most symmetries in images, however, have finite extent and the interesting ones
usually occur over much larger scales. It is, therefore, necessary to incorporate the notion
of scale. It is also possible that a function, although even, may not be twice differentiable,
so that the above symmetry conditions are not directly applicable. A third issue is the
sensitivity of differentiation to noise at small scales. All these difficulties may be resolved by

smoothing the image first with a Gaussian of an appropriate scale.

The notion of scale can be incorporated by smoothing with Gaussians at several scales
and then differentiating to check for symmetry. Equivalently this involves directly convolving
the image with Gaussian derivatives. The above derivation for symmetry conditions was
based on an intuitive argument. A more formal derivation can be established using moments
of the image. Moments provide global conditions on symmetry which are not very useful for
many reasons. Most images are rarely globally symmetric, rather there are parts of them
that are symmetric. Further, for most purposes one would like to derive an axis of symmetry
which cannot be derived using the global conditions on moments. However, the derivation
for moments can be adapted to use Gaussian weighted moments. Since Gaussian derivatives
can always be expressed in terms of Gaussian weighted moments, symmetry conditions on

Gaussian derivatives can also be derived from them.

3. Derivation Using Moments

Symmetry can be used to derive conditions on the moments of a function. The easiest
way to do this is to use complex moments. We will follow the derivation of Abu-Mostafa

and Psaltis [1] here.



3.1 Derivation of the conditions for Rotational Symmetry

Define the complex moment C,, of a function f(x,y) by

Cpy = /(37 +iy)P(x — iy)? f(z, y)dzdy (11)
This may be expressed in polar coordinates as follows
Cpy = /r”ei”arqefiqgf(r, 0)rdrdd

= /r”q“ew(”*‘l)f(r, 0)drdb (12)

Let the pattern f(x,y) be rotated by an angle ¢ . Then the new moment C}, can be expressed

in terms of C), as

cl, = pqew(pfq) (13)

Both Cp, and €}, are complex numbers. Thus for (p - q) = 1 there is a unique value of ¢

for which C}, is positive real. This may be state in the form of a Lemma.

Lemma 1 For (p-q) = 1 there is a unique value of ¢,0 < ¢ < 2II such that C’;q is positive

real.

Lemma 2 Consider a k-fold rotationally symmetric pattern. By symmetry there must be

k values of ¢ for which C}, is positive real, where k is the order of symmetry.

Lemma 3 Lemmas 1 and 2 can be consistent only if C}, = 0 for any rotationally symmetric

pattern (p-q=1)

The general form of Lemma 3 when (p - q) is any integer can now be stated.
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Lemma 4 If a pattern is rotationally symmetric, C}, = 0, whenever the order of symmetry

k does not divide (p - q).

3.1.1

1.

3.2

Examples

Let p =1, q = 0. Then for any k£ > 1 (i.e. any rotational symmetry)

where my;, denotes (ordinary) moments of order ab. Thus if the pattern is rotationally
symmetric myy = mg; = 0. This is another way of stating that the centroid of a

rotationally symmetric pattern coincides with its center of symmetry.

Let p = 2, g = 0. Then for rotational symmetries of order 3 or greater,

O = //(37 +iy)* f(w, y)dedy = mag — moz + i2my =0 (15)

Thus for rotational symmetry, msog = mgs, m; = 0. Define the second moment matrix

Moy M1y
b [

. Then it follows from the above that the second moment matrix must
myp Mo2

be the identity matrix times a constant.

Derivation of the conditions for Reflection Symmetry

Consider reflections about the x axis. Then C,, = C . This implies that C},; must

be real. Thus a reflection about the x-axis implies that C},, must be real.

Reflections about any arbitrary axis can be obtained by first rotating the coordinate

axis and then applying the above condition.

11



3.2.1 Examples

l.p=1,q=0
Cyo = //(x +iy) f(x,y)dxdy = my + imn (16)

must be real. Thus mg; = 0 for a reflection about the x-axis. Similarly for a reflection

about the y-axis myg = 0.

2.p=2,q9=0
Cy = / /(fc +iy) 2 f (2, y)dzdy = may — mgy + i2my, (17)

must be real. Therefore my; = 0 for a reflection about the x-axis. The same condition
holds for a reflection about the y-axis. Thus the second moment matrix for a reflection

about the x or y axes must be diagonal.

The above derivations using moments were first noticed in the context of matching
patterns under similarity transforms by Abu Mostafa and Psaltis [1]. They have not really
been used to find symmetry for a number of reasons. First, for a reflection symmetry, one
needs to derive a symmetry axis. However, all global moments do is show that whether the
image is symmetric globally or not. They do not determine a symmetry axis. Images are
rarely globally symmetric. Rather they may be symmetric over local regions. The notion
of scale is, therefore, important both for reflection and rotation symmetries and this is not
incorporated in the above derivations. This is, however, simple to do using Gaussian weighted
moments. The derivation stays the same in this case. The derivation may then be modified

to use Gaussian derivatives rather than Gaussian weighted moments.

12



4. Derivation Using Gaussian derivatives

One way to extend the above definitions is by first convolving the function f(x,y) with
a Gaussian of an appropriate scale and then checking for the extrema. This is straightforward

to do. Alternatively, this may be derived by defining Gaussian weighted moments.

A complex Gaussian weighted moment maybe defined as

Coo = [ [+ gy (a — )G (w9, 0)f (2, y)dady (18)

where G(x,y,0) is a Gaussian. This definition implies that the symmetry conditions for

Gaussian weighted moments remain the same as for regular moments.

The advantage gained is that a function which has rotational or reflection symmetry
must satisfy this at several scales. The second advantage is that for reflection symmetries,
symmetry axes will be obtained by computing the above moments at every point in the

image.

A derivative of a Gaussian of any order may be expressed as a linear function of
Gaussian weighted moments. Thus the symmetry conditions may now be modified and
extended to Gaussian derivatives. Note that from this point onwards, only moments upto

third order will be considered.

The first derivative of a Gaussian with respect to the x-axis are given by
0G(,y,0)/0x = —x/0*G(z,y,0) (19)

and a similar expression holds for the y-derivative. Consider a function filtered with the first
derivative of a Gaussian. This is equivalent to taking the first moments of the function at

the same point. Therefore, the symmetry conditions at the point remain unchanged.
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The second derivatives of a Gaussian are given by

0°G(r,y,0)/02* = 2*/0'G(v,y,0) — G(z,y,0)/0" (20)
0*G(x,y,0) /020y = wxy/o'G(z,y,0) (21)
0°G(z,y,0)/0y* = y*/o'G(x,y,0) — G(z,y,0)/0 (22)
o . . Grw Gay .
The second derivative matrix of a Gaussian may be defined as a. G . The diagonal
zy  Gyy

elements differ from the second moment matrix by the additional Gaussian terms. The
second derivative matrix will be zero when the intensity is either constant or varies linearly
within the support of the Gaussian. This follows from the linearity of convolution for then
we have

FxG'=F"xG (23)

Now F” is zero when F is either constant or linear, and hence it follows that F * G” is
zero when F' is constant or linear. Otherwise, the conditions for both reflection and rotation
symmetry stay the same. This is useful, for it allows the elimination of patterns with uniform

brightness. However, a bright bar

4.1 Edges and Points.

Since it is the Gaussians that are differentiated rather than the image function itself,
the above algorithm will detect symmetries in discontinuous images. Thus for example, it
will detect symmetries in edge images and sets of points. However, for edge images it will
produce symmetry axes at the edges. Although this is a symmetry axis for the edge image,
it is not one for the original image. These extra axes are produced because the original
intensity image which would have differentiated them is no longer available. An example of

symmetry detection on an edge image is shown in

14



4.2 Scale Invariance of the Reflection Axes

Assume that the symmetry axis is invariant over a range of scales o0y....0,,. Then all
the first and second derivatives of Gaussians need to be rotated by the same matrix R to

obtain the axis of symmetry.

Proof: The first derivative conditions state that y’ is the symmetry axis if G sigma =
0. But (z',y') = R”(z,y) where Ris the rotation matrix. Note that Rdoes not depend on
the scale but only the symmetry axis y’ and the current coordinate system (x,y). Since by
assumption the symmetry axis is the same for oy....0,, it follows that Rmust be the same

for oy....0,.

Corollary: Since the rotation matrix required to diagonalize the second derivative
matrix is the same as required to diagonalize the first derivative matrix, it follows that

Rmust be the same for the second derivative matrix too.

5. Approximate Symmetry

Real images are rarely exactly symmetric. For example, the human face shows approx-
imate bilateral symmetry. It is, therefore, important that the notion of symmetry formulated
here capture this. Consider a 1-D function f(x) again. Assume that f(x) is approximately
symmetric at (x = 0). Convolve f(x) with a Gaussian G(x,0) and let F(z) = f(x) *G(x, o).
Let the scale o be chosen such that F(x) is also approximately symmetric at (x = 0). Let

the even and odd parts of F(x) be E(x) and O(x). Then
VF(z) =VE(x)+ VO(z). (24)
At x = 0, VE(0) = 0, thus VF(0) = VO(0). Similarly, F” (0) = E(0).

Therefore, O’(0) and E”(0), in some sense, measure the deviation from symmetry.

If they are large, F(x) is not symmetric at (x = 0) and if they are small, it is symmetric

15



about (x = 0). Going to 2-D introduces another complicating factor - the orientation of the
symmetry axis. If the orientation of the symmetry axis is assumed known, for example it
is assumed vertical, then the above considerations still apply. However, if the orientation of
the symmetry axis is unknown, this must also be recovered at the same time as symmetry
is tested. For exactly symmetric patterns, this can be done by finding the rotation matrix
which zeroes one of the components of VF(z,y) and diagonalizes F” (x,y) at the same time.

We will assume that this applies also to approximately symmetric patterns.

5.1 Ridges, Valleys and Blobs

Structure in images can also be defined in terms of ridges, valleys and blobs at multiple
scales. The detected ridges and blobs can be used [2, 10, 14, 11] to segment the image. There
is a close relationship between ridges, blobs and symmetric patterns. Ridges may be regarded
as reflection symmetries defined by a single bright bar against a dark background (and valleys
as dark bars against a light background). Circular blobs can be considered as special cases
of rotationally symmetric patterns which are defined by a bright circular patch against a
dark background (or vice-versa). Thus the symmetry conditions above also apply to ridges

and valleys (a similar definition for ridges has been used by Burns et al [11]).

The optimal scale of a filter required to detect symmetry is hard to specify for general
symmetries. However, for ridges and blobs, this can be specified by considering the filter
outputs over a set of scales. The lowest filter which is useful for this purpose is the second
derivative of Gaussian filter. This follows because a Gaussian convolution just produces the
average value of the Gaussian weighted intensity while the first derivative filter produces
zero at a point of symmetry. However, the second directional derivative perpendicular to the
ridge must assume a maximum at some scale - and this scale can be assumed to be optimum.

This scale therefore defines the extent of the symmetry (or ridge). The extent will depend on

16



the exact shape of the ridge. Here, it is derived for a ridge defined by a rectangular window.
In a similar vein, Blostein and Ahuja [2] used the maximum of the Laplacian over scales to
define circular blobs and Lindeberg and Garding [14] used the maximum of the trace of the

hessian to specify the extent of elliptical blobs.

5.2 Derivation of the Extent of a Ridge

Consider a bright bar against a dark background. Let the ridge be infinite along one

direction (say the y direction ) and in the perpendicular direction let it be defined by

Flz)= 1 —k<z<k (25)

= 0 otherwise (26)

Then consider the convolution of F with G,,. At x = 0, the value of this convolution is

[ kk(.ﬁ Jo? —1)/0?G(x, o) (27)

This can be shown to attain a minimum with respect to scale (by differentiating the expres-
sion with respect to o) at k = \/E3)O'. Thus the ridge has an extent of 2k = 2%3)0 when

the convolution with respect to GG, is a minimum with respect to scale.

Similar derivations can be carried out for other assumped shapes for the ridge.

6. Algorithm for finding Reflection Symmetry

The algorithm for detecting reflection symmetry will use the first two Gaussian deriva-
tives. In general, the angle of the symmetry axis is unknown and therefore the second deriva-
tives of the Gaussians are used to derive the angle. The zeroes of the first derivatives can
then be used to locate the symmetry axes. The zeroes of the first derivatives are, however,

not well localized for a couple of reasons. First, detection of a zero response requires some

17



kind of threshold and cannot therefore be well localized. Second, if a pattern is homoge-
neous in intensity, it will give zero responses over a large area. As discussed in section 2.,
a function which is exactly symmetric will have a zero crossing in its first derivative. Thus
zero crossings can be used instead of zero responses. Zero crossings have the advantage of
localization. A threshold on their slope is still needed to reject noise, but this threshold is

not critical.

The algorithm for finding reflection symmetry may now be stated.

1. Convolve the image with first and second derivatives of Gaussians with standard de-

viation o.
2. Diagonalize the second derivative matrix G” i.e.
G’ =RT(0)ZR(H) (28)

where R(f) is a 2 by 2 rotation matrix and X is a diagonal matrix (this follows from

the symmetry of G”).

3. Now rotate the first derivative vector GG;’ by the rotation matrix Rderived from the

above diagonalization. i.e

G =R'G, (29)

4. Now look for zeroes in either of the first partial derivatives of G’.

As discussed above, it is useful to modify the last step. Thus instead of looking for zeroes, we
look for zero-crossings. Since noise could cause false zero crossings, these are then thresholded

based on their slope - zero crossings which have small slope are rejected.
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7. Experiments

On the top left in Figure 1 is a picture of a diskhead slider that has been twice
reduced using a Gaussian pyramid. The lighting is almost but not completely uniform.
The image was then filtered with Gaussian derivatives with ¢ = 5. On the top right is
displayed the y derivative of the Gaussian while on the bottom right the y derivative is
thresholded to show the zero crossings. The bottom left displays the detected symmetries
using the above algorithm after thresholding the slope at 3. The detected symmetry azes are
all local. No global curves have been fitted. As can be seen the symmetry axes are not all
straight, but bend and curve around (the cross labels the corner of one of the bars). Note
that the background between the metal strips also has symmetry axes. Figure and ground
discrimination can be done by noting that the axes for the figure will have a positive second

derivative along the direction of the symmetry axis.

Figure 2 shows the Lenna image frequently used in image processing. On the top left
hand side is the original image reduced twice using a Gaussian pyramid. The image was
again filtered with Gaussian derivatives with 0 = 5. On the top right is the x derivative of
the image and on the bottom right the zero crossings of the x derivative are shown. On the
bottom left are the symmetry axes detected by the algorithm after thresholding the slope at
2. Many of these correspond to narrow homogeneous regions - in fact these are ridges and
valleys and as discussed above ridges and valleys are special kinds of symmetries. (Since
they are narrow, the edges of these regions lie within the filter. Thus they consist of a
bright bar surrounded by a darker region which is the definition of a ridge (or dark against
bright for valleys). The filters will therefore, have a non-zero response to them. Broad
homogeneous regions on the other hand will not respond to the filter. One of the symmetry

axes corresponds to Lenna’s face. This is indicated by the a line.
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Figure 3 is almost identical except that the scale used is ¢ = 10. Note, that the

number of axes is much reduced, but the axis defining the face is still present.

8. Determination of Skew Symmetry

Consider a symmetric pattern on a plane. If this plane is not parallel to the image
plane, under weak perspective projection, the pattern’s image will be skew symmetric. Skew
symmetry causes the slant and tilt of the planes to be confounded with the symmetry
conditions. For symmetric patterns, it can therefore be used to measure both the slant

and tilt of the plane on which the pattern lies as well as for checking for symmetry.

Under weak perspective projection, the Gaussian derivatives on the plane and the

image are related as follows [16]:

G (,ATAo) = ATGY(.,0) (30)

G, ATAo) = ATG!(.,0)A (31)

where symmetric projection matrix A = sRT MR. s is the scale, Ris a 2-D rotation matrix

and M is the slant matrix given by

0 1 (32)

<
I

coso 1 ]

Note that the Gaussian derivatives on the left hand side are elliptical while those on the right
are circular. As a first approximation, it will be assumed that the Gaussians on the left-hand
side can be approximated by circular Gaussian derivatives. The main problem (at least as far
as detecting rotational skew symmetry) will be that the affine parameters will be estimated
incorrectly. One can use an iterated procedure where the estimated affine parameters are

used to refilter using elliptical Gaussians and the affine parameters reestimated.
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8.1 Rotational Skew Symmetry

For rotational symmetry, Gj = 0 and G = kI for some constant k. Thus the

aboveequations reduce to:
Gy =0 (33)
G| = kATA (34)

The eigenvalues of the second derivative matrix give the slant and tilt of the pattern [6].

Thus the slant and tilt of the plane are given by:

Gon + Gy — \/(Gm — Gyy)? + 4Gy
coso = (35)
G + Gy + \/(Gm — Gyy)? + 4Gy,

2y,

e (36)

tan2t =

8.1.1 Algorithm for Detecting Rotational Skew Symmetry
1. Mark those places in the image where G| = 0.

2. At those places compute the slant and tilt using the second derivative matrix.

3. Warp the image using the slant and tilt parameters and recompute.

9. Consistency with psychophysical data

The computational theory for detecting symmetry that is proposed here is consistent
with the psychophysical data on symmetry detection by humans. Consider first the experi-

ments of Julesz and Chang [12]. They argued that separation into frequency channels occurs
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before symmetry detection. They found that if two random dot patterns, one vertically
symmetric and the other horizontally symmetric are added together, the resulting pattern
is not perceived as symmetric. However, they found that if one of the patterns is low pass
filtered and the other high pass filtered and the patterns are again added together, both
symmetries are still perceived. If Gaussian derivatives of several different sigma’s are used,
the channel separation observed by Julesz and Chang will occur. The algorithm described
here does filtering before symmetry detection which is consistent with the observations of
Julesz and Chang [12]. Again, symmetry detection is considered local an pre-attentive which

is consistent with the mechanisms suggested here.

There is considerable neurophysiological and psychophysical evidence that in the early
stages of the primate visual system the input is filtered using spatial filters [20]. These have
been modelled using gabor functions or Gaussian derivatives. The scheme proposed here is

therefore, consistent with the available evidence in the use of such filters.

Corballis and Roldan [7] found that the time it took to verify that bilateral patterns
are symmetric increased as the axis of symmetry was rotated from the vertical. The algorithm
proposed, here, takes the same time for all rotational angles and is therefore not consistent
with their evidence. However, a modified version of the algorithm would be consistent with
such a scheme. A modified scheme could be generated as follows, the image is rotated by a
set of discrete angles (say at steps of 15 deg). The first derivative of the Gaussian is then
checked to see if it is close to zero - or has zero crossings. These are labelled as possible
symmetries. Figure 4 shows an example of an image for which only the zero crossings in the
vertical direction are displayed. Note that the faces are all detected as well as other ridges.

Such a scheme would take time proportional to the rotational angle.
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TOp left: Slider image 2 reduced. Top Right:d/dy image. Bottom left: the

detected bilateral symmetry Bottom right:

d/dy showing the zero crossings.

Figure 1:
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Top left: Lenna image 2 reduced. Top Right:d/dx image. Bottom left: the
detected bilateral symmetry Bottom right: d/dx showing the zero crossings.

Figure 2:
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Top left: Lenna image 2 reduced. Top Right:d/dx image. Bottom left: the
detected bilateral symmetry Bottom right: d/dx showing the zero crossings.

Figure 3:

25



Left: Image, Right: x derivative threholded

Figure 4:
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