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1. INTRODUCTION

In his doctoral dissertation [Tur90], Howard Turtle developed a probabilistic model
for information retrieval formulated in terms of a Bayesian Network. The inference
network is a general framework which makes possible the consideration of multiple
sources of evidence in the process of ranking documents in response to a user’s in-
formation need. Evidence due to multiple document representations (e.g. titles, ab-
stracts, document bodies, manually produced indices); multiple query formulations
(e.g. Boolean, natural language) and even multiple belief systems can be combined
in a principled way. An attractive aspect of the inference network approach is that
it provides a direct, natural, computationally efficient, probabilistically motivated
method for modeling query operators.

In this paper, we present a class of query operators which, for reasons to be
explained, we have called PIC operators. The PIC operators comprise a subclass
of the general class of query operators that are expressible within the inference
network framework. The subclass has been chosen to satisfy two important design
criteria: 1) the operators belonging to the subclass are computationally tractable,
and 2) they are intuitively plausible candidates for the modeling of query operators.

A wide variety of query operators can be defined as PIC operators. The work
reported has been principally motivated by the search for more effective Boolean
operators. Other approaches to the modeling of Boolean query operators have been
tried. As with the inference network, the goal has been to generalize the classical,
strict Propositional Logic interpretation of the query operators. The objective of
this generalization is twofold. On the one hand, to allow for graduated inputs to
the Boolean operators so that the representation of documents in terms of vectors
of Boolean characteristics can be extended to vectors of feature weights. Second,
to generate real valued operator output so that dichotomous relevance judgments
can be replaced by document ranking in response to user’s queries.

A particularly notable success in this pursuit was reported by Salton, Fox and
Wu [SFW83; SBF83]. Grounded in the geometric metaphor of the vector space
model, they defined a general class of “pnorm” operators which extend the tradi-
tional operators in a natural way. The experimental results achieved were quite
positive. Recent experimentation has shown that system performance is improved
by replacing the inference network Boolean operator calculation used in INQUERY
by the pnorm AnD and or operator computations. Despite these results, the pnorm
operator computation has not been incorporated in the INQUERY system for want
of a convincing probabilistic justification.

This situation has prompted the search for an alternative to the current scheme
for modeling operators within the inference network framework that might improve
system performance. A major consideration in this work is the need for the compu-
tations associated with the model adopted to respect the computational limitations
imposed by modern large scale information retrieval systems. As we shall see, this
can be problematic within the confines of the inference network framework.

We begin with a brief review of how query operators are defined in the inference
network framework and of the use of the pnorm calculation to model Boolean
operators. This is followed by the definition of PIC operators and the presentation of
an efficient algorithm for the evaluation of PIC operators for the scoring of structured
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queries. We then discuss the results of experiments that indicate that the modeling
of Boolean queries with PIC operators can be as effective as the use of the pnorm
operators.

2. INFERENCE NETWORK

The INQUERY inference network is a Bayesian Network [KP83; Pea88; Cha9l] de-
signed for supporting information retrieval. The nodes of the network correspond
to propositions and are divided into two parts: the document sub-network, and the
query sub-network. In the document sub-network, the propositions associated with
the nodes pertain to the observation of: documents; representations of the docu-
ments; and representations of document content. Nodes of the query sub-network
correspond to propositions regarding: the presence of query concepts; the satis-
faction of queries; and the satisfaction of information needs. The subject of this
paper, the modeling of Boolean queries, is directly concerned with only the concept
and query nodes, and so our description will focus on this part of the network. The
reader is referred to [TC90] for a more general description of the inference network
framework; [CCH92] discusses the implementation of the inference network in the
INQUERY retrieval system.

baseball umpire strike

Fig. 1. a query node dependent on three concept nodes

"baseball umpire strike"

Within the inference network formulation, a concept node is associated with the
presence of a “concept” in the document currently being analyzed. For unstruc-
tured queries, there is exactly one query node in the network. This query node is
connected to the concept nodes corresponding to the terms of the query. For exam-
ple, figure 1 shows the relevant part of the network for the query “baseball umpire
strike”. The leftmost node corresponds to a proposition asserting the presence in
the document of the concept associated with the word baseball. Similarly, there
are nodes for the umpire and strike concepts. The query node is associated with
the proposition that the user’s query is satisfied.

2.1 Bayes Nets

In general, a Bayesian Network encodes a joint probability distribution. The nodes
of the network correspond to random variables. In the INQUERY inference network,
each random variable may assume a value of either true or false. The topology of
the network is interpreted as encoding a set of conditional independence relations
among the variables. If the nodes corresponding to the variables, Py,..., P,, are
the immediate predecessors (parents) of a node, @, and Z, ..., Z; are all other nodes
that are not descendents of (i.e. are not reachable from) (), as shown in figure 2,
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Fig. 2. conditional independence encoded in a Bayesian Network

then @ is considered to be conditionally independent of 71, ..., Z; given Py, ..., Py:
pr(Q | Piy...,Py, Z1,...,Zs) =pr(Q | Pi,...,P,)

Given probabilities for the root nodes (i.e. nodes with no parents), the net-
work may be processed in a top-down fashion in order to produce the probabilities
relevant to each of its nodes. As a consequence of the conditional independence
assumptions implicit in the topology of a Bayesian Network, once the probabilities,
P1,---,Dn, have been produced for the parents of a node, ), the probability that
() assumes the value y € D, is given by:

r@=y)= Y pr@=y|Pi=z1,....,P=z,)pr(Pi =z1) - pr(Py = )
21€D7,--, 2n €Dn

where Dy, ..., Dy, D, are the sets of values that may be assumed by the variables,

Py,...,P,, and @Q, respectively. For the INQUERY inference network, Dy = Dy =

...D,, = D, = {true,false}.
2.2 Binary Valued Random Variables

In INQUERY each node corresponds to a proposition; that is, a variable that may
take on one of two values: true or false. For example, in figure 2, each P; might
correspond to the proposition that some document under consideration is about
some concept, ¢;, while () corresponds to the proposition that the query is satisfied.

Since all the variables are binary valued in INQUERY, the dependence of a child
on its parents can be given via the specification of:

pr(Q is true | P, =by,...,P, =by) and
pr(Q is false | P, =by,...,P, =by)

for each:
< by,...,b, >€ {true,false}”
Equivalently, the values:
ar = pr(Q isfalse | i € R = P;is true
i ¢ R = P; is false) and
arp = pr(Q istrue | ¢ € R= P;is true
i ¢ R = P; is false)
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must be specified for every possible subset, R, of {1,...,n}. In terms of these
conditional properties, the probability that a child node is true can be calculated
once the probabilities of truth, pi,...,pn, are known for each of its parent nodes:

pr(Q is false) = Z dRHpiH(l =) and

RC{1,...,n} 4i€ER i¢R

Z aRsz'H(l - pi)

RC{1,...,n} ieR igR

pr(Q is true)

The set of coefficients involved is conveniently organized as a 2 x 2™ matrix:

Bo...o00 | Po..oor | Fo...o10 ... Py i
Q false || ap...000 | @0..001 | @o...010 .- Qai..111
Q true || ao..000 | @o..001 | @o...010 e Qa1..111

where ap, p,,...5,, is the probability that @ is true subject to the condition that the

n

parents P; such that b; = 1 are true, and the parents P; such that b; = 0 are
false; @, bs,...5, is the corresponding probability that () is false and is equal to
1 — apy bs,...b,- This matrix, known as a link matriz, may be visualized as linking
the child node with the parent nodes as is shown in figure 3

L& - O

V

@

Fig. 3. link matriz links child to parents

2.3 Link Matrices As Query Operators

INQUERY examines documents one by one. For each, the inference network is used to
evaluate evidence that the document satisfies an information need expressed by the
user. A given link matrix form can be viewed as defining an operator for combining
evidence. For example, suppose the propositions Py, P», Ps, state that three queries
1, g2, g3, respectively, have been (in some sense) satisfied by the document currently
under scrutiny. A link matrix connecting the parents nodes, Py, Py, P3, with the
child node, @), can be viewed as a way of forming a query, ¢, that is a composite of
the individual sub-queries. The child node, @), would correspond to the proposition
that the combined query, ¢, has been satisfied. The specification of the coefficients
of the link matrix defines the way the sub-queries are combined in that it gives all
the information necessary for determining the probability that ¢ has been satisfied
given the probabilities, p;, ps, p3, that the individual subqueries have been satisfied.

In the example of figure 1, this means that once the three probabilities, py, Py,
ps that the document under scrutiny is about baseball, umpire and strike re-
spectively, have been determined, the probability that the document is relevant
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to the query can be calculated. The computation requires that the requisite con-
ditional probabilities have been specified. One such probability, for example, is
pr(Q | BUS), the probability that the query is satisfied, given that the document
is about umpire, but not about either baseball or strike. There are 8 possible
truth assignments for the set of three variables associated with the concept nodes
of this example. The probability that the query is satisfied is then given by:

pr(@) = pr(Q | BUS) - (1-py) - (1—pu)-(1—ps) (1)
+ pr(Q | BUS) - (1—ps) - (1 —pu) - ps
+ pr(Q | BUS) - (1 —pp) - pu- (1 —ps)

+ pr(Q | BUS) - pb - pu - ps

One, admittedly arbitrary, way of defining a 3-ary query composition operator
for forming the query, ¢, from the sub-queries ¢, g2, ¢3, might be to specify that g
is to be considered satisfied with:

—80% probability if ¢; is satisfied, independent of the whether or not ¢» and g3 are
satisfied;

—50% probability if ¢; is not satisfied, but g2 and ¢3 are both satisfied

—10% probability in any other situation.

This particular operator corresponds to the link matrix!:

Fooo | Poor | Poio | Porr | Pioo | Pior | Pio | Pia
1 1 1 5 8 8 8 8

Where the column under Ppi;, for example, gives the probability that Q is true
given that P, is false, P, is true, and P; is true. Clearly, this link matrix has the
desired effect. Typically, none of the parents will be known to be either true or
false with certainty. Rather, evidence corresponding to each of Pi, P>, Ps will, in
general, be estimated to be present with certain probabilities: p;, p2, ps. Given
these probabilities, the probability that @ is true can be calculated as:

pr(Q is true) = A -p1peps + .1 - pipops + .1 - pipops + .5 - P1paps
+ .8-p1pap3 + 8- p1Pap3 + -8 - p1pap3 + .8 - p1paps3
2.4 Boolean Queries

In [Tur90], Turtle describes how the inference network can be used to model Boolean
queries. The section of network shown in figure 4, for example, could be constructed
for the query:

baseball and (player or umpire) and strike

The link matrix for a node labeled AND would contain a one in the column corre-
sponding to all parent nodes being true. All other columns would be zeros. This

Lsince each column must sum to 1.0, only the row corresponding to Q = true will be shown from

this point on.
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baseball player umpire strike

OR

AND

Fig. 4. a query node dependent on three concept nodes

is equivalent to saying that it is certain that an AND query is satisfied if all of its
parents are (certain to be) true, and it is certain not to be satisfied when one or
more of the parents is (certain to be) false. A matrix for a 3-ary #AND operator
would therefore be:

L

and Pooo | Poor | Poio | Poir | Pioo | Pior | Piio | Pinn

0 0 0 0 0 0 0 1

An arbitrary member of the anp family (binary anp, 3-ary anp, 4-ary AnD, etc.)
would have 1.0 in the column corresponding to all parents being true, indicating
that we are certain that the AND query is satisfied if all of the parents are true. All
other columns would be 0.0, indicating that we are certain that the aAND query is
not satisfied if any one of the parents is false.

Analogously, an or operator would have 1.0 in all cells except for a 0.0 for all
parents false; the 3-arity or being given by:

LOT‘

Pooo | Poor | Poio | Poir | Pioo | Pior | Pio | Pinn
0 1 1 1 1 1 1 1

These link matrices are natural interpretations for the Boolean operators; and
they can be evaluated very efficiently. They may be questioned on two counts,
however.

First, the interpretation given to the AND and or operators, while natural, might
be considered overly strict. We ignore, for the moment, the questionable practice
of ascribing certainty, in the form of 0.0 and 1.0 probabilities, to any belief under
any circumstances. That excepted, we might still find it somewhat unsettling that
an AND with ten parents makes no distinction between an event in which nine of
these ten are true and another in which only eight of the ten are true. In fact no
distinction is made between nine true parents and no true parents! Faced with a
user need expressed in terms of AnD, it is likely that most people’s belief system
would be inclined toward assigning greater, albeit perhaps only slightly greater,
probability to the query being satisfied for those events for which a greater number
of parents is true. An analogous argument can clearly be made for the case of the
OR operator.

ACM Transactions on Information Systems, Vol. ???, No. ???, January 1977.



8 . Warren R. Greiff et al.

With respect to the issue of the strict interpretation of Boolean queries, a subtle
distinction merits discussion. Although the interpretation discussed above can be
said to be strict, it is nonetheless a generalization of the interpretation traditionally
applied to Boolean queries. Under the conventional interpretation, the input to a
Boolean operator is either 0 or 1. Were this the case in the inference network, the
operators discussed above would indeed be equivalent to this strict interpretation.
In the inference network, however, inputs to the Boolean operators are probabil-
ities of truth, which may assume arbitrary values in the [0.0,1.0] interval, rather
than dichotomous conditions which are either strictly true or false. The Boolean
operators produce probabilities of truth which also range over the entire [0.0,1.0]
interval. The anD operator, for example, will not produce a hard 0/1 value, unless
one of the inputs is exactly 0.0, or all of the inputs are exactly 1.0. If all of the
inputs to the operator are probabilities in the open interval (0.0,1.0), the output
will also lie in this open interval.

These observations do not obviate the comments made above with respect to
the strictness of the operators as they are currently implemented, however. The
computations performed for inputs pi,...,p,, though none are exactly 0.0 nor
1.0, are logical consequences of the specification of the probabilities conditioned on
certain knowledge of the values of the parent nodes. There is motivation, therefore,
to consider the possibility of an interpretation for the AND operators that is not strict
in the sense that it differentiates between all parent nodes being false and only some
of the parent nodes being false, giving some extra credence to the probability of
the query when a greater number of parents is true. Similarly, an or operator may
be considered that is to some, perhaps minor, degree sensitive to the number of
parents that are true. It must be borne in mind that changes to the specification
of the link matrices will affect the result of computations for all combinations of
input values.

The second cause for concern with regard to the operators, as they are currently
defined, is that experiments have shown that they are not as effective as might
be hoped for. Experiments performed by Dr. Larkey have shown that the pnorm
operators yield retrieval performance superior to that of the AND and or operators
as they are currently implemented [Lar96].

3. PNORM

A significant advance in the processing of Boolean queries was presented by Salton et
al. in [SBF83] and [SFW83] Working within the context of the vector space model,
they were able to extend conventional Boolean retrieval in a way that allowed for:
1) the weighting of document features, and 2) the production of ranked output.
Salton et al. normalized weights so that all vector components were in the range
of 0.0 to 1.0 and, hence, all vectors lie in the unit hypercube. Intuitions based on
a geometric view of information retrieval led them to consider the output of an
operator as a measure of distance from the point < 0.0,0.0,...,0.0 >. So, for the

query
#or (t1,..-,tn)

a document with term weights wq, ..., w, for terms t1, ..., t,, would receive a score
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of,

wi+ ..+ wd
( - ) (2)

This operator can be considered or-like. When all weights are 0.0, it will produce
a value of 0.0. When all weights are 1.0, it will produce a value of 1.0. When a
variety of weights are presented as inputs, the output is more heavily influenced
by the weights at the higher end of the scale. The sum produced, prior to the
application of the square root, can be viewed as a weighted average of the input
values, with each value receiving a weight equal to its own value:

( )%

Hence, higher values can be viewed as receiving greater weights. The result is
that lower values can be overpowered, to a degree, by a single large value. This
is reasonable behavior for a generalization of an or operator. We may presume
that, on specifying an or, the user is indicating that lack of evidence with respect
to most of the terms can be downplayed in the presence of strong evidence with
regard to just one of the terms.

The beauty of this approach to extending Boolean operators is that the distance
measure shown in eq. 2 is that it can be viewed as a special case of the more general
vector norm measure[Ort72] 2:

=

wp w1+ ... F Wy - Wy
n

wh + .. 4+ wh
n

=

( )

The Euclidean distance measure is, then, the vector norm measure with p = 2, but
other values of p can be considered. For smaller values of p, the operator is less
or-like. At p = 1, the operator degenerates to a simple average, and the Boolean
structure of the query is essentially ignored. For larger values of p, the calculation
can still be understood as effecting a type of weighted averaging. As p grows, more
and more weight is given to the larger input components. We can view each input
w; as being weighted by w? ~! relative to the others.

1 _
w7 w + .+ wP T wy,

n

"=

( )

For very large values of p, the contribution of all but the largest component value are
negligible. In the limit, the calculation is equivalent to that of the MAX operator,
which is the standard operator used in models of information retrieval based on
fuzzy-set theory [NKM77; WKT79; Boo80; Boo81; BK81] and corresponds to a strict
Boolean or when the input components are limited to strict Boolean values.

In the pnorm model, the anND operator is defined as the distance of the input
vector to the point < 1.0,1.0,...,1.0 >, which is given by:

1 ((1 —wy)?P + .T.L.+(1 —wn)”)%

2Tt should be said that the pnorm formula is more general than the one shown in that it allows
for the weighting of query terms as well as document terms. As this aspect of the formula is not
relevant to the work discussed here, we focus our attention on a somewhat simplified version of
the formula.
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For concreteness, we have concentrated on the or operator, but the AND operator
can be seen as the dual of or, and all aspects of the above discussion have their
counterpart with respect to AND as well.

[SFW83] reports experimental results in which use of the pnorm model consis-
tently improves performance over basic Boolean retrieval on four relatively small
collections. Further experimentation comparing pnorm with fuzzy logic models is
discussed by Fox et al. in [FBK92]. More recently, Joon Ho Lee has run exper-
iments on the larger TREC (Text REtreival Conference) sub-collection, the Wall
Street Journal Disk 2 [Lee95]. He shows that pnorm performs favorably compared
to a variety of other formalisms. A series of experiments at Virginia Tech com-
bining unstructured queries with boolean formulations interpreted using pnorm are
reported in [FS94; SF95]. Further work along these lines, in conjunction with work
done at Rutgers, is discussed in [BKFS19)].

In all of this work pnorm has performed exceedingly well. For those interested
in investigating probabilistic IR models, however, the need to explore alternatives
remains. Our interest is in improving the performance of the boolean operator
interpretation within the framework of the inference network. The performance of
pnorm when applied to the INQUERY system gives us reason to believe that this is
possible at the same time that it sets a performance target to be aimed for.

4. PIC MATRICES AND THE PIC-EVAL ALGORITHM

A wide range of functions can be represented as link matrices. Unfortunately, the
evaluation of an arbitrary link matrix for an arbitrary set of input probabilities
requires O(2™) floating point operations. In [Tur90], Turtle shows that closed form
expressions exist for some matrices, such that they may be evaluated in time linear
in the number of parents, for arbitrary inputs. The matrices used for Boolean
operators have that characteristic. It is not difficult to show that the probability
that the child node is true can be given by:

pr(Q is true) = pips - Py

for L and

and
pr(Qistrue) = 1 — (1 —p1)(1 —p2)...(1 —py)

for Lor, where p; is the probability that parent P; is true.

4.1 The PIC matrices

The desire to explore new possibilities for Boolean query operators motivates the
search for wider classes of computationally tractable link matrices. A natural can-
didate for consideration is the class of matrices for which the conditional probability
that the child node is true is determined solely by the number of parents that are
true, independent of which of them happen to be true and which are false.

We will say that a link matrix satisfies the parent indifference criterion, or simply
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that it is a PIC matrix if, given the parent nodes, P, ..., P,:
VRl,RQ - {Pl,...,Pn} : |R1| = |R2| = QR, = QR,
where for each R C {Py,...,Pp}:

ag is the matriz coefficient associated with the event that the P; be-
longing to R are true and the P; not in R are false

1.0
L4 prob. child istrue
o
o ®
o ©®
s 0.0
0 1 2 3 456 7 8
# true parents

Fig. 5. PIC matrix as a non-decreasing function of number of true parents

A PIC matrix for n parents requires the specification of n + 1 parameters,
Qg, - - -, Qp, as compared to the 2" parameters required for an arbitrary link matrix.
Each a; specifies the common value given by ag for each R C {P,...,P,} such
that |R| = i. The sequence of link matrix coefficients, ay, ..., an, can be viewed as
a function from the integers {0,1,...,n} to the interval [0, 1].

It is appropriate to note that we have in mind, and will be exploring, coefficients
corresponding to non-decreasing functions, such as that shown in figure 5. Viewing
the pic matrices as operators for the combination of evidence, our interest is in those
operators for which more pieces of individual evidence (i.e. greater number of true
parents) translates to greater probability that the combined evidence is present.
Nonetheless, the PIC matrix class is not limited to such functions.

01 2 ...nln 012 ...nl1ln 01 2 ...nl1ln
a) Lsum b) Land ¢ Lor

Fig. 6. view of SUM, AND, OR as functions of number of true parents

The Lgqm matrix discussed earlier satisfies the parent indifference criterion. The
coefficients for the general n-ary Lgym matrix are 0, 1,2, .. 2=1 1 a5 shown graph-
ically in figure 6a. If the probabilities are viewed as weights of evidence, the matrix
can be viewed as an operator that averages these weights. That is:

pr(Q is true) = pi+p2+...+pn
n

ACM Transactions on Information Systems, Vol. 7?7, No. ???, January 1977.
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The L, 7 and Lor matrices used for the Boolean operators also meet the parent
indifference criterion, as shown in figures 6b and 6c.

In [Tur90], a fourth type of matrix, the weighted-sum matrix is shown to be com-
putable in linear time as well. This matrix does not satisfy the parent indifference
criterion. It will, however, be shown in section 4.4 to satisfy a generalization of
the criterion. This generalization contemplates a relative weighting of the impor-
tance of the parent nodes in determining the probability that the child node is
true. A simple extension of the PIC-EVAL algorithm allows for the calculation of
probabilities involving these weighted P1C matrices in O(n?) time as well.

inputs:
e n + 1 coefficients, «g,...,an, of a pic matrix
e probabilities p1, ..., p,, for the n parent nodes.
output:
e the probability that the child node is true.
PIC-EVAL:
for j=0,...,n
af0,5] = o
fori=1,...,n

for j=0,...,n—1i
return afn, 0]

Fig. 7. PIC-EVAL algorithm

4.2 The PIC-EVAL algorithm

The PIC matrices would not constitute a useful class if they could not be evaluated
in better than exponential time. Figure 7 shows an algorithm for the efficient eval-
uation of matrices that satisfy the parent indifference criterion. Starting with the
original link matrix, Lo, PIC-EVAL, in effect, generates a sequence of smaller and
smaller link matrices, Ly, Lo, ..., L,. In the process, it eliminates from considera-
tion each probability in turn (figure 8).

To begin, the probability associated with parent node, P, is fixed and the matrix,
Lo, with n + 1 coefficients and n parents (figure 8a) is converted to an n coefficient
link matrix with n — 1 parents (figure 8b). As shown in figure 8, each matrix,
L;, connects with one fewer parent node than the previous one. Corresponding to
this, the coefficients, a;0,,1,...,®;n—1, of each matrix are fewer as well. The
matrices, L;, that result from this sequence of transformations are equivalent to
the original matrix, Lg, in the following sense:

for any set of probabilities for parents,

I)H-l: ey Pn:
L; yields the same pr(Q is true) that Lo would produce given the same
probabilities for
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pl p2 p3 pnl pn
A S
a) initial problem‘ Q0,0 = 0, ..., Q0 = Qn ‘
pr(é is true)
p2  p3 ppl  pn
A S B
b) after 1 iteration ‘ Q105 ey Qim1 ‘
pr((;% is true)
p3 pnl pn
T
c) after 2 iterations T |
pr(& is true)
pn
}
d) after n-1 iterations ‘ O 1,0, On_11 ‘
pr((;% is true)

e) after n iterations
pr(Q is true)

Fig. 8. iterations in the evaluation of a pic matrix
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P’H-l’ ERR) Pn;
together with the probabilities
P1y...,p; for Py,..., P;.

After n iterations we arrive at L, with exactly one coeflicient, @y, as seen in
figure 8e. Now that all parent probabilities have been accounted for, this coefficient
can be interpreted as the desired probability that the child is true. A formal proof
of the correctness of the PIC-EVAL algorithm can be found in Appendix 1.

The PIC-EVAL algorithm is executed in O(n?) time. The initialization requires
O(n) and the main loop is executed precisely >3i ;327271 = O(n®) times. Also,
the constant factor is small. On top of the base iteration control overhead, two
multiplications and one addition are required in each iteration. Although, for the
purposes of exposition, the algorithm has been shown as requiring O(n?) space as
well as time, O(n) space is easily achieved since only one row’s worth of cells need
be maintained at any one time.

4.3 Piecewise Linear Functions

The PIC-EVAL algorithm evaluates a matrix with arbitrary PIC coefficients in O(n?)
time. In this section we look at certain PIC matrices for which the evaluation
algorithm can be made more efficient.

The PIC-EVAL algorithm can be viewed as filling a triangular portion of a square
matrix as shown in figure 9a. The first row is initialized with the «; values and
then each row from 1 to n is processed in turn. Within each row, the cells are set
from left to right, with each cell set to the sum of:

—the cell immediately above it, and
—the cell above it and to the right.

As a consequence of this, the value of each cell, «; ;, is dependent only on the values
of cells in a triangle extending directly above it on the left and at a 45° angle to
the right, as is shown in figure 9b. That is, «;; depends on only those aj, such
that:
0<k<i
J <l <j+m-—i

When a subsequence of the PIC matrix coefficients forms an arithmetic progres-
sion,

Oy O + Ay +2A, ..y + SA

the cell values in the triangular subsection immediately below these coefficients can
be expressed directly in terms of a,,,A, and the parent probabilities, py, ..., ps.
Of these cell values, the only ones that are needed for calculations outside of the
triangle are those on the leftmost edge:

QQ,jy- -5 Qg5

Hence, if there were a direct method for determining these cell values, the rest
of the cells in the triangle need not be calculated at all. Exactly, how this may
be accomplished follows from the following Lemma, a proof of which is given in
Appendix 2.
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a) cellsevauated by algorithm

cells evaluated

b) cell dependencies

o dependson

c) evaluation for arithmetic series

—— arithmetic series

need not be evaluated

eva uated independently

SIS

Fig. 9. cell evaluation during execution of PIC-EVAL
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LEMMA 4.3.1. Given a PIC matriz whose coefficients,
Ay U1 Q25 -+« Qs
are of the form:
Oy O + Ay +2A, ...y + SA
i.e., are such that:
Qmtj =0m +JA Vi=0,..,s
then, Vi =0,...,8s Vj=0,...,8—1:

Qimtj = om +JA + Aij
=1
In particular, each of the cells at the left edge of the triangle can be computed
as:

Qim = Om +0A + (A py)
k=1
i—1
= am +0A+ (AZpk) + Ap; = ai—1,mPi + Ap;
k=1
which requires a total of only s additions and s multiplications, replacing the
i, = s(s 4+ 1)/2 general cell computations which would normally be executed.

This technique can result in substantial savings if the number of coefficients in-
volved, and hence the size of the triangle involved, is large. For example, figure 10a,
shows a function with three linear pieces. The matrix coefficients in this case com-
prise three arithmetic series, each associated with a corresponding savings in cost of
evaluation. Since the domain of the function is discrete, it is not strictly necessary
that the pieces connect. Therefore, when speaking of piecewise linear functions, we
shall also consider functions such as that shown in figure 10b.

The form of the 2-piece piecewise linear functions shown in figures 10c and 10d
are of interest because they can be interpreted as generalizations of the L, ; and
Lor link matrices. We will see in a moment that evaluation of these functions is
particularly efficient. The function shown in figure 10c, for instance, generalizes
the L ,,, ; matrix in that the conditional probability that () is true may:

—take on a (presumably small) value greater than 0 when all parents are false.

—rise (presumably slowly) at a constant rate as more parents are known to be true.

—rise suddenly for some number of true parents m less than n — although m must
be less than n by some (presumably small) constant value, independent of n.

—rise at a constant rate as the number of parents known to be true goes from m
ton

—take on a value less than 1 when all parents are true.

In a similar fashion, the form shown in figure 10d, generalizes the Loy matrix.
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1 —————————————————————— A
a) 3 piecefunction | —
| |
| |
| |
| |
L o . J
0 n
_ _ e i
b) also 3 piece function | |
| |
| |
| / |
— |
L |
0 n
ittt \

¢) generaizatin of AND

d) generlization of OR

Fig. 10. piecewise linear functions

Fig. 11. evaluation of generalized OR
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Although the savings realized for a piecewise linear function may be significant,
the asymptotic cost of execution will not be affected unless all of the pieces save
one cover a constant number of coefficients 2. If oy, 1, - - -, @, is an arithmetic
series, then s(s+1)/2 cell operations can be eliminated in favor of s additions. This
leaves,

nn+1)/2—5(s+1)/2 = (N> +n—3s%>—135)/2

ns—s2+ (% —ns+n+s®>—ns—s)/2
=m-98)s+(nn—s+1)—s(n—s+1))/2
(n—8)s+(n—s)(n—s+1)/2

When (n — s) is constant, the second term is constant and the first term grows
with s. Since s must grow with n, if n — s is to be kept constant, the cost of
evaluation is O(n). Figure 11 shows, pictorially, how the array for the generalized
OR function is evaluated. The cells that are evaluated are restricted to a fixed
width strip at the left of the array whose length grows with n.

4.4 Weighted Parents

In section 4.2 we defined and developed an O(n?) algorithm for the class of link
matrices for which the conditional probabilities are dependent only on the number
of parents that are true. In this section, we generalize this result, beginning with
the class of link matrices under consideration.

The goal of this generalization is to allow for the possibility that the truth of
each proposition, P;, may have a different impact on the probability, pr(Q is true).
There will always be one parent whose impact is at least as great as any other. For
the purposes of this exposition we will assume, without loss of generality, that
parent, P;, has this property. The impact of each other parent may, then, be
weighted by some factor, 0 < w; < 1.0. For generality, we will say that all parents
are weighted and that the weight, w;, of parent P; is equal to 1. We shall say that a
link matrix, satisfies the weighted-parent indifference criterion when the probability
that the child is true is strictly a function of the number of parents that are true,
once the weights of the parents have been taken into consideration. Formally,

Definition 4.4.1. We shall say that the weighted-parent indifference criterion is
met when:

| (’U}l = ].0,
OSUJQ,...,U]" S 1.0
OS aQg,...,0n S ].0)
V RC{1,...,n} aR=aij,-
i€ER
We shall refer to a link matrix satisfying the weighted-parent indifference criterion

as a WPIC matrix. A WPIC matrix is completely determined when two sets of
parameters have been given: ag,...,a, and wi,...,w,. When all the parents

3Prof. David Barrington has pointed out that computational improvement may be realizable even
if this condition is not fully met. For example, if one piece grows with n, while all others grow
only as log(n), the asymptotic running time will be only O(nlog(n)).
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inputs:
e 1 weights, wy,...,w,
e n + 1 coefficients, ag,...,a,, of a pic matrix
e probabilities pi, ..., pn, for the n parent nodes.
output:
e the probability that the child node is true.
PIC-EVAL:
for j=0,...,n
a[Oaj ] = aj
fori=1,...,n

for j=0,...,n—1i

return a[n, 0]

Fig. 12. PIC-EVAL algorithm

have a weight of, w; = 1, the WPIC matrix reduces to a simple PIC matrix, where
the coefficient, o, specifies the probability that ) is true when it is known that j
parents are true.

For the general wPIC matrix, however, rather than specify what the probability
that @ is true s, for j true parents, the coeflicient, a;, specifies what that proba-
bility would be for j true parents, if all the parents had the same impact; that is, if
all the weights were 1. A weight, w; < 1, indicates that when P; is one of the true
parents, the probability, pr(Q is true), is less than it would be were P; to have the
same weight as P;. The weight, w;, gives the factor by which pr(Q is true) must
be discounted when P;, rather than a parent whose impact is equal to that of Py,
is one of the true parents *.

The basic algorithm requires only a minor modification in order that wpiC ma-
trices be processed correctly. The wpic-EvAL algorithm incorporating the necessary
modification is given in figure 12.

The notation, lemma and theorem introduced in appendix A to demonstrate
the correctness of the PIC-EVAL algorithm can generalized to contemplate weights.
The reasoning used in the proof given there applies with very minor modifications
to the situation pertaining to the wpic-EvaL algorithm. A complete proof of the
correctness of the weighted version of the PIC-EVAL algorithm can be found in
[Gre96].

It should be observed here that, with respect to computational efficiency, the only

4 Another way of understanding the WPIC matrices is in terms of gated inputs. Each parent is
viewed as one input to an AND gate whose other input corresponds to an independent activation
variable. Only when both the parent and the activation variable are both true is a value of true
seen by the @ node. The parent weight becomes the probability that the activation variable is
true. From this, we see that the class of wpiC matrices can be viewed as a generalization of the
noisy or matrices often utilized in Bayesian Network applications.
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difference between the two versions of the algorithm is that the weighted algorithm
requires an extra multiplication during each execution of the main loop.

5. EXPERIMENTATION

In order to test the potential of the PIC matrices as candidates for the imple-
mentation of Boolean query operators, a number of experiments were run with the
INQUERY system. For these experiments, two test collections were used: the INSPEC
collection and volume 1 of the TIPSTER collection. For the TIPSTER collection, tests
were run using two Boolean versions of queries 51 to 100. In this paper, we shall
refer to these two sets of queries as TIPSTER-1 and TIPSTER-2. Two Boolean query
sets, which we will call INSPEC-1 and INSPEC-2, were also used for testing with the
INSPEC collection. For each collection, the two query sets were created by having
two different people take the same set of unstructured natural language queries and
reformulate them using Boolean operators [BCCC93]. For all experiments discussed
in this paper, the INQUERY system using the ANDp and or operators as defined in
[Tur90] shall be considered the baseline system for purposes of comparison. For
these query sets, experiments have shown that pnorm operators perform from 7%
to 28% better than the baseline system in terms of average precision. Our goal was
to achieve similar performance using PIC matrices.

A number of different types of PIC matrices were tried using the standard IN-
QUERY formula for estimating the probability that a document is about a concept:

tf log(#232-%)
04+0.6x 0.5+1.5x 4 = log(dc+1.0)
where: tf = term freq. (no. of occur of term in doc.)
dl = doc. length (no. of tokens in doc.) (3)

avg_dl = avg. doc. length (over collection)
dc = doc. count = no. of docs in collection

df = doc. freq. = no. of docs containing term

Although we were able to realize improvements over the baseline system, it was
not possible to obtain results consistently on a par with those produced using the
pnorm operators. Analysis of the link matrix computations led us to believe that
the difficulty might lie in the value used for the default belief. In eq. 3, 0.4 is this
default belief: the probability of a document being about the concept of interest
that will be assigned when the associated term count is zero.

Intuitively, one might expect that a lack of evidence in favor of a subquery, in
the form of a zero term count, should correspond to the same default belief value,
independent of whether or not an operator is involved; and when an operator is
specified, independent of which operator it is. Take the query,

#OR(t1, #AND(t2, t3), #AND(t4, t5, t6))

for example, and let us assume that all term counts are zero. If the probability asso-
ciated with t1 is 3, we could argue that the probabilities associated with #AND(t2,
t3) and #AND(t4, t5, t6) should both be § also; and, further, that the belief
that the entire query is satisfied should be 3, as well. In general, we might posit
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the following principle:

Vn : 8 = default belief Ap(P1) =p(P)=...=p(P,) =0
= p(#AND(Pla .- JPn)) :p(#OR(P17 .. JP")) = /8

Although, the applicability of this principle to the interpretation of Boolean queries
is not beyond question, it seemed natural to us to explore belief systems that obey
it.

The PIC class is sufficiently rich so that, for any preset value of the default
belief, matrix families can be engineered such that the above principle is satisfied.
Experiments with the default belief left at 0.4 were somewhat disappointing. With
the default belief set to 0.0, however, it seemed that robust behavior had been
obtained, at a level of performance comparable to that of the pnorm operators. We
return to the point of the default belief value setting in section 6.

a) Yand = 0.33 ég pr(Q is true)

0.6
4

° ¢ [ ) '8'2' ~Yand
0.0

b) Yor = 0.5 K T (1)2 pr(Q is true)

C) Yand = 2.0 R B (1)2 pr(Q is true)
. 0.6
0.4
. 0.2

2 4 6 8 100'0
# of true parents

Fig. 13. sloped pIC matrices for Boolean operators

The experiments described here concentrated on a family of operators, initially
described in [Tur90], that varied in a simple way from the anp and or operators
used in the current INQUERY system. The standard anp operator can be viewed
as a linear sequence of n — 1 points, ag,aq,--.,a, 1, together with the coefficient
a, = 1.0. We can think of the sequence of n — 1 coefficients as rising with a slope
of 0.0. In these experiments we consider PIC matrices for the aAND operator that
are of the same form, but for which the slope may rise with a slope of 74,4 > 0.
Presumably, the rise will be gradual, with v,,4 set to a fairly small fraction, as
shown in figure 13a where 74,4 = 0.33. To simplify the experimentation, the slope
was maintained constant over the entire family of anD operators. That is, for a
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given experiment, the coefficients for each different arity of the AND operator were
determined based on the same setting of v4pq-

The piCc matrix candidates for the or operators were defined in an analogous
manner as is shown in figure 13b. As with the AND operator, ag, and «a,, are fixed
at 0.0 and 1.0, respectively. In the case of the or operator, v,, corresponds to
the rate of decrease in the values of the coefficients as the number of true parents
decreases in the sequence, oy, o 1,..., Q9.

We shall see that, in the case of the 7,,4 parameter, we experimented with values
greater than 1.0. As shown in figure 13c, for these values the matrix is defined such
that the PIC coefficients rise with the slope, Y4nd, up to a maximum of 1.0. Values
which would otherwise be greater than 1.0 are truncated to 1.0.

Yor = 0.2 0.4 0.6 0.8 1.0

Yand = 0.2 +14.3  +15.3  +166 +16.0 +14.5
0.4 +16.9 +17.8  +18.7 4175 +14.4

0.6 +17.6  +18.2  +19.0 +17.6 +14.9

0.8 +18.7 +18.9  +19.4 +17.6 +15.4

1.0 +20.0 +20.3 |[+204| 4184 +15.5

(O greatest improvement)

Table I. INSPEC-1 queries on INSPEC: PIC with Ygnd, Yor < 1.0

Experiments were run first with the INSPEC collection. Table I shows the percent
improvement in 11-pt average precision with respect to the baseline system, for
different settings of the v,,q4 and 7,, parameters. For all values of 4,4 tested
(including values not shown in the above table), optimal performance was achieved
with 7, set to 0.6. For all values of v,,4, performance improves monotonically
with increasing values of 7,4, not reaching a maximum value until v,,q4 is at
1.0. This is surprising because AND operators with greater values of 7,,4 can be
interpreted as operators that increasingly ignore the semantics usually associated
with AND, namely, that AND is a simple conjunction. When 7,,4 = 1, the anDp
operator behaves exactly like a sum operator. When v,,4 > 1 the operator takes
on a distinctly or-like flavor; the presence of a relatively small number of conjoined
terms leads to relatively large belief scores.

Yor = 0.2 0.4 0.6 0.8 1.0

Yand = 1.0 +20.0 +20.3 +204 4184 +15.5
2.0 +23.9 +26.1 +24.9 4223 +17.6

3.0 +25.6 +26.1 +25.3 +224 +17.1

4.0 +25.1 +25.9 4244 +21.1 +15.3

5.0 +25.1 +25.9 +24.5 +21.2 4154

6.0 +25.1 +25.9 4245 +21.1 +154

7.0 +25.1 +25.9 4245 +421.1 +15.4

Table II. INSPEC-1 queries on INSPEC: PIC with 7y,,q4 > 1.0

The consistent peak of performance at v,,q4 = 1 suggested tests with v4pq > 1.
For all values of ~,., performance continues to improve as 7,nq increases until
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Yand reaches 2.0 (Table IT). This suggests that users do not necessarily interpret
AND as a logical operator. The use of the AND connector appears to indicate that
the likelihood that a document will be judged relevant grows quickly with the
number of terms present in the document. This is in stark contrast with the normal
propositional logic interpretation in which high likelihoods are assigned only to
documents containing all of the terms.

Por = 1.0 2.0 3.0 10 5.0 6.0 7.0

Pand = 1.0 +155  +16.1 +16.0 +15.7 +15.6 +16.0 +16.4
2.0 +16.4 +17.0 +17.0 +17.1 +17.7 +17.1 +16.1

3.0 +16.6 +17.0 +17.2 +17.8 +17.9 +17.1 +16.2

4.0 +16.7 +18.0 +17.7 +17.5 +16.8 +16.7

5.0 +17.6 +17.8 +17.2 +16.6 +16.4 +15.8 +15.5

6.0 +16.4 +16.5 +15.7 +15.5 +15.5 +15.0 +14.3

Table III. INSPEC-1 queries on INSPEC: pnorm

Table III shows the performance of the pnorm operator for various values of pang
and p,., the settings of the parameter, p, for AND and or respectively. We see
that, as with the PIC matrix operators, the pnorm operators perform robustly over
a wide range of parameter settings. Performance of the PIC matrix operator is
clearly superior to that of the pnorm operators for this set of queries against the
INSPEC collection. Peak performance improvement for the PIC matrix version of the
operators reaches 26.1% as compared to 18.2% for the pnorm version. Tables IV
and V show the comparative performance for INSPEC-2, an alternative Boolean
formulation of the same queries, against the same collection. Performance is similar
to that of the previous query set with the optimal performance of the PIC operators
slightly lower at 22.8% improvement as compared to 18.0% for pnorm.

Yor = 0.0 0.2 0.4 0.6 0.8 1.0

Yand = 1.0 +18.6 +19.5  +20.0  +20.1 +189 +14.3
2.0 +21.4 4220 4224 4228 4207 +14.1

3.0 +21.5 4223 4226 4227 420.1 +13.3

4.0 +21.7  +225 |[+22.8] [+228| 4201 +125

5.0 +21.6  +225 |+22.8| [+22.8| 4201 +12.5

6.0 +21.6  +225 [+22.8| [+22.8| 4201 +12.5

Table IV. INSPEC-2 queries on INSPEC: PIC

Por = 1.0 2.0 3.0 40 5.0 6.0 7.0

Pang = 1.0 F143  +15.7 +163 +168  +17.1 4175 +16.9
2.0 +15.2  +16.4 +17.5 +17.6  +17.9  +17.8 +16.8

3.0 +15.5  +16.3  +16.9 4+17.2  +17.9  +17.7 +16.9

4.0 +15.9  +16.9 +17.2 +17.5 +17.1

5.0 +15.2  +16.4 +16.7 +16.9  +17.4 4175 +16.7

6.0 +149 +154 +158 +16.5  +16.7  +16.8 +16.1

Table V. INSPEC-2 queries on INSPEC: pnorm
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A similar set of experiments were run on the, larger, TIPSTER collection. Ta-
ble VI summarizes the performance of the two approaches. We see here that both
classes of operators are capable of significantly outperforming the baseline system
on both query sets. On the first query set, the best parameter setting for the
pnorm operators slightly outperforms the best settings for the PIC operators. On
the second query set, it is the best settings of the PIC operators that yield supe-
rior performance. The smaller improvements for both systems on the second query
set is due to the better performance of the baseline system. It is unclear why the
baseline system is apparently so much more sensitive to the differences in the two
query formulations than the pnorm and PIC versions of the system. Surprisingly, in
light of the previous results, this best performance for the PIC system on the second
query set is obtained with the ~,,4 coefficient set as low as 0.1. To date, we have
been unable to explain this phenomenon.

Table VII compares the two operators with pnorm settings of pgnq = 6.0, por =
3.0 and PIC settings of 74,4 = 2.0, v, = 0.6. These parameter settings were chosen
S0 as to give a best overall performance profile for each of the operator classes. In
general, the optimal settings for the pnorm operator in these experiments tend to
be somewhat higher than those reported in [SFW83]. For comparable experiments
they found that values between 1.0 and 2.0 produced best results.

baseline pnorm % impr. pIc % impr.

INSPEC-1 26.5 4.0/2.0 18.2 | 2.0/0.4 26.1
INSPEC-2 25.6 4.0/5.0 18.0 | 4.0/0.4 22.8
TIPSTER-1 20.8 9.0/1.0 28.8 | 2.0/0.8 27.8
TIPSTER-2 25.0 || 10.0/1.0 7.8 | 0.1/0.6 9.8

Table VI. comparison of PIC and pnorm on all four query sets - optimal parameter settings

baseline || pnorm % impr. pPIC % impr.

INSPEC-1 26.5 30.7 15.7 | 33.1 24.9
INSPEC-2 25.6 29.6 15.8 | 314 22.8
TIPSTER-1 20.8 26.5 27.3 | 264 26.9
TIPSTER-2 25.0 26.7 6.8 | 26.4 5.5

Table VIL.  pgpa/Por = 6.0/3.05  Yand/Yor = 2.0/0.6

6. CONCLUSIONS

From the work reported here, we may conclude that combining functions with
a well-defined probabilistic interpretation can be associated with Boolean query
operators which:

—appear to perform as well as the pnorm operators,

—can be realized at reasonable computational cost.
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6.1 Probabilistic interpretation

The definition of the pnorm functions is an outgrowth of intuitions grounded in
the vector space model of information retrieval [Sal89]. The PIC matrices, on the
other hand, are the result of viewing the scoring of documents from a probabilistic
standpoint. The i*"coefficient of an n-ary PIC matrix corresponds to the conditional
probability that the compound query is satisfied by an arbitrary document, given
that exactly ¢ of the n component sub-queries are satisfied by that document.

The existence of such an interpretation for the combining functions means that
these functions may be analyzed within the probabilistic framework. Their com-
parative behavior on varying collections and/or varying query sets can be studied
from a probabilistic vantage point. Attempts to improve overall performance of the
operators can be guided by researchers’ intuitions as to the probabilities involved.
Coherent techniques for combining Boolean operators with others, such as proxim-
ity or phrase operators, can be developed in accord with the laws of probability
theory.

The incorporation of these Boolean operators, in the context of an encompassing
probabilistic IR system, allows for the meaningful analysis of the overall system
in probabilistic terms. If the ranking scores produced by a system, as well as the
intermediate scores manipulated by that system in arriving at these final values,
can justifiably be interpreted as probabilities, measurements can be made of how
well these numbers correspond to observed frequencies [Daw89; Bri50]. Analysis of
these measurements can result in insights into the strengths and weaknesses of the
system; unwarranted (possibly, hidden) assumptions; suspect parameter settings;
and possibilities for improvement. Such insights may not be easily forthcoming
in the absence of semantics for the numbers involved and a theoretical framework
within which the manipulation of these numbers can be understood.

6.2 Performance

From the four different query set formulations studied, it appears that combining
functions based on PIC matrices perform as well as the pnorm functions. For the
researcher inclined toward the probabilistic approach, this is comforting. The defi-
nition of the pnorm operators is an excellent example of how a mathematical model,
in this case the vector space model, can guide the researcher toward the develop-
ment of fruitful ideas. We have shown here, that, at least as far as the current state
of the art with respect to Boolean operators is concerned, a probabilistic theory of
information retrieval can be equally beneficial in this regard. It is our belief, and
apparently that of other ”probabilists” (for example, see [Co094] for an interesting
exposition of the issues), that in the long run, models founded in probability theory
will prove to be more fruitful in this regard. We believe that probability theory
will be found to be well suited to the task of modeling the complexities of the in-
formation needs of users, the information content of documents, and the matching
of one to the other. We think it will ultimately be found to be more useful than a
geometric model where the mapping between the formal constructs and the aspects
of information retrieval that are being modeled is, to our way of thinking at least,
less obvious.

The results obtained here also suggest that some previous experimental results
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might merit a second look. For example, [Tur94] reports that natural language
queries consistently outperform boolean queries for experiments run on legal collec-
tions. The difference observed, however, is within the range of the improvements
we have been able to obtain, suggesting that more effective implementations of the
boolean query operators might close the apparent gap.

6.3 Efficiency

Probability calculation involving PIC matrices can be realized in O(n?) time. The
CPU time for the PIC matrix version of INQUERY was compared against the baseline
system for each of the query sets discussed in this paper. An increase of from 35%
to 65% in CPU time was observed. This would seem to be a reasonable price to
pay for the corresponding increases in performance, especially since the percentage
increase in overall response time can be expected to be significantly smaller when
I/0 time is factored in. Exactly what that overall increase would be will depend, of
course, on the characteristics of the particular hardware used to run the system?®.

6.4 Future work

The experimentation reported here indicates that PIC matrices can be advanta-
geously applied to the modeling of Boolean queries. Three ways in which we are
considering extending this work are:

alternative sub-classes of the PIC matrices. The PIC matrices cover a wide range
of functions which can be chosen for modeling belief-combination operators. The
definition of an operator family requires the specification of n+1 parameters for each
arity, n = 2,3, .... We have had success with a subclass of the PIC matrices that can
be specified with two parameters: the increasing slope of the AND operator and the
decreasing slope of the or operator. This class may not be optimal. For one thing,
the definition of the slope parameter constrains the rate of rise from 0 to n—1 for the
different members of the anp family to be related in a given way. Specifically, the
increase in belief is v4nq/n for each additional true parent. Equivalently, the belief
at the knee (n— 1 true parents) is (n — 1)Yanq4/n. Similarly for the or family. Other
relationships among the members of the family could be explored. For example,
the position of the probability at the knee could be held constant over the entire
family; its value being an empirically determined parameter setting. Alternatively,
some simple, but non-linear, function for the increase in probability from 0 to n —1
for anp (and decrease for or) might give better results. Another possibility worth
exploring would be to allow for the setting of aNn/2 and or/2 to be independent
of the settings chosen for arities of n = 3,4.. ..

experimenting with default probabilities. We have obtained our best results by
eliminating the default setting of 0.4 in favor of a 0.0 setting. It is possible that
default settings at some value somewhat above 0.0 will yield small, but consistent,
performance gains. When allowing for a non-zero default setting, 3, it would prob-
ably be best to restrict the operator families such that each operator produces an

5 As mentioned in section 4.3, a linear time version of the PIC-EVAL algorithm is applicable when
the PIC matrix is a piecewise linear function. Although this more efficient version of the algorithm
would be applicable to the PIC matrices utilized for these particular experiments, the general PIC
matrix algorithm was used. The times reported correspond to the general version of the algorithm.
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output of B when all inputs are at . This would impose an algebraic constraint
that could be satisfied in a number of ways. There is as little justification for
assuming certainty of relevance (pr(Q)=1.0) as there is for assuming certainty of
non-relevance (pr(Q)=0.0) even in the (hypothetical) case of certainty with respect
to the truth or falsity of the parent propositions.

correlating beliefs with long term frequencies. If the design of the Boolean oper-
ators follows probabilistic intuitions, it is reasonable to expect that their success in
practice will be correlated with the extent to which the values being manipulated
correspond to probabilities in the real world. It should be instructive to analyze
the behavior of the operators after performing some kind of regression to convert
the document scores into scores more accurately reflecting observed frequencies of
relevance for large text collections.
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APPENDIX
1. CORRECTNESS OF THE PIC-EVAL ALGORITHM

The correctness of the pic algorithm follows directly from Lemma 1.4, which is
more easily expressed by adopting the following notation.

Notation 1.1. With respect to the execution of the pic matrix evaluation algo-
rithm: L; shall refer to the link matrix generated during the ith iteration, and the
coeflicient of L; associated with j parents being true shall be referred to as ay,;.
We note that for the initial matrix, Lg:

o =0; Vi=0,...,n

Notation 1.2. Given an arbitrary subset, R, of {i,...,i2}, 71_1{;'1,.--,1'2} shall de-
note the probability that precisely the parents, P; such that ¢ € R, are true, while
those parents, P; such that i ¢ R, are false. Equivalently:

S | P |

i€R  i€{i1,...,ia}—R

Notation 1.3. The notation o-J{il""’iﬂ will be used to denote the probability
that exactly j of the propositions of {FP;,,...,P;,} are true. We observe that:

{i1,0yin} {i1,0yin}
95 = >

It is worth noting that the probability that @ is true can be given by:

p@istue) = Ylan[[n [ 5

RC{l,...n} i€ER i€{l,...,2}-R
_ {1,...,n}
= E :[O‘RWR ]

And that when the parent indifference criterion is met:

n

pr(Q is true) = Z[QRWJ{;M"}] _ 2 Z[ang,...,n}]

RC{1,...,n} i=0 RC{1,...,n}

|R|=j
— {17"‘7n}
= E :[aj E :”R ]
i=0 RC{1,...,n}
|R|=3

_ ) {1,...,n}
= Zaﬂj
i=0
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Proof of the correctness of the PIC-EVAL algorithm will be a direct consequence
of the following lemma.

LEMMA 1.4. Assuming all coefficients a; j are those produced by the PIC-EVAL
algorithm, then Vi =0,1,...,n

Zai,jG}iH’"""} = pr(Q is true)

j=0

Lemma 1.4 effectively states that the set of coefficients, a0, ..., o;n—i, can be
interpreted as specifying a pic matrix, L;, connecting parent nodes P;y1, ..., Py,
to @), and that this matrix is, in a sense, equivalent to the original matrix, L.

ProovF. This lemma is proved by induction on the value of i. For ¢ = 0, we have:

Zaoyjajl,...,n} — Z Z {1,..
5=0

j=0 RC{1,..., n}

Z > lar [ »: [ 2]

§=0 RC{l,...,n} i€ER  i¢R

= Z[aRHpiHﬁi]

RC{1,...,n} i€ER i¢R
= pr(Q is true)

Assume the theorem to be true for ¢ = k:
n—k
Zak,ja;{l""’"} = pr(Q is true)
3=0

Then the sum for i = k + 1 is:

n—k—1
k42,0,
> awyigo)
i=0
n—k—1
_ k42,0,
= > ok Brst + o jrapepalo
i=0
(by step (5) of the algorithm)
n—k—1 n—k—1
_ . k42,00,
= Z O‘k,jpk+1ff]{' e z Ofk,j+1pk+10§ ™
=0 =0
n—k—1

+2,..5n k+2,...,n
= Z Oék,]pk+10{ ot Zak,]pkﬂ%{ 1 '
7=0

ji=1
(as a result of changing the variable for the second summation)

= o opk+106{ 2} 4)

n—k—1 n—k—1

2,..., 2,.
+ Z ak,ka+1‘7{ ety Z ak,kaJrlaj HE

j=1 j=1
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{k+2,...

+Okn—kPk+10,_ 17"

The term, Uék+2""’"}, expresses the probability that none of the propositions,
Piyo,..., Py, is true. It is composed of only one product. Hence, the first term of
4 reduces to:

n
_ {k+2,....n} __ _ _
Ok, 0Pk+10( = Qk,0Pk+1 H D

I=k+2

n
= Qg0 H P
I=k+1

— ak’oo_ék—‘rl,...,n} (5)

Similarly, Ufbk_",ﬁr"l“’n}, which expresses the probability that all n — k + 1 of the

propositions {Pg2,. .., Py} are true, is composed of only one product. Therefore,
the last term of 4 reduces to:

n
{k+2,...,n} _
Ckn—kPk+10, _j4+ = Qk,n—kPk+1 b
I=k+2
n
= Qk,n—k H D
I=k+1
{k+1,...,n}
= ak,n_kanfk (6)

Combining the middle two terms of 4:

n—k—1 n—k—1
_ {k+2,...,n} {k+2,...,n}
Z ak,jpk-l—lUj + Z Oék,jp]H_lO'j_l
=1 j=1
n—k—1
_ _ fkt2,..n) {k42,...,n}
= Z ak,j[(pkﬂaj ) + (pk+1aj_1 )]
j=1
n—k—1
_ — {k+2,...,n} {k+2,...,n}
= E g [(Br E T )+ (Prtr E TR )]
j=1 RC{k+2,...,n} RC{k+2,...,n}
|R|=j |IR|=j—-1
n—k—1
_ _ {k+2,...,n} {k+2,...,n}
= Z ag,;[( Z Pty ) 4 ( Z Pryrmg )]
j=1 RC{k+1,...,n} RC{k+1,...,n}
|R|=j |R|=j—1
n—k—1
k+1,...,n k+1,...,n
— E ak’][ E ,n_l{2 FREEY) }+ E ,n_}z EXEER) }]
j=1 RC{k+1,...,n} RC{k+1,...,n}
|R|=jAk+1¢R |R|=jAk+1€R
n—k—1
_ (k1)
= > s Y m ]
j=1 RC{k+1,...,n}
|R[=j
n—k—1
_ {k+1,...,n}
= E , Qg,joj (M)
j=1
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Finally, applying equations 5, 6, and 7 to equation 4, we have:

n—k—1
k+2,...,
> awyrgoy
3=0
n—k—1
k41, E+1,..., k41,
= ak,Oa'é oy [ Z ak,ja} "}] + ak,n,kafl_k n}
=1
n—k
k+1,...,
= > awo) T
—
= pr(Q is true) (by the induction hypothesis)

O

Setting ¢ = n in Lemma 1.4 immediately yields the following theorem which
states that the PIC-EVAL algorithm is correct.

THEOREM 1.5. Given that o, 0 has been produced by the PIC-EVAL algorithm:

a0 =pr(Q is true)
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2. PROOF OF LEMMA 4.3.1
LeMMA 4.3.1. Given a PIC matriz whose coefficients,
Qmy Ol s Q25 -+ + 5 Qs
are of the form:
Qmy O + Ay + 2A, ...y + SA
i.e., are such that:
Qmtj =0m +JA Vi=0,..,s
then, Vi =0,...,8 Vj=0,...,8—1i:
Qim+tj = Om +JA + Aij

I=1
Proor. By induction on i.
The base case follows directly from the hypothesis of the lemma.

QOm+j = Omij = Qm + JA
0
= om + A+ A p;
=1

Assuming the lemma to be true for i=k-1:

Ok m+j
= p—1,m+5(1 — pr) + Qk—1,m+j+1Pk
k—1 k—1
= (am +JA+AY p)(1—pp) + (am + (G + DA+ A p)ps
=1 =1
k—1 k—1
= am + GA+AY p)AL—pr) + ((G+DA+AD p)ps
=1 =1
k—1 k—1

= am + JA+ (A p) —jApr — (A pi)pr

=1 =1
k—1

+ (G +DApx + (A p)ps

=1
k—1

= am + jA+ (AZPl) —JjApr + (J +1)Ap

=1
k—1

= am + JA+ (A p) + Apy

=1

k
= am + A+ (A p) -

=1
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