
Retrieving Images by Similarity of Visual Appearance�S. Ravela R. ManmathaMultimedia Indexing and Retrieval GroupUniversity of Massachusetts, Amherstfravela,manmathag@cs.umass.eduAbstractA system to retrieve images using a description ofvisual appearance is presented. A multi-scale invari-ant vector representation is obtained by �rst �lteringimages in the database with Gaussian derivative �ltersat several scales and then computing low order di�er-ential invariants. The multi-scale representation is in-dexed for rapid retrieval. Queries are designed by theusers from an example image by selecting appropriateregions. The invariant vectors corresponding to theseregions are matched with those in the database bothin feature space as well as in coordinate space and amatch score is obtained for each image. The results arethen displayed to the user sorted by the match score.From experiments conducted with over 1500 images ofobjects embedded in arbitrary backgrounds, it is shownthat images similar in appearance and whose viewpointis within 25 degrees of the query image can be retrievedwith an average precision1 of 57.4%.1 IntroductionThe goal of image retrieval systems is to operateon collections of images and, in response to visualqueries, extract relevant images. The application po-tential for fast and e�ective image retrieval is enor-mous, ranging from database management in museumsand medicine, architecture and interior design, imagearchiving, to constructing multi-media documents orpresentations[4]. However, there are several issues thatmust be understood before image retrieval can be suc-cessful. Foremost among these is an understanding of�This material is based on work supported in part by theNational Science Foundation, Library of Congress and Depart-ment of Commerce under cooperative agreement number EEC-9209623, in part by the United States Patent and Trademark Of-�ce and Defense Advanced Research Projects Agency/ITO underARPA order number D468, issued by ESC/AXS contract numberF19628-95-C-0235, in part by the National Science Foundationunder grant number IRI-9619117 and in part by NSF MultimediaCDA-9502639. Any opinions, �ndings and conclusions or recom-mendations expressed in this material are the author(s) and donot necessarily re
ect those of the sponsors.1precision is the proportion of retrieved images that arerelevant

what 'retrieval of relevant images' means. Relevance,for users of a retrieval system, is most likely associatedwith semantics. Encoding semantic information intoa general image retrieval system entails solving suchproblems as feature extraction, segmentation and, ob-ject and context recognition. These are extremely hardproblems that are as yet unsolved. However, in manysituations attributes associated with an image, whenused together with some level of user input, correlatewell with the kind of semantics that are desirable. Con-sequently, recent work has focused directly on retrievalusing surface level image content descriptions such ascolor[20], texture features [10, 3, 14, 11], shape [12, 24]and combinations thereof [1, 5, 14].In this paper images are retrieved using a character-ization of the visual appearance of objects. The focusis on retrieving 'similar' objects. For example, when aface is presented as a query it is expected that the sys-tem should not only retrieve the same person's face butrank other faces before it ranks, cars, trains or apes.Similarly if a car is a query(see Figure 1) then it is ex-pected that cars be ranked before faces or trains(seeFigure 2). That is retrieved objects must appear visu-ally similar. Intuitively, an object's visual appearancein an image depends not only on its three-dimensionalgeometric shape, but also on its albedo, its surface tex-ture, the view point from which it is imaged, amongother factors. It is non-trivial to separate the di�erentfactors that constitute an object's visual appearance.However, we posit that the shape of an imaged object'sintensity surface closely relates to its visual appearance.Here a local characterization of the intensity surface isconstructed and images are retrieved using a measure ofsimilarity for this representation. The experiments con-ducted in this paper verify the association that objectsthat appear to be visually similar can be retrieved by acharacterization of the shape of the intensity surface.Di�erent representations of appearance have beenused in object recognition [13, 18] and have been ap-plied to speci�c types of retrieval such as face recog-nition [6, 23]. To the best of our knowledge the sys-tem presented here is the �rst attempt to character-1



ize appearance to retrieve similar images and in thispaper the development of Synapse (Syntactic Appear-ance Search Engine), an image database search engine,is described. The approach taken here does not relyon image segmentation (manual or automatic) or bi-nary feature extraction. Unlike some of the previouslymentioned methods, no training is required. Since therepresentation is local, objects can be embedded in dif-ferent backgrounds. Using an example image and userinteraction to construct queries, Synapse retrieves sim-ilar images within small view and size variation in theorder of their similarity in syntactic appearance to aquery.The claim is that, up to a certain order, the localappearance of the intensity surface (around some point)can be represented as responses to a set of scale pa-rameterized Gaussian derivative �lters (see Section 3).This set or vector of responses, called a multi-scale fea-ture vector, is obtained solely from the signal contentand without the use of \global context" or \symbolicinterpretation". Further, the family of Gaussian �ltersare unique in their ability to describe the scale-space ordeep structure [7, 9, 22, 2] of a function and are wellsuited for representing appearance.In this paper we �rst verify, using correlation, thatthe proposed representation can retrieve visually simi-lar images within small view and a range of size varia-tion(see Section 4). Then, to overcome the limitationsof the correlation approach, an indexable strategy forimage retrieval is then developed using feature vectorsconstructed from combinations of the derivative �lteroutputs. These combinations yield a set of di�erentialinvariants [2] that are invariant to two-dimensional rigidtransformations. Retrieval is achieved in two computa-tional steps. During the o�-line computation phase eachimage in the database is �rst �ltered at sampled loca-tions and then �lter responses across the entire databaseare indexed(see Section 5). The run-time computationof the system begins with the user selecting an exampleimage and marking a set of salient regions within theimage. The responses corresponding to these regionsare matched with those of the database and a measureof �tness per image in the database is computed in bothfeature space and coordinate space (see Section 5.2). Fi-nally, images are displayed to the user in the order of�tness (or match score) to the query (see Section 7).2 Related WorkEigen-space representations [13, 6, 23, 21] are one ofthe earliest attempts to characterize appearance or theintensity shape. This space is constructed by treatingthe image as a �xed length vector, and then comput-ing the principal components across the entire database.The images therefore have to be size and intensity nor-

Figure 1: Allowing the user to construct queries by se-lecting the box shownmalized, segmented and involves training. The ap-proach presented in this paper does not characterizeappearance by eigen decomposition or any variationthereof. Further, the method presented uses no learn-ing, does not depend on constant sized images, toleratessigni�cant variation in background and retrieves fromheterogeneous collections of images using local repre-sentations of appearance.Gaussian derivative representations have been usedin the context of recognition [15]. Indexed di�erentialinvariants have recently been used [18] for object recog-nition. We also index on di�erential invariants but thereare several di�erences compared with [18]. First, the in-variants corresponding to the low two order derivativesare used (as opposed to the �rst nine invariants), for rea-sons of speed as well as relevance to retrieving similarimages(see section 3). Second, their indexing algorithmdepends on interest point detection and is, therefore,limited by the stability of the interest operator. We onthe other hand sample the image. Third, the authorsdo not incorporate multiple scales into a single vectorwhereas here three di�erent scales are chosen. In addi-tion the index structure and spatial checking algorithmsdi�er.The earliest general image retrieval systems were de-signed by [1, 14]. In [1] the shape queries require priormanual segmentation of the database which is undesir-able and not cost-e�ective for most applications. Tex-ture based image retrieval is also related to the appear-ance based work presented in this paper. Using Woldmodeling[10] , the authors try to classify the entire Bro-datz texture set and in [3] they attempt to classifyscenes, such as city and country. Of particular inter-est is work by [11] who use Gabor �lter representation(globally over the entire image) to retrieve by texturesimilarity.2



3 Characterization of AppearanceThis section begins by making explicit the notion ofappearance and the uniqueness of Gaussian derivative�lters therein. Then a representation, namely a multi-scale feature vector is constructed by �ltering an imagewith a set of Gaussian derivative �lters. The multi-scale feature vector are transformed so that the elementswithin this vector are invariant to 2D rigid transfor-mations. This transformed feature vector is called themulti-scale invariant vector. Then a scheme for index-ing multi-scale invariant vectors computed over the en-tire image database is presented. This completes all thesteps of the o�-line computation described earlier.A function can be locally characterized by its Taylorseries expansion provided the derivatives at the point ofexpansion are well conditioned. The intensity functionof the image, on the other hand, need not satisfy thiscondition. However, it is well known that the derivativeof a possibly discontinuous function can be made wellposed if it is convolved with the derivative of a smoothtest function [19]. Consider the normalized Gaussian asa choice for the smooth test function. Then the deriva-tives of the image I� (x) = (I ? G) (x; �) ;x 2 <2; � 2<+, are well conditioned for some value of �. This iswritten as Ii1:::in;� (x) = (I ? Gi1:::in) (x; �)Gi1:::in = �n�i1 : : : �inGand ik = x1 : : : xD; k = 1 : : : n.The local N-jet of I (x) at scale � and order N isde�ned as the set [8]:JN [I ] (x;�) = fIi1:::in;�jn = 0 : : :Ng (1)It can be observed that the set limN!1 JN [I ] (x; �)bundles all the derivatives required to fully specify theTaylor expansion of I� up to derivatives of order N.Thus, for any order N , the local N-jet at scale � locallycontains all the information required to reconstruct Iat the scale of observation � up to order N . This is theprimary observation that is used to characterize appear-ance. That is, up to any order the derivatives locallycharacterize the shape of the intensity surface, i.e. ap-pearance, to that order. From the experiments shownin this paper it is also observed that this representa-tion can be used to retrieve images that appear visuallysimilar.The choice of the Gaussian as the smooth test func-tion, as opposed to others, is motivated by the fact thatit is unique in describing the scale-space or deep struc-ture of an arbitrary function. A full review of scale-space is beyond the scope of this paper and the reader

is referred to [26, 7, 2, 9, 22]. Here some of the impor-tant consequences of incorporating scale space are con-sidered. For increasing values of � the Gaussian �lteradmits a narrowing band of frequencies and I will ap-pear smoother. The scale-space of I is simply I� , where� is the free variable. Similarly, the scale space of thederivatives of I is the range of Ii1:::in;� where � is thefree variable. Scale-space has an important physical in-terpretation in that it models the change in appearanceof an imaged object as it moves away from a camera.An argument is therefore made for a multi-scale featurevector which describes the intensity surface locally atseveral scales. From an implementation stand point amulti-scale feature vector at a point p in an image I issimply the elements of the vector:�JN [I ] (p; �1) ; JN [I ] (p; �2) : : : JN [I ] (p; �k)	 (2)for some orderN and a set of scales �1 : : : �k. In practicethe zeroth order terms are dropped to achieve invari-ance to constant intensity changes. Multi-scale vectorsrepresent appearance more robustly than a single-scalevector. This can viewed from several di�erent perspec-tives. Since, multi-scale vectors are values computedat several di�erent kernel sizes, therefore, they containmore information than �xed window operators. Equiv-alently, multi-scale vectors contain information at sev-eral di�erent bandwidths and with the choice of a Gaus-sian accurately represent the intensity shape at di�erentdepths from the camera. From a practical standpointthis means that mis-matches due to an accidental sim-ilarity at a single scale can be reduced.4 Veri�cation Using CorrelationA measure of similarity between two feature vectorscan be obtained by correlating them or computing thedistance between the vectors. We begin with a sim-ple approach wherein the feature vector is the local 2-jet without the zeroth order term, computed at a �xedscale [17]. Speci�cally, hIx; Iy ; Ixx; Ixy; Iyyi� , computedat scale �, is a derivative feature vector of an imagewhere each pixel is associated with the �rst �ve partialderivatives (up to order two) computed in the neigh-borhood around that point. Using this representationin conjunction with correlation, we verify that, at anyscale a reasonable retrieval of visually similar imagesis possible. Further, it is experimentally observed thatthe method tolerates small rotations and a range of sizechanges between a query patch and matching databaseimages.To compare a candidate image patch with a databaseimage patch, their derivative feature vectors are corre-lated. The correlation coe�cient � between the featurevectors of a query image patch ~S and those of a database3



image ~C at location (m;n) in ~C is given by:� (m;n) =Xi;j ĈM (i; j) � ŜM (m� i; n� j) (3)where ŜM (i; j) = ~S (i; j)� SM������~S (i; j)� SM ������and SM is the mean of ~S (i; j) computed over S. ĈM iscomputed similarly from ~C (i; j). The mean CM is inthis case computed at (m,n) over a neighborhood in C(the neighborhood is the same size as S).In order to retrieve images the following steps are em-ployed. First, feature vectors are computed for each im-age in the database and stored. This is an o�-line com-putation step. Then, during run-time the user marks re-gions in a query image and the derivative feature vectorsof this query patch is correlated with the precomputedvectors for each database image. Finally, the results arepresented to the user ranked by the correlation score.Note that similar images within the database occur atdi�erent sizes. While the above mentioned method asstated does not account for large relative size changesbetween a query and a matching database image, how-ever, it has been extended to handle a range of sizechanges, discussed in [17].From the experiments (see Section 7) the followingobservations are made. First, vector correlation per-forms well under small view variations. Typically, in-plane rotations of up to 20o and out-of-plane rotationsof up to 30o can be tolerated. Second, a range ofsize variations, determined a priori, can be handled bysearching across the scale parameter of the Gaussian. Inparticular similar objects within size changes of 14 : : : 4could be retrieved [17]. Finally it is observed that as im-ages become more dissimilar their response vectors be-come less correlated, starting at the higher order. Thus,similar images can be expected to be more correlated intheir lower order than higher ones.5 Indexable Retrieval StrategyThere are several limitations to the correlation ap-proach. First, correlation is computationally expensive.Second, using the derivatives directly in a feature vectorrestricts tolerance to rotations. Third, the use of vectorsat a �xed scale can lead to mismatches due to accidentalsimilarity solely as a result of the �xed scale of observa-tion. These issues are partially addressed below. First,the derivative feature vector is transformed so that itis invariant to 2D rigid transformations. Second, cor-relation is replaced with an indexable strategy that re-sults in an order of magnitude of speed increase andthird vectors at multiple scales are used simultaneouslyto improve robustness. The arguments for the choice

of lower order derivatives can be extended in the scaledimension as well. As images get dissimilar, they canbe expected to retain strong correlation only at largescales (lower spatial frequency). Further the range ofscales over which they correlate well gets smaller. Asa consequence, in this paper the multi-scale vector iscomputed at three di�erent scales placed half an octaveapart.5.1 Multi-Scale Invariant VectorsGiven the derivatives of an image I , irreducible di�er-ential invariants (invariant under the group of displace-ments) can be computed in a systematic manner [2].The term irreducible is used because other invariantscan be reduced to a combination of the irreducible set.The value of these entities is independent of the choiceof coordinate frame (up to rotations) and the terms forthe low orders (two here) are enumerated below.The irreducible set of invariants up to order two ofan image I are:d0 = I Intensityd1 = I2x + I2y Magnituded2 = Ixx + Iyy Laplaciand3 = IxxIxIx + 2IxyIxIy + IyyIyIyd4 = I2xx + 2I2xy + I2yyIn experiments conducted in this paper, the vector,�� = hd1; : : : d4i� is computed at three di�erent scales.The element d0 is not used since it is sensitive to gray-level shifts. The resulting multi-scale invariant vectorhas at most twelve elements. Computationally, eachimage in the database is �ltered with the �rst �ve partialderivatives of the Gaussian (i.e. to order 2) at threedi�erent scales at uniformly sampled locations. Thenthe multi-scale invariant vector D = h��1 ;��2 ;��3i iscomputed at those locations.A location across the entire database can be iden-ti�ed by the generalized coordinates, de�ned as, c =(i; x; y) where i is the image number and (x; y) a coor-dinate within this image. The computation describedabove generates an association between generalized co-ordinates and invariant vectors. This association can beviewed as a table M : (i; x; y;D) with 3 + k columns(k is the number of �elds in an invariant vector) andnumber of rows, R, equal to the total number of lo-cations (across all images) where invariant vectors arecomputed.To retrieve images, a '�nd by value' functionality isneeded, with which, a query invariant vector is foundwithin M and the corresponding generalized coordinateis returned. The brute force approach entails a linearsearch in M which is extremely time consuming. Thesolution is to generate inverted �les (or tables) for M ,based on each �eld of the invariant vector and index4



Figure 2: The results of the car query shown in Figure 1them. Then the operation of '�nd-by-value' can be per-formed in log(R) time (number of rows) and is describedbelow.To index the database by �elds of the invariant vec-tor, the tableM is split into k smaller tablesM 01 : : :M 0k,one for each of the k �elds of the invariant vector. Eachof the smaller tables M 0p; p = 1 � � � k contains the fourcolumns (D(p); i; x; y). At this stage any given rowacross all the smaller tables contains the same gener-alized coordinate entries as in M . Then, each M 0p issorted and a binary tree is used to represent the sortedkeys. As a result, the entire database is indexed.5.2 Matching Invariant VectorsRun-time computation begins with the user markingselected regions in an example image. At sampled lo-cations within these regions, invariant vectors are com-puted and submitted as a query. The search for match-ing images is performed in two stages. In the �rst stageeach query invariant is supplied to the '�nd-by-value' al-gorithm and a list of matching generalized coordinatesis obtained. In the second stage a spatial check is per-formed on a per image basis, in order to verify that thematched locations in an image are in spatial coherencewith the corresponding query points. In this sectionthe '�nd-by-value' and spatial checking components arediscussed.5.3 Finding by Invariant ValueThe multi-scale invariant vectors at sampled loca-tions within regions of a query image can be treatedas a list. The nth element in this list contains theinformation Qn = (Dn; xn; yn), that is, the invariantvector and the corresponding coordinates. In orderto �nd-by-invariant-value, for any query entry Qn, the

database must contain vectors that are within a thresh-old t = (t1 : : : tk) > 0. The coordinates of these match-ing vectors are then returned. This can be representedas follows. Let p be any invariant vector stored in thedatabase. Then p matches the query invariant entry Dnonly if Dn � t < p < Dn + t. This can be rewritten as&kj=1 [Dn (j)� t (j) < p (i) < Dn (j)� t (j)]where & is the logical and operator and k is the num-ber of �elds in the invariant vector. To implement thecomparison operation two searches can be performed oneach �eld. The �rst is a search for the lower bound, thatis the largest entry smaller than Dn(j)� t(j) and thena search for the upper-bound i.e. the smallest entrylarger than Dn(j) + t(j). The block of entries betweenthese two bounds are those that match the �eld j. Inthe inverted �le the generalized coordinates are storedalong with the individual �eld values and the block ofmatching generalized coordinates are copied from disk.To implement the logical-and part, an intersection ofall the returned block of generalized coordinates is per-formed. The generalized coordinates common to all thek �elds are the ones that match query entry Qn. The�nd by value routine is executed for each Qn and asa result each query entry is associated with a list ofgeneralized coordinates that it matches.5.4 Spatial-FittingThe association between a query entry Qn and thelist of f generalized coordinates that match it by valuecan be written asAn = 
xn; yn; cn1 ; cn2 : : : cnf �= 
xn; yn; (in1 ; xn1 ; yn1) : : : �inf ; xnf ; ynf ��Here xn; yn are the coordinates of the query entry Qnand cn1 : : : cnf are the f matching generalized coordi-nates. The notation cnf implies that the generalizedcoordinate c matches n and is the f th entry in the list.Once these associations are available, a spatial �t on aper image basis can be performed. In order to describethe �tness measure, two de�nitions are needed. First,de�ne the distance between the coordinates of two queryentriesm and n as �m;n. Second, de�ne the distance be-tween any two generalized coordinates cmj and cnj thatare associated with two query entries m;n as �cmj ;cnkAny image u that contains two points (locations)which match some query entry m and n respectivelyare coherent with the query entries m and n only if thedistance between these two points is the same as the dis-tance between the query entries that they match. Usingthis as a basis, a binary �tness measure can be de�nedas5



Fm;n (u) = 8>>><>>>: 1 if 9j9k j ����m;n � �cmj ;cnk ��� � Timj = ink = u;m 6= n0 otherwiseThat is, if the distance between two matched pointsin an image is close to the distance between the querypoints that they are associated with, then these pointsare spatially coherent (with the query). Using this �t-ness measure a match score for each image can be de-termined. This match score is simply the maximumnumber of points that together are spatially coherent(with the query). De�ne the match score by:score (u) �maxm Sm (u) (4)where, Sm (u) = Pfn=1 F (u)m;n. The computation ofscore(u) is at worst quadratic in the total number ofquery points. The array of scores for all images is sortedand the images are displayed in the order of their score.T used in F is a threshold and is typically 25% of �m;n.Note that this measure not only will admit points thatare rotated but will also tolerate other deformations aspermitted by the threshold. The value of the thresholdis selected to re
ect the rationale that similar imageswill have similar responses but not necessarily under arigid deformation of the query points.6 Query ConstructionThe ability for the user to construct queries by se-lecting regions is an important distinction between theapproach presented here and elsewhere. Users can beexpected to employ their considerable semantic knowl-edge about the world to construct a query. Such se-mantic information is di�cult to incorporate in a sys-tem. An example of query construction is shown in Fig-ure 1, where the user has decided to �nd cars similar tothe one shown and decides that the most salient partare 'wheels'2. It is clear that providing such interac-tion removes the necessity for automatic determinationof saliency. In the car example, the user provides thecontext to search the database by marking the wheeland retrieved images mostly contain wheels. The as-sociation of wheels to cars is not known to the system,rather it is one that the user decides is meaningful. Sev-eral other approaches in the literature take the entirefeature set or some global representation over the en-tire image[1, 4, 21, 11]. While this may be reasonablefor certain types of retrieval, it cannot necessarily beused for general purpose retrieval.Therefore, we believethat the natural human ability in selecting salient re-gions must be exploited. More importantly, letting the2see Figure 2 for the results

user design queries eliminates the need for detecting thesalient portions of an object, and the retrieval can becustomized so as to remove unwanted portions of theimage. Based on the feedback provided by the resultsof a query, the user can quickly adapt and modify thequery to improve performance.7 ExperimentsThe database used in this paper has digitized imagesof cars, steam locomotives, diesel locomotives, apes,faces, people embedded in di�erent background(s) anda small number of other miscellaneous objects suchas houses. 1561 images were obtained from the In-ternet and the Corel photo-cd collection to constructthis database. These photographs were taken with sev-eral di�erent cameras of unknown parameters, and un-der varying uncontrolled lighting and viewing geometry.Also, the objects of interest are embedded in naturalscenes such as car shows, railroad stations, country sidesand so on. The choice of images re
ects two primaryconsiderations. First, the images should not re
ect abias towards any particular attribute and second, thesystem must be able to rank dissimilar images with lit-tle di�culty. This is con�rmed by the experiments per-formed to date. Below the experiments conducted withcorrelation and the indexing methods are presented.7.1 Experiments with CorrelationThe �rst set of experiments are rotation tests. TheColumbia image database (COIL-20) is used for the pur-pose of measuring rotation tolerance. In Figure 3 threepictures are shown with the left and right pictures ro-tated 20o in either direction from the middle. A queryis marked in the center picture as shown. Then vectorcorrelation method is carried out over the entire set ofimages of this object. The position of the box on the leftand right images indicate the location where the querypatch correlates best. The tolerance to rotation is 20oand all the 'anacin' pictures within this rotation fromthe center image (in 5o increments) match successfully.The graph in Figure 4 depicts this result. The highestscore is when there is no rotation and the curve dropsgracefully as the rotation increases. These curves areshown for di�erent values of � of the Gaussian. An-other interesting observation is depicted in the graphshown in Figure 5. Here the curves are labelled by thesampling of the query patch. That is, the correlationcurves are plotted for the case when the derivative vec-tors for every pixel in the query patch is used, when thequery is sampled in to a 7x7 region (49 samples), 5x5and 3x3. These results indicate that the representationis robust so that a substantial increase in correlationspeed can be achieved without signi�cantly sacri�cingspeed. This is a motivation for the sampling approachused for indexing.6



Figure 3: Correlation Under Rotation

Figure 4: Correlation curves and Gaussian scale

Figure 5: Correlation curves and query sampling

Rotation tests were carried out with all the objects inthe COIL-20 database and the results suggest an aver-age in-plane rotation tolerance of up to 20o and out-of-plane tolerance of 30o. While such rotation tests mea-sure the degradation of correlation with rotations, thetolerance results can only be sound if these objects canbe retrieved from a general database in the same rankorder as suggested by the correlation curve. This testcalled, the embedded rotation test, was conducted. Allthe COIL-20 images were embedded in our database of1561 images. Then a query similar to the one depictedin Figure 3 is posed and the results are observed. Theresults verify the above hypothesis. That is, objectswithin a small view variation were retrieved in rank or-der (correlated with increasing rotation from the queryimage).The last set of experiments apply the correlationmethod to �nding 'similar' images. Experiments withseveral di�erent queries were constructed to retrieve ob-jects of a particular type. It is observed that under rea-sonable queries at least 60% ofm objects underlying thequery are retrieved in the top m ranks. Best results in-dicate retrieval results of up to 85%. This performancecompares very well with typical text retrieval systems3.In particular three experiments, The results of the ex-periments carried out with a car query, a diesel queryand a steam query are presented in table 7.1. The num-ber of retrieved images in intervals of ten is charted inTable 7.1. The table shows, for example, that there are16 car images \similar" in view to the car in the queryand 14 of these are ranked in the top 20. For the steamquery there are 12 \similar" images (as determined bya person), 9 of which are ranked in the top 20. Finally,for the diesel query there are 30 \similar" images, 12of which are found in the top 20 retrievals. Pictorialresults are shown in [17].Wrong instances of retrieval are of two types. The�rst is where the correlation performs well but the ob-jective of the query is not satis�ed. In this case the3The average retrieval rate for text-based systems is 50%7



No. Retrieved ImagesQuery 1-10 11-20 21-30 31-40 41-50Car 8 6 1 0 1Steam 7 2 1 0 2Diesel 7 5 5 6 4Table 1: Correct retrieval instances for the Car, Steamand Diesel queries in intervals of ten. The number of\similar" images in the database as determined by ahuman are 16 for the Car query, 12 for the Steam queryand 30 for the Diesel query.query will have to be redesigned. The second reason forincorrect retrieval is mismatches due to the search overscale space but using query vectors constructed at a�xed scale. Most of the mismatches result from match-ing at the extreme relative scales.Overall the queries de-signed were also able to distinguish steam engines anddiesel engines from cars precisely because the regionsselected are most similarly found in similar classes ofobjects.7.2 Experiments with IndexingA measure of the performance of the retrieval enginecan be obtained by examining the recall/precision tablefor several queries. Brie
y, recall is the proportion ofthe relevant material actually retrieved and precision isthe proportion of retrieved material that is relevant [25].Consider as an example the query described in Figure 1.Here the user wishes to retrieve 'white wheel cars' sim-ilar to the one outlined and submits the query. Thetop 25 results ranked in text book fashion are shownin Figure 2. Note that although there are several validmatches as far as the algorithm is concerned (for ex-ample image 12 a train), they are not considered validretrievals as stated by the user and are not used in mea-suring the recall/precision. This is inherently a conser-vative estimate of the performance of the system. Theaverage precision (over recall intervals of 104) is 48.6%.Five other queries that were also submitted are depictedin table 2. Due to lack of space detailed explanationsare not provided and the reader is referred to [16] for de-tails. The recall/precision table over these �ve queriesis in Table 3. The average precision over all the queriesis a 57.4%. This compares well with text retrieval wheresome of the best systems have an average precision of50%5.Unsatisfactory retrieval occurs for several reasons.First it is possible that the query is poorly designed. Inthis case the user can design a new query and re-submit.Also Synapse allows users to drop any of the displayedresults into a query box and re-submit. Therefore, the4The value n(= 10) is simply the retrievals up to recall n.5Based on personal communication with Bruce Croft
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