Language Models for Financial News Recommendation

Victor Lavrenko, Matt Schmill, Dawn Lawrie, Paul Ogilvie,
David Jensen, and James Allan
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

ABSTRACT

We present a unique approach to identifying news stories
that influence the behavior of financial markets. Specifi-
cally, we describe the design and implementation of AEna-
lyst, a system that can recommend interesting news stories
— stories that are likely to affect market behavior. Ena-
lyst operates by correlating the content of news stories with
trends in financial time series. We identify trends in time
series using piecewise linear fitting and then assign labels
to the trends according to an automated binning procedure.
We use language models to represent patterns of language
that are highly associated with particular labeled trends.
Enalyst can then identify and recommend news stories that
are highly indicative of future trends. We evaluate the sys-
tem in terms of its ability to recommend the stories that
will affect the behavior of the stock market. We demon-
strate that stories recommended by Analyst could be used
to profitably predict forthcoming trends in stock prices.

Keywords
Application, recommender system, text mining, time series,
piecewise linear regression, language models, evaluation.

1. INTRODUCTION

People read the news to both understand what is happening
and what might happen in the future. News stories could ex-
plain why a presidential candidate is doing well in the polls
or report on events that will adversely affect future polling
results. Other stories may suggest why current economic
performance is poor or predict an upturn in the economy
in the coming months. Both approval ratings and economic
performance can be viewed as time series because they are
real valued data that change over time. News releases influ-
ence human behavior, and so may indirectly affect the fluc-
tuations in these time series. Conversely, new stories may
be written in response to fluctuations in a time series. We
develop Analyst,! a system which models the dependencies

!From e-Analyst, pronounced “analyst”.

between news stories and time series.

Enalyst is a complete system, which collects two types of
data, processes them, and then attempts to find the rela-
tionships between them. The two types of data are financial
time series and time-stamped news stories. Once collected,
the time series are redescribed into high-level features which
we call trends. We then align each trend with time-stamped
news stories, and learn language models of the stories that
are correlated with a given trend. A language model deter-
mines the statistics of word usage patterns among the stories
in the training set. Once we have learned a language model
for every trend type, we can monitor a stream of incoming
news stories and estimate which (if any) of our trend mod-
els is most likely to have generated the story. Then we can
recommend the best stories to the user who is interested in
detecting specific trends. For example, if the user is inter-
ested in stocks that are likely to go up in price, we would
recommend the stories that are most likely to have come
from a model of an upward trend.

Our task is a special case of the Activity Monitoring task
introduced by Fawcett and Provost[7]. The task involves
monitoring a stream of data and issuing alarms that signal
positive activity in the stream. In our case, the data is rep-
resented by news stories and financial time series; unusual
trends in the time series signify positive activity; and alarms
take the form of recommended stories. This recommenda-
tion task is similar to the task of Information Filtering [3].
What sets us apart from conventional text filtering is our
treatment of relevance. We are not attempting to model
the notion of relevance to the user’s interest. Instead, we
estimate relevance to a trend — a probability that a story
will be followed by that trend in the time series. This is a
significant departure from the traditional view of relevance:
rather than trying to learn what stories the user is inter-
ested in, we learn what stories are likely to influence the
stock market, and then suggest those stories to the user.

In the following section, we describe the system design of the
Enalyst and the technology used. Section 2.1 outlines our
processing of time series. Sections 2.2 and 2.3 describe the
process of learning the models of each trend. We evaluate
the system in Section 3. Finally, we discuss related and
future work.

2. SYSTEM DESIGN

AEnalyst is an implementation of a general architecture for

W Find Trends /_/—'_, /_/"‘_/
Time Series Data (J:e;;vgifgn) \\ ’/ SK
(Stock Prices) 9 Trends){ \ 'j ’g
—— ——. ——-
A \
Align Trends Build Language Language Likelihood
Textual Rel with Documents Models for Models —_ | thatthe
De.;:a Retrieve De levant i Trend Types 'TOV Trend Document
Documents ocuments ypes Compare New is from each
(News —_—— Document to Model
Articles) Models
New
Document

Figure 1: System Design

the task of associating news stories with trends. Figure 1
illustrates our approach. A general system uses textual doc-
uments and numerical data over a time series. In Analyst,
our numerical data is a history of stock prices. We have
a collection of 38,469 news articles for 127 stocks collected
from Biz Yahoo! from October 15, 1999 to Feb 10, 2000.
We also have stock prices for the 127 stocks over the same
period of time. Using stock price information for a given
company, we generate trends. The news articles are aligned
with the price trends according to when the articles were
released and when each trend occurred. Using the articles
aligned with the trends of each type, we generate language
models for the trend types. We can then use these models
to correlate new articles with trends. We use these correla-
tions as an indication of the articles’ influence on the future
of the time series. To perform recommendations, we rank
the articles by the likelihood that they will be followed by a
trend of interest.

Many news articles discuss not one but multiple stocks,
sometimes addressing an entire market sector. With such
stories it may not be sufficient to just recommend the story
as a precursor of a particular trend, we may need to high-
light the portion of the story which discusses a company of
interest to the user. This goal can be achieved in Analyst
by learning a model of language typical for a particular com-
pany, and then highlighting the passages that most closely
match the company’s language model.

2.1 Redescribing Time Series

Stock traders do not base their decisions on single obser-
vations of a stock’s price. Rather, decisions are made with
respect to higher level trends in the stock price. We define
a trend as an interval in time, consisting of three or more
observations, during which the changes from observation to
observation are predominantly positive (an increasing trend)
or negative (a decreasing trend). Our system for redescrib-
ing time series builds from these two ideas: that a series of
observed stock prices may be broken up into trends, and that
trends may then be classified into those that are increasing,
decreasing, or relatively flat.

2.1.1 Identifying Trends

Breaking time series of real-valued observations into compo-
nent trends is not a new problem. A common technique for
tackling this problem is piecewise linear regression, some-
times called piecewise segmentation. Many algorithms for
piecewise segmentation were pioneered by Pavlidis and
Horowitz [10].

The idea behind most piecewise fitting algorithms is to re-
describe a time series by a sequence of regression lines which
minimize some error metric (typically mean square error)
over the length n of the series. Popular fitting algorithms
work either top-down, starting with a single regression line
for the whole series, and greedily splitting the sequence un-
til some stopping criterion is met, or bottom-up, starting
with 7 segments, and greedily merging sequences until the
stopping criterion is reached. A typical stopping criterion
might be a threshold for the summed mean square error or
a fixed number of segments, both specified in advance. Our
piecewise fitting algorithm uses a top down procedure with
an automatic stopping criteria based on the t-test.

The algorithm works by passing a window® over the time
series, sucessively breaking the window into two halves, and
recording the slope of each half. The point that maxmizes
the difference in slope is tested to make sure that there is
a statistically significant difference between the slopes. The
algorithm is recursive and continues until the window can
no longer be split.

We regard each segment in the piecewise fit to be a trend.
The significance of the trend is defined by its regression
statistics: slope and r2. The slope of the line indicates
whether the trend is of interest. Very steep slopes char-
acterize opportunities for maximizing profit by buying and
selling when they are found in stock price data, while flatter
segments, in general, recommend nothing. Likewise, high r2
(goodness of fit) values for regression lines indicate strong
confidence in the slope, and these trends are more trustwor-
thy as a basis for decision.

2.1.2 Discretizing Trends

The second step to redescribing our time series is to dis-
cretize the trends. This step is a subjective one in which
we assign labels to segments based on their characteristics:
length, slope, intercept, and r?. These labels will be the
basis for correlating trends with news stories.

Initally, we implemented a distance based agglomerative
clustering algorithm to automatically cluster stock trends
based on their slopes and confidence; however, it is not nec-
essary to go to the length of clustering segments. While clus-
tering is the principled approach to discretizing the stocks,
the structure present in nearly all the stocks we followed

For results reported here, the window size is length 10,
roughly an hour’s worth of observations in each half of the
window.

made a simple binning procedure as effective at identifing
the most interesting trends. Segments with slopes greater
than or equal to 75% of the maximum observed segment
slope are labeled SURGE, and those with slope greater than
or equal to 50% of the maximum observed slope are labeled
SLIGHT+. Similarly for negative slopes, we label PLUNGES
and SLIGHT-. All other segments are labeled with no recom-
mendation.

2.2 Aligning the trends with news stories
Selecting an appropriate set of news stories is a very impor-
tant step in our modeling. If done carelessly, it can be a
source of noise when generating the language models. For
instance, if we are interested in Red Hat, we do not want to
learn a model from articles about Intel. While stories about
Intel can certainly affect Red Hat stock price, this influence
has a very complex nature, and would be extremely hard to
capture with language models. With a limited amount of
training data that we have, using stories about companies
other than Red Hat when training Red Hat’s trend mod-
els will introduce unnecessary noise into the data. To en-
sure that all training stories are at least marginally relevant
to the companies we use external relevance assignments ob-
tained from our source of news (http://biz.yahoo.com/). For
every stock symbol, Yahoo! maintains a list of stories that
are considered to be relevant to that stock symbol. Note that
availability of these assignments are not crucial for Analyst:
in the absence of external relevance assignments, we could
use traditional information retrieval techniques to select doc-
uments relevant to a given company.

Once we have selected the stories that are relevant for a
particular stock, we can associate groups of these stories
with trends in the stock’s price. In order to learn models
that might assist AEnalyst in suggesting future behavior of
a time series, we associate a document with a trend if its
time stamp is h hours or less before the beginning of the
trend. For instance, using a five-hour alignment, we would
associate all documents released from 10:00am to 2:59pm
with a trend that began at 3:00pm. Figure 2 illustrates
this.

by

—= 7 VA Window for t,
N Window for t,

Window for

0 |

Figure 2: Current Alignment

The alignment method we use can result in a document be-
ing associated with more than one trend. Document dz in
the figure is associated with both trends ¢; and ¢2. While
this may seem contradictory, it is possible for d2 to influence
both trends t1 and t2. We can reduce the amount of overlap
between time windows associated with trends by decreasing
h, the length of the window. However, this can reduce the
number of documents that are associated with each trend,

yielding fewer examples with which to train our models. We
treat all documents aligned with a trend as having equal
importance to a trend.

An alternative alignment method would be to align docu-
ments with the trend that was happening when the article
was released. This would shift the system from looking for
correlations between articles and future behavior of the time
series to looking for correlations between articles and current
behavior of the time series. The recommendations produced
by such alignment would not be useful for predicting the fu-
ture trends, but they may be very valuable in spotting the
stories that explain what is happening to the stock price.

2.3 Language Models

After aligning news documents with trends in the time se-
ries, we can estimate a language model that is characteristic
of every trend type. For example, a language model may
learn that words like loss, shortfall, bankruptcy are highly
likely to precede a downward trend in the stock price, while
merger, acquisition, alliance are likely to be followed by an
upward trend.

Language modeling[11, 15] provides a formal framework for
text classification with respect to a set of targets (trends in
our task). In particular, after making certain assumptions
about patterns of word occurrence in natural language, we
can formally estimate the likelihood of a trend, given the
observed distribution of words in a set of news stories. Given
a set of stories {D;...Dp, }, we would like to estimate the
probability that a trend of type ¢ (e.g. a surge) will occur in
the near future. To do this, we associate a language model
M; with every trend type ¢. A language model represents a
discrete distribution over the words in the vocabulary. M;
specifies an expected usage of words on the onset of the trend
t. We then estimate how likely it is that a set of documents
{D:...Dn, } was generated by the model M;. Specifically, for
a given set of documents we are interested in the model that
is most likely to generate the set of observations {Dj...Dyp,} :

Mbe&t = argmaXictrends P(Mtl{Dl Dm})

P({D;...Dy } | My)P(My)
P({D1...Dm})

= arg maXictrends

In the current implementation of the system we assume a
uniform prior P(My), though in the future we will condition
P(M;) on the frequency of the trend ¢ in the time series.® We
estimate a prior P({D:...Dr, }), as the probability that the
set of documents was generated by the background (Gen-
eral English) language model P({D;...Dn}|GE). This is
somewhat different from a common formulation for a prior:
> P({D1...Dn }| M;) P(M;), but conditioning on the back-
ground language model has proven effective in text catego-
rization research [15].

Assuming that individual documents in the set D;...Dy, are
random samples from a common distribution, we can expand

3A uniform prior does not affect the evaluations based on
the ROC/DET curves (Section 3.1), but it does affect the
market simulation (Section 3.3). Since DET evaluation is
done independently for each trend type t, P(My) is constant
in each individual evaluation and does not affect the ranking
of documents with respect to M;.

the formulation as:

" P(D;| M)
M, est =
best = AIE it L P(DilGE)

To estimate P(D;|M;) we make an assumption that words in
D; are generated independently of each other. The assump-
tion of word independence is a common practice in text clas-
sification research. There is some evidence that preserving
word dependencies does not improve the accuracy of prob-
abilistic models of text (e.g. pairwise dependence model by
van Rijsbergen [14]). There is also a more general result
by Domingos and Pazzani [5], which demonstrates that in
some cases, naive bayesian classifiers give very good results
even when dependencies exist in feature distributions. Note
that after making the word independence assumption, we
effectively arrive at a naive bayesian classifier:

m
- P(w|My)
Myest = argte%?fdsgwl;ly P(w|GE)

Here w represent individual word occurrences in the docu-
ment D;. We could use a maximum likelihood estimator for
P(d;| M), which is simply the number of occurrences of w
in M; divided by the total number of tokens in My; how-
ever, this turns out to be problematic. Since our models
may be sparse, some words in a given document D; may
have zero probability under a given model My, resulting in
P(D;|M;) = 0. To alleviate this problem we use a smoother
estimate: P(w|M;) = A¢Prmi(w|M¢) + (1 — A\) P(w|GE).

This formulation, commonly known as linear backoff, allo-
cates a non-zero probability mass to the terms that do not
occur in M. We set A¢ to the Witten and Bell [16] estimate
N¢/(N¢ + U;) where Ny is the total number of tokens and
U; is the number of unique tokens in the model M;. Since
modeling the market is a dynamic on-line task where lan-
guage usage may change, we may encounter words that are
not present in GE. To ensure that a new term does not
force a zero probability for a document, we smooth GFE in a
similar fashion using a uniform model for the unseen words:
P(’leE) = AgePm (w|GE) + (1 —)\GE)/NGE~

3. EVALUATION

Associating patterns in text with patterns in time series is
a fairly novel task. As such, it does not yet have accepted
evaluation metrics. A number of metrics could be defined
to address such evaluation. The most simple is classification
accuracy, as used in a similar context by Cho, Wutrich, and
Zhang [4]. Another example is the Activity Monitoring Op-
erating Characteristic (AMOC), suggested by Fawcett and
Provost [7]. For the case of market prediction, they define
the scoring function in terms of ability to predict a 10% or
more jump in the market price within 34.5 hours of receiv-
ing relevant news. Our evaluation is similar to the work
of Fawcett and Provost [7], but we use a more traditional
ROC-style measures in place of AMOC. We carry out two
types of evaluation. First, we attempt to evaluate the dis-
criminating power of our language models using the classical
classification framework. Then we address the issue of se-
lecting news stories with the goal of making a profit. This
dual evaluation will both exhibit the technological potential

of language models for this task and satisfy the practical
curiosity of investors.

3.1 Evaluating Language Models

The results in this section address the issue of how well each
language model M; discriminates between the documents
followed by trend ¢ from the documents that are not fol-
lowed by trend ¢. We perform n binary evaluations, one
for each model M; ... M,. We use Detection Error Tradeoff
(DET) curves (see Figure 3) instead of the more traditional
Recall Precision curves. The motivating factor is that DET
curves are less influenced by “richness” (the a-priori proba-
bility of on-target item in the dataset). For a more detailed
description of DET curves, see Martin et al. [8].

In our analysis we focused on a set of 127 stocks over the
period of October 1999 - February 2000. The stocks were
selected based on two criteria: the average amount of news
reporting about that stock, and how frequently that stock
is traded. Owur price data was sampled every 10 minutes
during the market hours, resulting in over 3600 data points
for every stock. The price data was re-described into trends
as explained in Section 2.1 to produce an average of 450
trends per stock. Our news collection contains over 38,000
news stories, gathered online over the same period of time.
Each story contains a reference to at least one of the stocks
we are tracking. The documents (D) for each stock were
then aligned with the future trends (¢) for the same stock,
to provide the labeled set of pairs {¢, D}, which we use for
training and testing the models.

To obtain a good estimate of mean performance, we use 10-
fold randomization in the following way in our experiments.
We randomly split the set of pairs {¢, D} into a training set
(90%) and a testing set (10%). In doing this, we ignore the
temporal ordering of {¢, D} pairs. This does not present a
problem since our evaluation is a binary classification task,
and our model does not learn in any way from the pairs in
the testing set. For each trend type t (e.g. a surge) we form
a language model M; using all the documents D that are
labeled with ¢ in the training set.* Each model M; is then
used to assign probabilities to all documents in the testing
set. The procedure is repeated 10 times with a different
random training and testing set each time. We use pooled
averaging to produce a single DET curve for each trend type.

Figure 4 demonstrates how well the language model iden-
tifies news stories that are followed by a surge in the stock
price within 10 hours from the story. From the distributions
on the left, we see that our language model assigns higher
beliefs to the stories that are in fact followed by a surge.
A DET curve on the right of Figure 4 allows us to analyze
the errors of our system for users with different needs (by
looking at different points on the curve). For example, a sys-
tem is capable of achieving a 10% recall (90% miss), while
keeping the false alarm rate around 0.5%. That means that
a user would be alerted to 10% of stories that precede a
surge in the stock price, while the system would correctly

“This corresponds to forming a universal language model
across all stocks. The intent is to capture uses of lan-
guage that will affect any stock in a similar fashion (e.g.,
takeovers). In other experiments we form language models
separately for every stock.

Density f

b Off Target
On Target
1 Similarity
Misses Threshold False Alarms

Miss Rate

Detection Error Tradeott

False Alarm Rate

Figure 3: DET curves are a way to visualize tradeoff between misses and false alarms. Left: distributions of on-target
and off-target scores, areas under the curve correspond to miss and false alarm rates. Right: corresponding DET curve,
obtained by varying the threshold from —oo to co. NOTE: lower means better.

Distributions of document scores
0.006 T T T

stories followed by a surge in price ——

0.005 1

0.004 + 4

ity

0.003 1

Dens

0.002 +]

0.001 1

0 t . . h
-600 -400 -200 200 400

Posterior log likelihood of a SURGE, assigned by the Language Model

Miss probability (in %)

Performance in predicting SURGEs 10 hours ahead

T T T
Random —
90 | 1
80
60
40
20
10
5 1 2 5 10 20 40 60 80 90

False Alarms probability (in %)

Figure 4: Language model can separate stories that are followed by a surge from stories that are not. Left:

belief densities. Right: corresponding DET curve.

eliminate 99.5% of useless stories. This is a very significant
reduction in the amount of news which a user would have
to read. If not satisfied with low recall, the user could lower
the threshold of the system, and be alerted to 40% of stories
preceding a surge, but the false alarm rate would increase
to 15%.

3.2 Language models vs. classical IR

This section demonstrates that Bayesian language model-
ing is a good framework for associating news stories with
financial trends. To support this claim, we show that our
approach significantly outperforms baseline IR approaches
that could be applied to the same task. We compare the per-
formance of language modeling to a more traditional vector-
space (cosine similarity) approach commonly used in Infor-
mation Retrieval for text classification [2]. Briefly, a vector
space approach compares each document D in the test set
to the centroid Ct of the training documents associated with
trend t. Both C¢ and D are viewed as vectors in vocabulary
space, and cosine of the angle between the two vectors con-
stitutes similarity. We used Okapi tf-idf weighting on both
vectors. The weighting scheme is described in Robertson et

al. [12], and has proven very successful in text classification
research, e.g., Callan [3].

Figure 5 suggests that the popular vector-space model does
not adequately discriminate between the sets of documents
associated with different trends. We present DET curves
for all trend types: surges, plunges, slight rises and slight
falls (recall section 2.1 for definitions of trends). The re-
sults are presented for predicting trends up to 5 hours in
advance. From figure 5 we can see that a language model-
ing approach results in noticeably better prediction for all
trend types (the false alarm rate is lower at all recall lev-
els). The difference is especially remarkable at low levels of
recall: for example at 20% recall, the false alarm is almost
4-10 times lower (2-5% for the language model vs. 20% for
the vector space model). A notable exception is predicting
plunges (steep downward trends), where both models per-
form similarly, but language models still outperform cosine
by a small margin. We are not certain what is different
about plunges that causes slightly worse performance of the
language modeling approach, and at the same time allows
vector-space model to perform reasonably well. With the

Predicting SURGE, 5 hours ahead

Predicting SLIGHT RISE, 5 hours ahead

= T T T T

T T T T
\1 Random — \\ Random —
90 " . 9 5
\ < Language Model — \ Language Model —
T 80 ™ ‘ R 80 ~
~ X p RN
z N z
F 60 Z 60
@ \ @
8 N g
5 40 B S 40
8 N 8 ™~
= S =
20 \\ 1 20 \\\
10 "\\ 10 \\
5 1 2 5 10 20 40 60 80 90 5 1 2 5 10 20 40 60 80 90

False Alarms probability (in %)
Predicting SLIGHT FALL, 5 hours ahead

False Alarms probability (in %)
Predicting PLUNGE, 5 hours ahead

W.\\
Random — Random ———
90 T g 90 s 5
‘\ Language Model — ‘\\-_ Language Model —
¥ 80 X 80 -,
< \ =
= \ = \‘\
£ 60 £ 60 5
Qo Qo
3 T~ g
[NS o
a 40 e, S 40
@ @
20 R 20 N
10 \\? 10
5 1 2 5 10 20 40 60 80 920 5 1 2 5 10 20 40 60 80 90

False Alarms probability (in %)

False Alarms probability (in %)

Figure 5: Bayesian language model consistently outperforms baseline text classification approaches on all

trend types.

exception of plunges, the errors made by the cosine model
are very close to the error tradeoff that would be produced
by random ranking. This suggests that a baseline vector-
space model does not adequately capture the relationships
between news and trends in stock prices. However, we only
examined the most popular formulation of the vector-space
model. There may exist variations of the vector-space model
that exhibit better performance.

3.3 Market Simulation

For the task of financial news recommendation, the ultimate
evaluation of performance is whether or not the user would
be able to make a profit by reading the stories suggested by
the system and making informed trading decisions. In the
following simulation we attempt to mimic the behavior of a
day trader who would use the stories suggested by ZAnalyst
in a very simple fashion: if the system indicates that a story
is likely to precede an upward trend for the stock, the user
will invest in that stock; if the predicted trend is downward,
the user sells the stock. To simulate this very simple strat-
egy, we induced a separate language model for each stock
for each trend type using 3 months worth of training data
between October and December 1999. Then, for 40 days
starting on January 3rd we have our system monitor the
news. Every time a new story appears for some company,
Analyst determines which trend model is most likely to have
generated it.

If the most likely trend is positive, our user will purchase
$10,000 worth of the stock. We assume sufficient credit to
purchase $10,000 worth of stock whenever we need to. An-
other assumption is zero transaction cost, which is common
in similar evaluations (the transaction costs are easily ab-
sorbed by increasing the volume of each transaction, as long

as we are making profit). After a purchase, the user will
hold the stock for 1 hour. If during that hour she can sell
the stock to make a profit of 1% ($100) or more, she sells
immediately. At the end of the hour, the user sells the stock
at the current market price, and takes a loss if necessary. We
define 1-hour holding time to exclude non-market hours, so
an hour at the end of the day can “spill” overnight.

If the most likely trend is negative, the user will sell short
$10,000 worth of the stock (this means selling the stock we
do not yet have in hopes of buying it later at a lower price).®
Again, the user will hold the stock for 1 hour. If during the
hour the user can buy the stock at a price 1% lower than
she shorted, she buys the stock to cover. At the end of the
hour, the user buys the stock at the current market price,
and takes a loss if necessary.

This model represents an extremely simplistic and greedy
day-trading strategy. We expect real users to make much
better decisions based on the semantic content of the rec-
ommended stories, as well as any other information they
may have access to. So this simple simulation provides an
absolute lower bound on how well an experienced trader
might perform if she had access to the stories recommended
by Analyst.

After the 40-day simulation, the cumulative earnings of our
user, pulled over all stocks, totaled $280,000. This is a
very modest gain, considering the number of trades the user
would have to execute (average gain per transaction was
around 0.23% or $23). We used a randomization test [6]
to determine if these earnings are statistically significant.

SWe do not model stock exchange restrictions which prohibit
shorting the stock during a down-tick.

Specifically, we conducted 1000 trials of a system where
buying and shorting decisions were made randomly, with-
out reference to the actual content of news stories. Then we
compared our actual earnings to the distribution of cumu-
lative earnings produced from the randomized trials. The
randomized system was constrained to buy and short par-
ticular stocks with the same probability per stock as the
actual system, and decisions about a buying and shorting
particular stocks were made at the same times as in the
actual system (when a story dealing with that stock was re-
trieved). After a decision to buy or short, the randomized
system followed the same strategy for selling as was followed
in the actual system. The results of the randomized system
equaled or exceeded $280,000 in only eight of the 1000 trials,
and thus the performance of the actual system is significant
at the 1% level. The mean over the randomized tests was
-$9,300 and the standard deviation was $13,600.

It is worth noting that alignment of stories with trends has a
very strong effect on performance in the market simulation.
We obtained best results when aligning trends with news
that are released during the duration of the trend (i.e. simul-
taneous alignment). Aligning trends with documents that
precede the trend by 1, 5 or 10 hours resulted in much lower
average gains per transaction: 0.03%, 0.02% and 0.16% re-
spectively.

The simulation we presented uses a very simple strategy.
Actual users should be able to perform much better when
presented with stories recommended by AEnalyst. Our simu-
lation is a proof of concept, demonstrating that news releases
indeed have a strong influence on the market, and suggesting
a way of predicting and leveraging that influence.

3.4 Specific or universal models?

An issue of particular importance in training our models
is whether we opt to use stock-specific models or univer-
sal models. The distinction is highlighted by Fawcett and
Provost([7] in their work on activity monitoring.

In stock-specific models, we train a separate set of mod-
els for each stock. In universal models, we train the same
set of models across all stocks. The market simulation in
Section 3.3 and used stock-specific models. These models
have the advantage that they can learn the specific model
of language that affects each stock. The main disadvantage
of stock-specific models is the small size of their training
sets: since we train a separate set of models for each stock,
companies that are rarely covered by news releases are at a
disadvantage.

Universal models overcome that difficulty: we train one set
of models for all stocks at once. The idea behind universal
models is learning the patterns of language that affect all
(or most) stocks in the same way. Universal models are not
prone to shortage in training data because all news from
all stocks is used in training. The price is inability of the
universal models to distinguish the specific effect of news on
a particular company.

Experimentally we observed that stock-specific models in-
deed achieve higher profits, but at the cost of much higher
variance of cumulative profit from company to company.

Universal models are more stable, but give lower expected
profits in the market simulation. For example, a universal
model with simultaneous alignment achieved 0.15% average
gain per transaction.

This observation leads us to consider mixture models when
performing recommendations. Specifically, we would use
stock-specific models as the primary trend model, and smooth
it by the universal model for that trend. Recall that in Sec-
tion 2.3 we used a smooth estimate:

Here we smoothed the trend model with the background
model of General English. Instead, we would use the uni-
versal trend model for smoothing:

P(’LU|Mt) =)\thl(,wlMtStOCk) + (1 _)\t)P(w|Mtunzv)

4. RELATED WORK

Other researchers have used data mining techniques to pre-
dict the stock market. Cho, Wutrich, and Zhang [4] at the
Hong-Kong Institute of technology implemented a system
that predicts the closing price of Hang Seng stock index,
based on a fixed set of news sources. From these news sto-
ries, they looked for the occurrence of 400 keywords that
were provided by market experts. Fawcett and Provost [7]
developed a system that used news stories to predict when
a stock would shift at least 10% by interpreting the problem
as an activity monitoring problem. McCluskey [9] and nu-
merous other works attempt to predict the stock behavior
by relying purely on the analysis of time series data.

Our system is different in that rather than predicting the
market, it suggests what stories the trader should read —
the stories that are most likely to signal an upcoming trend.
MEnalyst’s strengths come from its use of language models
and redescriptions of time series as trends. Our treatment
of stock prices is different from the work of [4] and [7], who
focus on raw time series. Furthermore, by using language
models, our system can incorporate the entire vocabulary
used in the text. This elevates the use of human judgments
and allows us to find associations that are only meaningful
to a particular company’s stock performance. The Analyst
draws on progress made in several areas: text classification
[1], language models [11], and time series analysis and clus-
tering [13].

S. CONCLUSIONS AND FUTURE WORK

We have demonstrated how to use language models to suc-
cessfully associate stories and trends in time series. We con-
clude that piecewise linear regression is a useful tool for
describing time series, particularly in this task where we are
interested in high-level view of stock fluctuations. We also
demonstrated that language models represent a good frame-
work for associating news stories with forthcoming trends.
Finally, in our market simulation, we showed that using
Enalyst’s story recommendations would allow a trader to
do significantly better than random in terms of cumulative
profit.

For future work, we would like to experiment with richer
document features. In this work we treat articles as though

they are a bag-of-words. These features could be augmented
with associations among trends, pairs of related words that
are significant across many documents, and also relations
between objects within a document that could add interesing
knowledge and make our models more complete.

6. ACKNOWLEDGMENTS

This material is based on work supported in part by the Na-
tional Science Foundation, Library of Congress and Depart-
ment of Commerce under cooperative agreement numbers
EEC-9209623 and EIA-9820309. This material is also based
on work supported in part by Defense Advanced Research
Projects Agency/ITO under DARPA order number D468,
issued by ESC/AXS contract number F19628-95-C-0235, in
part by SPAWARSYCEN-SD grant number N66001-99-1-
8912, and in part by DARPA/AFOSR contract F49620-97-
1-0485. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the authors’ and
do not necessarily reflect those of the sponsor.

7. REFERENCES
[1] J. Allan, J. Callan, F. Feng, and D. Malin. INQUERY
and TREC-8. In D. Harman, editor, Proceedings of the
Eighth Text REtrieval Conference (TREC-8), 1999.

[2] Chris Buckley and Gerard Salton. Optimization of
relevance feedback weights. In Proceedings on the 18th
annual international ACM SIGIR conference, pages
351-357, 1995.

[3] J. P. Callan. Document filtering with inference
networks. In Proceedings on the 19th annual
international ACM SIGIR conference, pages 262—269,
1996.

[4] V. Cho, B. Wutrich, and J. Zhang. Text processing for
classification. Technical report, The Hong Kong
University of Science and Technology, 1998.

[5] P. Domingos and M. Pazzani. On the optimality of the
simple bayesian classifier under zero-one loss. Machine
Learning, 29:103-130, 1997.

[6] E. Edgington. Randomization Tests, Third Edition.
Marcel Dekker, New York, 1995.

[7] T. Fawcett and F. Provost. Activity monitoring:
Noticing interesting changes in behavior. In
Proceedings of the 5th International Conference on
KDD, 1999.

[8] A. Martin, G. Doddington, T. Kamm, and
M. Ordowski. The det curve in assessment of
detection task performance. In EuroSpeech, pages
1895-1898, 1997.

[9] Peter C. McCluskey. Feedforward and recurrent neural
networks and genetic programs for stock market and
time series forecasting. Master’s thesis, Brown
University, 1993.

[10] T. Pavlidis and S. Horowitz. Segmentation of plane
curves. IEEE Transactions on Computers, C-23(8),
1974.

[11] Jay Ponte. A Language Modeling Approach to
Information Retrieval. PhD thesis, Dept. of Computer
Science, University of Massachusetts, Amherst, 1998.

[12] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, and M. Gatford. OKAPI at
TREC-3. In D. Harman, editor, Proceedings of the 3rd
Text REtrieval Conference (TREC-3), 1996.

[13] Matthew D. Schmill, Tim Oates, and Paul R. Cohen.
Learned models for continuous planning. In
Proceedings of Uncertainty 99: The Seventh
International Workshop on Artificial Intelligence and
Statistics, pages 278-282, 1999.

[14] C. J. van Rijsbergen. A theoretical basis for the use of
co-occurrence data in information retrieval. Journal of
Documentation, 33:106-119, 1977.

[15] F. Wallis, H. Jin, S. Sista, and R. Schwartz. Topic
detection in broadcast news. In Proceedings of the
DARPA Broadcast News Workshop (HUBY), 1999.

[16] I. H. Witten and T. C. Bell. The zero-frequency
problem: Estimating the probabilities of novel events
in adaptive text compression. JEEE Trans.
Information Theory, 37:1085-1094, 1991.

