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ABSTRACT 

Document or passage retrieval is typically used as the first step in 
current question answering systems. The accuracy of the answer 
that is extracted from the passages and the efficiency of the 
question answering process will depend to some extent on the 
quality of this initial ranking. We show how language model 
approaches can be used to improve answer passage ranking. In 
particular, we show how a variety of prior language models 
trained on correct answer text allow us to incorporate into the 
retrieval step information that is often used in answer extraction, 
for example, the presence of tagged entities. We demonstrate the 
effectiveness of these models on the TREC9 QA Corpus.  
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1. INTRODUCTION 
Current question answering systems typically include an initial 
document (or passage) retrieval step to simplify the task of 
identifying good answer passages [1,2]. The answer passages are 
then analyzed by a variety of techniques to extract the final 
answers. The accuracy of the final answer will depend to some 
extent on the quality of the passages retrieved. This will be 
especially true in environments where computational resources are 
bounded (i.e. real systems rather than laboratory experiments) and 
the number of passages that will be examined is limited. If the 
answer passage retrieval process can be relied on to deliver high-
quality results, then the question answering system will only need 
to process a small number of top-ranked passages. 

In this paper, we show how the language model approaches used 
recently for document retrieval can be applied to answer passage 
retrieval. We discuss both the query-likelihood and relevance 
model approaches [3,4,5] and evaluate their performance on the 
task of finding 250 byte answer passages specified in the TREC-9 
question answering track. [6]. 

In many question answering systems, a variety of additional 
features, such as the question type, are used in an ad-hoc way to 
filter out passages unlikely to contain answers. We believe that 
many of these features could be incorporated directly into the 
passage retrieval model. To demonstrate this, we investigate 
various approaches for building answer models for particular 
question types. The answer model specifies likely text patterns 
that would be found in answers of a given question type. For 
example, answers to “location” questions will typically contain 
noun entities of type location. We show how these prior answer 

language models can be incorporated into both the query-
likelihood and relevance models and compare the results. 

The following section describes the language modeling 
frameworks that are the basis of the answer passage retrieval 
algorithms. We also show how answer models can be 
incorporated. Section 3 discusses the overall system that was used 
to retrieve passages, including a discussion about different types 
of passages. Section 4 describes the document, query collections, 
and evaluation measures used for the experiments. Section 5 
presents the results of the experiments. Section 6 gives a brief 
overview of related work. The final section summarizes the paper 
and describes future work 

2. LANGUAGE MODEL FRAMEWORKS 
A statistical language model is a probability distribution over all 
possible sentences (or other linguistic units) in a language [8]. It 
can also be viewed as a statistical model for generating text. In 
most applications of language modeling, such as speech 
recognition and information retrieval, the probability of a sentence 
is decomposed into a product of n-gram probabilities. A bigram 
model is estimated using information about the co-occurrence of 
pairs of words, whereas a unigram model uses only estimates of 
the probabilities of individual words. For applications such as 
speech recognition or machine translation, word order is 
important and higher-order (usually trigram) models are used. In 
information retrieval, the role of word order is less clear and 
unigram models have been used extensively. 

 
The basic approach for using language models for IR assumes that 
the user generates a query as text that is representative of the 
“ideal” document. The task of the system is then to estimate, for 
each of the documents in the database, which is most likely to be 
the ideal document. That is, we calculate:    
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where the prior P(d) is usually assumed to be uniform and a 
language model Pd(q) is estimated for every document. In other 
words, we estimate a probability distribution over words for each 
document and calculate the probability that the query is a sample 
from that distribution. This query-likelihood retrieval model was 
first proposed by Ponte and Croft [3] and described in terms of a 
“noisy channel” model by Berger and Lafferty [4]. This approach 
to retrieval, although very simple, has produced results that are at 
least comparable to the best retrieval techniques previously 
available.  

The classical probabilistic model of retrieval [9] is described 
in terms of a Bayesian classification of documents into the classes 



relevant (R) and non-relevant  (N) for each query. In this case, we 
rank documents by the ratio P(d|R)/P(d|N). A generative approach 
to this document-likelihood model requires that we estimate the 
language models PR(d) and PN(d). This means that we must 
estimate probabilities for words in the relevant (and non-relevant) 
classes of documents. Given that the only information available 
initially about relevance is the query, this is a challenging task. 
Lavrenko and Croft [5] show that if the relevance model is 
estimated by: 

)|()|( qwPRwP ≈                                            (2) 

where w is a word, then the estimation process involves a version 
of query expansion. This results in better effectiveness than the 
simple query-likelihood model. Lavrenko and Croft introduce two 
ways of estimating P(w|q). In this work, we use 
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It seems reasonable, given these two models, to propose that 
the documents whose models are most similar to the relevance 
model should be retrieved. Relative entropy (also known as 
Kullback-Leibler divergence) is a standard metric for comparing 
distributions that has worked well in IR experiments. The relative 
entropy between the relevance model R and a document model D 
is defined as: 
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This measure produces consistently better retrieval results than 
either the query-likelihood or document-likelihood approaches. It 
also simplifies to the query-likelihood model when maximum-
likelihood estimates are used for the query terms.  
 
Both the query-likelihood and relevance model approaches have 
been used for passage-based retrieval of documents [10]. In this 
case, document language models are replaced with passage 
language models. Relevance models can be constructed from 
either documents or passages. Liu and Croft [10] show that 
passage retrieval is approximately as effective for retrieving 
relevant documents, and more robust when searching databases 
containing very heterogeneous documents. 
 
In this paper, we are developing a passage retrieval model 
specifically for retrieval of answer passages, not relevant 
documents. The specific passage type used for this work is 
described in the next section. The baseline for the query-
likelihood model is equation (1) assuming uniform prior 
probabilities. In other words, we rank passages by 
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where A is an answer passage. As with all language model 
approaches, the smoothing of probabilities is a major issue. In our 
experiments, we used interpolation with a collection model and 
Dirichlet smoothing [11]. The collection probabilities were 
estimated using the whole TREC-9 collection.  

In the case of the relevance model, equation (2) is used with a 
uniform prior (p(d)). The relevance model is built from the top 
ranked passages rather than documents (in our case, the top 30 
passages). 
 

In order to incorporate additional information about an answer 
model, we used the prior probability in both the query-likelihood 
and relevance model equations. In other words, p(d) (or p(a) in 
this case) is modified based on the probability of the text given a 
particular question class. To calculate these probabilities, we 
constructed answer models from training data for the main TREC 
question classes.  
 
Our answer models are of two types. The first type is the bigram 
model familiar from other NLP applications were the training data 
is used to learn the 2-gram and 1-gram statistics of words in the 
text. The second type is “template” based. Templates are text 
patterns strongly associated with particular question types. These 
templates can either be incorporated manually [14] or learned 
automatically in a supervised learning system [13, 16]. 
 

3. SYSTEM ARCHITECTURE 
The goal of our research is to effectively rank passages directly 
from the query. Currently, however, the toolkit we are using 
(Lemur1) does not support direct passage retrieval. For these 
experiments, therefore, we first retrieve documents, then split 
these documents into passages. The passages are then ranked 
using language model techniques. 

Passages were created using the following procedure. The top 20 
retrieved documents were selected (early tests showed that 
increasing this number had no effect in system performance). 
These selected documents were split into sentences using a 
heuristic sentence segmenter. 

The sentences were sequentially formed into passages that were at 
most 250 bytes in length and possibly overlapping with 
neighboring passages. If a sentence was longer than 250 bytes, as 
did occur, it was dropped. We call the passages produced by this 
procedure “sentenced” passages. Our procedure yielded an 
average of 434 passages per question that needed to be ranked. 
We use these overlapping sentenced passages for various reasons.   

We know from preliminary studies that passages constructed with 
a sliding window that does not respect sentence boundaries 
performed better than these sentenced ones. But for a given 
document we get many more windowed passages than sentenced 
ones. By using overlapping sentenced passages we have 
developed a system complex enough to resolve issues related to 
overlap between passages (see discussion in section 5.1) but 
simple enough to quickly perform our experiments. 

In addition, we were interested in developing a system that could 
be seen as a pre-processor for an NLP system that needed 
grammatical sentences while at the same time respecting the 250-
byte limit so our performance could be compared to that of other 
systems that have performed the same task. 

These sentenced passages were subsequently indexed with no 
stemming and a stop list consisting of single characters only. We 
then performed retrieval on these passages applying the 
techniques we described above. Our retrieval for each question 
was limited to only those passages that came from its retrieved 
documents. Doing otherwise would be contrary to our approach: 
start with retrieved documents for a question and then identify 
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passages within those documents that are likely to contain its 
answer. 

4. EXPERIMENTAL SETUP 

4.1 Dataset 
The TREC-9 QA Dataset was used for our experiments. It consists 
of 979,000 documents with about 3GB of text from various news 
sources (AP newswire, Wall Street Journal, San Jose Mercury 
News, Financial Times, LA Times, and FBIS) [4]. 

The questions set for TREC-9 consists of 693 questions that are 
generally characterized as being of the “factual” type: “What is 
the longest river in the world?”, “Who is Colin Powell?”, etc. It 
was found during the TREC-9 evaluation that some questions 
were too ambiguous or did not have an answer within the corpus 
[4]. Thus, 682 questions were finally used to report evaluation 
metrics for the TREC-9 QA tasks, and it is this restricted set that 
we use in the experiments reported here.  

The TREC-9 questions have been classified into “question types” 
by Thomas S. Morton of the University of Pennsylvania (private 
email communication). We used six of his question type 
classifications: 

o Amount (A): “How many zip codes are there in the 
U.S.?” 

o Famous (F): “What is Francis Scott Key best known 
for?” 

o Location (L): “Where is Glasgow?” 

o People (P): “Who invented basketball?” 

o Time Point (T): “What year did Montana become a 
state?” 

o Other(X): This is a generic, catch-all for questions that 
did not fit the other types 

There are various reasons for using these question types. Many 
QA systems have a question classification component. Thus it was 
reasonable to investigate if our statistical approach benefits from 
knowing a question’s type. In addition, we were interested in 
seeing if training data improves the performance of a statistical 
approach. The A questions are the smallest set in our group with 
52 questions. We took this as the practical limit for testing 
approaches that divided the questions into training and testing 
portions. And finally, this AFLPTX set contains 589 out of the 
682 questions evaluated in TREC-9. 

So the results we present here are for each individual question in 
the AFLPTX set, the AFLPTX set combined and all of the TREC-
9 evaluated questions. The individual question type results allows 
us to see if performance varies across questions types. The 
combined result (referred to as AFLPTX in the tables) would be 
the performance of a system that had perfect question 
classification performance. And finally the results for all questions 
allow an approximate comparison between our work and 
previously reported results for the TREC-9 evaluation. 

4.2 Task and performance metric 
The TREC-9 QA track had two experimental conditions: returning 
answer strings limited to 50 bytes, and answer strings limited to 
250 bytes. The results of the TREC-9 evaluation make it clear that 
performance correlated with answer string length – longer strings 

improved a system’s performance. All experiments reported were 
done for the 250-byte task [4]. 

The performance metric for TREC-9 was the Mean Reciprocal 
Rank (MRR) measured down to the top 5 answer strings returned 
for each question. So systems were rewarded for returning a 
correct answer within the top 5 ranked answer strings, but 
received no credit for answers returned below the 5th position. 

In lieu of using human judges to decide if retrieved answer 
passages did answer the questions, we utilized the regular 
expressions developed by NIST in an attempt to develop a 
“reusable test collection”.  These regular expressions were 
constructed so that “almost all” strings judged to be correct by the 
original judges of the TREC-9 evaluation would be matched [4]. 
The Kendall τ association between system performance measured 
by human judges and that measured using regular pattern 
matching was found to be 0.94 for the systems that participated in 
the TREC-9 250-byte task [4]. 

 

5. EXPERIMENTAL RESULTS 

5.1 Query Likelihood Baseline 
The query likelihood baseline was described in section 2. It 
returns a ranked list of passages using equation (3).  

After examining the initial results, we found that just using the 
query likelihood ranking may not the most effective approach. 
Passages at the top of a ranked list may be overlapping and come 
from the same document. To test the effect this has on the results, 
we tested two strategies for removing passages from the same 
document. The results from the original ranking are shown in the 
first column of Table 1 under the heading “Unvetted”. The second 
column, “one per document”, only allows the top ranked passage 
from a given document to remain in the ranked list. The second 
strategy, “non-overlapping”, allows multiple passages from the 
same document by removing passages that overlap with a higher 
ranked passage. It is clear from these results that vetting the list 
returned by the query likelihood ranking produces a small 
improvement for every question class, although there is not much 
difference between the two strategies for removing passages. 

All results mentioned in the rest of the paper will quote the MRR 
scores derived using the non-overlapping strategy. 

 
Table 1. Query Likelihood MRR performance (%) 

Question Set Unvetted 
One per 

Document 

Non-

overlapping 

A (52) 20.7 22.5 22.4 

F (84) 58.5 58.8 59.2 

L (109) 43.6 44.1 44.9 

P (109) 53.4 55.4 55.4 

T (71) 27.6 27.8 27.7 

X (164) 34.9 36.3 36.4 

AFLPTX (589) 41.2 42.2 42.5 

All(682)  39.3 40.6 40.8 

 



5.2 Relevance Model Results 
The relevance model baseline was done using equation (2). As 
mentioned before, the relevance models are built using the top-
ranked passages from an initial retrieval. As one can see from the 
baseline results for query likelihood, however, the best 
performance is obtained when we vet the ranked list by requiring 
that only non-overlapping sentenced passages be allowed in the 
list. This implies that the relevance model results could also be 
improved by vetting. Table 2 shows that this is the case for all 
question types.  

In general, the relevance model was more effective than the query-
likelihood model, sometimes substantially. This is a little 
surprising given that relevance models are equivalent to a massive 
query expansion [5], and answer passage retrieval is often done in 
other systems using strict matching criteria. One of the question 
classes, People, did not perform better with relevance models 
(although the results were not worse either). This suggests that the 
effectiveness of query expansion may depend on the type of 
question. 

 

Table 2. QA Relevance Models MRR performance (%) 

Question Set 
Query 

Likelihood 
RM 

% 

improvement 

A (52) 22.4 23.9        6.7 

F (84) 59.2 62.5        5.6 

L (109) 44.9 51.6      14.9 

P (109) 55.4 56.2        1.4 

T (71) 27.7 32.0      13.4 

X (164) 36.4 41.3      13.5 

AFLPTX (589) 42.5 46.3        8.9 

All (682) 40.8 42.9        5.1 

 

It is interesting to note that the relevance models always had their 
best performance at a smaller value for the Dirichlet constant than 
the query likelihood results. This is encouraging since it means 
that the probability estimates derived from the passages were 
weighted more than in the query likelihood baseline. That is, 
relevance models depend less on the use of smoothing. In 
addition, whereas the number of words used to estimate the 
relevance models for document retrieval is in the order of 
hundreds, for this task the best value was obtained when the 
words used to estimate the models were in the order of ten words. 

5.3 Bigram Answer Model Results 
Both of the results reported so far, query likelihood and relevance 
models have used the assumption that the prior probability of an 
answer passage is constant. We wanted to investigate how both 
methods would be affected by the use of probability priors for the 
answer passages.  We investigated this approach by looking at 
obtaining passage priors from bigram language models for correct 
answer passages. 

For example, one would expect that location questions (L type) 
would invariably have a location within the correct answers. This 
suggests that answer models trained on data where various entities 

are abstracted from the text could lead to improvements in the 
query likelihood baseline. 

We tested this hypothesis by limiting ourselves to the 6 question 
types that had more than 50 questions (A, F, L, P, T, X).   

Our goal was to train answer models that captured the “structure” 
of answer text rather than the actual words themselves. To that 
end, we normalized the candidate answer passages using a noun 
entity tagger. The text for all candidate answer passages for the 
AFLPTX questions were processed using BBN’s IdentiFinder 
[12] to tag for the following entities: 

o PERSON 

o PERCENT 

o DATE 

o MONEY 

o LOCATION 

o ORGANIZATION 

These tags were used to replace the tagged text itself. Thus, for 
example, eliminating most mentions (the tagger is not perfect) of 
specific locations to a single token: _location_. This procedure 
yielded a vocabulary of about 53K words for our AFLPTX 
candidate answer passages versus a vocabulary of about 94K 
words if no tagging with replacement had occurred. 

We then proceeded to train answer models specific to each 
question type with the following procedure. We used a 10-fold 
cross-validation separation of questions into training and testing 
sets. The question set for each question type was divided into ten 
random partitions. Each partition assigned 90% of the questions 
to a training set and 10% to a testing set. So each question was 
used nine times in a training set and once in a test set. 

There is one subtlety related to how this partitioning was done. 
The TREC9 QA Corpus contains many examples of question 
variants – groups of questions that are essentially reworded 
versions of the same question. For example, questions 408, 701-4 
are variants of the question: “What kind of an animal is Winnie 
The Pooh?”  The effect of these variants is that questions can 
share the same passage as a correct answer. Thus we randomly 
partitioned questions with the constraint that variant groups were 
not split between testing and training sets. This guaranteed that no 
correct answer used for training was ever a correct answer for a 
test question.  

Each random partition of a question type now had the correct 
answer passages for 90% of the questions to train on. The main 
distinction between all the answer models we constructed and 
report here is the extent to which they used this training text. 

The first model we tested is called the “whole passage” model. It 
utilized all of the sentences available in passages that were 
identified as correct for the training questions. The second model 
is called the “matching line” model. It used only the sentence that 
satisfied the regular expression for the correct answer. And lastly, 
we investigated what type of information from templates could be 
incorporated into answer models. 

All of our answer models were trained as bigram models that used 
absolute discounting to deal with unseen words and count one 



words since our training data was so small and it is generally 
assumed that absolute discounting works better than other 
schemes such as Turing smoothing for small amounts of training 
text.  

Our procedure for calculating an estimate of p(a) given a 
candidate answer passage and a prior language model was as 
follows: The inverse of the perplexity of the candidate answer 
passage under the answer model was calculated. The inverse of 
the perplexity is just the geometric mean of the word probabilities 
under the model, so we took this as our initial estimate for the 
prior: 
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By taking the geometric mean, we compensate for the varying 
word lengths of the candidate passages. In addition, we smoothed 
the resultant probability estimate by raising it to a power between 
one and zero. By varying the exponent to which we raised the 
prior probability we could tune for our use of answer models. An 
exponent of zero gives a uniform prior (equivalent to query 
likelihood ranking).  Since the prior probabilities can be rescaled 
to sum up to one, we view raising to a power as a smoothing 
procedure necessary to deal with noisy training data. 

We began by studying how answer models performed under the 
query likelihood approach shown in equation 1.  

5.3.1 Whole passage answer models 
Whole passage answer models were trained on all of the sentences 
present in a passage that was part of the training correct answers. 
All classes improved but overall the improvement is small and it 
suggests that better models can be trained by limiting further the 
text we use for training. 

Table 3. Whole passage answer models MRR performance (%) 

Question Set 
Query 

Likelihood 

Whole 

Passage 

AM 

% relative 

improvement 

A (52) 22.4 23.9 6.7 

F (84) 59.2 59.3 0.2 

L (109) 44.9 47.8 6.5 

P (109) 55.4 55.7 0.5 

T (71) 27.7 30.6 10.5           

X (164) 36.4 37.8 3.7 

AFLPTX (589) 42.5 43.9 3.3 

 

5.3.2 Matching Line Answer Model 
We constructed a second version of a prior answer model by 
limiting our training text further. Matching line answer models 
were trained using only the sentences that matched a correct 
answer pattern.  Their performance is shown in table 4. We can 
see that although the text amount used for training diminished, the 
quality of the models improved. Albeit, the Person question class 
showed no improvement. 

Table 4. Matching line answer models MRR performance (%) 

Question Set 
Query 

Likelihood 

Match 

Line AM 

% relative 

improvement 

A (52) 22.4 23.5 4.9 

F (84) 59.2 59.6 0.7 

L (109) 44.9 49.4        10.2 

P (109) 55.4 56.2 1.4 

T (71) 27.7 31.2        12.6 

X (164) 36.4 39.0 7.1 

AFLPTX (589) 42.5 44.7 5.2 

 

5.3.3 Template Answer Model 
A number of systems have used templates for question answering 
[13,14,15,17].  We generated templates for the “location” class 
using the Snowball system [16]. Snowball generates a set of 
tuples, which consist of the terms to the left of the first seed, the 
terms between the seeds, the terms to the right of the second seed, 
the seeds themselves, and whether they should be ordered or not. 
An example of a seed is “<Exxon, Irving>”, which expresses the 
relation “<ORGANIZATION, LOCATION>”.   We extracted a 
total of 722 templates for the location class expressing 
organization-location, location-location, location-person, and 
location-date relations.  A template is a cluster of similar patterns.  
Each term in the template has a score that is the similarity 
between the pattern the term was in, and the pattern that it 
matched.  An example of a template is:  

order="true" tag1="PERSON" tag2="LOCATION" 
left="<the:0.268><is:0.268>" middle="<at:1.0>" right="" belief= 
0.0685 

In addition, the template, itself, has a “belief” score that is an 
indication of its quality. 

5.3.3.1 Incorporating  Templates 
Templates and patterns are, by their construction, heuristic. The 
similarity and belief scores assigned to them are attempts to 
establish the likelihood of an answer candidate passage matching 
a given template. Matching a template is strong evidence for being 
a correct answer so we wanted to utilize them in our statistical 
framework. The following experiments show how they can be 
used to create answer models that can produce prior probabilities. 

 We trained a unigram language model on the words from the 
templates.  Since we didn’t have word frequency statistics, the 
similarity score for each term and the belief scores for each 
template were massaged into a probability distribution, and then 
those “probabilities” were used in place of word frequencies.   
This approach yielded an MRR of 49.1. 

Since we didn’t have actual word frequency statistics, but the 
words themselves were a highly targeted vocabulary, we trained a 
bigram language model from the texts of answers known to be 
correct, but used the words from the templates as the vocabulary.  
Restricting our vocabulary in this focused way is resulted in an 
average MRR of 50.6. 

We created bigrams from the templates and trained the model on 
those, as if they had been gleaned from training data.  All possible 
bigrams were created from the templates, respecting the 
left/middle/right substring boundaries.  The language model was 



trained with the pattern vocabulary.   The average MRR from this 
approach was 51.0. 

We selected sentences from our known correct answer texts that 
had “location-location” entity pairs, “location-organization”, 
“location-date”, and “location-person”, and created a distribution 
of the bigrams appearing in these sentences.  The language model 
trained on these targeted sentences produced an MRR score of 
52.0.  In each case the vocabulary used was restricted to the 
vocabulary of the training set. 

Table 5. MRR performance of  “L” questions with four ways 

of incorporating templates 

Question 

Set 
Query 

Likelihood 
Pat. 

Scores 

Pat. 

Vocab 

Pat. 

bigram 
LM 

L 44.9 49.1 50.6 51.0 52.0 

 

One criticism of templates is that they are inflexible.  We would 
like a more flexible system, for question types for which we don’t 
have entity relations or template information. 

For each question type, we defined the entity relations by 
choosing pairs of entities that occurred more frequently for a 
given question type.  We trained bigram language models using 
sentences that contained any of the entity relations for a given 
question type.  The vocabulary was restricted to the training set. 
Table 6 shows the results in average MRR score for this approach. 

 Incorporating relevance models showed improvement for most 
question types.   In a template based system, incorporating 
relevance models has the effect of smoothing for terms not found 
in the template.  This improves the situation for answers that are 
not captured in templates, but decreases the overall effects for 
template matches.  Thus relevance models would be most useful 
for question types whose answers have a low degree of match to 
the templates. 

Table 6. Relation Answer Models MRR performance (%) 

 

5.4 Answer Models with Relevance Models 
Since bigram answer models improved the baseline query-
likelihood performance, we also tested how the use of the model 
priors would improve the relevance model performance. This was 
done using the prior in equation (2). 

The results are shown in Table 4. We show how two of our 
models: the “matching line” and “template” models combine with 
Relevance Models. We show the relative improvement in the 
baseline query likelihood results in parentheses. 

 

 

 

Table 7. RMs with bigram AM priors MRR performance (%) 

Question Set 
Query 

Likelihood 

Match Line 

AM + RM 

Template  

AM + RM 

A (52) 22.4  24.1 (+07.6)    23.6 (+5.4) 

F (84) 59.2  63.9 (+07.9) 65.9 (+11.3) 

L (109) 44.9  53.1 (+15.4) 56.3 (+25.4) 

P (109) 55.4  55.4 (+00.0)    56.0 (+1.1) 

T (71) 27.7  31.6 (+14.1)    30.1 (+8.7) 

X (164) 36.4  41.4 (+13.7)    45.7 (+25.5) 

AFLPTX (589) 42.5  46.7(+09.9)    48.6 (+14.4) 

 

6. RELATED WORK 
The use of passage retrieval for question answering has been 
studied before. The IR-n system [13] from the University of 
Alicante has focused on this task. It uses a heuristic measure to 
retrieve passages with a fixed number of sentences, with best 
performance obtained at around 20 sentences. Besides our use of 
language models, this work differs from ours because we only 
considered passages that conformed to the 250-byte TREC-9 QA 
task. 

The University of Sheffield [14] has also used passage retrieval in 
their QA system. But as in the IR-n system, performs the passage 
retrieval with a heuristic measure and retrieves passages longer 
than the 250-byte limit.  

In terms of using answer templates, a variety of systems have used 
heuristic methods of deriving and applying templates.  One 
example of such a system is the AskMSR system described in 
[17].  This system generates a hand-crafted set of query rewrite 
rules, and answer templates and uses an heuristic approach to 
scoring the answer candidates. Ravichandran and Hovy [13] 
utilize the approaches in [14] and [15],  using a bootstrapping 
technique to learn regular expressions from the web, using suffix 
trees to find the optimal substring length. 

7. CONCLUSIONS AND FUTURE WORK 
 

The results shown in this paper demonstrate that it is possible to 
significantly improve answer passage ranking by incorporating 
additional features related to passage quality into the retrieval 
model. Table 7 summarizes the percentage improvements of 
different approaches compared to the baseline query likelihood 
model. This shows that query expansion via the relevance model 
generally improves performance, but the incorporation of answer 
models is better for some question classes. The incorporation of 
answer models into the priors for the relevance model produces 
the best results with consistent and substantial improvements in 
all question classes. The incorporation of template information 
was previously demonstrated to improve performance, and we 
showed several ways this information can be incorporated into a 
statistical system. 

Question 

Set  

Query 

Likelihood 
AM 

% relative 

improvement 

A 22.4 23.1          3.1 

F 59.2 63.7          7.6 

L 44.9 54.0        20.2 

P 55.4 54.8         -1.2 

T 27.7 32.7         18.1 

X 36.4 44.9        23.4 

AFLPTX 42.5 47.7        12.2 



 
The best results in this table are competitive with the best results 
achieved in TREC-9, but they are somewhat difficult to compare 
directly because answer models were not constructed for all 
question classes. It should be emphasized that this high level of 
performance was achieved in what is effectively a single retrieval 
pass with no additional ad-hoc filtering done afterwards, as is 
common with most other systems. 

 
In future work, we plan to investigate other features that could be 
incorporated into the retrieval model. To do this, we may use 
maximum entropy language models, which are more flexible with 
regard to the types of features in the model [8]. We also plan to 
further explore the automatic learning of answer templates, and 
the most appropriate way to incorporate the information into a 
statistical QA system. 
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