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ABSTRACT

Most work in the ad hoc music retrieval field has focused on
the retrieval of monophonic documents using monophonic
queries. Polyphony adds considerably more complexity. We
present a method by which polyphonic music documents
may be retrieved by polyphonic music queries. A new har-
monic description technique is given, wherein the informa-
tion from all chords, rather than the most significant chord,
is used. This description is then combined in a new and
unique way with Markov statistical methods to create mod-
els of both documents and queries. Document models are
compared to query models and then ranked by score. Though
test collections for music are currently scarce, we give the
first known recall-precision graphs for polyphonic music re-
trieval, and results are favorable.}

1. INTRODUCTION

Music retrieval is a rapidly growing field. While tradition-
ally not part of the information retrieval task, music retrieval
is receiving increased attention. The availability of online
collections and numerous digital library projects for music
has fueled a need for effective searches. However, the vast
majority of work in music information retrieval has focused
on the the monophonic domain. Most of the interesting, as
well as widely available, music is polyphonic. Polyphony,
with its multidimensional sequences of overlapping notes,
is much more complex (see Figure 1). Techniques used for
text and monophonic music, both of which can be thought
of as one-dimensional sequences of features, cannot be di-
rectly applied to polyphonic music. These techniques in-
clude string-matching and straightforward (n-gram) Markov
modeling.

We therefore present a method for polyphonic music re-
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Figure 1: Sample variation excerpts, from the Mozart
‘Twinkle, twinkle, little star’ composition

trieval which begins by preprocessing a music score to ana-

lyze its underlying harmonic structure probabilistically, based
on key-distance measures derived from Carol Krumhansl’s

work on inter-key relationships [8]. The output of this anal-

ysis is a probability distribution over all chords, one distri-

bution for each simultaneity occurring in the score. The use

of all chords to characterize a polyphonic music sequence,

rather than a single chord reduction, is a distinctive trait of

our system.

Once the harmonic description is complete, simple Markov
modeling techniques using various fixed-sized Markov chain
lengths are applied. The manner in which the harmonic
description is combined with Markov statistical techniques
is also novel. The document is then indexed as this fixed-
size Markov model. This is done for every document in
the collection, prior to retrieval. Queries are then modeled
using the same modeling technique as the documents. Fi-
nally, a scoring function is used to calculate the dissimilarity
between a query model and each document model in the col-
lection, and the documents are ranked by this score.

It should be stressed that our methods do not seek to pro-
duce a formal music-theoretical harmonic analysis of a score,



but to output a pattern of harmonic probabilities which
are hopefully characteristic of variations to which a score
is judged relevant. We justify our methods emperically; the
recall-precision results in Section 5.2, the first of their kind
for polyphonic music retrieval, are good.

2. BACKGROUND

Terminology We begin by defining a number of terms
used in this paper. The first is the domain itself in which
we are working: music. Within this paper, all music with
which we work comes from the symbolic, rather than au-
dio, domain. This means that the exact onset time, pitch,
and duration of every single note in a piece of music are
known. This amount of structure is not explicitly available
from an audio source, such as a WAV or MP3 file, but is
found in formats such as MIDI (www.midi.org) and Kern
(www.musedata.org).

Within the music domain, we must define monophony,
homophony, and polyphony. Monophonic music has at most
one note playing at any given time; before a new note starts
the previous note must have ended. Homophonic music has
at most one set of notes playing at any given time. For
any set of notes that start at the same time, no new note
or notes may begin until every note in that set has ended.
Polyphonic music has no such restrictions. Any note or set
of notes may begin before any previous note or set of notes
has ended, which proves difficult for any clear, unambiguous
sense of sequentiality.

The next term we define is simultaneity. A simultaneity
is an octave-invariant (mod 12) pitch set. We use this name
because simultaneities are created from polyphonic music
by extracting at a given point in time either all notes which
start at that point in time [4], or all notes which are sounding
at that point in time [10]. Though these two techniques are
the most common, other researchers have used larger time or
rhythm-based windows from which to extract simultaneities
(see Pickens [14] for further discussion).

We define a lexical chord as a codified pitch template. Of
the 12 octave-equivalent (mod 12) pitches in the Western
canon, we select some n-sized subset of those, call the subset
a chord, give that chord a name, and add it to the lexicon.
Not all possible chords belong in a lexicon; with (1) possible
lexical chords of size n, and 12 different choices for n, we
must restrict ourselves to a musically-sensible subset.

Finally, we define harmonic description as the process of
fitting simultaneities to lexical chords. A number of re-
searchers have focused exclusively on the harmonic descrip-
tion task. Prather [16] selects the most salient lexical chord
from a simultaneity by examining neighboring simultane-
ities to eliminate ambiguity. Chou [2] uses clues such as
frequency and consonancy to select the most salient lexical
chord. Pardo [12] uses notions of harmonic similarity or con-
sistency to dynamically shape the size of the simultaneities,
so that partitioned areas are created in positions where a
single (harmonically significant) lexical chord dominates.

While not a comprehensive list of harmonic description
papers, these are indicative of the effort we see to create
descriptions of music in which only the most salient lexical
chord is used. The difference in our technique is that all
chords describe the music, to varying degrees; the purpose of
our harmonic description is to determine to what extent each
chord fits. But no chord is eliminated completely, no matter
how unlikely. So while we are not the first in the music IR

community to suggest harmonic description, we are the first
that we know of to create harmonic distributions (using all
available chords to characterize a set of notes) rather than
harmonic reductions (using a single chord to characterize a
set of notes), and apply those distributions to the ad hoc
retrieval task.

The Language Modeling Approach Language Mod-
eling (LM) has received much attention recently in the text
information retrieval community. It is only natural that we
wish to leverage some of the advantages of LM and apply it
to music.

“The approach to retrieval taken here is to in-
fer a language model for each document and to
estimate the probability of generating a query ac-
cording to each model. The documents are then
ranked according to these probabilities...The ad-
vantage of using language models is that observ-
able information, i.e., the collection statistics,
can be used in a principled way to estimate these
models and do not have to be used in a heuristic
fashion to estimate the probability of a process
that nobody fully understands...When the task
is stated this way, the view of retrieval is that
a model can capture the statistical regularities
of text without inferring anything about the se-
mantic content.” Ponte [15]

Even though our retrieval task is polyphonic music rather
than text, we are duplicating the LM framework by creating
statistical models of each piece of music in a collection and
then ranking the pieces by those statistical properties. Thus,
while it might be more appropriate to name this work “sta-
tistical music modeling”, we still say that we are taking the
language modeling approach to information retrieval. We
attempt to “capture the statistical regularities of [music]
without inferring anything about the semantic content”.

To our knowledge, the first LM approach to music IR
was done in the monophonic domain [13]. Other techniques,
which we also roughly categorize as taking the LM approach,
apply 1°*-order Markov modeling to monophonic note se-
quences [17, 7]. Another technique extends the modeling to
the polyphonic domain, using both 0** and 1°*-order Markov
models of raw note simultaneities to represent scores [1].

3. HARMONIC DESCRIPTION

3.1 Step 1: Simultaneity creation

The first step in this process is to reduce complex poly-
phonic music to a sequence of simultaneities. We do this by
ignoring durational information and adding to each simul-
taneity all pitches of notes which start at the same time.

3.2 Step 2: Selection of Chord Lexicon

The chord lexicon used in this paper is the set of 24 major
and minor triads, one each for all 12 members of the chro-
matic scale: C Major, ¢ minor, C§ Major, cf minor ... Bb
Major, bb minor, B Major, b minor. No distinction is made
between enharmonic equivalents (Cff/Db, Afi/Bb, Ef/F, and
so on). Assuming octave-invariance, the three members of
a major triad have the relative semitone values n, n+4 and
n + 7; those of a minor triad n, n + 3 and n + 7.

The 24 lexical chords can be viewed as points on two over-
lapping ‘circles of fifths’, one for major triads, the other for



minor triads. Each circle is constructed by placing chords
adjacently whose root pitch is separated by the interval of
a fifth (7 semitones); for example, G Major or minor (root
pitch-class 7) has immediate neighbours C (7 - 7 = 0) and D
(7 + 7 = 14, i.e. octave-invariant pitch-class 2). Thus each
Major tonic chord (G major, say) stands in appropriately
close proximity to its dominant (D Major) and subdomi-
nant (C Major) chords, i.e. those to which it is most closely
related in music-theoretical terms. The two circles (Major
and minor) may be aligned by placing Major triads close to
their respective relative minor triads, as shown in Figure 2
(Major triads are shown in upper case, minor triads in lower
case).

F#

Figure 2: Lexical chords and their relative distances

While it is clear that the harmony of all but the crudest
music cannot be reduced to a mere succession of major and
minor triads, as this choice of lexicon might be thought to
assume, we believe that this is a sound basis for a proba-
bilistic approach to harmonic description. As our goal is not
the selection of a single, most salient lexical chord, but a dis-
tribution over possible harmonic chords, we feel that triads
are large enough to distinguish between harmonic patterns,
but small enough to robustly accomodate harmonic invari-
ance. Furthermore, our approach depends on a reliable and
easily applied measure of ‘distance’ between lexicon mem-
bers which is satisfactory on the grounds of music theory
and corresponds with practical experience. Such a measure
indeed exists for these 24 major and minor triads, but not
for more complex chords.

During the 1970s and 1980s the music-psychologist Carol
Krumhansl conducted a ground-breaking series of experi-
ments into the perception and cognition of musical pitch [8].
By using the statistical technique of multi-dimensional scal-
ing on the results of experiments on listeners’ judgements
of inter-key relationships, she produced a table of coordi-
nates in four-dimensional space which provides the basis for
the lexical chord distance measure we adopt here. The ‘dis-
tance’ between triads a and b can be expressed as the four-
dimensional Euclidean distance between these coordinates,
where wg, T, Yz and z; are the four coordinates of triad x
as given in Krumhansl’s table (which we do not reproduce
here):

EDist(a,b) 2\/ (1(1};“__1;:;2 I Ej::::))2 + 1)

As Krumhansl demonstrates, her results, derived from
controlled listening tests, correspond very closely with music
theory.

3.3 Step 3: Harmonic Description

Once again, harmonic description is the process of fit-
ting simultaneities to lexical chords. Given a simultaneity
s, we count, for each chord ¢ in the lexicon, the number of
pitches in common between the simultaneity and the lexi-
cal chord: Num(s,c). Normalizing by the total overlapping
pitch count would give us a naive distribution for s over the
lexicon. While retrieval still may be possible using this dis-
tribution, it fails to take into account harmonic similarities
between nearby lexical chords. We therefore need to smooth
these initial probability estimates.

Harmony, as musicians perceive it, is a highly contextual
phenomenon which depends on many factors, only one of
which is the simple pitch count we have performed thus far.
It is common for non-harmonic notes (that is, notes that do
not ‘belong to’ the prevailing harmony) to occur in a simul-
taneity. We need a technique for lowering the probability
mass of those lexical chords in which non-harmonic notes
occur, while raising the probability mass of lexical chords in
which the ‘truer’ harmonies do occur.

It is necessary, therefore, for us to account for the pres-
ence of all pitches in simultaneity s in terms of the harmonic
context of s. Since, in general, ‘contributions’ of near neigh-
bours in terms of inter-key distance are preferred, we use
that fact as the basis for computing a suitable context. We
effectively smooth the distribution by summing contribu-
tions to the harmonic description from all members of the
lexicon, even those that are not explicitly represented in the
current simultaneity. For each lexical chord c its contribu-
tion will be proportional to the number of pitches shared
with the simultaneity s and inversely proportional to its
inter-key distance from the lexical chord p, whose context is
being summed. This is given by the following equation:

>\ Num(s,p)

Contezxt(s,c) = _—
(3,¢) = Edist(p,c) +1

(2)

This context score is computed for every chord in the lex-
icon (each point in the distribution), and then the entire
distribution is normalized by the sum total. In addition to
providing a better estimate for the harmonic distribution,
this ‘smoothed’ context also accounts for more complex in-
put chords, such as 7** chords, by retaining higher prob-
ability mass for those nearby triads in which a 7" chord
‘participates’.

Currently, this harmonic smoothing is performed within
the scope of a single simultaneity, not over time. In fu-
ture experiments we shall extend the harmonic context to
take into account the profile of neighboring simultaneities.
‘We propose in the future to adopt a time-window-based ap-
proach, summing the lexical contributions in the way de-
scribed above across events within the window in inverse
proportion to their time-, event-, or beat-based distance
from the current simultaneity, with additional weightings
provided according to metrical stress, note duration or other
factors that might be considered helpful. Indeed, harmonic
smoothing, properly executed, might be a way of integrating
the problematic, not-quite-orthogonal dimensions of pitch
and duration within a polyphonic source. A larger, time-
based smoothing might also yield a richer harmonic descrip-



tion, because it gives less weight to transient changes in
harmony arising from non-harmonic notes such as passing
tones or appoggiaturas.

4. MARKOV MODELING

Markov models are often used to capture statistical prop-
erties of a state sequence over time. We want to be able
to predict future occurrences of a state by the presence of
sequences of previous states.

4.1 Model Estimation

For our harmonic approach, we have chosen lexical chords
as the states of the Markov model. For an n**-order model,
a 24" x 24 matrix is constructed, with the rows representing
the previous state space, and the columns representing the
current state space. An (n+ 1) sized window slides over the
sequence of lexical chord distributions and Markov chains
are extracted from that window. The count of each chain
is added to the matrix, where the crossproduct of the first
n states is the previous state, and the (n + 1)** state is the
current state. Finally, when the entire observable sequence
has been counted, each row of the matrix is individually
summed and the elements of each row normalized by the
sum total for that row.

With Markov model estimation over typical data, input
sequences are one-dimensional, so there is never more than
one Markov chain, or path, per window. Our approach is
slightly different. Recall from Section 3 that instead of a
one-dimensional sequence of states, we have a sequence of
24-point distributions. So our solution is to assume indepen-
dence between points in each distribution at each timestep,
so that an exhaustive number of independent, one- dimen-

sional paths through the distribution sequence may be traced.

(This exhaustive branching paths approach is abstractly sim-
ilar to one suggested by Doraisamy [3]. The context is some-
what different; we use lexical chord distributions rather than
notes, but the basic idea is similar.)

Within a given window, there are 24 different ways (24
lexical chords) to select the first element in the path. There
are also 24 possibilities for the second element, and so on,
up to the size of the window. A simple recursive algorithm,
which we consider trivial enough not to duplicate here, as-
sembles all such paths. Each path, thus constructed, is not
counted as one full observation. Instead, observations are
proportional; the degree to which each path is observed is
a function of the amount by which all elements of the path
are present. Since independence between neighboring si-
multaneities was assumed, this becomes the product of the
values of each state which comprises the path.

4.2 Example

The figure below is an example of the type of output of
our harmonic description. In the interest of space, we as-
sume a lexicon of only three chords, to which we arbitrarily
assign the names P, @, and R. These lexical chords are
arranged circularly, with @ following P, R following @, and
P following R. We use this harmonic description to create
a 1°*-order Markov model, which means that the probabil-
ity of being in the current state is dependent only on the
previous state.

We first obtain an accurate count of the Markov chains
over the entire sequence. We begin the window from timestep
1 to timestep 2. The sequence P — P is observed in propor-

Timestep (Simultaneity)
Lexical Chord | 1 2 3 4 5

P 02 01 07 05 O
Q 05 01 01 05 0.1
R 03 08 02 0 09

tion to the amount in which one is in P at timestep 1 and also
in P at timestep 2 (0.2 * 0.1 = 0.02). The sequence @ — R
is observed in proportion to the amount in which one is in P
at timestep 1 and then in Q at timestep 2 (0.5 * 0.8 = 0.4),
and so on. The entire timestep 1 to timestep 2 window is
illustrated in Figure 3.

PP = 02%01 = 002
P>Q = 02%01 = 0.02
PSR = 02%08 = 016
QP = 05*01 = 005
Q—>Q = 05*01 = 005
QR = 05*08 = 04
R—>P = 03*01 = 003
R—>Q = 03*01 = 003
R—>R = 03*08 = 024
TOTAL = 1.0

Figure 3: Example full set of 1*’-order (bigram)
transitions from timestep 1 to timestep 2

It should be emphasized that these values are not the
probabilities of the final model at this stage; they are counts.
That the counts are not integers does not matter. Think
of it this way: Suppose 100 musicians were each given an
instrument which was only capable of playing one lexical
chord at a time (such as an autoharp), and not arbitrary
individual notes. Suppose further that these musicans were
given sheet music of the documents which we are model-
ing, which documents contain only individual notes and not
chords. The musicians would be forced to make a choice
about which lexical chord to play. We are saying that two
of the musicians would then choose to play P — P, forty
would play @ — R, and so on. Our actual observation of
what lexical chords were played includes every single one of
these possibilities, concurrently and independently. It is as
if this one snippet of music were played 100 times, 9 different
ways, and we simply count the number of times each way
was played. Divide those integer counts by 100 and the pro-
portion, and thus the final model, remains the same. (This
differs from the hidden Markov model approach in that we
do not assume there is a single chord or other hidden state
which is the one “real” way to play the snippet.)

Next, we add these transition counts to our count matrix,
and repeat the process for timesteps 2 — 3,3 — 4,
and 4 — 5 (the remainder of the piece). When finished,
we follow the standard method of transforming the matrix
into a Markov model by normalizing the outgoing arcs from
each state, so that the total score sums to 1.0, as shown in
Figure 4.

Count Matrix Markov Model

P Q| R P Q R
P | 0.44 | 0.43 | 0.63 P 0.293 0.287 0.42
Q| 0.17 | 0.16 | 0.87 Q | 0.1417 | 0.1333 | 0.725
R | 0.69 | 0.21 | 0.40 R | 0.5308 | 0.1615 | 0.3077

Figure 4: Example 1**-order count matrix (left) and
normalized Markov model (right)



4.3 Transposition Invariant Model Estimation

In Section 1 we spoke about sources of variation in music,
and how variation built around relatively stable harmonic
patterns is common. Another important source of variation
is key transposition, in which an entire piece of music is
shifted up or down by a number of semitones. This has
major consequences in our harmonic description in that if
the key is shifted, the patterns of lexical chords found at
each timestep may vastly differ. This has the potential to
break our retrieval system.

The favored solution to key transposition in monophonic
music is to use the semitone interval between contiguous
notes, rather than the absolute pitches of the notes them-
selves. Our solution is to use the spread, in steps around
the circle from Figure 2, between lexical chords at contigu-
ous timesteps. We count as equivalent all those neighbor-
ing (timestep adjacent) chords which have the same spread.
Absolute chord paths of length 2, 3 and 4 become relative
chord-spread paths of length 1, 2 and 3.

Returning to our example from Figure 4, the spread from
P — @ (+1 or -2) is the same as the spread from Q@ — R
(41 or -2), so these two chord pairs are equivalent. Since the
lexical chords are arranged in a circle, every positive value
has an equivalent negative value. Going up by one is the
same as going down by the size of the lexical circle minus
one. We therefore create Markov matrices in terms of the
positive spreads only, for simplicity. Figure 5 is the example
from Figure 4 recast as a transposition invariant model.

Equivalent Transn. Count | Markov

Spread | Transitions Counts Totals | Model
PP 0.44

+0 Q—-Q +0.16 =1.00 0.25

R—R + 0.40
P—Q 0.43

+1 Q—R + 0.87 =1.99 | 0.4975
R— P + 0.69
P—R 0.63

+2 Q—P + 0.17 =1.01 | 0.2525
R—Q +0.21

Figure 5: Example 0**-order transposition invariant

count matrix and Markov model

4.4 Scoring Function

At index time, a model of every piece of music in the col-
lection is created and stored. At query time, a query model
is created with exactly the same structure as the collection
models. If the collection was modeled using 2"¢-order trans-
position invariant Markov models, the query must be mod-
eled in the same fashion.

Our goal is to produce a ranked list for a query across
the collection. We wish to rank those pieces of music at the
top which are most similar to the query, and those pieces at
the bottom which are least similar. In order to do this we
need a scoring function. We have chosen as this function the
Kullback-Liebler (KL) divergence, a measure of how differ-
ent two distributions are, over the same event space. The
divergence is always zero if two distributions are exactly the
same, or a positive value if the distributions differ. We de-
note the KL divergence between query model ¢ and music
document model d as D(q||d). “The KL divergence between
[¢] and [d] is the average number of bits that are wasted by
encoding events from a distribution [¢] with a code based on

the not-quite-right distribution [d]” [11].

In a Markov model, each previous state, each row in the
24™ x 24 matrix, is a complete distribution. We therefore
compute a divergence score for each row in the model, and
add the value to the total divergence score for that query-
document pair. This is given by the following equation,
where ¢; and d; represent each previous state.

Dald) = Y (Zqi(x)loggj,g;) 3)

g;€q,d;€d \z€EX

4.5 General Music “Back off”” Model

There is a problem in that sometimes a document model
can have estimates of zero probability. This is due to limi-
tations of finite computers. Floating point or double values
can only hold so much information, and probability values
can be so small as to become zero. The divergence score
in such cases (¢;(z) log %0”)) automatically goes to infinity.
This small problem in just a single value could therefore
throw off our entire score for that document. We therefore
must create some small but principled non-zero value for
every document model zero value. There are many ways to
do this, but we have done so by “backing off” to a general
music model, using the value of that previous state node
from the general model whenever we encounter a zero value
in any particular document model.

A general music model is created by averaging the models
over the entire set of document models in the collection. In
principle, there could still remain zero values in the general
music model, depending on the size and properties of the
collection. In our experiments, however, we found this al-
most never to be the case. Also, it should be observed that
when the query model has a zero probability in any cell,
there is no problem. The KL divergence for that point is
0log %, which is zero.

5. EVALUATION

5.1 Source Collection and Query Sets

The basic test collection on which we tested our retrieval
method was assembled from data provided by the Center
for Computer Assisted Research in the Humanities, Stan-
ford University. It comprises around 3000 files of separate
movements from polyphonic fully-encoded music scores by
a number of classical composers, including a significant pro-
portion of the works of J.S. Bach, of varying keys, textures
(i.e. average numbers of notes in a simultaneity) and lengths
(numbers of simultaneities). To this basic collection we add,
for the purposes of the present paper, three additional sets
of polyphonic music data:

(1) 26 individual variations on the tune known to English
speakers as ‘Twinkle, twinkle, little star’ (in fact a mixture
of mostly polyphonic and a few monophonic versions); (2)
22 versions of John Dowland’s ‘Lachrimae Pavan’, collected
as part of the ECOLM project [9] from different 16th and
17th-century sources, sometimes varying in quality (num-
bers of ‘wrong’ notes, omissions and other inaccuracies), in
scoring (for solo lute, keyboard or five-part instrumental en-
semble), in sectional structure and in key; (3) 17 individ-
ual variations on the well-known baroque tune ‘Les Folies
d’Espagne’ from a little-known English lute manuscript now
held in the Poznan University Library, Poland [6], another
ECOLM encoding.



| | 1. Twinkle | 2. Lachrimae | 3. Folia ]
Number of variations 26 22 17
Key profiles C(17), A(6), c(1), Unknown(2) | g(15), d(2), a(5) | d(17)
Note consistency Low Low Medium
Harmonic-profile consistency Medium Medium High

Table 1: Query descriptions

In each case, the set of score-files shares a relatively low
note consistency (the number of and actual notes played),
which makes string-matching or n-gramming approaches even
more difficult and our harmonic modeling necessary. Nev-
ertheless, each set of score-files also shares a broadly simi-
lar harmonic profile, although there are some sophisticated
variations by Mozart in set (1) which deviate somewhat from
the ‘norm’. Some of the files in (2) present different settings
whose detailed harmonic progressions are different from the
rest, although the broader overall profile remains similar.

For our experiments, we use standard Cranfield-style eval-
uation, with queries and relevance judgements across the
collection, assembled as follows: For a given set of varia-
tions (Twinkle for example), a single variation is selected as
the user query. The remaining n variations (25 in this case)
are tagged as relevant to this query, and inserted into the
collection. The remainder of the collection is assumed to be
non-relevant. A ranked list is created for this query. The
query is then re-inserted into the collection as a ‘relevant’
document, and a different variation removed and selected as
the new query. This is repeated for all 26 variations, each
with a slightly different set of 25 relevant documents. (It is
quite feasible that a user could present any one of the doc-
uments as a query, and expect to retrieve all 25 remaining
variations.) Depending on which variation is used as the
query, however, the resulting ranked list can vary wildly.
The average across all 26 ranked lists is taken; these are the
recall-precision graphs we present in the next section.

5.2 Results

Interpolated 11-point recall-precision graphs for all the
queries are found in Figures 6 through 8. These graphs
show both regular harmonic-based 0" to 3"¢-order Markov
models (MM0-MM3) and transposition invariant harmonic-
based 0" to 2"?-order Markov models (TIMMO-TIMM?2).
Average precision (non-interpolated) for these same queries
is given in Table 2.

These results show a number of different patterns. There
is significant improvement over the baseline (random rank-
ing) in every case but the transposition invariant Folia queries.
As a concrete example, consider the variations in Figure 1 at
the beginning of this paper. In the case where the Theme is
used as a query (under a harmonic MMO model) Variation 11
was ranked sixth and Variation 3 was ranked twelvth. When
Variation 3 was used as the query, variation 11 was ranked
sixth and the Theme was ranked eighth. Again, this is from
a collection of 3000 similar-genre, similar era pieces. Though
the pieces contain significant variation, our harmonic mod-
eling captures the similarity.

We next observe the tradeoff between regular and trans-
position invariant modeling. Music IR literature from the
monophonic domain shows that as basic lexical units become
more generalized, precision suffers [5]. Thus it is only natu-
ral to expect that transposition invariance opens up the pos-
sibility that not only will we get more relevant documents,
but we will get more non-relevant documents as well.

This pattern is present in all three query sets. As we see
in Table 1, the Twinkle and Lachrimae queries had a good
number of key-transposed variations, so when compared to
the MM results, the precision of the TIMM results drops at
low recall, but increases at higher recall. The Folia queries
had no key-transposed variations (see Table 1), so trans-
position invariant modeling only dropped precision without
boosting recall.

Furthermore, it is interesting to realize that, while the
Folia query set had the least amount of key-transposed vari-
ations, the Lachrimae set had the most. Our results match
this fact; the transposition invariant Lachrimae queries have
the least drop in precision and the highest gain in recall of
all three query sets. The Twinkle queries were somewhere
in the middle, again as expected.

Finally, some discussion about the different fixed-size mod-
els is necessary. Here, however, the trends are not as clear.
We offer the following observation, but leave the readers
with graphs to decide for themselves. For the regular Markov
models, the longer the model, the better the results, with the
exception of the 0*"-order models which generally outper-
form them all. Our harmonic description by itself apparently
goes a long way in helping distinguish relevant and non-
relevant documents. For the transposition invariant models,
on average, the longer models do slightly better than the
shorter models. This would make sense, as much of the ex-
isting music IR literature suggests that the more generalized
the lexical unit, the longer the sequence needs to be in order
to distinguish relevant from non-relevant documents.

6. CONCLUSION

There are many kinds of variation in music, and many
ways of accommodating that variation. Pitch intervals cap-
ture key-transposition invariance for monophonic music. Du-
ration intervals capture rhythmic invariance for monophonic
music. Our modeling-based retrieval system was an attempt
to capture harmonic invariance for polyphonic music. We
started with the realistic assumption that in many real-
world situations, variations on a piece of music may include
many different pitches but the underlying harmonies remain
similar.

From this assumption came the problem of lexical chord
selection. Major and minor triads were chosen for their ro-
bustness in describing but not overspecifying harmony. Lex-
ical chords which are too large (every known 11th-chord, for
example) are too specific. One might as well use the entire
raw simultaneity; both are not tolerant of missing or extra
notes, which we consider a fatal flaw. We also did not want
lexical chords which were too small (dyads, for example).
Under such general chords the harmonies would blend to-
gether undistinguishably. Our choice of major and minor
triads was meant to be robust enough to handle harmonic
variation.

Yet even with triads there is not a perfect fit to every
simultaneity. Therefore, we made the decision to do har-
monic description not as a selection of a single, most salient
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Figure 6: Twinkle queries: Markov model (left), transposition invariant Markov model (right)
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Figure 7: Lachrimae queries: Markov model (left), transposition invariant Markov model (right)
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Figure 8: Folia queries: Markov model (left), transposition invariant Markov model (right)




Random mm0 mm1l mm2 mm3 timm0 | timml | timm2

Twinkle Queries 0.0093 0.1205 | 0.1094 | 0.1517 | 0.1332 || 0.0414 | 0.0772 | 0.1103
Lachrimae Queries 0.0039 0.2144 | 0.1429 | 0.0883 | 0.1649 || 0.0967 | 0.1961 | 0.1461
Folia Queries 0.0045 0.5904 | 0.1669 | 0.2801 | 0.2759 || 0.0286 | 0.0038 | 0.0005

Table 2: Average precision (non-interpolated) over all relevant documents

lexical chord, but as a distribution of chords. As far as we
know, this choice is new in the field of music information
retrieval. Using a distribution in this manner also fits with
the Language Modeling approach by letting the statistical
regularities of the source document speak for themselves,
rather than trying to semantically infer that a composer
truly meant for a single chord to represent the piece at any
particular point.

Many of the general topic areas touched on by our system
are available elsewhere, but the individual details and, in
particular, the combination of these areas, is unique to this
work. Simultaneity creation, lexical chord selection, har-
monic description, Markov modeling, exhaustive combina-
torial path extraction (to a fixed length), and transposition
invariance all combine to create a working, probabilistic,
fully-polyphonic music retrieval system.

7. FUTURE WORK

The two parts of this retrieval approach which will be ex-
plored and refined in the future are the creation of simultane-
ities and the fitting (and smoothing) of those simultaneities
to the lexical chord set. These two tasks are not entirely
independent; how the simultaneities are chosen has a large
influence on the smoothing techniques used for lexical chord
fits. Improvements in these areas will, we believe, improve
the recall-precision results obtained with our system.

Furthermore, early experiments indicate that our harmonic
modeling is robust when applied to imperfect transcriptions
of polyphonic audio. A harmonic model of an imperfect au-
dio transcription still allows us to retrieve the original piece
at an extremely high rank. This bodes well for the future
integration of polyphonic audio and symbolic music, using
one to search the other and vice versa. This is an important
step in today’s online digital world.
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