
Acrophile: An Automated Acronym Extractor and Server

Leah S. Larkey, Paul Ogilvie, M. Andrew Price

Department of Computer Science

University of Massachusetts

Amherst, MA 01003

Email: {larkey, pogil, maprice}@cs.umass.edu

Brenden Tamilio

School of Cognitive Science

Hampshire College

Amherst, MA 01002

Email: bat96@hampshire.edu

ABSTRACT

We implemented a web server for acronym and abbrevia-

tion lookup, containing a collection of acronyms and their

expansions gathered from a large number of web pages by

a heuristic extraction process. Several different extraction

algorithms were evaluated and compared. The corpus re-

sulting from the best algorithm is comparable to a high-

quality hand-crafted site, but has the potential to be much

more inclusive as data from more web pages are processed.

KEYWORDS: Acronyms, information extraction

INTRODUCTION

Acronyms are everywhere; we read and hear them but

rarely think about them, except when we do not know what

they mean. Every content domain has its own acronyms

and abbreviations. In many of these areas, particularly

those that are highly technical or bureaucratic, acronyms

occur frequently enough to make it difficult for outsiders to

comprehend text.

Many acronym and abbreviation dictionaries are available,

both in printed form and on the World Wide Web. Some

attempt to be all inclusive, others are specialized for par-

ticular domains. There are searchable databases and simple

lists. Some general problems in building such collections,

or any dictionaries, are getting comprehensive coverage,

and keeping the collection current. New abbreviations

continually come into use. To keep their dictionaries

growing, some maintainers allow users to submit new acro-

nyms and definitions. This openness, however, can result in

poor-quality data.

Acrophile is an automated system that builds and serves a

searchable database of acronyms and abbreviations using

information retrieval techniques and heuristic extraction. It

was developed and built by students during an NSF REU

(Research Experience for Undergraduates) summer pro-

gram. The current version, available on the web at

http://ciir.cs.umass.edu/ciirdemo/acronym/, contains a set

of acronyms and expansions that were extracted from a

large static collection of web pages. The system can crawl

the web for additional pages, extract additional acro-

nym/expansion pairs, and collect them in a file. Periodi-

cally, the database can be rebuilt, incorporating the addi-

tional new pairs.

Another important goal of this project was to evaluate the

quality of our automatically-built acronym and abbreviation

databases. We developed evaluation techniques to compare

different extraction algorithms and to compare the quality

of our automatically-built databases with manually col-

lected databases.

Our evaluation goals were to test the following hypotheses:

1. It should be possible to use IR techniques and heuristic

extraction to collect a set of acronyms and expansions

which is at least as good and as comprehensive as care-

fully constructed manually built lists available on the

web.

2. In order to collect as many correctly expanded acro-

nyms as possible from an essentially unlimited corpus

like the web, one should choose a strict algorithm that

accepts few errors, even at the cost of missing some

cases in specific documents. It should be possible to

pick up those missed definitions from other contexts by

processing more text, and the resulting lists should

have higher precision than a similar-sized list produced

by a less strict algorithm.

3. We should be able to increase the coverage of our col-

lection more efficiently by searching for acronyms than

by processing random pages.

Related Work

Many acronym and abbreviation dictionaries have been

compiled and published in books and many lists are avail-

able on the web, such as Acronym Finder [1] and the World

Wide Web Acronym and Abbreviation Server

(WWWAAS) [17]. The Opaui Guide to Lists of Acronyms,

Abbreviations, and Initialisms [13] has 124 links to acro-

nym and abbreviation lists, some of them general, and some

as specialized as the Dog fanciers acronym list [4] or the

Mad Cow disease list [10].

All of these web-based lists appear to be built manually

rather than by automatic extraction. The lists range in size

from a few dozen items to over 127,000 acronym defini-

To appear in DL00.

Copyright © 2000 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page or initial

screen of the document. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

2

tions in Acronym Finder [1]. The accuracy seems to vary

widely. The primary problem with many large lists on the

web is that they allow people to submit expansions. Some

sites screen submissions carefully [12], others do not. As

far as we can determine, no previous automatic extraction

efforts have resulted in publicly searchable online databases

of acronyms and none have received thorough evaluations.

IBM advertises a tool for abbreviation extraction, IBM In-

telligent Miner for Text, which allows corporations to proc-

ess and categorize text documents [16]. Among the prod-

uct’s features is the ability to extract abbreviation phrases.

But the paper does not present any information on the heu-

ristics used, nor does it present data on the quality of the re-

sults.

Two small-scale acronym extraction projects have been de-

scribed and received limited evaluation in unrefereed lit-

erature. AFP (Acronym Finding Program) [15] is an acro-

nym extraction algorithm which considers strings of from 3

to 10 uppercase letters as an acronym, and looks for candi-

date expansions in windows of twice the number of letters

in the acronym before and after the acronym. It only looks

for matching letters occurring at word beginnings (or after

hyphens) but allows some mismatch between the letters of

the acronyms and the sequence of initial letters of the

words. AFP was tested on 17 documents from the Depart-

ment of Energy. It attained 93% recall and 98% precision

on acronyms in this set with length of three or greater, 86%

recall and 98% precision when two character acronyms

were included.

TLA (Three Letter Acronyms) [18] was developed at the

University of Waikato. It has no case requirements for

acronyms, so that any token is a candidate acronym. The

token is accepted if a matching sequence is found by taking

up to three characters from adjacent words. TLA was

evaluated on ten computer science technical reports, on

which it obtained 91% recall and 68% precision. A newer

approach by the same researchers uses compression models

to identify acronyms and definitions [19]. This approach is

less ad-hoc than a purely heuristic approach like ours, but

requires a corpus of hand-marked training data.

None of these extraction systems have been used to process

a large corpus of text and compile a searchable dictionary

of acronyms.

Automated extraction projects for extracting non-acronym

text relations bear some interesting similarities to the acro-

nym problem. Several email extractors such as Atomic

Harvester 98 [4] and EmailSiphon [6] can be found on the

web. They crawl through every web page at a given site

and extract every email address they can find, to compile

lists to sell commercially. Extracting email addresses is

simpler than finding acronyms and expansions because it

does not require relating pairs of segments found in text. It

is sufficient to search for the general pattern user-

name@location. Higher accuracy can be gained by

checking the suffix of an address for the existence of com-

mon domains such as .edu, .com, and .gov.

The processes of extracting hyponyms [9] and citations [8]

are more similar to the acronym task in that they require

extracting a relation from text. Hearst’s hyponym extractor

[9] finds pairs of noun phrases NP1 and NP2 such that NP1

is a kind of NP2, for example, nutmeg is a hyponym of

spice. Her system finds hyponyms in text by looking for

some simple patterns like “spices, such as nutmeg,”

“spices, including nutmeg and sage”, or “such spices as

nutmeg and sage.” As we find for acronyms, these heuris-

tics provide reliable but not foolproof methods of finding

hyponyms. Hearst ran the extraction algorithm on an ency-

clopedia, and found many correct hyponyms which could

be added to WordNet [1].

CiteSeer [8] is a system that extracts bibliographical cita-

tions and references. Like Acrophile, it uses a set of heu-

ristics to index information extracted from web pages.

CiteSeer searches for pages that might contain PostScript

documents and keywords such as PostScript and publica-

tion. Once the documents are retrieved, the system verifies

that they are legitimate publications by searching for the

presence of a references section. When documents are

parsed, the system saves the title, author, year of publica-

tion, page numbers, and citation tag, a shorthand abbre-

viation for identifying the cited paper in the text body. It

uses a set of canonical rules, for example, that citation tags

always appear at the beginning of references, author infor-

mation generally precedes the title, and the publisher usu-

ally follows the title. The developers of CiteSeer provide a

facility on the web called ResearchIndex where users can

search for references and citation information [14].

Terminology

An acronym is “a word formed from the initial letters or

parts of a word, such as PAC for political action commit-

tee.” An abbreviation is “a shortened form of a word or

phrase used chiefly in writing…” [3]. Thus, an acronym is

an abbreviation whose letters are read as a word. This

definition excludes abbreviations such as FBI and NAACP,

which are pronounced by saying the individual letters in the

abbreviation.

Our project covers a subset of abbreviations which is larger

than the set of acronyms, but smaller than the set of all ab-

breviations. We include abbreviations that do not form

words, as long as their letters come from the words in the

phrase. We also include abbreviations with numbers such

as 4WD, and 3M, although our expansion algorithms can

only deal successfully with cases where the digit stands for

a spelled-out number (Four Wheel Drive), or acts as a mul-

tiplier (Minnesota Mining and Manufacturing). It cannot

handle cases like Y2K. We exclude abbreviations composed

of letters that are not in the words (lb.), and abbreviations

for single words rather than multiword phrases.

We use the term “expansion” for the phrase an acronym

stands for.

3

In the remainder of this paper we describe the Acrophile

system, then the acronym extraction algorithms; finally, we

evaluate the algorithms and compare the resulting collec-

tions with some hand-crafted acronym collections on the

web.

SYSTEM DESCRIPTION

The core of Acrophile is a large collection of acronyms and

expansions, which was automatically extracted from web

pages and indexed using Inquery 3.2, a probabilistic infor-

mation retrieval system developed at the University of

Massachusetts. Users can submit an acronym such as IRS,

and see a list of expansions for that acronym, or they can

submit words (such as Internal Revenue or revenue) and

see the acronyms whose expansions contain those words.

The system returns lists of acronyms and expansions,

ranked by a quality score. One can also submit a URL to

the acronym extractor and get a list of acronyms and expan-

sions found on the page.

We first describe this collection and how it was created,

then we describe the lookup system on the web.

Building and updating the database

Figure 1 outlines the process by which the database was

created and how it can grow. A static collection of around 1

million (936,550) military and government web pages,

comprising around 5 gigabytes of text, was processed in the

manner illustrated in Figure 1.

First, a Perl script performs some simple filtering on the

web pages, to remove all HTML tags. The resulting stream

of text is fed into our acronym extractor, a C program using

flex and yacc, which incorporates the best of the four algo-

rithms we tested in the evaluation reported below. The ac-

ronym extractor produces a list of acronym and expansion

occurrences. These pairs are marked to indicate whether

they came from a parenthetical form such as DUI (Driving

under the Influence), information which is later used in

computing a confidence rating for the expansion.

Acronym/expansion sets are then sorted and merged, ac-

cumulating counts of occurrences. Occurrences in paren-

theses are also counted separately. The output is tagged,

creating pseudo-documents for indexing. Each pseudo-

document has an acronym as its title and an expansion as its

text. A confidence score is also placed in a tagged field.

These data files are then indexed, with no stopping or

stemming performed on acronyms or expansions. The in-

dexing process creates a searchable Inquery database.

The shaded path through Figure 1 shows how the database

can be expanded by crawling for web pages containing

known acronyms. A list of acronyms is submitted as indi-

vidual queries to AltaVista, using a modified version of

Gnu’s wget. For each query, we retrieve the top n match-

ing pages, returned from AltaVista ten at a time. Each re-

sults page is piped through a hand-coded filter which at-

tempts to remove all content except the URLs of the found

documents. These URLs are then crawled in sets of 10 by

another instance of the crawler. This crawling accumulates

a new collection of web pages, which are processed like the

static set, to extract an add-on set of acronym/expansion

pairs. These can be added to the original set, and the data-

base rebuilt.

The Search System

The search process is illustrated in Figure 2, below.

The system uses a client/server architecture which could

accommodate multiple servers across a network, although

at present our client and (single) server run on the same

Unix system. The user types an acronym or phrase into a

text box on the Acrophile search page. This query is sub-

mitted via CGI to a custom Inquery web client developed

for Acrophile. The client creates a network connection to

the Inquery connection server, which issues search com-

mands to an available Inquery server, which retrieves acro-

nym/expansion pairs from the database. A ranked list is

then returned through the connection server and back to the

client. A confidence score is computed for each expansion,

based on the stored occurrence counts. The list is sorted by

this confidence score, filtered, and formatted for display in

the user’s web browser. The user may select how many

expansions they would like to see.

Figure 1: Building and updating Acrophile

Figure 2: Searching for acronyms

������

���	
�
�� ���
	����

����	����
��������

�������
���
	����

����

����
���������

���������
���

���
���

�������� ���
� 	�������

������

�������

���� ��
��������

������� !�����

"#$�
!�����

�������
� �������

$����%
����

#��%
&���

'&�(
���)

*
���

���������
+��

�������

������

��	

����
� �������	

���
���

���
����

��	

����
� �������	

���

�
�������

��
���	�

�����

��� ������

�	��

���� ���

!��

"��#	��

��$��� ������

������ ��	

�
��%������

�����

��$���

�&�

4

Extraction Demonstration

In addition to the searchable acronym collection, the Acro-

phile splash page also contains a link to an online extrac-

tion demonstration, which accepts a URL from the user and

extracts acronyms and expansions from the submitted

document in real time. Currently, the results of this extrac-

tion are not added to the online database.

EXTRACTION ALGORITHMS

The Acrophile extraction algorithms use flex, a lexical

analyzer, and yacc, a parser, to process a text document to

extract acronyms. Expansions for the acronyms are found

in the text using a combination of document context and

canonical rules, which match patterns in which acronyms

are commonly defined in standard written English.

We developed several different versions of extraction algo-

rithms and tested four of them. All versions work on the

general principle of hypothesizing that a sequence is an

acronym if it fits certain patterns, and confirming it as an

acronym if a plausible expansion for it is found nearby.

For all four algorithms, some normalization is performed

after extraction. Two acronyms are considered equivalent if

they differ only in capitalization. Two expansions for an

acronym are considered equivalent if they differ only in

capitalization or in the presence or absence of periods, hy-

phens, or spaces.

Our four algorithms, called contextual, canonical, canoni-

cal/contextual, and simple canonical, differ in what patterns

are taken to indicate potential acronyms, what forms ex-

pansions can be found in, and what text patterns indicate a

possible acronym/expansion pair. The contextual, canoni-

cal, and canonical/contextual algorithms are all related and

arose by modifying an earlier contextual algorithm. The

simple canonical algorithm was designed independently to

try a more limited approach that might yield higher preci-

sion on the acronyms it found. We did some initial tuning

of algorithms based on their performance on a small pilot

set of 12,380 Wall Street Journal articles from 1989.

The simple canonical algorithm (also called simple) is the

strictest of the four. It finds only those acronym/expansion

pairs which fit a small set of canonical forms, such as “ex-

pansion (ACRONYM)”, or “ACRONYM or expansion”.

The contextual algorithm, on the opposite end of the strict-

ness continuum, looks for an expansion in the vicinity of

the potential acronym without requiring any canonical pat-

tern (“or”, parentheses, commas, etc.) indicating their rela-

tionship. The canonical/contextual and canonical algo-

rithms fall in between the other two. The four algorithms

are contrasted in Table 1, which lists their major character-

istics. The columns of the table summarize the four differ-

ent algorithms. The top half of the table lists properties of

hypothesized acronyms. The bottom half covers properties

of the expansions. All four algorithms are described below.

Finding Acronyms

The algorithms identify potential acronyms by scanning

text for the patterns shown in the row labeled Acronym

Patterns in Table 1. This row uses a pseudo-regular-expres-

sion notation in which superscript + indicates one or more

occurrences of a symbol, * indicates 0 or more occurrences,

numbered superscripts indicate a specific number or range

of occurrences. U stands for an uppercase letter, L a lower-

case letter, D a digit, S an optional final s or ‘s, {sep} is a

period or a period followed by a space, and {dig} is a num-

ber between 1 and 9, optionally followed by a hyphen.

Terms in square brackets are alternatives.

The contextual algorithm accepts acronyms that are all up-

percase (USA), with periods (U.S.A.) or which have a se-

quence of lowercase characters either at the end of the pat-

tern following at least three uppercase characters

(COGSNet), or internally following at least 2 uppercase

characters (AChemS). An uppercase pattern can also have

any number of digits, anywhere.

The canonical/contextual and canonical algorithms accept a

wider range of acronym patterns. They have less constraint

on lower case sequences, to allow patterns like DoD.

Slashes and hyphens are allowed in acronyms, to get pat-

terns like AFL-CIO and 3-D. Acronyms are not allowed to

end with lower case characters except for s, and only 1 digit

is allowed in an acronym.

The simple canonical algorithm takes a minimalist ap-

proach, excluding acronyms with digits, periods, and

spaces. An acronym must begin with an uppercase letter,

followed by zero to 8 upper or lowercase letters, slashes, or

dashes, and ending in an uppercase letter.

Acronym Expansion

Contextual Algorithm. The contextual algorithm finds ex-

pansions by matching from the last character of the acro-

nym to the front. It always saves the twenty most recent

words scanned, so when a potential acronym is identified, it

tries to find the expansion in this saved buffer. Otherwise,

it looks for the expansion in the text following the acronym.

It requires no canonical forms, so it can successfully deal

with text like, “… is three dimensional. In 3D images…”

The expansion rules can refer to a list of 35 noise words

like and, for, of, and the, which are often skipped in acro-

nyms, as in CIIR (Center for Intelligent Information Re-

trieval). The algorithm tries to find a sequence of words

such that the initial 1 to 4 characters from each non-noise

word match the characters of the acronym, as in Bureau of

Personnel (BUPERS). In addition:

• One initial character of a noise word can match an in-

ternal acronym character, as in Department of Defense

(DOD).

• A noise word can be skipped, as in Research Experi-

ence for Undergraduates (REU).

• The initial character and the 4
th

, 5
th

, or 6
th

 characters of

potential expansion terms could be matched to acronym

characters as in PostScript (PS). This is an attempt to

simulate a crude morphemic decomposition, but without

any knowledge of English prefixes.

ACRONYMS

Contextual Canonical/

Contextual

Canonical Simple Canonical

Patterns for

Acronyms

(U{sep})
+
 e.g. U.S.A.

U
+
 e.g. USA

D
*
U[DU]

*
 e.g. 3D,62A2A

UUU
+
L

+
 e.g. JARtool

UU
+
L

+
U

+
 e.g. AChemS

(U{sep})
2-9

S e.g. U.S.A, U.S.A.’s

U
2-9

S e.g. USA, USA’s

U
*
{dig}U

+
 e.g. 3D, 3-D, I3R

U
+
L

+
U

+
 e.g. DoD

U
+
[/-]U

+
 e.g. AFL-CIO

U[UL/-]
0-8

U

e.g. USA, DoD, AFL-CIO

Upper vs. Lower

Case

First two chars must be U,

then any number of L

anywhere, but adjacent

L internal, or final s or ‘s

DOD, DoD, DOD’s

Must begin and end with U

Can have L elsewhere

DOD, DoD

Digits Any number of digits,

anywhere

Only 1, any nonfinal position

 3M, 2ATAF

None

Spaces and

periods

 After capital letters ‘.’ Or “. +space” must be after each

character. N.A.S.A, N. A. S. A.

None

/ or - None – treated as space in

tokenizing

1 interior of /,-

CD-ROM,OB/GYN

Any number of /, - in interior

CD-ROM, OB/GYN

Max length None explicit 9 alphanumeric chars, plus any

included punctuation or final s

10 characters including any

punctuation

EXPANSIONS

Noise words Fixed list of 35 Fixed list of 40 None

Skip words Only noise words Noise words, or words following

hyphens

Only first and last words have to

match chars in acronym

Noise word chars At most 1, only characters internal to the acronym N/A

Prefixes Yes, assumes any initial 3,4, or 5 chars may be a prefix N/A

Chars from non-

noise word

Up to 4. Greedy, prefers to

take more

Up to 4.

Not greedy, prefers to take fewer

Prefers to 1. Can take more if

word starts with upper case

Canonical

Definition

N/A (Unordered)

AC (Exp), Exp(AC)

(Exp) AC, (AC) Exp

AC or Exp, Exp or AC,

AC stands for Exp

AC {is} an acronym for

Exp known as the AC

Exp “AC”, “AC” Exp

(Ordered)

Expansion (ACRONYM)

Exp or AC

Exp, or AC

Exp, AC

AC (Exp)

AC, Exp

Capitalization Expansion can be all L Canonical: can be

all lower

Contextual: only

noise words can be

lower, rest must be

upper

Can be all

lower case

Lower case allowed, but with

stricter rules than upper case;

each letter in acronym must be

matched by a letter starting a

word in the expansion.

Numbers Spell out or multiply No numbers

Table 1: Properties of acronyms and expansions for four different algorithms

The contextual algorithm scans for an expansion until an-

other acronym pattern is encountered, wherein the old ac-

ronym is forgotten and the new one becomes the source for

matching, or until the expansion is found or fails.

If a digit n is found in the acronym, the acronym receives

some special handling. The algorithm tries replacing the

digit and the following or preceding character with n repe-

titions of the character, as in MMM for 3M. If it cannot

find an expansion for this transformed acronym, it then

tries matching the digit with the spelled out number, as in

three dimensional for 3D. Periods in acronyms are ignored

in looking for expansions.

One of the major problems with the contextual algorithm

was its greediness in trying to match more than one initial

character from expansion terms. This would lead it to ex-

pand NIST as National Institute of Standards, taking the t

from Standards, rather than as National Institute of Stan-

dards and Technology. A second problem, particularly

with two letter acronyms, was the unacceptably high likeli-

hood of finding a sequence of lower case words with a spu-

rious match for the acronym, as in story from for SF.

Contextual-Canonical. The canonical/contextual algorithm

is a modification of the contextual algorithm to address the

above two problems. First, canonical rules were added to

6

constrain when lower case words are accepted for expan-

sions. Only if an acronym/expansion pair is found in a

form in the row labeled Canonical Definition in Table 1, is

a lower case expansion allowed. An expansion found via

the contextual rules must be capitalized, except for noise

words. Second, the algorithm tries conservatively, rather

than greedily, to match multiple characters in an expansion

term, addressing the problem illustrated with NIST, above.

In addition, hyphens and slashes are allowed in acronyms,

and are passed over silently in expanding them. If an ex-

pansion term is hyphenated, such as Real-Time from

CRICCS (Center for Real-Time and Intelligent Complex

Computing Systems), the algorithm can either treat Real-

Time as two words, or as a single word, not requiring a T in

the acronym.

Canonical. The canonical algorithm was derived from the

canonical contextual, filtering the output list so that only

acronym/expansion pairs that were found in canonical form

were retained.

Simple Canonical. The simple canonical algorithm was an

attempt to do away with most of the complexity of the

contextual algorithm and its derivatives. Like the canonical

algorithm, the simple canonical algorithm requires that the

acronym be found in certain textual contexts, but it accepts

fewer canonical patterns for acronym/expansion pairs, and

fewer acronym patterns. The algorithm searches for the

forms in the Canonical Definition row of Table 1 in the

order they are listed.

When checking the validity of a potential expansion, the

algorithm has a few acronym/expansion matching schemes.

Each of these schemes recursively checks shorter expan-

sions first. The matching schemes are performed as fol-

lows:

1) Uppercase strict: each letter in the acronym must be

represented, in order, by an uppercase letter in the ex-

pansion. The expansion must begin with the first letter

of the acronym.

2) Lowercase strict: each letter in the acronym must be

represented, in order, by the first letter of a word in the

expansion. The expansion must begin with the first

letter of the acronym and must not contain uppercase

letters.

3) Uppercase loose: the first word must begin with the

first letter of the acronym and the last word must begin

with a letter in the acronym. This scheme is extremely

loose, and can result in expansions where some letters

in the acronym are not matched at all.

The functions that check shorter expansions first remove

words from the end of the expansion farthest from the ac-

ronym, then the functions call themselves with the modified

expansion. Each function will remove a word from the

beginning of the expansion if the expansion follows the

acronym, or from the end of the expansion if the expansion

precedes the acronym. If the shorter expansion passes the

requirements, the algorithm returns the short expansion

with the acronym as valid. For example, Air Carrier Ac-

cess Act (ACAA) fits the pattern “expansion (ACRO-

NYM).” Since Air Carrier Access Act passes the uppercase

strict test, it is returned as the valid expansion for ACAA.

While Access Act would pass the uppercase loose test for

ACAA, it would not be returned because the uppercase strict

test is performed first.

EVALUATION OF ALGORITHMS

In order to evaluate how well our algorithms correctly find

all the acronyms that are explicitly defined in a set of

documents, we use standard information retrieval measures.

Precision, that is, found correct/found total, measures the

accuracy of extraction, and recall, that is, found cor-

rect/known correct, measures the completeness of the ex-

traction. For this evaluation we started with the 1M set,

that is, the 936,550 military and government web pages that

we processed for the Acrophile web database. From this

set, we selected at random 170 pages that contained text

and manually found all the acronyms with explicit defini-

tions. These documents contain 353 defined acronyms, 10

with an ampersand or slash, and none with numbers or

dashes. Variations in expansions that were accepted as

correct were the omission or addition of an ‘s,’ and differ-

ences in punctuation.

Table 2 shows recall and precision values for the four algo-

rithms on the 353 acronyms in test set and on a subset con-

taining the 328 acronyms of length three or higher.

All Acronyms Length > 2

Precision Recall Precision Recall

Contextual .89 .61 .96 .60

CanCon .87 .84 .92 .84

Canonical .96 .57 .99 .59

Simple .94 .56 .99 .57

Table 2: Recall and precision on 170 sample docs

There were sixteen cases missed by all our algorithms be-

cause the expansion was too far (more than twenty words)

away from the acronym. We do not expect any algorithm to

get these, and other researchers do not include such cases

[15][18]. The results excluding these cases can be seen in

Table 3.

All Acronyms Length > 2

Precision Recall Precision Recall

Contextual .89 .63 .96 .63

CanCon .87 .88 .92 .88

Canonical .96 .60 .99 .61

Simple .94 .59 .99 .60

Table 3: Excluding distances > 20 words

Precision is very high, especially on acronyms longer than

two characters. Recall is considerably higher for the ca-

nonical contextual algorithm than the other three algorithms

but with lower precision. As expected, the two canonical

algorithms have lower recall but higher precision. The

contextual algorithm has lower recall, and slightly higher

7

precision than the canonical contextual algorithm, in a pat-

tern indicating that a preponderance of its errors are on 2

letter acronyms. These results cannot be directly compared

to the .93 recall and .98 precision found for acronyms

longer than 2 characters in [15], and .91 recall and .68 pre-

cision in [18], and roughly .80 recall and .90 precision in

[19], because these studies are based on different text, and

possibly different criteria for correctness.

COMPARISON WITH HAND CRAFTED LISTS

Two web collections were chosen for the comparison. We

tried to use the largest and best quality sites from which we

could easily get and parse lists of acronyms and expan-

sions. We used WWWAAS, the World Wide Web Acro-

nym and Abbreviation server at University College Cork in

Ireland [17] and Acronym Finder, Mountain Data Sys-

tems’s acronym database [1]. From WWWAAS, the

smaller of the two sites, we could extract the entire data-

base by submitting a “.” as a query. The output was con-

verted from HTML to our format with lex. The items were

not added to our database. For Acronym Finder, the larger

site, we were not able to dump the entire database, but we

were able to collect all the expansions for a test set to be

described in the next section.

Size

First, Table 4 shows how our collection compares with the

others in overall size. WWWAAS contains far fewer acro-

nyms and expansions than our set. Acronym Finder con-

tains more acronyms, but fewer expansions than we ex-

tracted from 1M set described above. Processing additional

pages outside of the military and government domain

would undoubtedly find more acronyms.

Algorithm # Acronyms # Exps Avg Exps/Acro

Contextual 44,241 143,620 3.25

CanCon 51,726 161,686 3.13

Canonical 41,832 117,746 2.81

Simple 40,073 119,081 2.97

WWWAAS 12,108 17,753 1.47

Ac.Finder 60,000 127,000 2.17

Table 4: Number of acronyms and expansions extracted
from 1M pages by each algorithm, and at 2 web sites

Evaluation method

To go beyond size and compare the correctness of different

collections is much more difficult than comparing algo-

rithms on a fixed set of data. A major challenge was in

defining “correct.” A usable criterion was to require that we

could find the acronym in use on the web. By taking a

random sample of 200 acronyms from each of our lists, we

were able to determine that virtually all the acronyms in all

the sets were real acronyms, that is, we were able to find

them used as an acronym somewhere on the web. How-

ever, it looked as though some expansions might be errone-

ous, and we devised the following method to evaluate the

accuracy of the set of expansions listed for an acronym.

The test samples of acronyms and expansions. We ini-

tially selected a sample of 55 acronyms for evaluating ex-

pansions. Forty acronyms were chosen to mimic the distri-

bution of acronym length found in the small Wall Street

Journal collection. Acronyms with length 2, 3, and 4 were

generated randomly, while others were selected at random

from a longer list of acronyms of that type. We added 5

acronyms containing numbers, 5 known to have a large

number of expansions, and 5 with dashes or slashes.

For each of the 55 acronyms, we collected a pool of expan-

sions from the two reference databases on the Web, and

from our four algorithms, run on the 1M set. We also

added all the additional expansions that came up in the

crawling experiments discussed below. We later found that

for 10 of the 55 acronyms, none of the systems found any

expansions. These 10 were removed from the evaluation,

leaving 45 acronyms in the test set.
1

Criteria for correct expansions. Our criterion for a correct

expansion was similar to that for a correct acronym, that is,

that we could find at least one example on the web defining

that expansion for that acronym. We hired evaluators to

examine pages returned from an AltaVista [2] search for a

query consisting of the acronym and the expansion. If they

could find the acronym defined with the target expansion

on any web page, using a list of explicitly defined criteria,

it was accepted as correct. Otherwise, it was incorrect.

Scoring. We defined recall for this context as the number of

correct expansions for an acronym found by one algorithm

or system divided by the number of known correct expan-

sions for that acronym found by all algorithms or systems

evaluated. Similarly, we defined precision as the number

of correct expansions for an acronym found by one algo-

rithm or system, divided by the number of expansions, cor-

rect or incorrect, found by that algorithm or system. We

then averaged across acronyms.

To obtain a range of recall/precision points, we ranked the

expansions by a confidence score, which was a function of

how many times the expansion was found for an acronym,

and another factor which we found highly related to reli-

ability – whether an occurrence is in one of the two canoni-

cal forms “expansion (ACRONYM)” or “ACRONYM (ex-

pansion)”. Pilot research with the 1989 Wall Street Journal

corpus showed that acronym/expansion pairs extracted

from this frame were about five times more likely to be

correct than pairs extracted from any other form. There-

fore, we gave occurrences in this form more weight than

1 Several patterns in our results make us doubt that our test set of

45 acronym is representative. First, the average number of

expansions per acronym is much higher in the test set than in the

complete set. We are in the process of judging a better corpus of

200 acronyms. This list includes most of the 45 acronyms from

the present test set, plus acronyms chosen randomly from a list of

acronyms found in the evaluated systems. These judgments will

allow a more reliable evaluation.

8

occurrences in other forms by counting them as five occur-

rences.

An acronym’s expansion with a count of 1 in a very large

corpus is somewhat likely to be erroneous. Expansions

with a count of 10 are much more likely to be correct and

expansions with counts of 30 are even more likely to be

correct. The higher the count we require, the better accu-

racy (precision) we can obtain. However, requiring higher

counts also causes more legitimate expansions be missed.

We can therefore get higher precision by requiring some

threshold number of counts in order to accept an expansion

for an acronym, but at the cost of lower recall. By varying

this threshold, we obtain a range of recall-precision points

for our evaluation below. The confidence scores are also

used in the online search system, but they are transformed

to C/(C+2), in order to range between 0 and 1.

Note that weighting the count does not bias our measure-

ments of recall and precision, it only affects how acronyms

are grouped by confidence to get a range of recall/precision

values.

Table 5 shows the total number of expansions found for the

45 acronym test set by each of the 4 tested algorithms and

the two web sites. It also shows recall and precision. The

contextual and canonical/contextual algorithms find the

largest number of expansions for the test acronyms. Con-

sistent with the analysis on the 170 documents, the simple

and canonical algorithms have higher precision and lower

recall. Acronym Finder has performance similar to our

algorithms. A more complete picture of the situation can

be seen in Figure 3.

Algorithm # Exps Precision Recall

Contextual 1172 .75 .28

CanCon 1055 .76 .34

Canonical 573 .79 .21

Simple 344 .81 .25

WWWAAS 90 .84 .09

Acronym Finder 450 .76 .31

Table 5: Number of expansions, precision, and recall for
each system, measured on 45 test acronyms

Figure 3 shows recall and precision curves for the four al-

gorithms, evaluated on the 45 test acronyms whose expan-

sions were all judged. The points on each curve show re-

call and precision at thresholds of 1, 2, 3, 4, 5, 10, 15, 20,

25, and 30, computed as described above. The recall and

precision values in Table 5 correspond to the threshold 1

points on Figure 3. The graph shows that for all algo-

rithms, it is possible to attain precision values in the .95-.97

range, but only at very low recall levels, that is, for the ac-

ronyms we have the most confidence in. The worst-per-

forming algorithm is the contextual, with substantially

lower values than the other values all along the recall preci-

sion curve. The canonical/contextual algorithm and the

simple algorithm perform the best across most of the curve,

except at the high recall end, where the canoni-

cal/contextual algorithm attains higher recall. In other

words, the contextual rules of the canonical/contextual al-

gorithm allow us to find more acronyms and/or expansions

than we can find using canonical rules alone, but this non-

canonical set also has more errors in it. The canonical al-

gorithm falls between simple canonical and contextual al-

gorithms in recall and precision.

The unconnected points on Figure 3 show the recall and

precision values we measured for the handcrafted web sites,

on the 45 test acronyms. Each site contributes a single point

to the graph rather than a curve, because we have no way to

vary a threshold.

WWWAAS, the smaller site, falls at the low end of recall,

with a recall of .09 and precision of .84. Although precision

(.84) appears good, compared to the other values in Table 5

(all in the .70’s), we see from the more complete recall-pre-

cision curves that this value is comparable to our worst-per-

forming algorithm – the contextual – at a threshold of 3.

Our best algorithm, the canonical/contextual, has recall of

.25 at the comparable value of precision, and precision of

.96 at the comparable recall level.

Acronym Finder, the larger site, had recall and precision

values of .26 and .76, comparable to our best algorithm, the

canonical/contextual, at a threshold of 1. These results con-

firm the hypothesis that our algorithms can create a corpus

of acronyms and expansions that is comparable in quality to

the best manually built site that we could evaluate.

Note that precision and especially recall values here are

substantially lower than what we found in evaluating the

extraction from 170 web pages. The difference is due to

the different pool of expansions which were considered

correct. We are certain that some of the acronym expan-

sions we counted as incorrect were in fact correct, but were

not found in the AltaVista search, resulting in lower preci-

sion.

Figure 3: Recall and Precision on 45-acronym test

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

P
re

c
is

io
n

Contextual

Canonical/Contextual

Simple

Canonical

Acronym Finder

WWWAAS

≈

9

The pool of correct expansions has an even larger effect in

reducing recall. An expansion is counted as missed if any

other evaluated system found the expansion, whether or not

it was present in the set of documents input to the acronym

extractors. This makes the set of correct expansions a

moving target that grows the more we search. The crawl-

ing experiments below show that the same acronyms are

used in many domains, and if we go beyond our military

and government 1M set, more expansions will be found.

PROCESSING ADDITIONAL PAGES

This analysis addresses the extent to which we can find

more expansions by searching the web for acronyms. We

used the 55 test acronyms, submitted them as queries to

AltaVista, and ran our extraction algorithms on the top 30

and 100 pages that were returned for each query. This pro-

cess found many new expansions for the target acronyms.

As an illustrative example, Table 6 shows all the expan-

sions for the acronym EWI, as found by all the systems

mentioned. WWWAAS does not appear in the table be-

cause it did not include the acronym EWI. The other man-

ual site, Acronym Finder (AF) had three expansions listed,

two correct and one incorrect. All four of our algorithms,

run on the 1 million web pages, found the two correct ex-

pansions for EWI listed by Acronym Finder, and did not get

the incorrect expansion. In addition, our algorithms found

a third correct expansion, and all but the contextual algo-

rithm found another incorrect expansion. The additional

pages found by searching and crawling more than doubled

the number of correct expansions. When 30 pages were

processed for each acronym query, four new correct expan-

sions and one incorrect expansion were found. When 100

pages were processed for each acronym query, another two

correct expansions were found.

Expansion

A
F

C
o
n

C
a
n

C
o

n

C
a
n

S
im

p
le

1
M

+
3
0

1
M

+
1
0

0

Edison Welding Institute + + + + + + +

Education With Industry + + + + + + +

Electronic Warfare Intelligence -

Equal Width Increment + + + + + +
Explosive Waste Incinerator - - - - -
Eijkman Winkler Institute + +
Elliott Wave International + +
European Wireless Institute + +
European Web Index + +
Edison Welding - -
Electro World Inc +

Executive Women International +

Table 6: Expansions for acronym EWI

In addition to finding more expansions for the target acro-

nyms, extraction from the crawled pages found some new

acronyms that had not been extracted before. For 1M+30,

318 new acronyms were found, and for 1M+100, 1120 new

acronyms were found. None of these were the 55 acronyms

targeted by the search.

Figure 4 shows the recall precision curves for the canonical

contextual algorithm, processing 30 crawled pages per ac-

ronym in addition to the basic 1M set, and 100 additional

crawled pages per acronym, along with the old curve for

the 1M set. This targeted crawling results in a huge in-

crease in recall, without dropping precision except at the

very highest recall levels – thresholds of 1. At a threshold

of 2, precision (.75) is not appreciably lower than the preci-

sion for the 1M pages alone at a threshold of 1 (.76), but

recall has almost doubled from .28 to .54.

As a control, we also measured the performance of the ca-

nonical contextual algorithm on comparably sized sets,

consisting of the 1M set with the addition of either

55x30=1650, or 55x100=5500 randomly selected docu-

ments. We did not include these results on the graph in

Figure 4, however. The results were so similar to that of

the 1M set alone that they could not be seen separately on

the graph.

CONCLUSIONS

We were able to build in a largely automated manner, a

searchable dictionary of acronyms and expansions which

rivals the quality of a good manually constructed dictionary

of acronyms, by extracting acronyms and expansions from

a large corpus of static web pages. We showed that we can

increase the precision (accuracy) of our extraction by rais-

ing a threshold. Although this results in lower recall (cov-

erage), we can increase recall by processing more pages.

We can increase recall dramatically without loss of preci-

sion by processing web pages that are returned by a search

for the acronyms that we have already found. This two-

stage strategy results in a collection that is superior to any

Figure 4: Adding source pages by searching for

target acronyms

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

P
re

c
is

io
n

1M

1M+30

1M+100

≈

10

manually built database, and it can be kept up-to-date in an

automated manner.

FUTURE WORK
Dynamic Extraction

Given the great efficiency and success of finding additional

expansions for an acronym by searching for the acronym

and extracting expansions from the top 100 web pages re-

turned, we are planning to add a facility to do this online.

This will not replace the static database, however. There

are some acronyms which spell existing words (IS, TIDES)

for which the acronym may not occur in the top 100 pages

returned from a search.

We would like to have the system automatically crawl for

pages containing known acronyms, to continue to find new

expansions for our acronyms, and to discover new acro-

nyms. We have found that our confidence scores get dis-

torted by this process because the same web pages may be

processed many times. Presently we remove duplicate

URLs from the set of pages for one acronym, but we do not

keep a master list to prevent processing the same page

again in a later run.

HTML Parsing

Our simple method of ignoring material inside HTML tags

could be improved. We lose several occurrences of acro-

nym/expansion pairs defined within the ALT property of

 tags, as in: <IMG SRC="image.gif" HEIGHT="50"

WIDTH="50" ALT="Library of Congress (LOC)" >.

We also do not take advantage of the <ACRONYM> and

<ABBR> tags, which allow a web author to declare acro-

nyms and abbreviations as follows: <ACRONYM ti-

tle="Rapid Eye Movement"> REM </ACRONYM> or

<ABBR title="Y2K"> Year 2000</ABBR>. These tags are

not yet in common usage, but if they become more widely

used, we would want our extraction algorithms to be able to

extract acronyms and abbreviations from them.

ACKNOWLEDGMENTS

This material is based on work supported in part by the

National Science Foundation, Library of Congress and De-

partment of Commerce under cooperative agreement num-

bers EEC-9209623 and EIA-9820309. Any opinions,

findings and conclusions or recommendations expressed in

this material are the authors and do not necessarily reflect

those of the sponsor.

We thank Mike Molloy for information about Acronym

Finder, and Morris Hirsch for an early version of the con-

textual algorithm. Thanks also to Don Byrd for his com-

ments on a draft of this paper.

REFERENCES

1. Acronym Finder. http://www.AcronymFinder.com.

2. AltaVista. http://www.altavista.com.

3. The American Heritage College Dictionary, Third Edi-

tion. Boston: Houghton Mifflin Company, 1993.

4. Atomic Harvester.

http://www.desktop-server.com/atomic.htm.

5. Dog fanciers acronym list. http://mx.nsu.ru/FAQ/F-dogs-

acronym-list/Q0-0.html.

6. EmailSiphon is known by the evidence it leaves when it

crawls archives for email addresses, purportedly for

spamming purposes. See discussion in

http://archives.list-universe.com/list-moderators/9802.

7. Fellbaum, Christiane. WordNet: An Electronic Lexical

Database, Cambridge: MIT Press, 1998.

8. Giles, C. Lee, , Bollacker, Kurt D., and Lawrence, Steve.

CiteSeer An Automatic Citation Indexing System, in

Digital Libraries 98, New York: ACM Press, 1998, pp.

89-98.

9. Hearst, Marti. Automatic Acquisition of Hyponyms

from Large Text Corpora, in Proceedings of the Four-

teenth International Conference on Computational

Linguistics (Nantes, France, July 1992).

10. Mad Cow disease list.

http://www.maff.gov.uk/animalh/ bse/glossary.html.

11. MetaCrawler. http://www.metacrawler.com.

12. Molloy, Michael (Acronym Finder), personal commu-

nication. February, 2000.

13. Opaui Guide to Lists of Acronyms, Abbreviations, and

Initialisms (http://spin.com.mx/~smarin/acro.html).

14. ResearchIndex. http://www.researchindex.com.

15. Taghva, Kazem, and Gilbreth, Jeff. Recognizing Ac-

ronyms and their Definitions. Technical Report 95-03,

ISRI (Information Science Research Institute) UNLV,

June, 1995. http://www.isri.unlv.edu/ir/publica-

tions/Taghva95-03.ps

16. Tkach, Daniel, ed. Text Mining Technology: Turning

Information into Knowledge. IBM White Paper, 1998.

http://www.software.ibm.com/data/miner/fortext/down

load/whiteweb.html.

17. World Wide Web Acronym and Abbreviation Server

(WWWAAS). http://www.ucc.ie/cgi-bin/acronym.

18. Yeates, Stuart. Automatic extraction of acronyms from

text. In Proceedings of the Third New Zealand Com-

puter Science Research Students’ Conference. Hamil-

ton, New Zealand, April 1999, University of Waikato,

pages 117-124. http://www.cs.waikato.ac.nz/~syeates/-

pubs/acroPaper.ps.gz

19. Yeates, Stuart, Bainbridge, David, and Witten, Ian.
Using Compression to identify acronyms in text.

Submitted to Data Compression Conference,

DCC2000.

