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Abstract

A system to retrieve images using a description of
visual appearance is presented. A multi-scale invari-
ant vector representation is obtained by first filtering
images in the database with Gaussian derivative filters
at several scales and then computing low order differ-
ential invariants. The multi-scale representation is in-
dexed for rapid retrieval. Queries are designed by the
users from an example image by selecting appropriate
regions. The invariant vectors corresponding to these
regions are matched with those in the database both
in feature space as well as in coordinate space and a
match score is obtained for each image. The results are
then displayed to the user sorted by the match score.
From experiments conducted with over 1500 images of
objects embedded in arbitrary backgrounds, it is shown
that images similar in appearance and whose viewpoint
is within 25 degrees of the query image can be retrieved
with an average precision! of 57.4%.

1 Introduction

The goal of image retrieval systems is to operate
on collections of images and, in response to visual
queries, extract relevant images. The application po-
tential for fast and effective image retrieval is enor-
mous, ranging from database management in museums
and medicine, architecture and interior design, image
archiving, to constructing multi-media documents or
presentations[4]. However, there are several issues that
must be understood before image retrieval can be suc-
cessful. Foremost among these is an understanding of
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Iprecision is the proportion of retrieved images that are
relevant

what ’retrieval of relevant images’ means. Relevance,
for users of a retrieval system, is most likely associated
with semantics. Encoding semantic information into
a general image retrieval system entails solving such
problems as feature extraction, segmentation and, ob-
ject and context recognition. These are extremely hard
problems that are as yet unsolved. However, in many
situations attributes associated with an image, when
used together with some level of user input, correlate
well with the kind of semantics that are desirable. Con-
sequently, recent work has focused directly on retrieval
using surface level image content descriptions such as
color[20], texture features [10, 3, 14, 11], shape [12, 24]
and combinations thereof [1, 5, 14].

In this paper images are retrieved using a character-
ization of the visual appearance of objects. The focus
is on retrieving ’similar’ objects. For example, when a
face is presented as a query it is expected that the sys-
tem should not only retrieve the same person’s face but
rank other faces before it ranks, cars, trains or apes.
Similarly if a car is a query(see Figure 1) then it is ex-
pected that cars be ranked before faces or trains(see
Figure 2). That is retrieved objects must appear visu-
ally similar. Intuitively, an object’s visual appearance
in an image depends not only on its three-dimensional
geometric shape, but also on its albedo, its surface tex-
ture, the view point from which it is imaged, among
other factors. It is non-trivial to separate the different
factors that constitute an object’s visual appearance.
However, we posit that the shape of an imaged object’s
intensity surface closely relates to its visual appearance.
Here a local characterization of the intensity surface is
constructed and images are retrieved using a measure of
similarity for this representation. The experiments con-
ducted in this paper verify the association that objects
that appear to be visually similar can be retrieved by a
characterization of the shape of the intensity surface.

Different representations of appearance have been
used in object recognition [13, 18] and have been ap-
plied to specific types of retrieval such as face recog-
nition [6, 23]. To the best of our knowledge the sys-
tem presented here is the first attempt to character-



ize appearance to retrieve similar images and in this
paper the development of Synapse (Syntactic Appear-
ance Search Engine), an image database search engine,
is described. The approach taken here does not rely
on image segmentation (manual or automatic) or bi-
nary feature extraction. Unlike some of the previously
mentioned methods, no training is required. Since the
representation is local, objects can be embedded in dif-
ferent backgrounds. Using an ezample image and user
interaction to construct queries, Synapse retrieves sim-
ilar images within small view and size variation in the
order of their similarity in syntactic appearance to a
query.

The claim is that, up to a certain order, the local
appearance of the intensity surface (around some point)
can be represented as responses to a set of scale pa-
rameterized Gaussian derivative filters (see Section 3).
This set or vector of responses, called a multi-scale fea-
ture vector, is obtained solely from the signal content
and without the use of “global context” or “symbolic
interpretation”. Further, the family of Gaussian filters
are unique in their ability to describe the scale-space or
deep structure [7, 9, 22, 2] of a function and are well
suited for representing appearance.

In this paper we first verify, using correlation, that
the proposed representation can retrieve visually simi-
lar images within small view and a range of size varia-
tion(see Section 4). Then, to overcome the limitations
of the correlation approach, an indexable strategy for
image retrieval is then developed using feature vectors
constructed from combinations of the derivative filter
outputs. These combinations yield a set of differential
invariants [2] that are invariant to two-dimensional rigid
transformations. Retrieval is achieved in two computa-
tional steps. During the off-line computation phase each
image in the database is first filtered at sampled loca-
tions and then filter responses across the entire database
are indexed(see Section 5). The run-time computation
of the system begins with the user selecting an example
image and marking a set of salient regions within the
image. The responses corresponding to these regions
are matched with those of the database and a measure
of fitness per image in the database is computed in both
feature space and coordinate space (see Section 5.2). Fi-
nally, images are displayed to the user in the order of
fitness (or match score) to the query (see Section 7).

2 Related Work

Eigen-space representations [13, 6, 23, 21] are one of
the earliest attempts to characterize appearance or the
intensity shape. This space is constructed by treating
the image as a fixed length vector, and then comput-
ing the principal components across the entire database.
The images therefore have to be size and intensity nor-

Figure 1: Allowing the user to construct queries by se-
lecting the box shown

malized, segmented and involves training. The ap-
proach presented in this paper does not characterize
appearance by eigen decomposition or any variation
thereof. Further, the method presented uses no learn-
ing, does not depend on constant sized images, tolerates
significant variation in background and retrieves from
heterogeneous collections of images using local repre-
sentations of appearance.

Gaussian derivative representations have been used
in the context of recognition [15]. Indexed differential
invariants have recently been used [18] for object recog-
nition. We also index on differential invariants but there
are several differences compared with [18]. First, the in-
variants corresponding to the low two order derivatives
are used (as opposed to the first nine invariants), for rea-
sons of speed as well as relevance to retrieving similar
images(see section 3). Second, their indexing algorithm
depends on interest point detection and is, therefore,
limited by the stability of the interest operator. We on
the other hand sample the image. Third, the authors
do not incorporate multiple scales into a single vector
whereas here three different scales are chosen. In addi-
tion the index structure and spatial checking algorithms
differ.

The earliest general image retrieval systems were de-
signed by [1, 14]. In [1] the shape queries require prior
manual segmentation of the database which is undesir-
able and not cost-effective for most applications. Tex-
ture based image retrieval is also related to the appear-
ance based work presented in this paper. Using Wold
modeling[10] , the authors try to classify the entire Bro-
datz texture set and in [3] they attempt to classify
scenes, such as city and country. Of particular inter-
est is work by [11] who use Gabor filter representation
(globally over the entire image) to retrieve by texture
similarity.



3 Characterization of Appearance

This section begins by making explicit the notion of
appearance and the uniqueness of Gaussian derivative
filters therein. Then a representation, namely a multi-
scale feature vector is constructed by filtering an image
with a set of Gaussian derivative filters. The multi-
scale feature vector are transformed so that the elements
within this vector are invariant to 2D rigid transfor-
mations. This transformed feature vector is called the
multi-scale invariant vector. Then a scheme for index-
ing multi-scale invariant vectors computed over the en-
tire image database is presented. This completes all the
steps of the off-line computation described earlier.

A function can be locally characterized by its Taylor
series expansion provided the derivatives at the point of
expansion are well conditioned. The intensity function
of the image, on the other hand, need not satisfy this
condition. However, it is well known that the derivative
of a possibly discontinuous function can be made well
posed if it is convolved with the derivative of a smooth
test function [19]. Consider the normalized Gaussian as
a choice for the smooth test function. Then the deriva-
tives of the image I, (x) = (I xG) (x,0),x € R%,0 €
R*, are well conditioned for some value of . This is
written as

Ly i (x) =T *xGyy . 4,) (x,0)

671

and iy =z1...xp,k=1...n.

The local N-jet of I (x) at scale o and order N is

defined as the set [8]:
JN (1) (x,0) = {Li, i,.sln=0...N} (1)

It can be observed that the set limy_, JV [I] (x,0)
bundles all the derivatives required to fully specify the
Taylor expansion of I, up to derivatives of order N.
Thus, for any order NN, the local N-jet at scale o locally
contains all the information required to reconstruct [
at the scale of observation o up to order N. This is the
primary observation that is used to characterize appear-
ance. That is, up to any order the derivatives locally
characterize the shape of the intensity surface, i.e. ap-
pearance, to that order. From the experiments shown
in this paper it is also observed that this representa-
tion can be used to retrieve images that appear visually
similar.

The choice of the Gaussian as the smooth test func-
tion, as opposed to others, is motivated by the fact that
it is unique in describing the scale-space or deep struc-
ture of an arbitrary function. A full review of scale-
space is beyond the scope of this paper and the reader

is referred to [26, 7, 2, 9, 22]. Here some of the impor-
tant consequences of incorporating scale space are con-
sidered. For increasing values of ¢ the Gaussian filter
admits a narrowing band of frequencies and I will ap-
pear smoother. The scale-space of I is simply I,,, where
o is the free variable. Similarly, the scale space of the
derivatives of I is the range of I;, . ;, » where o is the
free variable. Scale-space has an important, physical in-
terpretation in that it models the change in appearance
of an imaged object as it moves away from a camera.
An argument is therefore made for a multi-scale feature
vector which describes the intensity surface locally at
several scales. From an implementation stand point a
multi-scale feature vector at a point p in an image [ is
simply the elements of the vector:

{IN 1 (s 00), TN (1] (py02) ... TV [T) (Pow) ) (2)

for some order NV and a set of scales o1 ... og. In practice
the zeroth order terms are dropped to achieve invari-
ance to constant intensity changes. Multi-scale vectors
represent, appearance more robustly than a single-scale
vector. This can viewed from several different perspec-
tives. Since, multi-scale vectors are values computed
at several different kernel sizes, therefore, they contain
more information than fixed window operators. Equiv-
alently, multi-scale vectors contain information at sev-
eral different bandwidths and with the choice of a Gaus-
sian accurately represent the intensity shape at different
depths from the camera. From a practical standpoint
this means that mis-matches due to an accidental sim-
ilarity at a single scale can be reduced.

4 Verification Using Correlation

A measure of similarity between two feature vectors
can be obtained by correlating them or computing the
distance between the vectors. We begin with a sim-
ple approach wherein the feature vector is the local 2-
jet without the zeroth order term, computed at a fixed
scale [17]. Specifically, (I, Iy, Isz, l2y, Iy),,, computed
at scale o, is a derivative feature vector of an image
where each pixel is associated with the first five partial
derivatives (up to order two) computed in the neigh-
borhood around that point. Using this representation
in conjunction with correlation, we verify that, at any
scale a reasonable retrieval of visually similar images
is possible. Further, it is experimentally observed that
the method tolerates small rotations and a range of size
changes between a query patch and matching database
images.

To compare a candidate image patch with a database
image patch, their derivative feature vectors are corre-
lated. The correlation coefficient 77 between the feature
vectors of a query image patch S and those of a database



image C at location (m,n) in Cis given by:
n(m,n) = Cuy(i,5)- Sy (m—in—j) (3)
ij

where

Uy

Sm (iJ): (i7j)_SM

§.d) = Su|

and Sy is the mean of 5(7]) computed over S. C is
computed similarly from € (i,5). The mean Cy is in
this case computed at (m,n) over a neighborhood in C
(the neighborhood is the same size as S).

In order to retrieve images the following steps are em-
ployed. First, feature vectors are computed for each im-
age in the database and stored. This is an off-line com-
putation step. Then, during run-time the user marks re-
gions in a query image and the derivative feature vectors
of this query patch is correlated with the precomputed
vectors for each database image. Finally, the results are
presented to the user ranked by the correlation score.
Note that similar images within the database occur at
different sizes. While the above mentioned method as
stated does not account for large relative size changes
between a query and a matching database image, how-
ever, it has been extended to handle a range of size
changes, discussed in [17].

From the experiments (see Section 7) the following
observations are made. First, vector correlation per-
forms well under small view variations. Typically, in-
plane rotations of up to 20° and out-of-plane rotations
of up to 30° can be tolerated. Second, a range of
size variations, determined a priori, can be handled by
searching across the scale parameter of the Gaussian. In
particular similar objects within size changes of 31— .4
could be retrieved [17]. Finally it is observed that as im-
ages become more dissimilar their response vectors be-
come less correlated, starting at the higher order. Thus,
similar images can be expected to be more correlated in
their lower order than higher ones.

5 Indexable Retrieval Strategy

There are several limitations to the correlation ap-
proach. First, correlation is computationally expensive.
Second, using the derivatives directly in a feature vector
restricts tolerance to rotations. Third, the use of vectors
at a fixed scale can lead to mismatches due to accidental
similarity solely as a result of the fixed scale of observa-
tion. These issues are partially addressed below. First,
the derivative feature vector is transformed so that it
is invariant to 2D rigid transformations. Second, cor-
relation is replaced with an indexable strategy that re-
sults in an order of magnitude of speed increase and
third vectors at multiple scales are used simultaneously
to improve robustness. The arguments for the choice

of lower order derivatives can be extended in the scale
dimension as well. As images get dissimilar, they can
be expected to retain strong correlation only at large
scales (lower spatial frequency). Further the range of
scales over which they correlate well gets smaller. As
a consequence, in this paper the multi-scale vector is
computed at three different scales placed half an octave
apart.

5.1 Multi-Scale Invariant Vectors

Given the derivatives of an image I, irreducible differ-
ential invariants (invariant under the group of displace-
ments) can be computed in a systematic manner [2].
The term irreducible is used because other invariants
can be reduced to a combination of the irreducible set.
The value of these entities is independent of the choice
of coordinate frame (up to rotations) and the terms for
the low orders (two here) are enumerated below.

The irreducible set of invariants up to order two of
an image [ are:

dy =1 Intensity
d =I2+1; Magnitude
dy = Iz + 1y Laplacian

dy = Iﬁr + 21363/ + I?;ZI?J

In experiments conducted in this paper, the vector,
A, = (dy,...dy), is computed at three different scales.
The element dj is not used since it is sensitive to gray-
level shifts. The resulting multi-scale invariant vector
has at most twelve elements. Computationally, each
image in the database is filtered with the first five partial
derivatives of the Gaussian (i.e. to order 2) at three
different scales at uniformly sampled locations. Then
the multi-scale invariant vector D = (A,,, Ay, , A,,) is
computed at those locations.

A location across the entire database can be iden-
tified by the generalized coordinates, defined as, ¢ =
(i,z,y) where i is the image number and (z,y) a coor-
dinate within this image. The computation described
above generates an association between generalized co-
ordinates and invariant vectors. This association can be
viewed as a table M : (i,z,y, D) with 3 + k columns(
k is the number of fields in an invariant vector) and
number of rows, R, equal to the total number of lo-
cations (across all images) where invariant vectors are
computed.

To retrieve images, a 'find by value’ functionality is
needed, with which, a query invariant vector is found
within M and the corresponding generalized coordinate
is returned. The brute force approach entails a linear
search in M which is extremely time consuming. The
solution is to generate inverted files (or tables) for M,
based on each field of the invariant vector and index



Figure 2: The results of the car query shown in Figure 1

them. Then the operation of 'find-by-value’ can be per-
formed in log(R) time (number of rows) and is described
below.

To index the database by fields of the invariant vec-
tor, the table M is split into k smaller tables M{ . M,;,
one for each of the k fields of the invariant vector. Each
of the smaller tables Mll),p = 1---k contains the four
columns (D(p),i,z,y). At this stage any given row
across all the smaller tables contains the same gener-
alized coordinate entries as in M. Then, each M) is
sorted and a binary tree is used to represent the sorted
keys. As a result, the entire database is indexed.

5.2 Matching Invariant Vectors

Run-time computation begins with the user marking
selected regions in an example image. At sampled lo-
cations within these regions, invariant vectors are com-
puted and submitted as a query. The search for match-
ing images is performed in two stages. In the first stage
each query invariant is supplied to the ’find-by-value’ al-
gorithm and a list of matching generalized coordinates
is obtained. In the second stage a spatial check is per-
formed on a per image basis, in order to verify that the
matched locations in an image are in spatial coherence
with the corresponding query points. In this section
the ’find-by-value’ and spatial checking components are
discussed.

5.3 Finding by Invariant Value

The multi-scale invariant vectors at sampled loca-
tions within regions of a query image can be treated
as a list. The n'* element in this list contains the
information @, = (Dy,®n,yn), that is, the invariant
vector and the corresponding coordinates. In order
to find-by-invariant-value, for any query entry ()., the

database must contain vectors that are within a thresh-
old t = (t; ...tx) > 0. The coordinates of these match-
ing vectors are then returned. This can be represented
as follows. Let p be any invariant vector stored in the
database. Then p matches the query invariant entry D,
only if D,, —t < p < D, + t. This can be rewritten as
&3y [Dn (7) = £ (5) <p (i) < Dn (4) — (5)]
where & is the logical and operator and k is the num-
ber of fields in the invariant vector. To implement the
comparison operation two searches can be performed on
each field. The first is a search for the lower bound, that
is the largest entry smaller than D,,(j) — ¢(j) and then
a search for the upper-bound i.e. the smallest entry
larger than D,,(j) + t(j). The block of entries between
these two bounds are those that match the field j. In
the inverted file the generalized coordinates are stored
along with the individual field values and the block of
matching generalized coordinates are copied from disk.
To implement the logical-and part, an intersection of
all the returned block of generalized coordinates is per-
formed. The generalized coordinates common to all the
k fields are the ones that match query entry (),. The
find by value routine is executed for each @, and as
a result each query entry is associated with a list of
generalized coordinates that it matches.

5.4 Spatial-Fitting
The association between a query entry @, and the

list of f generalized coordinates that match it by value
can be written as

An

<wn7yn-,cn1:cn2 b 'cnf>
<'7:717y’n: (in17$n1ayn1) et (inf7mnf7ynf)>

Here x,,y, are the coordinates of the query entry @,
and ¢, ...c,, are the f matching generalized coordi-
nates. The notation c,, implies that the generalized
coordinate ¢ matches n and is the f'* entry in the list.
Once these associations are available, a spatial fit on a
per image basis can be performed. In order to describe
the fitness measure, two definitions are needed. First,
define the distance between the coordinates of two query
entries m and n as d,, ,,. Second, define the distance be-
tween any two generalized coordinates c,,,; and c,; that
are associated with two query entries m,n as (Scmj ony

Any image w that contains two points (locations)
which match some query entry m and n respectively
are coherent with the query entries m and n only if the
distance between these two points is the same as the dis-
tance between the query entries that they match. Using
this as a basis, a binary fitness measure can be defined
as
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Fonm (1) = Iy = lny, = U, M £ N
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0 otherwise

That is, if the distance between two matched points
in an image is close to the distance between the query
points that they are associated with, then these points
are spatially coherent (with the query). Using this fit-
ness measure a match score for each image can be de-
termined. This match score is simply the maximum
number of points that together are spatially coherent
(with the query). Define the match score by:

Sm (u) (4)

The computation of

score (u) ='m

where, S, (u) = 22:1 F ()
score(u) is at worst quadratic in the total number of
query points. The array of scores for all images is sorted
and the images are displayed in the order of their score.
T used in F is a threshold and is typically 25% of , p.
Note that this measure not only will admit points that
are rotated but will also tolerate other deformations as
permitted by the threshold. The value of the threshold
is selected to reflect the rationale that similar images
will have similar responses but not necessarily under a
rigid deformation of the query points.

6 Query Construction

The ability for the user to construct queries by se-
lecting regions is an important distinction between the
approach presented here and elsewhere. Users can be
expected to employ their considerable semantic knowl-
edge about the world to construct a query. Such se-
mantic information is difficult to incorporate in a sys-
tem. An example of query construction is shown in Fig-
ure 1, where the user has decided to find cars similar to
the one shown and decides that the most salient part
are ‘wheels’?. Tt is clear that providing such interac-
tion removes the necessity for automatic determination
of saliency. In the car example, the user provides the
context to search the database by marking the wheel
and retrieved images mostly contain wheels. The as-
sociation of wheels to cars is not known to the system,
rather it is one that the user decides is meaningful. Sev-
eral other approaches in the literature take the entire
feature set or some global representation over the en-
tire image[1, 4, 21, 11]. While this may be reasonable
for certain types of retrieval, it cannot necessarily be
used for general purpose retrieval. Therefore, we believe
that the natural human ability in selecting salient re-
gions must be exploited. More importantly, letting the

2see Figure 2 for the results

user design queries eliminates the need for detecting the
salient portions of an object, and the retrieval can be
customized so as to remove unwanted portions of the
image. Based on the feedback provided by the results
of a query, the user can quickly adapt and modify the
query to improve performance.

7 Experiments

The database used in this paper has digitized images
of cars, steam locomotives, diesel locomotives, apes,
faces, people embedded in different background(s) and
a small number of other miscellaneous objects such
as houses. 1561 images were obtained from the In-
ternet and the Corel photo-cd collection to construct
this database. These photographs were taken with sev-
eral different cameras of unknown parameters, and un-
der varying uncontrolled lighting and viewing geometry.
Also, the objects of interest are embedded in natural
scenes such as car shows, railroad stations, country sides
and so on. The choice of images reflects two primary
considerations. First, the images should not reflect a
bias towards any particular attribute and second, the
system must be able to rank dissimilar images with lit-
tle difficulty. This is confirmed by the experiments per-
formed to date. Below the experiments conducted with
correlation and the indexing methods are presented.

7.1 Experiments with Correlation

The first set of experiments are rotation tests. The
Columbia image database (COIL-20) is used for the pur-
pose of measuring rotation tolerance. In Figure 3 three
pictures are shown with the left and right pictures ro-
tated 20° in either direction from the middle. A query
is marked in the center picture as shown. Then vector
correlation method is carried out over the entire set of
images of this object. The position of the box on the left
and right images indicate the location where the query
patch correlates best. The tolerance to rotation is 20°
and all the ’anacin’ pictures within this rotation from
the center image (in 5° increments) match successfully.
The graph in Figure 4 depicts this result. The highest
score is when there is no rotation and the curve drops
gracefully as the rotation increases. These curves are
shown for different values of o of the Gaussian. An-
other interesting observation is depicted in the graph
shown in Figure 5. Here the curves are labelled by the
sampling of the query patch. That is, the correlation
curves are plotted for the case when the derivative vec-
tors for every pixel in the query patch is used, when the
query is sampled in to a 7x7 region (49 samples), 5x5
and 3x3. These results indicate that the representation
is robust so that a substantial increase in correlation
speed can be achieved without significantly sacrificing
speed. This is a motivation for the sampling approach
used for indexing.



Figure 3: Correlation Under Rotation
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Rotation tests were carried out with all the objects in
the COIL-20 database and the results suggest an aver-
age in-plane rotation tolerance of up to 20° and out-of-
plane tolerance of 30°. While such rotation tests mea-
sure the degradation of correlation with rotations, the
tolerance results can only be sound if these objects can
be retrieved from a general database in the same rank
order as suggested by the correlation curve. This test
called, the embedded rotation test, was conducted. All
the COIL-20 images were embedded in our database of
1561 images. Then a query similar to the one depicted
in Figure 3 is posed and the results are observed. The
results verify the above hypothesis. That is, objects
within a small view variation were retrieved in rank or-
der (correlated with increasing rotation from the query
image).

The last set of experiments apply the correlation
method to finding ’similar’ images. Experiments with
several different queries were constructed to retrieve ob-
jects of a particular type. It is observed that under rea-
sonable queries at least 60% of m objects underlying the
query are retrieved in the top m ranks. Best results in-
dicate retrieval results of up to 85%. This performance
compares very well with typical text retrieval systems?.
In particular three experiments, The results of the ex-
periments carried out with a car query, a diesel query
and a steam query are presented in table 7.1. The num-
ber of retrieved images in intervals of ten is charted in
Table 7.1. The table shows, for example, that there are
16 car images “similar” in view to the car in the query
and 14 of these are ranked in the top 20. For the steam
query there are 12 “similar” images (as determined by
a person), 9 of which are ranked in the top 20. Finally,
for the diesel query there are 30 “similar” images, 12
of which are found in the top 20 retrievals. Pictorial
results are shown in [17].

Wrong instances of retrieval are of two types. The
first is where the correlation performs well but the ob-
jective of the query is not satisfied. In this case the

3The average retrieval rate for text-based systems is 50%



No. Retrieved Images
Query [ 1-10 [ 11-20 | 21-30 | 31-40 [ 41-50
Car 8 6 1 0 1
Steam 7 2 1 0 2
Diesel 7 ) 5 6 4

Table 1: Correct retrieval instances for the Car, Steam
and Diesel queries in intervals of ten. The number of
“similar” images in the database as determined by a
human are 16 for the Car query, 12 for the Steam query
and 30 for the Diesel query.

query will have to be redesigned. The second reason for
incorrect retrieval is mismatches due to the search over
scale space but using query vectors constructed at a
fixed scale. Most of the mismatches result from match-
ing at the extreme relative scales.Overall the queries de-
signed were also able to distinguish steam engines and
diesel engines from cars precisely because the regions
selected are most similarly found in similar classes of
objects.

7.2 Experiments with Indexing

A measure of the performance of the retrieval engine
can be obtained by examining the recall /precision table
for several queries. Briefly, recall is the proportion of
the relevant material actually retrieved and precision is
the proportion of retrieved material that is relevant [25].
Consider as an example the query described in Figure 1.
Here the user wishes to retrieve 'white wheel cars’ sim-
ilar to the one outlined and submits the query. The
top 25 results ranked in text book fashion are shown
in Figure 2. Note that although there are several valid
matches as far as the algorithm is concerned (for ex-
ample image 12 a train), they are not considered valid
retrievals as stated by the user and are not used in mea-
suring the recall/precision. This is inherently a conser-
vative estimate of the performance of the system. The
average precision (over recall intervals of 10%) is 48.6%.
Five other queries that were also submitted are depicted
in table 2. Due to lack of space detailed explanations
are not provided and the reader is referred to [16] for de-
tails. The recall/precision table over these five queries
is in Table 3. The average precision over all the queries
is a 57.4%. This compares well with text retrieval where
some of the best systems have an average precision of
50%5.

Unsatisfactory retrieval occurs for several reasons.
First it is possible that the query is poorly designed. In
this case the user can design a new query and re-submit.
Also Synapse allows users to drop any of the displayed
results into a query box and re-submit. Therefore, the

4The value n(= 10) is simply the retrievals up to recall n.
5Based on personal communication with Bruce Croft

user can not only redesign queries on the original image,
but also can use any of the result pictures to refine the
search. A second source of error is in matching gener-
alized coordinates by value. The choice of scales in the
. . . . 3 3
experiments carried out in this case are \/5,3, 7 It

is possible that locally the intensity surface may have a
very close value, so as to lie within the chosen threshold
and thus introduce an incorrect point. By adding more
scales or derivatives such errors can be reduced, but at
the cost of increased discrimination and decreased gen-
eralization. Many of these ’false matches’ are eliminated
in the spatial checking phase. Errors can also occur in
the spatial checking phase because it admits much more
than a rotational transformation of points with respect
to the query configuration. Overall the performance to
date has been very satisfactory and we believe that by
experimentally evaluating each phase the system can be
further improved.

The time it takes to retrieve images is dependent
linearly on the number of query points. On a Pentium
Pro-200 Mhz Linux machine, typical queries execute in
between one and six minutes.

8 Conclusions, Limitations and Future
Work

Within small view variations, images that are similar
to a query are retrieved. These images are also observed
to be visually similar and we posit that this method has
good potential for image retrieval.

While a discussion of matching objects across differ-
ent sizes was presented and has been implemented else-
where [17] using correlation, in this paper, the multi-
scale invariant vector was used only to robustly charac-
terize appearance. The next immediate step is to ex-
plicitly incorporate matching across size variations akin
to the correlation approach.

A second important question is, what types of invari-
ants should constitute a feature vector 7 This is an open
research issue. Finally, although the current system is
some what slow, it is yet a remarkable improvement,
over our previous work. We believe that by examining
the spatial checking and sampling components further
increases in speed are possible.
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