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ABSTRACT

ON-LINE NEW EVENT DETECTION, CLUSTERING,
AND TRACKING

SEPTEMBER 1999

RON PAPKA
B.Sc., COLUMBIA UNIVERSITY
M.Sc., BROWN UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan and Professor W. Bruce Croft

In this work, we discuss and evaluate solutions to text classification problems as-
sociated with the events that are reported in on-line sources of news. We present
solutions to three related classification problems: new event detection, event cluster-
ing, and event tracking.

The primary focus of this thesis is new event detection, where the goal is to
identify news stories that have not previously been reported, in a stream of broadcast
news comprising radio, television, and newswire. We present an algorithm for new
event detection, and analyze the effects of incorporating domain properties into the
classification algorithm. We explore a solution that models the temporal relationship
between news stories, and investigate the use of proper noun phrase extraction to

capture the who, what, when, and where contained in news. Our results for new

vi



event detection suggest that previous approaches to document clustering provide a
good basis for an approach to new event detection, and that further improvements
to classification accuracy are obtained when the domain properties of broadcast news
are modeled.

New event detection is related to the problem of event clustering, where the goal
is to group stories that discuss the same event. We investigate on-line clustering as an
approach to new event detection, and re-evaluate existing cluster comparison strate-
gies previously used for document retrieval. Our results suggest that these strategies
produce different groupings of events, and that the on-line single-link strategy ex-
tended with a model for domain properties is faster and more effective than other
approaches.

In this dissertation, we explore several text representation issues in the context of
event tracking, where a classifier for an event is formulated from one or more sample
stories. The classifier is used to monitor the subsequent news stream for documents
related to the event. We discuss different approaches to classifier formulation, and
compare feature selection and weight-learning steps as extensions to a baseline process
used for new event detection. In addition, we evaluate an unsupervised adaptive
approach to event tracking that captures the property of event evolution in broadcast
news.

The implementations of our approaches to on-line new event detection, clustering,
and tracking have been evaluated in comparison to other systems, and we present
cross-system comparisons for all three classification problems. In general, the results

using our approaches compared favorably to other approaches for each problem.
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CHAPTER 1
INTRODUCTION

In this dissertation, we discuss and evaluate solutions to text-based document
classification problems associated with events reported in on-line sources of news.
We present solutions to three related classification problems which we refer to as
new event detection, event clustering, and event tracking. These problems comprise
the underlying tasks of an event detection system that classifies and organizes news
stories for a user interested in monitoring world-wide events from several sources of
on-line news. In addition to newswire sources, we apply our approaches to broadcast
news, which includes data from television and radio transmissions.

Addressing the problem of new event detection is the main focus of this disserta-
tion. The goal of the task is to identify stories that discuss new events which have not
been previously reported. For example, a new event detection system should alert the
user to the first story about a particular airplane crash, the inception of a political
crisis, or the initial rumor of a corporate merger transaction. We view this problem
as an instance of unsupervised binary classification where the system makes a yes/no
decision about the novelty of each story without assistance from a user or access to
labeled training instances. Should the user have a need to monitor a particular new
event over time, an event tracking process can be initiated with the document dis-
cussing the new event. The goal of the tracking task is to retrieve subsequent news
stories that pertain to the event of interest.

Our approach to the problem of new event detection is related to the problem

of on-line event clustering, in which news documents are grouped together if they



discuss the same news event. The new event detection process finds the stories with
which to seed a document clustering algorithm. We posit that single-pass clustering
using existing cluster comparison strategies is a good baseline approach to new event
detection. The work described here extends clustering approaches with methodologies
for incorporating the properties of broadcast news into an existing framework. An
analysis of our data suggests that our approaches improve classification accuracy for
both new event detection and event clustering.

The primary motivation for this work arose from a project called Topic Detec-
tion and Tracking (TDT). This joint project, originally including DARPA, Carnegie
Mellon University, Dragon Systems, and the University of Massachusetts, set out to
explore issues related to detecting and tracking events in broadcast news. The results
of the first year’s efforts were reported at a workshop in October 1997 [84]. The
second phase of TDT (TDT2) ended in March 1999 with an evaluation presented at
the DARPA Broadcast News Workshop [59]. The research focus of TDT2 was event
detection and tracking problems. New event detection has been re-introduced in the
third phase of TDT, where it is defined as the problem of first story detection. New
event detection appears to be of interest to a growing number of researchers, and
results are expected from several new contributing groups. One of the purposes of
this manuscript is to establish baseline evaluation measures with which to compare

TDT classification tasks.

1.1 What is an Event?

Without a set of rules, different individuals will have different a prior: notions
of what constitutes an event. The definition of event used in the following work is
based on the rules outlined by the TDT research initiative, and we use the term
event to avoid overloading the notion of topic explored by related query-based news

classification research using Text REtrieval Conference (TREC) data [34].



One of the first issues explored in the TDT pilot study was the meaning of event,
which was defined as some unique thing that happens at some point in time [5]. The
property of time is what distinguishes an event from the more general topic. For
example, “computer virus detected at British Telecom, March 3, 1993,” is consid-
ered an event, whereas “computer virus outbreaks” is the general topic comprising
occurrences of this type of event. The definition can be extended to include the spa-
tial component of an event, namely location. For example, “The 1995 earthquake in
Kobe, Japan” is a description of an event that uses this property.

A more recent taxonomy used in TDT2 has the following definitions [28]:
topic A seminal event or activity along with all directly related events and activities.

event Something that happens at some specific time and place. (Specific elections,

accidents, crimes, and natural disasters are examples of events.)

activity A connected set of actions that have a common focus or purpose. (Specific

campaigns, investigations, and disaster relief efforts are examples of activities.)

Other definitions for events, such as Popper’s [62], suggest that “an airplane crash”
should be considered an event, while “the crash of US Air flight 427” should be
considered an occurrence. Popper’s definitions are similar to those used by other
scientists and philosophers who have reasoned that, in a metaphysical sense, events
occur when there is a conflict between physical objects. Event-related philosophy
concludes that two events are the same if they have the same spatio-temporal history,
and that events are identical if they have the same causes and effects. Lombard [50]
discusses why these properties are not sufficient conditions for event identity. He
presents a model for events that includes the aspect of change, which he defines as
“the addition or loss of properties.” His theory of change applies to events appearing
in real-time news, because the content of documents pertaining to the same event

changes over time as the event evolves.



The motivation for the approaches described here is to model event identity in
broadcast news. A system that has the capability of modeling the properties of
event identity and determines when two events are the same can be used to perform
new event detection. For example, using an event identity process, the system could
determine for the current document whether it contains an event identical to one
appearing in any previously processed document. If so, the system would not detect
a new event; otherwise it would. The event identity process could also be used to
detect documents containing the same information, which is useful for eliminating
duplicate news stories from different news sources.

From a journalist’s perspective, a news story about an event will typically specify
1) when the event occurred; 2) who was involved; 3) where it took place; 4) how
it happened; and 5) the impact, significance, or consequence of the event for the
intended audience [53]. This information is what the journalist’s readers or listeners
are expecting. Some of these properties of news reporting are relatively simple to
incorporate into a solution to new event detection. For example, the proper nouns
that convey the who, what, when, and where of an event can be identified using natural
language parsing and extraction techniques. Other properties, such as cause, effect,
significance, and tmpact, are more difficult to identify and model.

As an event evolves, many of its properties are either not initially known, or
are assumed to be known by the audience, and therefore they are not necessarily
explicit in news text. For example, we found broadcast news coverage about the
1995 earthquake in Kobe, Japan, which referred to the event as “the worst disaster
in Japan’s history,” with no explicit mention of Kobe or the fact that the story was
about an earthquake.

In addition, the appearance of new lexical features for an event should be expected
as the event evolves. Consider the temporal histogram of documents for the 1995

Oklahoma City bombing event depicted in Figure 1.1. After the blast, most of the
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Figure 1.1. Event Evolution: Oklahoma City Bombing

coverage pertained to the rescue efforts at the disaster site. As time passed, the
terrorists were apprehended, and the news coverage began to focus on their trials.
The terrorists’ names are distinguishing lexical features that are useful for classifying
this event. However, they were not known when the event first occurred, and became
available only as the event evolved.

In general, the words used to describe an event will differ among documents de-
scribing the same event. The inclusion and exclusion of lexical features suggests that
simple word-matching approaches will need several algorithmic extensions to work

well for event-based text classification. Our data indicate that some properties of



broadcast news, such as time, can be modeled inexpensively. Event evolution and
proper nouns that include the who, what, when, and where features of news stories
require relatively expensive processes, but we find these properties of news important
to model. In the following chapters, we present experiments and results that discuss

the effectiveness of modeling these properties for on-line news classification tasks.

1.2 Applications for Event Detection

News represents an information domain ideally suited for the study of new event
detection, and we view new event detection as part of a larger process for organizing
news. News is temporally ordered, discusses world-wide events in different languages,
and contains video, audio, and text signals that could be combined into many useful
applications. Our goal for new event detection in the on-line broadcast news domain
is to determine when discussion of a new event first appears on a textual stream of
news.

There are several practical applications that could arise from a good solution to
new event detection. This task is currently performed manually by financial traders,
media analysts, and on-line digital news editors who have the task of collecting,
interpreting, and presenting news from multiple news sources. In addition, a system
that could organize events automatically would be useful for financial and world
news applications where decision-making processes are based on new events and the
evolution of existing events.

The diagram in Figure 1.2 depicts the environment we envision for combining the
event classification problems discussed in this work. Broadcast news signals from
various sources are monitored by the system. When the source is radio or television,
an Automatic Speech Recognition (ASR) process converts the audio signal to text
[93], then a segmentation process finds document boundaries [61, 8], which delineate

complete news stories. The detection system monitors the document stream and
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alerts the user to new events. If a document discussing a new event is of interest to
the user, a tracking process is instantiated by creating a classifier from the contents
of the document specified by the user. The classifier is then used to make on-line
decisions about subsequent documents on the stream.

The new event detection system has two on-line modes of operation: immediate
and delayed. In immediate mode, a strict real-time application is assumed, and
the system indicates whether the current document contains or does not contain
discussion of a new event before looking at the next document. In delayed mode,

classification decisions are deferred for a prespecified time interval. For example, the



system could collect news throughout the day and provide the user with new events at
the end of the day. In this thesis, we focus on solutions to immediate mode operation,
and plan to study the effects of delay in future work.

Depending on the amount of user involvement, several extensions to the basic
processes described here can be incorporated in a supervised process where the user
provides relevance feedback on system classification decisions. In addition, some
users may already know the event they want to track, and can provide some natural
language description or information specification that can be used to instantiate the
tracking process. Other users may want to create taxonomies or hierarchies of news
by related events. Ideally, our system could do this automatically, and return an
annotated organization of events using extensions of the clustering process. The
combination of event classification problems in this context becomes an information
organization task where the goal is to detect documents discussing new events and
track documents related to the user’s needs.

In what follows, we implement and evaluate several of the core components of
the system described above using the TDT task definitions, data, and evaluation

methodologies, which are explained in subsequent chapters.

1.3 Research Contributions

This research describes effective techniques for new event detection, event clus-
tering, and event tracking using extensions to the Inquery retrieval system [12]. We
study an Inquery representation for text documents and on-line classifiers, and evalu-
ate their behavior and effectiveness on these three related classification problems. In
doing so, the research in this dissertation furthers the understanding of issues relating

to document classification in general.



1.3.1 New Event Detection

The problem of new event detection has not been the focus of research prior to
the TDT Pilot Study. The results contained in this manuscript are among the first
to be reported for the problem, which is now referred to as “first story detection” in
TDT.

Our main contributions to new event detection include:
e the first thorough investigation of the problem of new event detection;
e the introduction of a classification algorithm for new event detection;

e the introduction of extensions to previously studied text representations that

explicitly model the properties of broadcast news;

e an analysis of on-line clustering approaches to new event detection that provides

baseline effectiveness measures for previously used cluster comparison strategies.

We present evidence that suggests our single-pass algorithm is a good basis for
new event detection. We find that modeling the properties of broadcast news as

extensions to our approach results in improved effectiveness.

1.3.2 Clustering

In this dissertation, we test previous approaches to document clustering and eval-
uate their effectiveness for on-line event clustering. In general, clustering is a well
studied problem in various fields. Most of the previous approaches for text are based
on retrospective clustering, where all the data are available before clustering be-
gins. Here, we apply retrospective approaches to an on-line environment. We re-
evaluate single-link, average-link, and complete-link hierarchical agglomerative clus-
tering strategies, but use them in a single-pass (incremental) clustering context, in
which a cluster is determined for the current document before looking at the next

document.



Our main contributions to the task of event clustering include:

e the introduction of a classifier-based approach to on-line clustering;

e the introduction of a threshold model that incorporates the temporal relation-

ship between news stories; and

e a comprehensive analysis of single-pass clustering approaches for the domain of

broadcast news.

Our results are based on evaluating event clustering as the TDT detection task,
and they suggest that when using automatic transcriptions of broadcast news, an
on-line single-pass single-link clustering strategy extended with a time component is

more effective than other cluster comparison strategies.

1.3.3 Tracking

The representation we used for new event detection is derived from a classifier
formulation process previously used for supervised text classification problems such
as filtering and routing, where a user supplies a prespecified information request
or query. We test previous approaches to classifier formulation through relevance
feedback, but apply them to the TDT tracking problem. Much of the related work
in this area is based on news story classification by topic. Here we evaluate previous
approaches, and apply them to on-line event-based classification.

Our main contributions to tracking include:

e a further understanding of feature selection, feature weight assignment, and

threshold estimation issues for on-line environments;

e the introduction of a theoretical framework for estimating classifier thresholds;

and

e a comparative analysis of static and adaptive query formulation techniques.
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A major focus of our tracking experiments is to evaluate the impact of relatively
few training samples on classification accuracy. In addition, we compare supervised
and unsupervised approaches to the TDT tracking problem. Our results suggest that
it is possible to find stable parameters for our representation using statistical and

learning techniques.

1.4 Dissertation Overview

The event classification problems are presented in the reverse order from which
they appear in the title of this dissertation. Our work on event tracking is discussed
first, followed by clustering, and then by new event detection. In the next chapter, we
discuss the research that strongly influences our approaches to these three problems.
The previous literature suggests that text representations applied to supervised and
unsupervised text classification could be used for event-based classification as well.
In Chapter 3 we describe the TDT corpora and evaluation methodologies we used to
explore this hypothesis which is tested in subsequent chapters.

We investigate several text representation issues applicable to new event detection
using the TDT tracking environment. We present our solutions and results for the
tracking problem in Chapter 4, where the effectiveness of our approaches to classifier
formulation is evaluated. In particular, we test the impact of multiword classifier fea-
tures and supervised weight learning algorithms. We also test unsupervised adaptive
approaches to the tracking problem, which capture the property of event evolution in
broadcast news.

Classification accuracy is dependent on the effectiveness of parameter and thresh-
old estimation techniques. In Chapter 5, we present a theoretical framework for
threshold estimation. Two techniques that learn threshold estimator bias are dis-
cussed that improve tracking classification accuracy, and result in a further under-

standing of thresholding issues for other on-line text classification problems.
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Our approach to new event detection is related to the problem of on-line clus-
tering, and we explore this relationship in Chapter 6. We evaluate different cluster
comparison strategies and their effectiveness at grouping stories that discuss the same
event. In addition, we describe our method for including the temporal relationship
between documents in the classification model, and evaluate our implementation in
a cross-system comparison with other systems.

In Chapter 7, we present our algorithm for new event detection. The results for
retrospective and predictive experiments are evaluated. One focus of these experi-
ments is to evaluate the effectiveness of on-line clustering as the basis for a solution to
new event detection. In addition, we describe a method for identifying proper noun
phrases in news, and evaluate new event detection using this data. Our algorithm is
also compared to two other systems evaluated as part of the TDT Pilot Study [84].

Our conclusions and plans for future work are discussed in Chapters 8 and 9.

12



CHAPTER 2
RELATED WORK

The main motivation of this dissertation is to test the hypothesis that repre-
sentations for supervised and unsupervised text classification found in the field of
Information Retrieval can be extended to a solution for new event detection. We
explore methods for creating text classifiers in addition to approaches that extend
the existing text representation with the domain properties of broadcast news.

The representation that we use for our solutions to event classification is borrowed
from the document filtering and routing research, in which a text classifier is con-
structed for each topic of interest to the user. These problems assume a supervised
classification environment, where classifiers are constructed from the lexical features
of the sample documents provided by the user. Each classifier is formulated to re-
trieve documents that are similar in content to the relevant samples provided. We
evaluate approaches to text classifier formulation and apply the same algorithm to
the three event classification problems explored in this dissertation.

In this chapter, we discuss work related to the representation we use for new event
detection, clustering, and tracking. Our approach to these problems is based on both
supervised and unsupervised approaches to text classification. Event tracking is a
supervised classification problem where the users of the system know a prior: the
events they are interested in tracking. Event clustering is an unsupervised problem
where the users are interested in an automatic organization or grouping of documents
by events, for all the events that may exist in the data. The salient distinction

between these environments is that the supervised setting assumes that there exist
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labeled training documents about each event of interest from which to formulate a
classifier, while the unsupervised setting operates without training documents. In
contrast, new event detection is an abstract classification problem in which the goal
is to separate documents that discuss new events from documents discussing existing
events, and the problem is unsupervised because no training documents are required
for processing the data.

Our solution to new event detection is however related to the problem of on-line
document clustering. In particular, one approach to new event detection is to cluster
the document stream, and to return to the user the document in each cluster with
the lowest timestamp. Assuming this approach is effective, the problem of new event
detection becomes an issue of finding a clustering approach that works well in an
on-line environment. In general, the previous approaches to clustering have been
pursued using a retrospective environment where all the documents are available to
the process before clustering begins. In this thesis we focus on an on-line solution to
new event detection, and therefore we re-evaluate some of the prevalent approaches
to retrospective clustering and analyze their effectiveness in an on-line environment.

The remainder of this chapter discusses in more detail the supervised and unsu-
pervised classification problems that have been studied in Information Retrieval. In
particular, we focus on the research that contributes to our solution to new event

detection, which is described in Chapter 7.

2.1 Event-Based Text Classification

Much of the news classification research prior to Topic Detection and Tracking
evaluates classification problems using topics and not events. For example, Hayes
et al. [36] describe a news organization system in which a rule-based approach was
used to categorize 500 news stories into 6 topics. The filtering problem analyzed at

the Text Retrieval Conferences [38] is another example of topic-based news classifica-
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tion. However, some event-based research has been reported prior to the first TDT
workshop [84].

One representation applied to problems in news classification uses a data structure
called frames [77]. The frames are constructed manually and coded for a semantic
organization of text extracted by a natural language parser. Frames contain slots for
structured text that can be organized at different semantic levels. For example, frames
can be coded to understand entire stories [30], or for understanding the constituents
of a person’s name [16].

A frame-based system that attempted to detect events on a newswire was con-
structed by DeJong in the late 1970s. He used pre-specified software objects called
sketchy scripts [26]. Frames and scripts for general news events such as “Vehicular
Accidents” and “Disasters” were constructed by hand. The goal of his system was
to predict which frame needed to be populated. During processing, a frame was
populated with words from the text, and a script was traversed to produce a short
summary of the event. In one UPI newswire experiment, this system chose the cor-
rect script with a classification accuracy of 38% for documents relevant to one of fifty
sketchy scripts. DelJong’s system was primarily a natural language parser, and as
a side effect it detected when a document contained an event; however, it made no
effort to detect new events.

More recent work by Carrick and Watters discussed an application that matched
news stories to photo captions using a frame-based approach modeling proper nouns
[16]. They concluded that using the extracted lexical features in a word matching
approach was nearly as effective as using the same features in their frame-based
approach. Current research related to frame-based representations on news data are
discussed at Message Understanding Conferences (MUC) [55].

Frames are perhaps useful for representing different aspects of the natural language

parse; however, the number of frames and the details of their contents would quickly
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become difficult to maintain as new types of events emerge and existing events evolve
in a news environment. We believe that a better approach to new event detection is
to use unstructured word cooccurrences between documents, coupled with a model

for properties of broadcast news.

2.2 Representations for Supervised Document Classification

Supervised document classification has been studied extensively in Information
Retrieval in the context of categorization, routing, and filtering problems. The un-
derlying problem is to formulate a classifier for a specific topic from a training set
of labeled documents comprising relevant and non-relevant instances. The classifier
is then used to retrieve related documents from a target corpus. What has emerged
as the classifier of choice in this research is a vector of features comprising stemmed
words and associated weights. The classifier’'s words and weights are determined
through statistical and learning techniques utilizing inter- and intra-document word
occurrences in the training data.

The most common document representation is a vector of ¢f-idf weights cooc-
curring with the words in the classifier, and our approach to new event detection is
influenced by this representation. A tfidf feature weight comprises a term frequency
component, tf, and an inverse document frequency component, idf. The ¢f compo-
nent causes the weight to increase as a word’s occurrence in the document increases,
and the idf component causes the weight to decrease as the number of documents in
the collection in which the term occurs increases. The underlying model is that higher
weight is given to features occurring frequently in the document and infrequently in
the collection.

The tf-idf weights are usually applied to stemmed words. For example, occur-
rences of the words “skiing” and “ski” may be conflated into one lexical feature by

a stemming process, which has the tendency to decrease the space requirements for
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a retrieval engine by decreasing the number of unique words in the lexicon. In prac-
tice, classification effectiveness tends to improve when words are stemmed and word
senses are disambiguated. Porter [63] and Krovetz [44] have discussed methods for
these processes. However, results from Harman [33] and Schultz [79] suggest that
stemming does not necessarily improve effectiveness.

Many variations of ¢f-idf formulae have been presented in the literature, several of
which were compiled and tested by Salton and Buckley [74] in the context of ranked-
retrieval, which is described below. In addition, Zobel and Moffat [101] exhaustively
tested several combinations of #f-idf variants. In general, no variant or combination
of tf and idf has been shown to be significantly more effective than all others for doc-
ument retrieval. It is therefore common for systems incorporating this representation

to make use of heuristics and parameters that are determined empirically.

2.2.1 Categorization, Routing, Filtering, and Tracking

One of the earlier supervised classification problems studied in Information Re-
trieval was the task of document categorization. Lewis describes categorization as
“the classification of documents with respect to a set of one or more pre-existing cat-
egories” [47]. In this environment, training documents or descriptions of pre-specified
groups, i.e, categories, are provided. The goal of a categorization system is to deter-
mine to which of the existing categories each document in a corpus belongs.

Specializations within text categorization have emerged, including the problems
of document routing, filtering, and tracking. Experimental results for several research
and commercial systems that simulate routing and filtering are reported in the pro-
ceedings of in Text REtrieval Conferences (TREC) [34]. In TREC, the definitions of
routing and filtering are tightly coupled with a specific evaluation methodology, but
the underlying classification problem is the same for each task. Classifiers for each of

several topics are constructed from a query specification, such as the one in Figure
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2.1, and from a training set of labeled documents. TREC routing is evaluated as a
ranked retrieval task, and thus it skirts automatic classification issues. Recently, the
routing problem has been replaced by the filtering problem [38] which is evaluated
using measures of effectiveness for hard classification decisions.

Over the years, variations of the routing and filtering problems have been tested
that utilize different domains of data, and that vary the use of the query specification.
Recently, TREC included the evaluation of adaptive tracking, which simulates an on-
line classification environment. This task is like filtering, but includes an additional
feedback step in which the system is provided the true label for documents that are
classified with a positive on-topic decision. The feedback can be used to reformulate
the classifier before making decisions about the next document in the testing corpus.

The research based on TREC data often uses thousands of relevant training sam-
ples for each topic. However, it is unlikely that a real user would provide this amount
of relevance feedback. A more realistic environment assumes that the user will pro-
vide only a few documents. The effect of small amounts of user feedback is one of
the focuses of the tracking problem for TDT [5, 4]. We discuss the tracking problem

in more detail in Chapter 4.

2.2.2 Ranked Retrieval Approaches to Document Classification

Perhaps the most important artifact of Information Retrieval is text-based ranked
retrieval. The problem is to assign a similarity score to each document relative to how
well the document satisfies an information request. A list of documents, sorted by
score, is returned to the user, and classification is performed manually. The ranking
of documents is common practice for Internet search engines such as Infoseek, Lycos,
Excite, and Yahoo, where the documents, in this case, are indexed web pages that
the search engines maintain. Commercial and research IR systems such as Inquery

[12], Okapi [68], and SMART [72], use representations that are more complex than
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Domain Law and Government
Topic Welfare Reform

Description Document will report those proposed or enacted changes
to U.S. federal, state, or local welfare laws and regulations which
are propounded as reforms.

Narrative A relevant document will reveal attempts by any U.S. juris-
diction to change the legal or regulatory context of existing welfare
programs, or to add new programs, which are described or labeled
as a reform. For the purposes of this topic, a welfare program
must revolve around a transfer payment for which the recipient had
not previously made contributions, other than through general tax
payments. Examples include General Assistance, Aid for Families
with Dependent Children (AFDC), public housing, Medicaid, in-
come subsidies (rent and fuel subsidies, earned income tax credit,
food stamps, etc.), child care programs (day care subsidies, nutri-
tion programs, Head Start, etc.), and vocational training programs.
NOT relevant are those programs which could be viewed as the
payment of insurance benefits to those who had previously made
contributions (either directly or indirectly through a family mem-
ber or employer), such as Medicare, Social Security survivor’s ben-
efits, and unemployment insurance. Also NOT relevant are those
documents which deal solely with the financing or administration
of existing programs.

Concept(s) welfare recipient, public assistance, family assistance, wel-
fare benefit, relief, welfare reform, welfare dependency, reform
movement, workfare, homeless, welfare culture, general assistance,
aid for families with dependent children, AFDC, Medicaid, earned
income tax credit, food stamps, Head Start, job training, public
housing.

Factor(s) Nationality: U.S.

Definition Welfare program: although the above distinction between a
“pure” transfer payment program and a putative insurance program
is debatable, the distinction is made to focus the data search on
those programs which are clearly in the welfare category, as opposed
to the wide variety of social programs supported by U.S. government
entities.

Figure 2.1. TREC Information Specification
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those used for simple binary word matching searches. Turtle and Croft [87] discuss
the limitations of binary word matching for ranked-retrieval, and they present results
that suggest effectiveness improves from more extensive use of word-cooccurrence
statistics such as those found in tf-idf feature weights described above.

Ranked retrieval naturally extends to automatic document classification. Given
a ranked list of documents, the goal using this approach is to determine a thresh-
old within the ranked list that maximizes some function of user utility or minimizes
some function of cost. The threshold may be global or determined for each classifier.
Supervised learning techniques for determining thresholds have been previously de-
scribed in the literature [48, 56, 13, 100, 69]. When available, the documents that are
known to be relevant or non-relevant to a topic can be used to build a better classi-
fier through expansion, weight-assignment, and threshold selection techniques. Once
obtained, a classifier can be used in an on-line setting to track related documents.
It seems plausible that a better ranking system would lead to a better classification
system; however, choosing an appropriate threshold in a ranked list of documents is
in itself a difficult problem.

The hypothesis that learning and optimization can be used to improve ranked-
retrieval effectiveness and classification accuracy has been suggested by many re-
searchers. Bartell [7] adds significant evidence that suggests this hypothesis is true.
Earlier contributions include a widely used query expansion technique introduced
by Rocchio [70]. This method has been improved using machine learning approaches
(48, 49, 56, 80, 78] and heuristic optimization techniques [10] on very large collections.

Most of the previous work for document classification has focused on supervised
methods that use training documents with known relevance. Since relevance assess-
ments are not always available, it is desirable to improve retrieval effectiveness without
them. A paradigm has emerged in the literature, in which improvements in retrieval

effectiveness are realized by assuming documents or subsets of documents are relevant
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to a request. The assumed relevant documents are sampled from the initial results of a
ranked retrieval process, and they are subsequently used to modify the classifier using
supervised methods. Approaches have been reported that use the top n documents
from an initial search to improve ad hoc ranked retrieval results [22, 68], where n is
chosen using empirical techniques. Improvements over baseline methods have been
reported by Xu and Croft using a query expansion technique called Local Context
Analysis (LCA) [95]. Allan et al. [3] used an adaptive tracking technique similar to
the one presented here, which reformulates classifiers with documents assumed to be

related to the event being tracked.

2.3 Clustering Algorithms

Document clustering is an unsupervised process that groups documents with sim-
ilar content. The problem is often refered to as automatic document classification
because the clustering algorithm is not seeded with labeled training instances or a
description of the groups it should form. Clustering has been studied extensively in
the literature, and the common element among clustering methods is a model of word
cooccurrence that is applicable to text classification problems in general. The cluster-
ing of documents using word cooccurrences between documents results in groups of
documents that contain overlapping sets of words. A historical account of clustering
research is given by van Rijsbergen [89], who also discusses cluster similarity coeffi-
cients applied to simple word matching techniques. Salton [75] discusses clustering
approaches that use tf-idf representations for text. In addition, several probabilisti-
cally based clustering algorithms have been presented, including one by Croft [23],
and more recently by TDT participants in the context of event clustering [5, 92].

Efforts to provide cluster-based organizations for large collections have become a
focus of user-interface research. In this setting, the clusters of a collection are pre-

sented to the user, perhaps based on an initial query, for subsequent manual browsing
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and honing of initial results [85]. These techniques have been incorporated into user
interfaces for search engines on the web. For example, many internet search engines
provide this feature as an alternative method for examining the ranked list of web
pages that result from a search. Kohonen feature maps [43] have been adapted to
display a colorized landscape of topic concentrations, which can be further explored
by the user by drilling in and out of specific topographical locations. Other clustering
algorithms, such as Scatter/Gather, have been incorporated in user-interface visual-
ization techniques by Hearst and Pedersen [37]. In addition, visualization techniques
based on Inquery have been demonstrated by Swan and Allan [82], and Leuski and
Allan [46].

One of the previous applications of document clustering is cluster-based retrieval,
which is a method for improving document retrieval in terms of speed and effectiveness
(73, 75]. When a user’s request is posed to a collection that has been pre-clustered, the
documents that fall into the clusters related to the request are returned to the user.
In addition, if the collection is pre-clustered, searching cluster prototypes instead of
all documents in a collection usually results in a faster search. Assuming that the
contents of the documents in a cluster are related, returning the documents from
clusters closest to the user’s request should have the effect of improving the number
of relevant documents returned. If this approach of pre-clustering works, it would
suggest that the cluster hypothesis holds for the collection, that is, that documents
relevant to the same request tend to cluster [89]. However, the results presented by
Voorhees [90] as well as Croft [22] suggest that some collections and requests benefit
from pre-clustering, while others do not.

There are several issues involved in the actual implementation of a clustering

algorithm, including:
1. What document representation to use?

2. How to incorporate domain knowledge?
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3. What comparison strategies result in useful groupings?
4. How many system parameters are required?
5. Can stable parameters be obtained automatically?

6. Can effectiveness be measured?

In this dissertation, we explore answers to these questions through a review of the
previous approaches to document clustering, as well as by testing the effectiveness of
on-line strategies for the problems of event clustering and new event detection.

Many of the previous approaches to clustering do not contribute to solutions to
these problems. For example, many effective clustering algorithms, such as those
presented by Cutting et al. [24] and Yang [98], assume that all the documents are
available before clustering begins. In the on-line environment, documents are pro-
cessed sequentially, and each document is either placed into an existing cluster or
initiates a new cluster; therefore, many aspects of these retrospective approaches are
not directly applicable to on-line document processing. In addition, several algorithms
have been introduced that require specification of the number of clusters to generate
before the clustering process begins. A review of such approaches is presented by Can
and Ozkarahan [14]. However, these solutions are not applicable to event clustering
since we do not know a priori the number of events that will be encountered during
processing.

The previous work that most influences our approach to new event detection is
based on agglomerative hierarchical clustering, single-pass clustering, and the cluster
comparison strategies that are applicable to clustering methods. In the remainder of

this section, we discuss this research in more detail.
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2.3.1 Agglomerative Hierarchical Clustering

Several issues pertaining to document clustering have been explored using an
agglomerative hierarchical clustering approach. Much of the previous research in
this area is discussed by Willet [94]. Though probabilistic approaches to clustering
have been presented [89, 22, 5, 92|, in practice, much of the research in this area uses
some form of the Vector Space Model, which is described in the context of hierarchical
clustering by Salton [75]. In the Vector Space approach, each document in a collection
has a vector representation where the elements of the vector correspond to the words
in the lexicon of the corpus. It is common for ¢f-idf weights to be used as vector feature
weights for the words that appear in the document, and the similarity between two

documents is often measured as the cosine of the angle between document vectors.

1. Compute all pairwise document-document similarities.
2. Place each of the N documents into its own cluster.

3. Form a new cluster by combining the most similar pair of current
clusters ¢ and j.

4. Update the similarity matrix by deleting the rows and columns
corresponding to ¢ and j.

5. Calculate the entries in the row and column corresponding to the
new cluster resulting from the merge of 7 and j.

6. Repeat steps 3, 4, and 5 until one cluster remains.

Figure 2.2. Hierarchical Agglomerative Clustering Algorithm

The basics steps of the hierarchical clustering algorithm are described in Figure
2.2, which is an adaptation of the algorithm described by Salton [75]. The general

approach is to populate a similarity matrix with an exhaustive pairwise comparison of
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document vector similarity values. Initially, each document is placed its own cluster.
After each pass of the data, the two clusters that are most similar are merged, and the
matrix of similarity values is updated. In practice, the hierarchy can be represented
by a tree structure that is updated after each merge. The process repeats until one
cluster remains, which is represented as the root of the tree. The tree can be searched

bottom-up or top-down by supplying a similarity threshold.

2.3.2 Single-Pass Clustering
Single-pass clustering or incremental clustering is an approach for creating clusters

on-line. The algorithm is discussed by van Rijsbergen [89] and depicted in Figure 2.3.

1. The documents are processed serially.

2. The representation for the first document becomes the cluster rep-
resentative of the first cluster.

3. Each subsequent document is matched against all cluster represen-
tatives existing at its processing time.

4. A given document is assigned to one cluster (or more if overlap is
allowed) according to some similarity measure.

5. When a document is assigned to a cluster, the representative for
that cluster is recomputed.

6. If a document fails a certain similarity test it becomes the cluster
representative of a new cluster.

Figure 2.3. Single-Pass Clustering Algorithm

The single-pass algorithm sequentially processes documents using a pre-specified
order. The current document is compared to all existing clusters, and it is merged with

the most similar cluster if the similarity exceeds a certain threshold. The single-pass
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algorithm results in faster processing than the agglomerative hierarchical clustering
algorithm, even though both approaches have an O(n?) asymptotic running time. The
main disadvantage of the single-pass method is that the effectiveness of the algorithm
is dependent on the order in which documents are processed. This is not a problem

when the data are temporally ordered, because the order is fixed.

2.3.3 Cluster Comparison Strategies

The methodology for comparing a document to a cluster or the contents of two
clusters has the greatest effect on the resulting grouping of documents. For exam-
ple, in the agglomerative hierarchical clustering algorithm (Figure 2.2, page 24), the
similarity matrix is updated by deleting the rows and columns corresponding to the
two clusters that are merged. The new cluster results in a new row and column con-
taining a combination of similarity values to be used in subsequent comparison steps.
The three common strategies for combining similarity values are known as single-link,
complete-link, and group-average (average-link) clustering. Voorhees [90] reviews the
graph-theoretic tie between these strategies and the properties of the clusters each
produces. In general, the three strategies lead to different clusterings.

In the single-link strategy, when clusters ¢ and j are merged into a new cluster, the
similarity value between the new cluster and any existing cluster £ is the maximum
of the similarity values between clusters ¢ and k, and clusters j and k. The complete-
link strategy uses the minimum of the similarity values between clusters ¢ and &, and
clusters 7 and k; and the average-link strategy uses the average of these values. Thus,
the single-link method is based on the most similar pair of values, the complete-link
method uses the least similar pair, and the average-link method is a mixture of the
other approaches.

The single-link, average-link, and complete-link clustering strategies are associ-

ated with retrospective clustering algorithms, and in particular with agglomerative
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hierarchical clustering, where a similarity matrix between all documents is available
before processing begins. In the experiments to follow, we test these strategies in the
context of on-line clustering. Each strategy, when applied to the on-line environment,
results in a different grouping of documents than when the same strategy is applied
to a retrospective environment.

Our on-line approach to event clustering is based on the single-pass algorithm
(Figure 2.3, page 25). The algorithm described above specifies that when a document
is merged into a cluster, the cluster’s prototype is recomputed (step 5). However, our
previous work suggests that this is not a necessary step for an effective single-pass
clustering algorithm for event-based classification [4, 59]. Instead of formulating a
single cluster prototype or classifier, we use separate classifiers for each document,
and compare clusters using single-link, group-average, or complete-link clustering
strategies. In what follows, we refer to these three approaches collectively as cluster
comparison strategies.

In the on-line clustering environment, each document is analyzed sequentially and
is either placed into an existing cluster or initiates a new cluster and thus becomes
a cluster seed. Figure 2.4 illustrates the differences the three comparison strategies
can have on the classification of a document. In the figure, the current document is
C, and six documents have been processed and assigned to clusters R, B, and G.

The first step to the on-line versions of the single-, average-, and complete-link
strategies is to calculate the similarity between document C' and the documents in
each cluster. The next step is to calculate a cluster comparison value between docu-
ment C' and each cluster. The comparison values for this example are listed in sep-
arate boxes at the bottom of Figure 2.4 for each of the three comparison strategies.
With the on-line single-link strategy, the cluster comparison value is the maximum
document similarity in each cluster. Using this strategy, C' is placed in the cluster

containing the document with maximum similarity to C', which is cluster B in Fig-
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ure 2.4. The on-line average-link cluster comparison values are calculated by taking
the average of document similarities in each cluster. In the figure, cluster R has the
highest similarity to document C' using this strategy. In the on-line complete-link
strategy, comparison values are the minimum document similarities in each cluster,

and thus cluster G has the highest similarity using the complete-link approach.

Single-Link Average-Link Complete-Link

B 95 |4—=C B 5 B .05
R 9 R .6 4+ R .1
G 4 g 4 G 4 a4

Figure 2.4. On-line Cluster Comparison Strategies.

In addition to the cluster comparison strategy, a thresholding methodology is
needed that affects the decision for generating a new cluster. If we are to use clustering
for new event detection, then choosing this threshold is important. From the example
in Figure 2.4, choosing a threshold of 0.5 would result in document C' initiating a new
cluster using the on-line complete-link strategy. The other strategies result in cluster

comparison values that are above this threshold, and thus C' is assigned to an existing
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cluster; however, a high enough threshold would result in C' creating a new cluster for
on-line average-link and on-link single-link strategies. We discuss threshold estimation

issues in more detail in Chapters 6 and 7.

2.4 Conclusion

Our literature review finds that the problem of new event detection has not been
studied prior to TDT research efforts. Event-based text classification has been re-
ported in a frame-based context; however, the focus of this work was natural language
processing and news-photo organization, not document classification. In addition, we
found that the related document classification research using the domain of news is
based on the notion of topics, not events.

The work that most influences our approach to new event detection can be found
in the areas of ranked-retrieval and document clustering. The text representation for
ranked-retrieval and document clustering that has emerged in the research uses an
underlying model of word-cooccurrence. The lexical features extracted from docu-
ments are represented as tf-idf weights. The success of this approach suggests that it
may be useful as a representation for new event detection. In addition, an approach
to new event detection can be derived from the basic step of an on-line document
clustering algorithm. In particular, a new event is detected whenever a new cluster is
formed. Therefore, we explore document clustering using a if-¢df representation and
test whether this approach will lead to a good solution for new event detection.

In addition to a representation for text, there are many aspects to clustering
algorithms. Of primary concern to our work is the manner in which documents are
processed, and the way a document is compared to existing clusters. The definition
of on-line new event detection makes a single-pass clustering approach the logical
starting point for a solution to new event detection. The work of Voorhees [90] and

Willet [94] suggests that different cluster comparison strategies give rise to different
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groupings of documents. Since we can not assume that previous comparison methods
which worked well for retrospective clustering will work equally well for the on-line
environment, it will be important to test different clustering comparison strategies in
the context of new event detection.

In the experiments to follow, we use a single-pass algorithm as a basis for new
event detection, and test the different cluster comparison strategies and their impact
on classification accuracy. One approach to new event detection is to cluster news
stories and return to the user the earliest story in each cluster, that is, the one with
the lowest timestamp. Using this approach, the system would classify a document
as containing discussion of a new event if the document becomes the seed of a new
cluster. However, the data from our experiments suggest that new event detection
is not necessarily the by-product of a document clustering algorithm. It will become
evident that our solution to new event detection is a process for determining cluster
seeds, but that the clustering of documents is not a fundamental function of our

approach.
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CHAPTER 3

EXPERIMENTAL DATA AND EVALUATION
METHODOLOGIES

3.1 TDT Corpora

One of the main contributions of the Topic Detection and Tracking (TDT) research
effort is the creation of event-based corpora comprising newswire and broadcast news
sources. The Linguistic Data Consortium ' (LDC), a participant in the project, has
collected, maintained, and annotated several sources of news. The data are the first
corpora to be judged and annotated for events. In addition to event detection and
tracking, other problems such as text segmentation have been evaluated using the
TDT data.

The TDT1 corpus was used for the Pilot Study (TDT1). The corpus comprises
15863 documents evenly distributed between CNN transcribed broadcast news and
Reuters newswire dating from July 1, 1994 to June 30, 1995. During the second
phase of TDT, i.e., TDT2, the LDC collected and annotated 26 weeks of news from
six sources, namely the New York Times News Service, Associated Press Worldstream
News Service, CNN Headline News, ABC World News Tonight, PRI The World, and
VOA English News Programs.

Relevance judgments were assessed for documents pertaining to events using the
definitions in Section 1.1. The judgements in TDT1 were obtained by two independent
groups of assessors and then reconciled through an adjudication process to form a set

of final judgements. Documents were judged on a ternary scale to be non-relevant, to

Thttp:/ /www.ldc.upenn.edu
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have content relevant to the event, or to contain only a brief mention of the event in a
generally non-relevant document. For the 25 events of the TDT1 Corpus, for example,
1132 documents were judged relevant, 250 documents were judged to contain brief
mentions, and 10 documents overlapped between the set of relevant documents and
the set of brief mentions. In what follows, we remove brief mentions from processing
and measure classification using the relevant and non-relevant documents.

The broadcast news sources of the TDT2 corpora are available in parallel audio
and text signal formats. The audio signals were converted to text using Dragon
Systems’ automatic speech recognition (ASR) system [93]. The document boundaries
for the audio sources of the TD'T2 corpora were determined as part of the annotation
effort. Manual text transcriptions, including Closed Caption (CCAP) and Federal
Document Clearing House (FDCH) formats, were also available for the audio data.
In the experiments that follow, we analyze the impact of the ASR technology by
comparing results from corpora using the speech recognition process to those using
the manual Closed Caption process.

The news collected for TDT1 and TDT?2 is divided into four sets, depicted in Table
3.1. Each corpus contains relevance judgments for between 25 and 35 specific events.
The participants in the Pilot Study chose the events in the TDT1 corpus, while
the events for TDT2 were chosen by randomly sampling documents, and selecting
the event in the sampled document if one was actually discussed. The corpora were
exhaustively and independently judged for each selected event; however, all the events

in the data were not identified.

Table 3.1. TDT Corpora.

‘ Corpus ‘ Dates ‘ #-Sources ‘ #-Documents ‘ Words/doc ‘
TDT1 07/01/1994 - 06/30/1995 2 15863 460
TDT2-Train | 01/04/1998 - 02/28/1998 6 20404 341
TDT2-Dev | 03/01/1998 - 04/30/1998 6 20462 314
TDT2-Eval | 05/01/1998 - 06/30/1998 6 22443 333
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Table 3.2. TDT Events.

‘ Corpus ‘ #-Events ‘ #-Rels ‘ ##-Briefs ‘
TDT1 25 1132 250
TDT2-Train 35 4159 1103
TDT2-Dev 25 608 78
TDT2-Eval 34 1883 472

The events that were used in this dissertation are summarized in Table 3.2. A

short description of each event is listed in the Appendix.

3.2 Evaluation

In this section we discuss some of the effectiveness measures that are used to
evaluate Information Retrieval and text classification experiments. We describe the
measures used for TDT, which are based on evaluating text classification as a detection
task. Evaluation is a challenge for text classification, because there does not exist an
agreed-upon single-valued metric that uniquely captures the accuracy of a system.
It is often the case that two or more measures are needed, and efforts to define
combination measures do not necessarily lead to an applicable measure of utility. In
what follows, we assume utility is a function of user satisfaction with the classification
effectiveness of a system.

In practice, utility is constantly changing, and effectiveness requirements for some
information needs require higher utility than for others. For example, consider two
detection systems: a smoke detector and a voice-activated password system. It may
be acceptable for the smoke detector to sound occasionally when no fire exists, but if
an alarm does not sound when there is an actual fire, the system is worse than useless,
it is deadly. In other words, the owner of the smoke detector has a low tolerance for
false-alarms and no tolerance for misses. A user of the voice activated password
system has a different utility function. It may be tolerable for the system to miss

a few times by failing to recognize a voice, but one false identification gives access
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to a potentially harmful intruder. With these caveats in mind, we avoid inventing
yet another measure, and we report several effectiveness measures which have been

previously used for the analysis of text classification experiments.

3.2.1 Effectiveness Measures

Text classification effectiveness is often based on two measures. It is common for
Information Retrieval experiments to be evaluated in terms of recall and precision,
where recall is the percent of relevant instances classified correctly, and precision is
the percent of relevant instances in the set of documents returned to the user.

In TDT, and the work described here, system error rates are used to evaluate text
classification. These errors are system misses and false alarms, and the accuracy of
a system improves when both types of errors decline. In new event detection, misses
occur when the system does not detect a new event, and false alarms occur when
the system indicates a document contains a new event when in truth it does not. In
addition to system error rates, we report the traditional text-retrieval measures of
recall and precision.

It is desirable to have one measure of effectiveness for cross-system comparisons.
Unfortunately, no measure above uniquely determines the overall effectiveness char-
acteristics of a classification system. Several definitions for single-valued measures
have emerged, and are reviewed by van Rijsbergen [89]. One prevalent approach is
to evaluate text classification using F1-Measure [48], which is a combination of re-
call and precision. In TDT2, and in this work, a cost function was used to analyze

detection effectiveness. The general form of the TDT cost function is

Cost = costs, * P(fa) % (1 — P(event)) + cost,, * P(m) * P(event), (3.1)
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where P(fa) is the probability that a system produces a false alarm, i.e., its false alarm
rate, P(m) is the probability that a system produces a miss, i.e., its miss rate, and
P(event) is the prior probability that a document is relevant to an event. In TDT2,
cost was defined with P(event) = 0.02, and the constants costs, = cost,, = 1.0.

The methods for calculating the effectiveness measures for on-line new event de-
tection, clustering, and tracking are the same, and are summarized below using the

following table:

‘ ‘ Relevant ‘ Non-Relevant ‘

Retrieved a b
Not Retrieved c d

where the retrieved documents in the table are those that have been classified by the
system as positive instances of an event, and the relevant documents are those that
have been manually judged relevant to an event. The effectiveness measures used in

this dissertation can be derived from the table as follows:

Recall = R = 2,
a+c
o
Precision = P = prws
__ 2PR
F1-Measure = PR

Miss Rate = M = -£

a+c’

False Alarm Rate = F = and

b
btrd’
Cost =098« F'+0.02x M.

We discuss these measures in the context of specific classification problems in later

chapters.
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3.2.2 Experiment Methodologies

It should be emphasized that we are interested in evaluating a text classification
task, and not a text ranking task. Evaluation for ranking is well understood; how-
ever, there are several biases inherent in the evaluation of classification. One that
is often studied is bias due to estimating effectiveness from data based on optimized
parameters. We acknowledge that there will be bias in classification, and we attempt
to learn estimation biases to improve classification effectiveness.

There are several available methodologies for classification experiments. Most of
them are based on a variant of the holdout method, which is depicted in Figure 3.1.
Our experimental methodology uses this method, with training done on the events
from the TDT1, TDT2-Train, and TDT2-Development corpora, and testing is done
on the events from the TDT2-Evaluation corpus. Since the number of judged events
available is relatively small in comparison to the total number of events that appear
in a corpus, the holdout method is a biased methodology for estimating the expected
effectiveness of an approach in other corpora. This is because a single test using

holdout is biased towards the measures resulting from one set of observations.

1. Divide the documents into training and test sets.
2. Build classifiers using training set documents.

3. Test classifiers on the test set.

4. Evaluate testing results.

Figure 3.1. Holdout Evaluation Methodology.

Kohavi [42] studies the bias inherent in expected (mean) effectiveness using hold-

out and randomization approaches to evaluation. These methods include cross val-
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tdation and bootstrapping. Cross validation, depicted in Figure 3.2, is a repeated
application of the holdout method. We have found this method effective for esti-
mating and selecting stable system parameters. For example, we used leave-one-out
cross-validation in order to avoid overfitting our threshold parameters in previous
experiments on the TDT1 corpus [3].

The general algorithm for k-fold cross-validation is to partition the events into
k sets randomly, and to leave one set out while finding parameters that best fit the
remaining k — 1 sets. The process repeats k iterations, leaving a different set out
each time. A stable parameter would show a constant mean and low variance in

effectiveness when measured over the £ iterations.

1. Divide events into k fixed-sized subsets.

2. Choose k — 1 subsets for training, and leave 1 set out for testing.
3. Create classifiers using training documents from training group.
4. Test classifiers on the documents in the testing group.

5. Repeat steps 2-4 for k iterations.

6. Evaluate testing results from £ experiments.

Figure 3.2. k-fold Cross Validation Evaluation Methodology.

We also tested the bootstrapping methodology for reducing estimation bias [21,
42]. Bootstrapping is a random sampling approach that statistically increases the
number of evaluation points in a testing sample. The assumption in bootstrapping
is that the distribution of effectiveness obtained during testing is representative of
the distribution that exists over the population as a whole. Figure 3.3 describes the

procedure we used on the effectiveness measures resulting from new event detection
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experiments. Bootstrap samples are randomly selected from events with replacement.
Mean effectiveness measures for the sample are calculated. The process repeats for

many iterations, giving rise to distributions of mean effectiveness measures.

1. Formulate classifiers on training set.
2. Evaluate classifiers on testing set.

3. Assuming that there exist k classifiers from steps 1 and 2, create a
bootstrap sample of size k£ by randomly sampling with replacement
the effectiveness measures from step 2.

4. Repeat step 3 for n iterations.

5. Evaluate based on effectiveness distribution from the n random
bootstrap experiments.

Figure 3.3. Bootstrapping Evaluation Methodology

To evaluate the effectiveness of bootstrapping, we ran £ = 25 events and n = 10000
iterations on error rates from a new event detection experiment on the TDT1 Corpus.
This experiment produced the bootstrap distribution in Figure 3.4, which resulted
in effectiveness measures with a mean miss rate of y = 40.5% with ¢ = 7.6%, and a
mean false alarm rate of u = 7.8% with o = 4.0%.

We evaluated the bootstrap process by comparing the distributions obtained for
new event detection on the TDT1 corpus with the results obtained on the TDT2
corpora. In general, the new event detection results from the TDT2 corpora using the
Closed Caption sources fall within two standard deviations of the mean we obtained
from the TDT1 corpus. This suggests that bootstrapping was somewhat effective
for estimating expected effectiveness; however, the number of events for the TDT1

corpus are most likely too few to be representative of the population of news events as
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Count

Miss Rate

Figure 3.4. New Event Detection: Expected error rates from bootstrapping.

a whole. It is therefore not surprising that the effectiveness measures from the TDT2
corpora are not closer to the bootstrapped mean from the TDT1 corpus. Since the
bootstrap experiments did not yield more predictive measures, we did not use this
methodology to evaluate effectiveness in the experiments that follow.

A final important issue regarding evaluation is a significance test for effectiveness
improvements. During system development, an approach is considered successful if it
significantly improves effectiveness over another approach. In what follows we chose a
two-tailed sign test with confidence av = 0.05 to determine significance. The sign test
is convenient because it can be performed manually. It assumes that two approaches
to the same problem are independent and will each claim better effectiveness on
50% of the events being tested. Furthermore it is used to test the hypothesis that
approach A is better than approach B. The values in Table 3.3 illustrate the number
of events one approach must claim over another to be significantly better using this

methodology.
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Table 3.3. Sign Test for Significant Improvements

| Number of Events | Number (A > B) |

200 112
100 99
90 31
25 17
10 8

3.2.3 Multiple-Pass and DET Curve Evaluation Methodology

Since only 25-35 events in each corpus were judged, we use an evaluation method-
ology for new event detection that expands the number of experimental trials. The
methodology uses 11 passes through the stream. Assuming that there are only 25
events available for a particular experiment, the goal of the first pass is to detect a
new event in the 25 documents in which one of the 25 known events first occurs. The
second pass excludes these documents, and the goal is to detect the second document
for each of the 25 known events: the second document artificially becomes the first
document in the stream. The process repeats to skip up to 10 documents for each
event. If an event contains fewer documents than the number of documents to be
skipped in the pass, the event is excluded from evaluation in that pass.

In our implementation, an appropriate change to a classifier’s threshold will trade-
off recall for precision or misses for false alarms. In what follows we use detection
error tradeoff (DET) graphs [52] to visualize the tradeoff between misses and false
alarms when evaluating new event detection and tracking. These graphs are similar
in nature to Receiver Operating Characteristic (ROC) graphs [83], which have been
used to evaluate machine classification [65] and medical diagnostic experiments.

An example of a DET graph is illustrated in Figure 7.5 (page 115). The decision
scores for each document over the 11 passes of the data described above are pooled
and sorted by score. The points on a DET curve are determined by incrementally

moving down the sorted list of documents and re-calculating miss and false alarm
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rates at each document. A side-effect of this methodology is that events with more
relevant documents are more heavily weighted in the DET curve. In addition, the
graph is scaled based on a normal distribution of the error rates, and points closer to
the origin indicate better overall effectiveness. The graph also contains the evaluation
point corresponding to the pooled average effectiveness across events.

The DET graph is also used to evaluate tracking results; however, the methodology
for tracking uses decisions from single passes through the data. When comparing two
DET curves from different approaches to the problems of new event detection or
tracking, we assume that approach A is more robust than approach B when all the

points on DET curve A are below the points on DET curve B.
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CHAPTER 4
TRACKING

In this chapter we discuss our approaches to the problem of event tracking in
a stream of broadcast news. The task involves formulating a classifier from a few
sample documents that contain discussion of the same event. The classifier is applied
to the subsequent stream to retrieve documents that are related to the target event.

The tracking task was defined by the Topic Detection and Tracking (TDT) re-
search initiative, a DARPA-sponsored effort comprising research groups from several
commercial and academic sites. The task is a supervised process that is similar in
nature to the problems of information filtering, routing, and categorization (Section
2.2.1). In the Information Retrieval literature, these problems have been discussed in
the context of relevance feedback approaches, where it is assumed that a user provides
judgements for some of the documents retrieved by the system from an initial infor-
mation request. The user’s judgements become part of a process that reformulates
the classifier to improve the set of documents returned.

We assume that users of a tracking system will provide a small number of training
samples for events they are interested in following over time. For example, consider
an emerging markets securities trader who is interested in following stories pertaining
to the political developments in the countries he trades. In one scenario, news about a
coup in Brazil sends Brazilian financial instruments spiraling downwards. The trader
supplies the system with a few sample documents describing the coup (perhaps only
the first story identified by the new event detection process), and the tracking system

builds a classifier to find subsequent related stories from on-line news feeds that he
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already monitors manually. The tight coupling of the new event detection and event
tracking processes into one system allows the trader to monitor more news than would
be possible manually.

The text representation and classifier formulation process we use for tracking is
strongly influenced by our previous work on filtering [49, 56, 57], which is based on
testing feature selection, weight learning, and classifier expansion approaches using
the Inquery [12] retrieval system. In the following work, we test our hypothesis
that these approaches significantly improve document classification effectiveness by
evaluating them in the context of the TDT2 tracking problem. In particular, we adapt
previous implementations and test the approaches that may be useful for classifying
events on-line. We discuss the details of our tracking implementation in this chapter.

Much of the research related to tracking has been explored using TREC’s filtering
methodology [34], which focuses on training classifiers for general topics with one
to a few thousand relevant training documents from heterogeneous sources including
news, web, email, and other types of documents. In TREC filtering, a classifier for
a topic is constructed from a query specification (Figure 2.1, page 19) and a labeled
training set of documents. The classifier is then evaluated on a corpus independent
of the one containing the training documents.

The tracking task is similar in nature to the TREC filtering task; however, there
are some differences. In tracking, the information requests specifically concern events
and not topics, and classifiers are trained using only 1, 2, 4, 8, or 16 relevant training
documents for each event. In general, tracking is based on a process where a user
would be willing to provide only a few documents with which to formulate classifiers.
Each tracking experiment is run over a set of events using a prespecified number of
relevant training documents (Nt). If the system is being evaluated for four relevant
training stories, that is, Nt = 4, then all stories in the stream up to and including

the fourth relevant training story are considered the training corpus, and the testing
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corpus is the remainder of the stream. In contrast, the experimental methodology for
filtering uses separate training and testing corpora with varying numbers of relevant
training documents.

The purpose of exploring tracking in this dissertation is to find a representation for
text that can be applied to the problem of new event detection. Our solution to new
event detection uses a text classification approach to the problem, and the tracking
task provides a controlled testing environment in which to evaluate approaches to
classifier formulation and threshold estimation.

One of the goals of the tracking experiments here is to show how few documents
are needed to track events effectively. In particular, we focus on analyzing predictive
tracking experiments that were done in the context of the second phase of TDT, the
results for which were produced by the National Institute of Standards and Technol-
ogy (NIST). The NIST evaluations are based on tracking with 1, 2, and 4 relevant
training instances for each event. Another goal of our tracking experiments is to de-
termine the impact that automatic speech recognition (ASR) technology has on our
process. In addition, we compare the results from our approaches to those of other
TDT participants.

Though much progress has been made in improving the representation for text

classification, several questions remain only partially answered, including:

e What representations are applicable to on-line classification ?

Are there properties particular to events that can be exploited to improve ef-

fectiveness?

e How many and what types of features are useful ?

Which and how many non-relevant documents are useful ?

Which weight learning approaches help 7
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e Is global parameter estimation stable ?

e Does on-line classifier reformulation improve effectiveness 7
e Does tf or idf help ?

e Does ASR technology affect classification ?

In this chapter, we attempt to answer these questions through experiments based
on the implementation described in the next section. We analyze different approaches
to classifier formulation, and compare feature selection and weight-learning steps as
extensions of a baseline classifier formulation process. We also discuss an unsupervised
adaptive approach to event tracking that captures the property of event evolution in

broadcast news.

4.1 Implementation

This section describes the details of the classification model we used to track
events. The same text representation was also applied to the separate problems of
new event detection and event clustering.

The general representation for document classification that has emerged in our
research uses the Inquery retrieval system [12], which is based on the Inference Net-
work model for document retrieval [86]. Inquery was developed in the Information
Retrieval Lab at the University of Massachusetts, and its parameters have been honed
through many empirical studies. Over the past decade the system has been tested as
a component technology for solving problems in areas such as Stemming [45], Query
Formulation [96], Segmentation [61], On-line Classification [59, 13|, Statistical Infer-
ence [32], and Cross-Language Processing [6]. The version that we used has been
tested annually at Text REtrieval Conferences (TREC) [34].

A classifier is formulated automatically from the lexical features of the training set

of documents using the operators from Inquery’s query language. Thus, we represent
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an event discussed in a set of relevant training documents with a classifier comprising a
query syntax and threshold. A separate threshold is estimated for each classifier, and
documents on the stream that have similarity exceeding the threshold are classified
as positive instances of an event, that is, the contents of the document are assumed
to discuss the same event as the relevant document(s) with which the classifier was
formulated. In our tracking system, classifiers are formulated using one or more

relevant training documents.

4.1.1 Inverted Index File

The inverted index file is a data structure of primary importance to our imple-
mentation’. A schematic of an inverted index file is depicted in Figure 4.1. The
underlying structure is a dictionary of the words that appear on the news stream.
When processing a stream, the documents containing each word and the number of
occurrences of the word in each document are updated on-line. If the position infor-
mation for each word is stored in the index, then phrases and proximity occurrence
statistics can be determined.

The inverted index file provides two main statistics that have been studied exten-
sively in text retrieval: term frequency, or the number of times a word appears in a
document, and document frequency, or the number of documents within which a word
appears. Document frequency is usually expressed as inverse document frequency, or
1df. These statistics are combined and normalized in different ways by the different
text retrieval systems discussed in Chapter 2. The classifier and document features

used in the text representation that follows can be derived from this structure.

! This organization of text is sometimes referred to as a concordance.
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Figure 4.1. Inverted Index File Organization.

4.1.2 Text Representation

The implementation we evaluate for tracking is based on linear classification.
Text is represented as vectors of features that are real-valued weights corresponding
to words appearing in text. During processing, feature weights are potentially re-
computed at the arrival of each new document on the stream. We have tested this
representation with an implementation that makes use of both single and multiword
features. In previous topic-based experiments, we found that features resulting from
phrases and proximity information can improve classification effectiveness over fea-

tures derived from single words [57]. One of the goals of our experiments is to evaluate
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the effectiveness of different multiword feature representations and their impact on
event-based classification.

In our implementation, we use a tf representation for classifier feature weights,
which is a variant of a function originally introduced by Robertson et al.[68]. When
comparing a classifier to a document, the document is represented with ¢f-idf feature

weights where

dl
= . 1.5 % —— 4.1
tf =t/(t+ 0.5+ 5*cwg_dl)’ and (4.1)
lo Cc+.5
idf = M_ (4.2)
log(C +1)

Equation 4.1 is used for both classifier and document weights. In these equations
t is the number of times the lexical feature appears in the document, and dl is the
document’s length in words. The remaining values for Equations 4.1 and 4.2 are
derived from an auxiliary corpus. C is the number of documents in the auxiliary
corpus, avg_dl is the average number of terms in a document, and df is the number
of documents in which the term appears. If the term does not appear in the auxiliary

corpus, a default value of 1 is used for df.

4.1.2.1 Classifier Formulation

We use an automatic process that works on-line to create a classifier from single or
multiple documents. The classifier formulation process has three main steps: feature
selection, weight assignment, and threshold estimation. The selected features and
weights are used to construct a classifier using Inquery’s query syntax. This process,
using one relevant training document, is depicted in Figure 4.2. The threshold is
estimated for the query using an optimization process which is described below.

The methodology for selecting features begins with collecting statistics from the

words appearing in the training documents. We assume the training documents

48



Text Representation

Document Text Text Classifier
Dan Quayle is in the hospital Query SyntaX
today, and the doctors say he’l #7178 =#WSUM(L

stay there for about one week. 2 408956 clot

The 47-year-old former vice
president was admitted to Indiana
University Medical Center in
Indiznapolis yesterday evening.
He had complained of a progressive

2.156D14 quayle
1.BE575 dan
1.8B8575 doctoc
1.595476 blood
1.595476 lung
1.282037 condition

shortness of breath. Doctors say 1.282037 formec
they discovered a blood clot in 1.282037 hospital
his lung. The hospital spokeswoman L.2%2D37 vice),

says the clot constituted a ...

1 Threshold Estimation

Document Representation

clot quayle dan doctor blood lung condition former hospital  vice
D987 D.843 D783 D.034 0.127 D234 D.002 Dozl D131 D.387

Figure 4.2. Classifier and Document Representation.

have assessments for both relevant and non-relevant instances; however, the same
methodology can be used without non-relevant training instances. We take the non-
stopwords from the training documents and sort them by the following measure

where R is the number of relevant documents and NR is the number of non-relevant
documents in the training sample. The values r and nr are the number of documents
in the corresponding relevant and non-relevant training sample containing the word.

This measure is greater than 0 if the word appears more in relevant than non-relevant
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documents. The number of words in a classifier, i.e., the classifier’s dimensionality, is
a parameter of the system. If the classifier is formulated with n words, then the top
n words sorted by Equation 4.3 are used.

The classifier is ultimately represented as a vector of weights. In the experiments
that follow, we use an extension of a weight assignment methodology introduced
by Rocchio [70]. This method has been refined in previous work with the Inquery
retrieval engine [1, 57]. Each classifier feature weight maps to a word. Classifier

weight g; x 1s

Qi = C1 * ZL’f'rel — Cg * tfnom"ela (44)

where ¢ f,¢; is the average tf score (Equation 4.1) for the word in relevant documents,
and % f,onrer is the average tf score for the word in non-relevant documents. The
constants c; and ¢, are determined empirically, and we have found that setting ¢; =

¢ = 0.5 works well in comparison to other settings.

4.1.2.2 Document Representation
During processing, the representation of any document arriving at time 7, when

compared to a classifier formulated at an earlier time 7 is

where k is the index of the word cooccurring in the classifier and document, and idf
is calculated using Equation 4.2.

Since future word occurrence statistics are unknown in real-time applications, the
number of documents within which a word will appear is unknown. Our approach is
to estimate df for Equation 4.2 from a larger sample of natural language by using an
auxiliary corpus from a similar domain. In the tracking experiments that follow, we

evaluate different sources for df and their resulting impact on classification accuracy.
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4.1.3 Comparing Classifiers to Documents

A similarity value is calculated when comparing a classifier to a document. In the

experiments that follow, the similarity between a classifier and document is calculated

using the #WSUM operator of Inquery, which is defined as
simla ;) = Dkl ik

k=1 Gk

A document is assumed to discuss the event represented by the classifier if its

(4.6)

similarity to the classifier exceeds a certain threshold. When each classifier is formu-
lated, a threshold is determined to control hard classification decisions. Our threshold
model for tracking is based on an optimization process over the training data used
to formulate the classifier. More specifically, if a classifier is created at time ¢, that
is, when the last relevant training document arrives, then the resulting classifier’s

threshold for a document arriving at a later time j is :

threshold(g;, d;) = 0.4 + 6 * (Soptimizeda — 0.4), (4.7)

where 0.4 is an Inquery constant, and Sptimizeq is the similarity value resulting from
the classifier that, when applied to the event’s labeled training documents, optimizes
the target utility function. In the following experiments we optimize for the TDT2
cost function defined by Equation 3.1.

The parameter 6 controls the threshold model. When # = 1.0, then the threshold is
Soptimized- During development, we explored variations of the processes that calculate
Soptimized, and empirically observed that optimization using the same measure used
for evaluation leads to the best results. Methodologies for determining appropriate
values for # are discussed below and in Chapter 5.

In order to generate Detection Error Tradeoff (DET) curves (Section 3.2.3), a score

reflecting the confidence of each document decision is needed. Our confidence in the
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decision that classifier g; discusses the same event as document d; is the following

score:

decision(g;, d;) = sim(g;, d;) — threshold(g;, d;), (4.8)

Decision scores greater than 0 imply that classifier g; classified d; as a positive in-
stance. We can control classification decisions during processing by adjusting param-

eter # in Equation 4.7 above.

4.2 Optimization

In this section, we discuss the results of retrospective tracking experiments that
produced the implementation decisions and parameters we used for predictive tracking
experiments. Our experimental methodology for tracking is similar to the one used for
new event detection and event clustering in that we develop an implementation using
the TDT1, TDT2-Train, and TDT2-Development corpora, and evaluate different

approaches using the TDT2-Evaluation corpus (Section 3.1).

4.2.1 Parameter Estimation for Tracking

The most important parameter in our implementation is the value for 8 to be used
in the threshold model described by Equation 4.7 (page 51). We used exhaustive
parameter searches over the TDT corpora to determine stable values for 6 across
different classifier dimensionality as well as different numbers of relevant training
documents (Nt). We found that formulating classifiers with 50 features resulted in
effective classification. The threshold parameters we found that optimized pooled
(story-weighted) cost on the TDT1, TDT2-Train, and TDT2-Development corpora
are listed in Table 4.1. We discuss the resulting effectiveness of these parameters in
subsequent sections, and in Chapter 5 we describe in more detail the methods we

used to obtain our threshold parameters.
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Table 4.1. Static tracking threshold parameter 6.

[Nt ] 6|

1 10.2
2 103
4 104
8 0.6
16 | 0.8

4.2.2 Adaptive Query Formulation

In addition to our static approach, we tested adaptive tracking approaches that
extend some techniques we previously used on the TDT1 corpus [3]. Our adaptive
approach is designed to catch the appearance of new lexical features for an event as it
evolves in the news coverage. In adaptive tracking, a classifier is initially formulated
using the static approach, and then reformulated on-line with features from new
documents in the stream. During on-line processing, two lists are maintained that
contain the documents assumed to be relevant and non-relevant to each event. The
documents from these lists are then used to reformulate the classifier using the same
formulation process.

The threshold model for adaptive tracking uses Equation 4.7 (page 51) for two
thresholds. One threshold is estimated for detection decisions and another threshold
is estimated for reformulation decisions. If a document exceeds the second threshold,
it is used to reformulate the classifier and determine a new threshold. If a document’s
similarity to the classifier is above the decision threshold but below the reformulation
threshold, then it is excluded from the reformulation process.

After reformulating a classifier, we calculate the TDT2 cost of the new classifier
with respect to its training data. If cost increases, we discard the reformulated clas-
sifier and revert to the previous one. This additional step is necessary to prevent
the classifier from over-generalizing. We found that for adaptive tracking, classifiers

using 10 features worked better than with 20 and 50 features.
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In the adaptive tracking experiments that follow, we determined values for the
parameter 6 for different values of Nt using the optimization process described in the
previous section over the TDT1, TDT2-Train, and TDT2-Development corpora. We
found that a reformulation threshold of # = 0.85 worked best. The decision thresholds
that were found from the optimization process appear in Table 4.2.

Table 4.2. Threshold parameter # for adaptive tracking.
(Ne| 6 |
1 1045
2 10.55
4 10.65

4.2.3 Varying IDF Sources

Our static classifier formulation process described above uses idf, that is, inverse
document frequency (Equation 4.2, page 48). The document frequency of a word, df
is the number of documents in a collection in which the word occurs. However, in the
context of an on-line tracking process, this statistic is not readily available; that is, the
number of documents in which a word will appear is not yet known. Several solutions
to this problem have been tested by TDT participants. They include estimating df
from an auxiliary corpus [59], using the df from the current stream [79], or some
combination thereof.

We evaluated different sources for ¢df over varying dimensionality for overall min-
imum cost on the TDT1, TDT2-Train, and TDT2-Development corpora. Our em-
pirical observation is that idf calculated using document frequencies from TREC
volumes 1,2, and 3, combined with the TREC-4 Routing volume (TREC 123R4),
produced lower cost and DET curves than idf calculated using the news-only doc-
uments from TREC 123R4 as well as an independent CNN broadcast news corpus.

Also, TREC 123R4 was a more effective source for document frequency than using
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the entire corpus being processed. In general, the overall cost changes between using
different sources for idf and not using idf at all were small at best. Our experience
using incremental idf for tracking in the TDT Pilot Study [4], however, suggests that
document frequency is a useful statistic.

The DET graph in Figure 4.3 contains the curves resulting from using the sources
for df described above on the TDT1 corpus. The curves show that the different
sources led to similar tradeoffs for false alarm and miss rates for the TDT1 corpus.
The same analysis on the TDT2 corpora suggested that using the TREC 123R4 source
provides a slight advantage over other sources, and we therefore use TREC 123RA4 for

1df in the experiments that follow.

4.2.4 Decision Score Normalization

Recall that the DET curve is based on ranking classification decisions by decision
score. We found that our original function described by Equation 4.8 (page 52) did
not yield good DET curves for tracking, which was due to the tendency of our system
to produce different ranges of similarity values for the different events being tracked.
We needed to normalize the similarity values from Equation 4.6 (page 51) to produce
good decision scores for tracking. In addition, the normalization needed to meet the
criterion for TD'T, which requires that scores for positive decisions have higher value
than scores for negative decisions within and across events.

We looked at different approaches to decision score normalization and their ability
to improve DET curves by lowering them on the DET graph. We found that the
most effective way to lower curves was to normalize similarity scores using a standard
normal transformation. The general form of the transformation is

sim(gi, d;) — p

decision_score(g;, d;) = , (4.9)
o
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where sim(g;, d;) is the similarity between classifier ¢; and document d;. p is the
mean, and o is the standard deviation of a distribution of similarity values using
Equation 4.6. This transformation has been previously used for feature representation
normalization, and has been discussed in the context of text classification by Lewis
[47]. Also, Jin et al.[40] discuss similar approaches for decision score normalization
for tracking.

We observed that classifiers for most events produced distributions of similarity
values that were relatively normal for relevant documents; but the distributions did
not appear normal for non-relevant documents (see Figure 5.1, page 72).

In Figure 4.4, we illustrate DET curves for the TDT2-Evaluation corpus using
several resulting normalizations based on the means and standard deviations from
the distributions of training instances. The curves in the graph appear very different;
however, all the curves in the graph are from the same tracking test run, and thus have
the same decision point, which is delineated by the small diamond on the lowest curve
in the graph. Experiments setting p and o to the values estimated from the relevant
documents in the training sample produced the curve furthest from the origin in
Figure 4.4. We found that dividing the similarity value by the mean of the relevant
documents in the training sample improved the DET curve, resulting in the curve
second furthest from the origin. When we set ;1 and o to estimates based on the
non-relevant training documents, the resulting curve improved significantly over the
approaches using the statistics from the relevant training samples. This curve is the
second closest to the origin (without the hard decision point). However, in all of
these cases, the transformation does not satisfy the decision score requirement that
relevant decisions have a higher score than non-relevant decisions across events.

We found that setting u = threshold(g;, d;) (Equation 4.7), and o to the stan-
dard deviation of similarity values from both the relevant and non-relevant training

data resulted in the curve with points closest to the origin in Figure 4.4. This nor-
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malization appeared to work slightly better than using the distributions from the
non-relevant training documents, with the additional property of producing decision
scores normalized around a value of 0. We used this normalization process for the

DET curves produced below.

4.3 Tracking Experiments

In the following section, we evaluate our text representation and classifier for-
mulation process for tracking using the approaches described above. Training and
parameter optimization for the following experiments were done using the 85 events
from the TDT1, TDT2-Train, and TDT2-Development corpora. The evaluation,
which was conducted by NIST, used the 34 events in the TDT2-Evaluation corpus.
The results are based on tracking with Nt =1, 2, and 4 relevant training documents,
and the non-relevant documents that were provided by NIST for each event.

We compare approaches using the TDT evaluation methodology for tracking,
which uses TDT2 cost as the target effectiveness measure (Section 3.2.1). Recall
that the tracking methodology is based on novel use of the data, in which the same
corpus is used for both training and testing. In what follows, if the system is being
evaluated for four relevant training stories, that is, Nt = 4, then all stories in the
stream up to and including the fourth relevant training story are considered the train-
ing corpus, and the testing corpus is the remainder of the stream. This methodology
implies that different events effectively have different training and test corpora.

Static classifier formulation serves as our baseline system for evaluation. Classi-
fiers are formulated for each event using the n most frequent nonstopwords from the
relevant documents in the training data, where n is the pre-specified dimensionality
of the classifier (Equation 4.3, page 49). The words are given weights using an assign-
ment based on tf (Equation 4.1, page 48). The process is described in more detail in

Section 4.1.2.1. We also experimented with feature selection and weight assignment
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variants of the baseline process. We tested static classifiers expanded with multi-
word features (MWF) [57]. We also tested two weight-learning algorithms: Dynamic
Feedback Optimization (DFO) [10] and Exponentiated Gradient Descent (EG) [41].

In addition to comparing extensions to static classifier formulation, one of the
goals of our tracking experiments is to determine the impact that automatic speech
recognition (ASR) technology has on our process. We compare results using ASR data
to those obtained from manual transcriptions of the same broadcast news sources,

which were available in closed caption (CCAP) format.

4.3.1 Static vs. Adaptive Tracking

A comparison of our static and adaptive tracking approaches is listed in Table
4.3. The associated DET curves for tracking with four relevant training instances
(Nt = 4) are depicted in Figure 4.5. The data indicate that adaptive classifiers were
more effective than static classifiers in terms of lower story-weighted average cost at
Nt = 4. The adaptive approach had lower cost for 9 topics and higher cost for 7
topics. However, the results in Table 4.3 suggest that the adaptive approach is less
effective at lower values of Nt. With the exception of adaptive tracking at Nt = 2,
both approaches showed similar cost on the closed caption (CCAP+NWT) source.
This suggests that the impact of ASR on tracking was minimal.

Table 4.3. Story-weighted cost for static and adaptive tracking.

| Type |Nt|ASR+NWT | CCAP+NWT |

Static 4 0.0070 0.0066
Static 2 0.0069 0.0071
Static 1 0.0073 0.0081
Adaptive | 4 0.0059 0.0064
Adaptive | 2 0.0107 0.0075
Adaptive | 1 0.0103 0.0122
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Our intention for the adaptive approach is to model the property of event evolution
in broadcast news, the thrust being to include useful features in the classifier as they
become available over time. The results presented here corroborate those we obtained
on the TDT1 corpus [4], where the adaptive approach was significantly less effective
at Nt = 1 than at Nt > 4. In addition, the data indicate that with only one
relevant document, tracking is relatively effective using our baseline static classifier
formulation process. This suggests that static and adaptive approaches should be
combined in one system where the static approach is used for low values of Nt, and
the adaptive approach is used when more training samples are available.

The DET graph in Figure 4.5 illustrates that at Nt = 4 the adaptive classifier
curve is closer to the origin than the static classifier curve for false alarm rates between
0.2% and 5.0%; however, the static classifier curve has a more desirable error detection
trade-off in general. The DET graph suggests that the adaptive approach is not
more robust than the static approach using our representation, but that the adaptive
approach leads to better hard decision classification effectiveness. Though not shown
here, the static classifiers resulted in much lower (better) DET curves than their
adaptive counterparts for both Nt = 2 and Nt = 1. This would be expected given

the differences reported for the approaches in Table 4.3.

4.3.2 Multiword Features and Weight-Learning

We tested various extensions of static classifier formulation which have been hy-
pothesized to significantly improve retrieval effectiveness over the baseline process
described in Section 4.1.2.1. Multiword features (MWF') were found to improve track-
ing effectiveness in subsets of the training corpora. We used a process described by
Papka and Allan [57] that expanded classifiers with Inquery proximity operators of

varying size windows of words. In the following experiments, we expanded 50-word
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queries with the top 10 pairs of words that appear in windows of size 5, 20, 50, and
100 words.

We also tested Dynamic Feedback Optimization (DFO) [10] and Exponentiated
Gradient Descent (EG) [41]. These weight-learning algorithms adjust the classifier’s
weights using supervised training techniques. The DFO algorithm was the same as
that used by Schapire et al. [78]. This algorithm tweaks each classifier weight in turn,
and recomputes average precision on the training data. If a weight change does not
improve precision, the change is undone. The EG algorithm was a modification of
the algorithm previously used for TREC filtering experiments [49, 56]. This learning
technique is similar to other least-squared error reduction approaches used in Per-
ceptron learning, but the weights are modified using an exponential function instead
of a linear one. Classifier weights are adjusted based on pre-specified target values
for relevant and non-relevant documents. We found the mean relevant and mean
non-relevant similarity values from the distributions in the training sample to work
well for target values.

In the following experiments, we explore these variations using Nt = 4 relevant
training documents. The non-relevant documents were those supplied by NIST for
the TDT2 evaluation. Before tracking begins, the static classifier is expanded using
multiword features, or weights are modified using EG or DFO. We used the same

threshold parameters as those in Table 4.1. The results are listed in Table 4.4.

Table 4.4. TDT2 cost for extensions to static tracking. (ASR+NWT, Nt=4).

Story- | Percent | Topic- | Percent

Type Weighted | Change | Weighted | Change
Static 0.0070 0.0066

Adaptive 0.0059 | -15.7% 0.0074 12.1%

Static+DFO 0.0061 | -12.9% 0.0067 1.5%

Static+EG 0.0070 | 0.0% 0.0080 21.2%

Static+MWF 0.0072 | 2.9% 0.0064 -3.0%
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As with the adaptive approach, we found that expansion and weight-learning
approaches did not improve overall effectiveness significantly. For the 21 events eval-
uated, improvements were minimal. The classifiers expanded with multiword features
had lower cost for 10 events, but increased cost for 6. Further analysis of the weight-
learning approaches revealed that the DFO algorithm decreased cost for 3 events,
while increasing cost for 2 events. EG decreased cost for 1 event, and increased cost
for 1 event.

The weight-learning approaches are of little use at Nt < 4 using our representa-
tion. We find that most classifiers and their thresholds already separate the training
data, so not much improvement can be expected from weight-learning 2. But we
observed that for higher values of Nt the occurrence of training data separation
decreases. An analysis of the TDT2 train and development corpora, for example, re-
vealed that 95% of the classifiers and thresholds formulated with 4 relevant training
documents separated the training data. At Nt = 16 only 10% of the classifiers com-
pletely separated their training data. This suggests that weight-learning algorithms
are more likely to be effective for higher values of Nt¢, and training data separation

should be tested at lower values.

4.4 Cross-system Comparison of TDT2 Tracking Systems
The evaluation of the TDT2 tracking systems described in this section was the
culmination of a set of experiment that took over 16 months to conduct. Partici-
pants trained and developed their tracking systems on the 85 events from the TDT1,
TDT2-Train, and TDT2-Development corpora. The evaluation conducted by NIST

was performed on 21 out of the 34 events of the TDT2-Evaluation corpus. (Events

2When the training data are separated by a classifier TDT2 cost on the training data is 0.
Furthermore, no further improvements to Average Precision (used by DFO) can be obtained because
the training data is perfectly sorted.
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that contained fewer than four relevant training instances were excluded from the
evaluation.) The goal of the experiment was to develop a system that minimized
classification error in terms of pooled average (story-weighted) TDT2 cost (Equation
3.1, page 34). Classifiers were evaluated on their ability to track on the ASR source
condition using four relevant training instances. Participants did not have the assess-
ments for the events being evaluated; however, for each event, NIST provided an index
listing the four relevant training samples and the non-relevant training instances up
to the last relevant training instance. Systems were required to track events indepen-
dently; that is, the assessments from different events were not permissible knowledge
when tracking a particular event.

Several of the TDT participants provided runs for the tracking evaluation. We
summarize the salient features of the BBN, CMU, Dragon, and UPENN tracking

systems as follows:

BBN The BBN tracking system is based on formulating a mixture of classifiers from
three models: Topic Spotting (TS), Information Retrieval (IR), and Relevance
Feedback (RF). The first two approaches are based on a probabilistic approach
to word occurrence distributions. The TS model assumes that words in the
test story are generated by the model from the training stories; the IR model
assumes that the training stories are generated by the model from the test story;
and the RF approach used frequently occurring terms in the training stories. In
their report, they also show improvements using an adaptive query formulation

approach. [40]

CMU The group from Carnegie Mellon University tested Decision Trees (DT) and a
K-Nearest-Neighbor (KNN) approach to tracking. In their DT approach, they
used features in addition to word cooccurrence statistics including the location
of a word relative to the beginning of the story, whether the root of the word

appeared in the story, and an adaptive time window approach. The KNN
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approach used a tf-idf document representation. Their analysis suggests that

the KNN approach appeared slightly more effective than the DT approach. [15]

DRAGON Dragon Systems uses statistical approaches based on a beta-binomial
model and a unigram language model. Their data suggest that a mixture of
their approaches leads to improved tracking effectiveness. They also apply back-
ground models that are constructed from an auxiliary corpus. A document is
considered relevant to an event if it is more similar to the model resulting from

the training documents than to one resulting from a background model. [97]

UPENN The system from the University of Pennsylvania is based on a similar rep-
resentation to the one we used for tracking. They used a tf-idf representation
for classifiers and documents, where incremental-idf was seeded with the docu-
ment frequencies from the TDT1 corpus. A cosine similarity function was used

to compare classifier and document vectors. [79]

A summary of the TDT2 tracking evaluation for the systems described above is
listed in Table 4.5. The process we used for our official TDT tracking submission
was adaptive classifier formulation, which captures the property of event evolution by
including new lexical features that become available over time in the news coverage

of an event.

Table 4.5. NIST evaluation of TDT2 Tracking Systems (Nt=4).

ASR+NWT [ CCAP+NWT
SW| TW| SW| TW
UPENN [ 0.0058 [ 0.0066 | 0.0056 | 0.0063
UMASS | 0.0059 | 0.0074 | 0.0064 | 0.0065

BBN | 0.0063 | 0.0056 | 0.0064 | 0.0059
DRAGON | 0.0070 | 0.0069 - -

CMU [ 0.0077 | 0.0076 [ 0.0073 [ 0.0072

Our adaptive and static classifier formulation approaches compared well to the

systems of other participants based on low average cost. In general, the systems
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had mixed improvements on the CCAP data, which suggests the impact of ASR
for tracking effectiveness is minimal. A cross-system comparison using a sign test
(ov = 0.05) suggests that the systems are not significantly different.

From the descriptions above and from our own comparison of tracking approaches,
it becomes evident that simplicity led to lower story-weighted cost in the NIST eval-
uation. We believe that simplicity leads to parameter estimation stability. In other
words, the more complex a system, the more parameters that need to be estimated,
the less likely these parameters will be stable. For example, we found that the addi-
tional threshold parameter in our adaptive tracking approach made it more difficult
to determine stable threshold parameters empirically, than when estimating the single
parameter needed for our static tracking approach. For this reason we determined
to explore the issues related to threshold parameter estimation, discussed in the next

chapter.

4.5 Conclusion

The results in this chapter further our understanding of representations and tech-
niques that work for on-line text classification. In real-world settings, a user will most
likely provide very few relevant documents with which to formulate classifiers, and
the experiments in this chapter suggest that many of the techniques that work well
in the TREC environment are not effective in the tracking environment when few
relevant documents are used.

In this chapter, we evaluated the representation we use for event classification in
the context of the TDT tracking problem. In addition, we evaluated the effective-
ness of several classifier formulation approaches that have been previously applied
to TREC filtering. In particular, we tested extensions to our baseline static classi-
fier formulation process with weight-learning and expansion steps that incorporate

multiword features.
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Our results suggest that our static classification formulation process is effective
using one or more relevant training samples. Our adaptive tracking approach was ef-
fective for hard classification decisions using four or more relevant instances; however,
the static approach appeared to be more stable.

We found insignificant effectiveness improvements using extensions of the static
approach. Our data suggests that EG and DFO weight-learning approaches are of
little use for tracking with few relevant training samples due to training data separa-
tion issues. The adaptive technique appeared to work well on the target evaluation
condition (Nt = 4), but proved less robust than the static approach for Nt < 4. We
recently completed experiments using Nt = 8 and Nt = 16 relevant training instances
applied to the weight learning and adaptive approaches. As with the lower values for
Nt, these approaches provided no significant improvements in tracking effectiveness
over the static classifier formulation process.

We also compared our approaches to other systems participating in the TDT2
tracking evaluation, and our approaches were effective in comparison to the best
systems. Since the classifiers we formulate with one relevant document are effective,
it suggests that our text representation for tracking may be effective in a solution to

clustering and new event detection. We explore this hypothesis in later chapters.
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CHAPTER 5

THRESHOLD ESTIMATION BIAS IN TEXT
CLASSIFIERS

In this chapter, we discuss processes that find effective thresholds for text clas-
sifiers using the representation we presented for event tracking in Chapter 4. Our
approach to selecting thresholds for classifiers is based on estimating a threshold from
the relevant and non-relevant documents provided as training data. We estimate a
classifier’s threshold by finding a value that separates relevant from non-relevant doc-
uments while optimizing the effectiveness measure used for evaluation. The optimiza-
tion process using few relevant instances has a tendency to overestimate thresholds
with respect to the optimal value to use when tracking. In particular, we find the
estimate from the optimization process to be more biased towards the training set
when fewer relevant instances are available.

There are several biases inherent in classification systems. Mitchell identifies two
types of bias, which are known as inductive bias and estimation bias [54] . Inductive
bias refers to the bias inherent in the classifier resulting from a particular algorithm
or representation used to solve a classification problem. For example, certain decision
tree algorithms may have a bias towards producing trees that are relatively short and
wide. Other decision tree approaches may consistently result in trees that are tall
and narrow.

Estimation bias refers to the error resulting from an estimate of the value of a
random variable. For example, when we test our estimations for parameters derived

from training data on the same data, the expected effectiveness is optimistic and is
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biased towards the training data. The cross-validation and bootstrap methodologies
described in Section 3.2.2 attempt to reduce this type of bias.

Another bias that has been observed is sampling bias, which is caused by the way
samples are selected from a population. For example, Rosenkrantz [71] retells the

following experiment:

In a class exercise, a population of rocks of varying sizes was spread
out on a large table so that all the rocks could be seen. After inspecting
the rocks and lifting any that they wished, students were asked to select
samples of five rocks such that their average weight would estimate as
accurately as possible the average weight of the whole population of rocks.
The average weights of the students’ samples consistently overestimated

the population mean.

In this case, the overestimation was possibly caused by the fact that “[a] larger and
heavier rock is more easily noticed than a smaller one” [71]. Hence, the students had
a tendency to select a larger rock first, which led to an upward bias in the estimation.
Similarly, a certain amount of sampling bias exists in the random selection of events
for the TDT corpora, since the final events selected were more likely to be events
discussed in many documents.

In the following sections, we are primarily interested in the estimation bias asso-
ciated with estimating a threshold for classifiers used by our tracking system. Bias in
this context is the difference between the estimated threshold and that which would
give rise to optimal effectiveness on the testing data. In what follows, we use the text
representation described in Chapter 4 to illustrate bias that results from using an
optimization process for estimating the threshold of a classifier used for tracking. We
demonstrate that bias for a threshold estimator that uses this approach is affected by

the number of relevant documents used in formulating the classifier. We assume that
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the estimation of a threshold is biased due to factors in the training and optimiza-
tion processes, and we attempt to identify the amount of bias inherent in an initial

threshold and adjust for this amount in the final estimate of the classifier’s threshold.

5.1 Threshold Estimation

The threshold estimation problem is to determine a threshold for a classifier from
training data that works well on the testing data. The problem, in the context of
our system, is depicted in Figure 5.1. The data in the figure resulted from a classifier
formulated for the “Crash of US Air Flight 427" event using eight relevant training
instances. The distribution of similarity values between the classifier and the rele-
vant and non-relevant training instances is shown in the top graph. The goal of the
threshold estimation process is to find the similarity value that will separate docu-
ments relevant to the crash from non-relevant ones. In our case, the threshold should
be one that minimizes TDT2 cost for the documents on the subsequent stream. The
distribution of similarity values for the classifier, when applied to the documents for
the testing portion of the stream, results in a similarity value distribution represented
in the bottom graph of Figure 5.1.

One thresholding methodology relatively common in text classification involves
an optimization process combined with a ranked-retrieval process. This process finds
the score for documents in a sorted list of training instances in which the relevant
documents are separated from the non-relevant documents by maximizing a target
utility function [56, 3, 100]. However, our results for on-line processing using few
relevant training instances suggest that it is more effective to lower an estimate based
on an optimized threshold.

Recently, the TREC routing task has evolved into a filtering task where evaluation
is based on binary classification. Several approaches to determining thresholds have

emerged and are described by Hull [38]. In his analysis of TREC-6 filtering systems,
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Figure 5.1. Threshold Problem: Crash of US Air Flight 427

Hull demonstrates that the bias in a threshold estimation algorithm is dependent on

the utility measure. In this analysis he computed the average number of TREC topics
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for which each system’s estimation for a threshold was the same, lower, or higher than
the threshold that would have resulted in optimal effectiveness on the testing data.
In general, the optimal threshold for the testing data is normally distributed across
topics for effectiveness measures that are a function of miss and false alarm rates.
However, a different skew emerges for thresholds resulting in optimal average-set-
precision, which is the product of recall and precision.

Optimization of the utility function as part of the threshold estimation process
is important regardless of the approach used for text classification. For example,
Lewis [47] (reproducing earlier categorization experiments of Maron) found a classi-
fier’s threshold using the minimum estimated probability of class membership. His
data indicate that different probability thresholds give rise to different levels of recall
and precision, where one is traded for the other as the minimum value used for the
threshold is decreased. This implies that different thresholds are required for different
utility measures that are a functions of recall and precision. For a real application,
therefore, the user’s utility preferences would need to be incorporated in order for
document classification to be effective.

Statistical inference techniques reported by Lewis and others build upon a Bayesian
model for text classification. This approach is used in a maximum likelihood esti-
mator model described by Mitchell [54], and also by Robertson [69] for his TREC-7
filtering system. Probabilities based on word-cooccurrence statistics are measured
and binary classification in favor of relevance is assumed when the estimated prob-
ability that a document d is relevant to a topic is greater than the probability that
it is not relevant i.e., when P(Gi|d) > P(Gs|d), where G, is the group of relevant
documents and G5 is the group of non-relevant documents for the topic.

One of the problems of using this approach is that an arbitrary utility function is
not necessarily maximized or minimized when P(G:|d) > P(G;|d). For example, if

user utility implies a strong aversion to false alarms, then it would be better to make
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decisions based on a function such as P(Gi|d) > P(Gz|d) + ¢, where c¢ is a positive
constant. An appropriate value for ¢ would insure that P(G|d) is large enough before
deciding the document is relevant. Other techniques for optimizing a particular utility
function in a Bayesian framework have been described by Casella and Berger [19]. In
their approach, a matrix of weights that represents the spectrum of user preference

is part of the estimation process.

5.2 Learning Threshold Estimator Bias

In this section, we describe two automatic threshold estimation algorithms for the
document tracking task. The methods we discuss produce bias-reduced estimators
resulting in improved classification accuracy for tracking. We define and illustrate
threshold estimator bias using our representation described in Chapter 4.

The threshold methodology that we use involves an optimization process com-
bined with a ranked-retrieval process. The optimization step is to find the classi-
fier/document similarity score s, that maximizes utility in the sorted list of training
instances returned by the ranked-retrieval engine. In the experiments below, we es-
timate a threshold u for each query with estimator & = 0.4 + 6 * (Soptimizea — 0.4),
where 0.4 is an Inquery constant, 0 is a global system parameter, and Septimizeq iS the
similarity value resulting from the classifier that, when applied to the event’s labeled
training documents, optimizes the target TDT2 cost function defined by Equation
3.1. Threshold estimator 4 was used for the tracking experiments in the previous
chapter.

From several experiments using the 85 events that were available from the TDT1,
TDT2-Train, and TDT2-Development corpora, it was determined that when fewer
relevant training documents were used, Soptimizeq (OUr estimator ¢ when 6 = 1.0) was
consistently above the parameter u it was trying to estimate, that is, the optimal

threshold for the unprocessed stream of data for a particular event, or simply Septimai;
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was overestimated using Septimizea- In what follows, we assume that the quantity
of estimator bias b(@) = E|[Soptimat] — Soptimized, Which is similar to the definition of
bias used to analyze classification effectiveness [54]. We attempt to learn threshold
estimator bias over varying numbers of relevant training documents (Nt) and varying

numbers of classifier features.

5.2.1 The Histogram Method

The histogram method, which utilizes threshold estimator #, is illustrated with 50-
feature classifiers in Figure 5.2. Using the TDT1, TDT2-Train, and TDT2-Development
corpora as training data, histograms of optimal values for 6 were collected for each
value of Nt and for classifiers formulated with the top 10, 20, 50, 100, 200, 600,
and 10000 words in the relevant documents (Section 4.1.2.1). Using this method on
the training data, for example, determined that for one relevant document (Nt = 1)
and 50-feature classifiers, 48 out of 85 classifiers had optimal cost when 6 = 0.2.
For each pair of Nt and number of features, we calculate E[f] from the correspond-
ing histogram, and use the resulting value for # when estimating thresholds on the
TDT2-Evaluation corpus.

The data in Figure 5.2 illustrates estimator bias when Nt < 16 relevant training
documents are used. The data suggest that as Nt increases E[f] increases. Also, as
E0] increases, on average, Soptimized 1 ClOSer t0 Soptimar; thus less total estimator bias
results when more relevant training examples are used. We also observed similar but

less significant increases in bias when more features were used.

5.2.2 Linear Regression Method

The observation that increasing training instances reduces the bias of an estimator,
in general, is not surprising. James, for example, shows that estimates move toward
the true population values when training instances are increased for data assumed

to have multivariate-normal distributions [39]. An explanation of the phenomenon
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Figure 5.2. Histograms of optimal threshold parameter 6 for varying Nt (50 fea-
tures).

follows from the law of large numbers. However, James also proposes that once the
bias is found, it may be possible to reduce it using a linear transformation.

We test James’s theory in the following experiments. We define a threshold es-
timator 0, such that 0 = Septimizea- We then define a new bias-reduced threshold
estimator é, such that ¢ = mo + b. We then compare the effectiveness of the query
thresholds produced by our original estimator @, which is bias-reduced using near op-

timal values for €, to those produced by €, with parameters m and b learned through
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linear regression. In what follows, we use linear regression to learn query bias for

estimator 0.

Regression
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Figure 5.3. Regression of optimal threshold parameter  for varying Nt (50 features).

The linear regression method for estimator é is illustrated in Figure 5.3. Instead
of collecting histograms, points represents by Septimized a0d Soptimar are fitted using a
line for each value of Nt and number of features. The slopes and intercepts of lines
produced by the various regressions are subsequently used as parameters m and b for
estimator é during evaluation. This method learns the same tendencies in threshold
estimator bias as the histogram approach for estimator 4. As the number of relevant

training documents increases, the slope of the resulting regression line approaches 1.0.
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As the slope approaches 1.0, Soptimizea aPproaches sqptimq, which implies that higher

values of Nt give rise to less estimator bias in the training data.

5.2.3 Comparison of Methods

From the tracking experiments discussed in Chapter 4, we knew the histogram
approach for estimator o generalized and provided relatively low cost on the TDT2-
Evaluation corpus. In the following experiment, we compare the effectiveness of
threshold estimator é to that of @ using the same static classifier formulation and
tracking processes on the evaluation corpus. The results, which are listed in Table
5.1, illustrate the percent increase in cost resulting from tracking with estimator é

instead of estimator 4.

Table 5.1. Percent of cost increase from replacing estimator 4 with estimator é.

Number of Relevant Training Documents (Nt)
# of Features 1 ‘ 2 ‘ 4 ‘ 8 ‘ 16
10 | 8.2% | -20.4% | -13.2% | -21.9% -2.9%
20 | 27.5% | -17.0% | -32.1% | -23.4% -1.6%
50 | 5.0% | 53.2% 0.0% | -4.0% -8.6%
100 | 1.1% | 12.7% 4.5% | -6.0% -20.3%
200 | 3.3% | -7.5% | -8.2% 2.0% -16.4%
600 | 27.8% | -6.0% | -7.3% | -8.0% -1.8%
10000 | 27.8% | -6.0% | -7.3% | -8.0% 0.0%
| Average [ 144% [ 13% [ -9.1% | -9.9% | -7.4% |

In Table 5.1, an increase in cost implies a decrease in classification effectiveness,
hence the data suggest that, on average, the histogram method works better for
Nt =1 and marginally so for Nt = 2. However, for Nt > 2 the regression method
appears to reduce cost consistently for most of the query sizes tested. The correlation
coefficients (R?) that are calculated for the regressions depicted in Figure 5.3 indicate
that using fewer documents led to lower correlation than using more documents. This
trend was evident across the varying number of classifier dimensionalities that were

tested. This suggests that the resulting regression was not a good fit for Nt < 2.
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However, the improvements realized by the regression method suggest a mixture of

approaches where estimator u is used for Nt < 2 and estimator é otherwise.

5.3 Bias in Relevance Assessments

Our discussion of classifier bias would not be complete without addressing the bi-
ases that are inherent in the relevance assessments that were used for the experiments
described in this thesis. This type of bias is a function of the assessor’s background
knowledge for a particular event. Throughout the development phases of TDT, some
participants reported that they found documents that were incorrectly judged for a
particular event. Few of the problems reported were accepted as errors, and most, in
fact, were not errors, but simply reflected a participant’s subjective view of the event.

One example of this was uncovered by our new event detection system and the
event related to Warren Buffet’s recent manipulation of the silver market. Mr. Buffet
decided to buy 5% of the world’s silver supply through the metal’s underlying fu-
tures instrument, which sent the price of silver skyrocketing. Based on the available
judgements for this event, our system missed the one document judged to contain dis-
cussion of the new event. From the failure analysis we found that the system decided
this event was discussed in an earlier document about an FTC probe into the recent
volatility in the metals market. Our familiarity with the financial markets suggested
that the document about the FTC probe is very much related to the actions of Buffet,
and thus we felt our system correctly detected the new event. The evaluation software
told us otherwise. One question that arises is how much this type of bias can affect
our system’s relative effectiveness.

The cause of the differences that were observed between assessors of the TDT

data could be explained by the following factors [31]:

1. Assessors A and B have conflicting a priori knowledge and simply view docu-

ment content differently.
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2. An assessor made a keystroke error while using the document-assessment sys-

tem.

The real error made by the human is of the second type, while the first type implies
that the degree to which an assessor feels that a particular document is relevant to
an event is dependent on the type of event and the interpretation the assessor makes
based on a description of the event.

Voorhees observed that the probability was very small for two systems to change
rank in a cross-system comparison of ad hoc retrieval, due to bias in relevance as-
sessments [91]. In the evaluation of TDT2 detection and tracking systems, the set of
assessments went through three iterations of cleanup that resulted in no change in the
relative rank of any system. We therefore conclude that the bias inherent in the rel-
evance assessment process has a minimal impact on the overall relative effectiveness
of document classification systems.

However, the bias in the judgements must impact classification effectiveness to
some extent. We hypothesize that an upper bound on system classification effective-
ness is the overlap of the agreement between assessors. In addition, we posit that this
agreement should be greater for events than more general topics, because the informa-
tion request for the former can be more specifically defined. The analysis of the data
from the assessment process and the results that are reported for TDT and TREC
text classification suggest that these hypotheses are true. In TDT, approximately
90% of the documents were judged identically by multiple assessors [20]. This would
suggest an upper bound for Fl-measure to be 0.9, and the TDT tracking systems
appear to produce average Fl-measures in 0.7 to 0.85 range. In Voorhees’ analysis
of TREC data [91], only 50% of the assessments for the TREC topics analyzed had
the same assessment from multiple assessors. It is very likely to see Fl-measures
reported for the TREC filtering problem that are in the 0.35-0.45 range for these

data. If these hypotheses are in fact true, that would suggest tracking and filtering
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systems are already very close to upper bound effectiveness, and that constructing

text classifiers from sample documents has many very effective solutions.

5.4 Conclusion

We described two approaches for automatic threshold parameter estimation for
our static classifier formulation process applied to the problem of event tracking.
We view the threshold as a statistic of the incoming news stream that is estimated
using an optimization process applied to the training data. We defined the notion
of classifier bias in terms of threshold estimators, and illustrated that the amount of
bias increases when fewer relevant training samples are used on the TDT data. Our
results suggest that our automatic thresholding approaches can learn the bias and
result in effective estimates of threshold parameters for classifiers. We suggest using
the histogram approach when estimating thresholds for Nt < 2 relevant instances,
and the linear regression approach otherwise.

The histogram approach, in turn, leads us to the threshold estimation methodol-
ogy that we use for new event detection and event clustering. In this approach, the
parameter € that controls the threshold model is set to the value that, on average,
gives rise to the best overall tracking effectiveness for the events tested during de-
velopment. Our approach to new event detection and event clustering is based on
formulating text classifiers for each document appearing on the stream. In the con-
text of tracking, our approach to these problems is to formulate tracking classifiers
for the entire stream using Nt = 1 relevant training documents. In the next chapter,

we discuss how we adapt the histogram method for event clustering.

81



CHAPTER 6
CLUSTERING

In this chapter, we extend our text and classifier representation for tracking to
the more general problem of event clustering, that is, the unsupervised process of
grouping stories discussing the same event. We focus on solutions to the on-line
clustering task, where a story is assigned to a cluster before processing subsequent
stories on the stream. We extend our classification model to exploit the temporal
relationship between stories. The motivation for this approach is that news stories
appearing on the stream closer in time are more likely to contain discussion of the
same event than stories appearing further apart.

In the next section, we review our event clustering approach, which is based on the
implementation of our tracking system described in Chapter 4. Our implementation
for clustering is described in Section 6.2, and a review of the clustering strategies we
tested appears in Section 6.3. In Section 6.4, we discuss retrospective experiments and
our optimization effort used for predictive experiments. We evaluate our approaches
using the data and evaluation methodology developed for the Topic Detection and
Tracking (TDT) research initiative. In TDT, the problem of clustering is referred
to as the detection task, which is described in more detail in a Section 6.5. We we
also present clustering approaches from other systems that participated in the recent

TDT2 detection task evaluation.
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6.1 On-line Clustering Algorithms

In what follows, we use a single-pass (incremental) approach to event clustering
(Section 2.3.2). When a new document appears on the stream, it is either put into
one of the existing clusters, or becomes the seed of a new cluster.

There are three main issues to consider when implementing an on-line clustering

algorithm:
1. partitioning
2. prototyping, and
3. comparison strategies.

The partitioning issue for clustering involves simply whether a document can
appear in more than one cluster. A process creates a partition of the stream if each
document appears in only one cluster.

When cluster prototyping is used, the documents in each cluster are represented
by one classifier per cluster. A prototype for a cluster can be created by formulating a
single classifier from the documents in the cluster, or averaging the feature weights of
multiple classifiers. Prototyping potentially reduce the number of document compar-
isons, and may lead to more effective groupings than using a separate classifier for each
individual document. However, we found prototyping did not improve effectiveness
in several previous experiments using a clustering approach to new event detection
[3]; therefore, in what follows, we focus on non-prototyping methods to clustering. In
addition, several of the TDT participants have pursued uses of cluster prototyping
and centroids, and the comparison of approaches suggests that prototyping does not
lead to improved effectiveness over our approach.

The comparison strategy is what places a document in a particular cluster or
not. The strategy also determines if the document is a seed for a new cluster. In

the experiments to follow, we re-evaluate cluster comparison strategies that have been
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used for agglomerative hierarchical clustering (Section 2.3.1). We test three commonly
studied comparison strategies, namely single-link, group-average, and complete-link
strategies, which have been previously applied to retrospective clustering in which all
the documents are assumed to be available before clustering begins [89, 22, 90, 94, 75].
The names for these strategies are associated with hierarchical clustering, and we use
them here in the context of on-line single-pass versions. The distinction is that single-
pass clusters are dependent on the order in which documents are processed, while
the hierarchical clustering approach produces the same set of clusters regardless of

document order.

6.2 Implementation

Our basic algorithm for event clustering is the following: For each document we
formulate a fixed-length classifier from the n most frequent words in the document
excluding stopwords. This process is the same as our static classifier formulation
process for tracking (Section 4.1.2.1) using Nt = 1 relevant training documents. The
classifier’s initial threshold is its similarity value when compared to the document
from which it was created. We assume no subsequent document will exceed this
threshold, and so we use it as an initial estimate for the threshold. We re-estimate
the threshold using our threshold model, which is discussed in the next section. As
new documents arrive on the stream, they are compared to previously formulated
classifiers, and clusters are formed based on a particular comparison strategy. In

Section 6.3, we describe the strategies we tested for event clustering.

6.2.1 Time-based Threshold Model
A side-effect of the temporality of broadcast news is that documents closer to-
gether on the stream are more likely to discuss related events than documents farther

apart on the stream. When a significant new event occurs, there are usually several
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documents per day pertaining to it; over time, coverage of old events is displaced
by more recent events. Figure 6.1, for example, depicts the number of documents
per day that arrived on CNN broadcast news and AP newswire pertaining to two
events: an earthquake in Japan and the downing of a US Airforce pilot over Bosnia.
Most of the documents pertaining to these events occurred within 10 days, and this
appears to be the pattern for many of the events in the TDT corpora. Therefore, one
hypothesis about the domain of broadcast news is that exploiting the time between

documents will lead to improved classification accuracy.

Earthquake in Kobe F-16 downed over Bosnia
Plane Shot Down
O’ Grady Rescued

#of

docs/

day a =

[n] = =4 =1 == ==um ==uian ==
Time »

Figure 6.1. Daily document counts for two TDT events.

In the implementations that follow, time is incorporated into our threshold model.
The thresholding technique we use for clustering is an extension of the methods we
used for tracking in Chapters 4 and 5. The threshold model defined by Equation
4.7 (page 51) is extended with a linear function that controls similarity based on
the number of days between the formulation of the classifier and the arrival of the
document. During processing, a classifier’s actual threshold is potentially recomputed
at each time step, that is, each time a new document arrives on the stream. For any
classifier formulated at time i, its threshold for a document arriving at a later time j

is
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threshold(g;,d;) = 0.4 + 6 x (sim(g;,d;) — 0.4) + 8 = (date; — date;), (6.1)

where sim(g;, d;) is the similarity value between the classifier and the document from
which it was formulated (Equation 4.6, page 51), and the constant 0.4 is an Inquery
parameter. The value of (date; — date;) is the number of days between the arrival
of document d; and the formulation of classifier ¢;, and we use the global system
parameter 3 to control the effects of this value. The values for # and ( control
classification decisions, and our method for finding appropriate settings are discussed

later in this chapter.

6.2.2 Decision Scores

Our threshold model described above is what decides for each classifier whether
a document is a positive instance. Our confidence in the decision that document d;
is a positive instance of classifier ¢; is the extent to which the document exceeds the
classifier’s threshold. In what follows, the score we used between a document and a

classifier is

decision(q;, d;) = sim(q;, d;) — threshold(g;, d;). (6.2)

This was our original decision score for tracking described in Section 4.1.3. A
decision scores greater than 0 implies that d; is a positive instance of ¢;, and it
also implies that documents d; and d; are similar. In many clustering approaches,
the similarity between d; and d; is symmetric. Since the documents and classifiers
have different representations using our approach to clustering, the similarity between

documents is not necessarily symmetric.
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6.3 On-line Cluster Comparison Strategies

The decision scores resulting from Equation 6.2 are used to calculate comparison
values between documents and clusters. There are several ways to combine decision
scores resulting from a document compared to the classifiers in each cluster. In this
section, we discuss the way decision scores are combined using the cluster comparison
strategies we tested.

When on-line clustering begins, a classifier for the first document on the stream is
formulated and becomes the first cluster. The classifier formulation process (Section
4.1.2.1) is repeated for the second document, but immediately afterwards, a compari-
son value is determined between the second document and the cluster resulting from
the first. If the second document exceeds the classifier’s threshold then the classifiers
from the first and second document are merged into one cluster; otherwise, the clas-
sifier from the second document initiates a new cluster. Once a cluster contains more
than one classifier, a policy must be invoked which determines the comparison value
between the document and the cluster.

In this dissertation, we re-evaluate document clustering based on on-line single-
pass variants of single-link, group-average, and complete-link cluster comparison
strategies. These strategies are described in more detail in 2.3.3, and we summa-

rize our approaches as follows:

e In the on-line single-link strategy, the comparison value is the maximum posi-
tive decision score for the classifiers contained in a cluster. The classifier from
the current document initiates a new cluster if it does not result in a positive
comparison value for any existing clusters; otherwise it is placed in the cluster

that has the highest decision score.

e In the on-line average-link strategy, the comparison value for each cluster is the
averaged decision score for the classifiers contained in a cluster. If the decision

score average is negative, then the document is not assumed to have similar

87



content to the documents associated with the cluster. If the average decision
score is negative for all existing clusters, then the document under inspection
initiates a new cluster, otherwise it is placed in the cluster that has the highest

average decision score.

e We also implemented an on-line complete-link strategy, where the comparison
value for each cluster is the minimum decision score of the classifiers in a cluster.
If the minimum decision score is negative for all existing clusters, then the
document under inspection initiates a new cluster, otherwise it is placed in the

cluster that has the highest minimum score.

Based on our implementation, we did not find our on-line complete-link strategy to
be effective in comparison to other strategies, and therefore we focused on comparing
on-line average-link to on-line single-link strategies. Our implementation of the on-
line average-link strategy required more processor time than the on-line single-link
implementation. For example, clustering with on-line single-link ran in a few minutes,
while average-link strategy required a few hours for each experiment. In general, all
three approaches have the same asymptotic running time of O(n?), that is, the current
document is compared to the classifiers resulting from all the previously processed
documents. However, in practice, it is sufficient to evaluate only those classifiers that
have lexical features that cooccur in the currently processed document; therefore, all
three approaches require much fewer than n? comparisons. In our implementation,
the on-line average-link strategy was slower because it required the additional step
of determining the comparison values for all clusters, whereas the on-line single-
link strategy required determining a comparison value for one cluster, i.e., the one

containing the classifier resulting in maximum decision score.
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6.4 On-line Clustering Experiments

In this section, we test our text classifier approach to event clustering and evaluate
the on-line single-link strategy and the on-line average-link strategy. In addition, we
test the effectiveness of using the time component in the threshold model described
by Equation 6.1. When the time component is used, then # > 0 in the equation,
and its effects on running time performance is minimal. From several preliminary
experiments, we found that the on-line average-link strategy did not benefit from
values of 3 > 0, and thus the time component is only reported for the on-line single-
line strategy. When the time component is used with the on-line single-link strategy,
we refer to the strategy as on-line single-link+time.

In what follows, we evaluate effectiveness using a methodology developed by TDT.
Effectiveness is measured based on the best cluster that resulted for each of the
known events, where best is the cluster that contains the most stories for each event.
In what follows, we measured recall, precision, and F1-Measure (Section 3.2.1) and
found parameters that led to optimal F1-measure for classifiers of length 25, 50, 100,
and 200. We use F1-measure for these experiments, and report results optimizing for
TDT cost function in the next section.

The optimization process involves finding appropriate values for # and g for our
threshold model described by Equation 6.1. Our approach is to increment and test
a range of values for each parameter and dimensionality setting to find optimal ef-
fectiveness over the events with known judgements. In the experiments that follow,
we used the automatic speech recognition (ASR) versions of the TDT1, TDT2-Train,
and TDT2-Development corpora to find parameters, and we used the ASR version of
the TDT evaluation corpus and its events for predictive experiments. Results com-
paring the on-line single-link, single-link+time, and average-link strategies are listed

in Figures 6.2 to 6.4 below.
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Figure 6.2. Event Clustering: TDT1 corpus.

Event Clustering - TDT2-Train

09
08 |

0.6 — — ] [~ |0 Average-Link
0.5 — — — — — | Single-Link
04 - — — — I |0 Single-Link+Time

0.3 o o . n
0.2 — — — —

Maximum F1-Measure

25 50 100 200
Number of Features

Figure 6.3. Event Clustering: TDT2-Training corpus.
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Figure 6.4. Event Clustering: TDT2-Development corpus.

The charts in Figures 6.2 to 6.4 illustrate story-weight (pooled) Fl-measure re-
sulting from using the best parameters we found for each corpus. We see that at
optimal parameters, the on-line average-link strategy is comparable in effectiveness
to on-line single-link+time. Both of these strategies appear to be more effective than
the on-line single-link strategy in which the time component of the threshold model
is not used. In addition, no particular classifier dimensionality appears to give rise
to a significant increase in effectiveness. For example, on the TDT1 corpus using
50-feature classifiers, the on-line average-link approach had an optimal F1 of 0.81,
and using 200 features, the on-line single-link+time strategy had optimal F1 of 0.79.
These measures are among the best currently reported for on-line clustering on this
corpus [98, 5.

Using the on-line single-link strategies on the TDT2-Train, and TDT2-Development

corpora, we found that our approaches were affected by the headers and trailers con-
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tained in broadcast news programs. The relevance assessments for these corpora
indicated that most of these snippets were tagged as miscellaneous text, which is
excluded from evaluation but not from processing. For example, the trailer: “up
next, your local weather,” results in a classifier with the lexical features ‘local’ and
‘weather’. This small classifier will have high similarity to documents that have even
a few occurrences of either feature, and will thus lead to classification errors. In an
effort to mitigate this problem, we analyzed the lengths of documents marked mis-
cellaneous in the TDT2-Train and TDT-Development corpora, and determined that
documents containing less than 55 words are very likely to be headers or trailers.
We therefore classified documents under this size as non-relevant to all events, and
assigned them to one cluster not used for comparisons.

Our approach to selecting thresholds for event clustering was to use the parameters
that on average gave rise to optimal pooled average F1-measures in the retrospective
experiments. This is similar to the histogram approach for tracking discussed in
Chapter 5. For on-line single-link+time we set # = 0.26 and § = 0.001; for on-line
single-link we set § = 0.33 and # = 0; and for average-link # = 0.15 and 3 = 0.
The results from predictive experiments on the TDT2-Evaluation corpus are listed in

Table 6.1.

Table 6.1. Detection results on TDT2-Evaluation corpus.

F1-Measure | TDT2 Cost
On-line Strategy | SW ‘ ™ SW ‘ ™
single-link+time | 0.61 | 0.71 | 0.0056 | 0.0062
single-link | 0.54 | 0.71 | 0.0077 | 0.0072
average-link | 0.58 | 0.68 | 0.0108 | 0.0062

In Table 6.1, pooled or story-weighted (SW) measures as well as the mean or
topic-weighted (TW) measures are reported for both F1 and TDT2 cost. The on-line
single-link+time approach appears to cluster events more effectively than the on-line

single-link strategy, which suggests that using the time component of the threshold
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model is effective. In addition, the single-link+time approach appeared to be the
most effective in terms of pooled F1l-measure and even more so in terms of pooled
TDT2 cost. However, the average-link approach resulted in the same topic-weighted
cost as the single-link+time approach, which suggests that both methods are effective
for event clustering. In the following section, we report our TDT2 detection results,
where we applied the same parameter estimation process but optimized for story-
weighted cost instead of F1-measure. In Section 6.6, we compare our results to those

of other event clustering systems.

6.5 TDT Detection Experiments

In TDT, on-line event clustering is referred to as the detection task. The stream
is processed with or without a deferral period (DEF) that specifies the number of
news programs that can be processed before making document/cluster decisions. A
score and cluster number are produced for each document before the next document
is read, or before the deferral period ends. Effectiveness measures are recorded for
the best cluster that resulted for each of the known events, and for TDT, best is the
cluster that minimizes the TDT2 cost function defined by Equation 3.1 (page 34).
The cost function is a linear combination of miss and false alarm rates. In this section,
we discuss our results for predictive experiments using the TDT methodology.

The effectiveness measures in this section were produced by the National Institute
of Standards and Technology (NIST). We had access to the first three corpora and
event assessments described in Tables 3.1 and 3.2 (page 33). The TDT2-Evaluation
corpus was used for the evaluation in which we did not have the relevance assessments
for the events being evaluated.

As part of our TDT efforts, we tested on-line single- and average-link comparison
strategies. We used the same optimization approach as described above, and found

values for 6 and 3 that yielded optimal story-weighted cost using the ASR versions
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of the TDT1, TDT2-Train, and TDT2-Development corpora. We used the mean of
the parameters across the three corpora, and applied them to the TDT2-Evaluation
corpus for both automatic speech recognition and manual closed caption transcription
(CCAP) versions of the evaluation corpus. The newswire sources (NWT) were the
same for both versions.

We found different parameters for each strategy when optimizing for cost instead of
F1l-measure. In the experiments that follow, for the on-line single-link+time approach
we set # = 0.22 and B = 0.001, for single-link # = 0.3 and # = 0.0, and for average-
link # = 0.1 and 8 = 0.0. We found that at optimal parameter settings, lower cost
was obtained for some events using more features, but for other events, fewer features
were more effective. In the experiments that follow we used 50-feature classifiers,
which appeared to work well on the TDT2-Train and TDT2-Development corpora

for both on-line single- and average-link approaches.

ASR+NWT
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0.0070 ] |

0.0060 —

0:0090 " [mAudio
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0.0010 +— —
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single- single-link average-link
link+time
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Figure 6.5. TDT Detection: TDT2-Evaluation corpus (Story-weighted cost for
ASR4NWT source).
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CCAP+NWT
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Figure 6.6. TDT Detection: TDT2-Evaluation corpus (Story-weighted cost for
CCAP+NWT source).

The data from our predictive TDT detection experiments are listed in Figures 6.5
and 6.6. The charts include separated story-weighted TDT2 cost for audio (ASR or
CCAP) and text (NWT) testing documents. The data suggest that the on-line single-
link+time strategy is the most effective clustering approach for both audio and text
sources when applied to the ASR+NWT version of the TDT2-Evaluation corpus. The
other approaches appeared to benefit from the CCAP source (Figure 6.6), in which
on-line average-link provided equally low cost as on-line single-link+time. In contrast
to our tracking results, all the clustering approaches we tested were more effective on
the CCAP source than on the ASR source, which suggests that the ASR technology
impacts the effectiveness of event clustering.

The results from the experiments above are summarized in Table 6.2. As ex-
pected, optimizing for story-weighted cost instead of F1l-measure lead to lower cost

with respect to the values we listed in Table 6.1. In addition, the average-link ap-
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proach appeared to be more effective for topic-weighted (TW) evaluation, which is
the average TDT2 cost across events.

Table 6.2. TDT Detection: TDT2-Evaluation corpus.

ASR+NWT | CCAP+NWT
On-line Strategy SW| TWwW SW| Tw
single-link+time | 0.0040 | 0.0064 | 0.0033 | 0.0059
single-link | 0.0068 | 0.0077 | 0.0047 | 0.0058
average-link | 0.0074 | 0.0055 | 0.0033 | 0.0044

When we analyzed the clusters resulting from the TDT2 evaluation for each
strategy, the most salient distinction observed was the number of clusters the differ-
ent strategies produced. After processing the ASR+NW'T stream, which contained
22,445 documents using the boundaries provided, the on-line average-link strategy
produced 1221 clusters. However, the on-line single-link strategy produced 8206, and
on-line single-link+time produced 7515 clusters. The results using the closed caption
source (CCAP+NWT) indicated roughly the same trend in that the on-line single-
link strategies produced nearly 6 times as many clusters as the on-line average-link
strategy. However, the CCAP+NWT results in Table 6.2 indicate that the on-line
single-link+time strategy has the same clustering effectiveness as the on-line average-
link strategy despite the large difference in the number of clusters produced. These
results suggest that the evaluation methodology, which is based on the best cluster for
each event, is not sensitive to stories about the same event appearing in many clus-
ters. In TDT3, new evaluation measures for the detection task are being considered

that may provide more insight into the quality of the resulting clusters.

6.6 Cross-System Comparison for TDT2 Detection Problem
In this section we discuss the results from the TDT2 detection task evaluation.
In what follows, we compare our results to those from other TDT research sites.

We restrict our comparison to sites that provided data to NIST prior to the TDT2
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submission deadline. The detection systems were developed independently, and the
overall competitive-collaborative effort resulted in several corroborated results from
different approaches to the detection problem.

A common element across systems was the use of a word-cooccurrence model.
Some systems used a tf-idf text representation similar to the one described in this
dissertation, while others made use of statistical language modeling approaches. We
summarize the salient features of the BBN, CMU, Dragon, IBM, and UPENN detec-

tion systems as follows:

BBN The BBN system used an incremental k-means algorithm. They experimented
with probabilistic document similarity metrics and more traditional vector-
space metrics. They show that combining these metrics is effective for detection.
As documents are processed and added to previous clusters, parameters are re-
estimated and cluster centroids are reformulated. They also tested the use of a
deferral period for which they found no improvement in terms of story-weighted

cost. [92]

CMU The group from Carnegie Mellon University used incremental agglomerative
clustering that successively merged clusters using a group-average comparison
approach. They used the SMART retrieval system and a tf-idf document rep-
resentation. The experimental focus for their system was to test the effects of
using a deferral period. The deferral period gives rise to a lookback technique
where comparisons are limited to a fixed size window of time. They show small

gains from using a deferral period. [15]

DRAGON Dragon Systems describes their detection system in terms of a Beta-
Binomial Mixture Model. This is a language modeling approach where they
calculate the probability distribution for a word appearing a given number of

times in a document of a particular length. As the documents are processed,
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the parameters for the distribution of each word are re-estimated. They use
distributions from a relatively small lexicon of between 20K and 60K words.
They compare their binomial model to a more expensive multinomial model

which results in a small improvement for average TDT2 cost. [51]

IBM The IBM system used a Vector Space clustering approach. Several preprocess-
ing steps were applied to each document before comparing it to existing cluster
centroids. These steps included part-of-speech tagging, stemming, and feature
extraction of unigram and bigram adjacent nouns. They used a tf-idf document
representation, and compared documents to cluster centroids using a similarity

measure from the Okapi retrieval system. [27]

UPENN The system from the University of Pennsylvania is based on a single-link
agglomerative clustering approach using a tf-idf representation for documents.
A cosine similarity function was applied to vectors of document weights. Unlike

the other systems, they did not use stemmed lexical features. [79]

Tables 6.3 and 6.4 list the official results reported by NIST for the TD'T2 detection
task. The target source condition was the ASR version of the evaluation corpus, and
we report both story- and topic-weighted TDT2 cost. The TDT sites had access to
the first three corpora and event judgements described in Tables 3.1 and 3.2 (page
33). The TDT2-Evaluation corpus and set of events was used for the evaluation, and
the sites did not have the relevance assessments for the events before the submission
deadline. The TDT cost function was used for evaluation, and the target condition
was based on DEF=0, and thus, cluster decisions were made for each document before
reading the next.

In general, the effectiveness reported for all the systems is very good. Many of the
systems that used tf-idf weights also used an explicit time component or incremental-

1df calculation, which we have found to have a similar property to a time component
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caused by decreasing idf weights as more of the stream is processed. It is therefore
not surprising that overall effectiveness was not significantly different between these
systems. However, it is surprising that the on-line single-link approaches worked
as well as agglomerative and average-link approaches in light of past observations by
Willet [94] and Voorhees [90] who have found that single-link clustering is less effective
than average-link for cluster-assisted retrieval. However, both on-line single-link and

average-link methods appear to be effective for the TDT2 detection task.

Table 6.3. NIST evaluation of TDT2 detection task: TDT2-Evaluation corpus
(ASR+NWT).

ASR+NWT
System | SW ‘ TW | Description
BBN | 0.0040 | 0.0047 | Incremental K-Means
UMASS | 0.0040 | 0.0064 | Single-Link+Time
DRAGON | 0.0045 | 0.0048 | Beta-Binomial Mixture Model
IBM | 0.0046 | 0.0042 | Agglomerative
UPENN | 0.0070 | 0.0063 | Single-Link
UMASS | 0.0073 | 0.0055 | Average-Link (not official)
CMU | 0.0077 | 0.0057 | Incremental Agglomerative

Table 6.4. NIST evaluation of TDT2 detection task: TDT2-Evaluation corpus
(CCAP+NWT).

CCAP+NWT
System | SW ‘ TW | Description
UMASS | 0.0033 | 0.0059 | Single-Link+Time
UMASS | 0.0033 | 0.0044 | Average-Link (not official)
BBN | 0.0034 | 0.0043 | Incremental K-Means
CMU | 0.0068 | 0.0049 | Incremental Agglomerative

The TDT2 systems were more effective using the CCAP version of the evaluation
corpus than the ASR version. A comparison of the results from Table 6.4 to those
of Table 6.3 suggest that clustering is more effective when using the cleaner closed
caption data.

As previously mentioned, evaluation for each event is based on the one cluster that

gives rise to minimal TDT2 cost. This best-fit approach hides cluster fragmentation
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issues. Recall that our single-link+time approach produces roughly 7500 clusters,
while BBN reported that its system produced roughly 3000 clusters for the same
corpus. While these different clusterings result in the same story-weighted cost, the
utility of returning several thousand clusters to a user is questionable. More experi-
ments are necessary to determine which approach is producing the correct granularity
of clusters, and those experiments would likely require exhaustive relevance judge-
ments. However, we believe that document clustering is likely to be a more useful
component technology when it is part of a solution to a user-oriented classification

task such as new event detection.

6.7 Conclusion

In this chapter, we tested approaches to on-line event clustering using a text
classifier approach to the problem. The data suggest that the on-line single-link+time
cluster comparison strategy is more effective than other approaches when automatic
speech recognition data is clustered. When cleaner closed caption transcriptions are
used, the on-line average-link strategy appears to be as effective as on-line single-
link+time. We believe the on-line single-link+time strategy works well because it
captures the periodicity and overall temporal relationship between news stories that
may not exist in collections from other information domains. Our results suggest
that modeling the temporal relationship between documents is useful when clustering
broadcast news data.

We also found that our optimization approach using both F1-measure and TDT2
cost resulted in effective classification. This approach was used for the tracking
problem, where we searched for optimal parameters across training and develop-
ment corpora, and used the mean of these values when performing predictive ex-
periments. When we applied the approach to the TDT detection task, our overall

implementation compared favorably to other TDT systems for both the ASR+NW'T

100



and CCAP+NWT source conditions. In addition, the TDT detection results suggest
our text representation and classification approach was effective.

The question that arises is whether clustering can help new event detection. In
the context of clustering news, the problem of new event detection is to find the first
story in each cluster, in other words, the stories that become cluster seeds. The results
from this chapter suggest that, on average, our approach to on-line event clustering
puts most of the stories about an event in one cluster. In the next section we evaluate
on-line clustering as a basis for new event detection, and determine how well different

comparison methodologies produce cluster seeds.
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CHAPTER 7
NEW EVENT DETECTION

The problem of new event detection is to identify the stories in a stream of news
that contain discussion of a new event, that is, an event which has not been previ-
ously reported. In this chapter, we present on-line solutions to new event detection in
which the system indicates whether the current news story contains or does not con-
tain discussion of a new event before processing the subsequent story. Our approach
to new event detection is based on event tracking with one relevant document, which
was discussed in Chapters 4 and 5. In addition to newswire, we apply our approaches
to the domain of broadcast news, which includes data from television and radio trans-
missions. In what follows, we describe the details of our algorithm and experimental
results using the corpora and evaluation methodology developed as part of the Topic
Detection and Tracking (TDT) research initiative.

The motivation for our approaches to the problem is to incorporate the salient
properties of broadcast news. In particular, we identify the property of time as a
distinguishing feature of this domain. We posit that modeling the temporal relation-
ship between documents should result in improved classification. Our event clustering
results in Chapter 6 suggested that this hypothesis is true, and we showed that our
approach to event clustering is more effective when this temporal relationship is mod-
eled.

Another property of news is that its content includes the names of the people,
places, dates, and things, i.e., the who, what, when, and where that are the focus of

an event. Our intuition is that the words in proper noun phrases are important to
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include in a classifier when using a word-cooccurrence model for text classification.
We test this intuition by augmenting the classifier formulation process described in
Section 4.1.2.1 with a natural language parser that finds proper noun phrases in
each document. Our results suggest that identifying these phrases leads to improved
classification.

There are many lexical cues in language that indicate a new event, which we do
not model, but which are used by humans. For example, when you are asked if the
document in Figure 4.2 (page 49) discusses a new event, you may be inclined to say
“yes” because of your interpretation of the words in the document. You might also be
correct in saying “no” if you know that the event was covered by an earlier broadcast.

Simulating the way humans interpret novelty in news is a provocative concept;
however, it may not necessarily lead to more accurate detection than the system
we have implemented. For example, a human trying to detect new events over a
significant period of time would begin to forget the details of each event, because the
brain does not store a representation for every snippet of news seen and heard. !
Nonetheless, humans have the ability to generalize, and in order to detect new events
in text, a representation with the property of generalizing to unseen documents is
necessary.

In what follows, we use the same representation we used for tracking, and the
same classification model we used for event clustering. The contents of each docu-
ment is formulated into a classifier which is compared to subsequent documents. Our
approach to new event detection is that if no classifier comparison results in a posi-
tive classification decision for the current document, then the current document has

content not previously encountered, and thus it contains discussion of a new event.

LCase studies by experimental psychologists reveal a few anomalies where the opposite is true,
that is, the subject has a memory in which an object is identifiable only if that exact object has
been seen before, but does not appear to have the cognitive ability to generalize [76]. This type of
memory is easier to model mathematically than one with the capacity to generalize.
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The main difference between our approach to new event detection and event cluster-
ing is that the emphasis is placed on finding the start of each event, not grouping

documents by events.

7.1 New Event Detection Algorithm

We have developed a single-pass algorithm for new event detection using the text
representation described in Chapter 4. Our implementation is based on the query
syntax and ranked-retrieval engine of the Inquery retrieval system [12]. Our algorithm

processes each new document on the stream sequentially, as follows:

1. Formulate a classifier representation for the document’s content.

2. The new classifier’s initial threshold is its similarity to the document from which

it was formulated.

3. Re-estimate existing threshold over time using appropriate values for constants

f and (3 in the threshold model.
4. Compare the new document against existing classifiers in memory.

5. If the document does not result in a positive decision score with any existing

classifier, flag the document as containing a new event.

6. If the document results in a positive decision score, flag the document as not

containing a new event.

7. (Optional) Add the document to the document lists of the classifiers for which

it had a positive decision score.
8. (Optional) Reformulate the existing classifiers using the updated document lists.

9. Add the new classifier to memory.
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We represent the content of each document, which we assume discusses some event,
as a classifier. If any existing classifier results in a positive classification of the current
document, the document is assumed to discuss the event represented by the classifier;
otherwise the current document contains a new event. We discuss the implementation

details of the algorithm below.

7.2 Implementation

The classifier formulation process is the following: For each document we formulate
a fixed-length classifier from the n most frequent words in the document excluding
stopwords. This process is the same as our static classifier formulation process for
tracking (Section 4.1.2.1) using Nt = 1 relevant training documents. We have found
that classifiers formulated from one document are relatively effective for tracking, and
that the formulation approach also works well using different comparison strategies
for event clustering.

During processing, each classifier’s threshold is potentially recomputed when each
new document arrives on the stream. We use the threshold model from our event clus-
tering implementation, which incorporates a time component that increases thresh-
olds over time. For any classifier formulated at time 4, its threshold for a document

arriving at a later time j is

threshold(g;,d;) = 0.4 + 6 x (sim(g;, d;) — 0.4) + [ = (date; — date;), (7.1)

where sim(g;, d;) is the similarity value between the classifier and the document from
which it was formulated (Equation 4.6, page 51), and the constant 0.4 is an Inquery
parameter. The value of (date; — date;) is the number of days between the arrival

of document d; and the formulation of classifier g;. The values for § and § control
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new event classification decisions, and our method for finding appropriate settings
are discussed later in this chapter.

We use decision scores when deciding whether a new event has arrived. If any
decision score is positive as a result of comparing the current document to an existing
classifier, then we assume the document does not discuss a new event. In what
follows, the score we used between a document arriving at time 5 when compared to

an existing classifier ¢; formulated at an earlier time 7 is

decision(g;, d;) = sim(qi, d;) — threshold(g;, d;), (7.2)

which is the same decision score we used for event clustering in Chapter 6. Decision
scores greater than 0 imply that documents d; and d; are similar in content, and thus

document d; does not discuss a new event.

7.3 New Event Detection Experiments

In this section, we discuss the results we obtained from the algorithm described
in Section 7.1. For these experiments, we developed our system using data from the
TDT1, TDT2-Train, and TDT2-Development corpora, and we evaluated our system
on the TDT2-Evaluation corpus (Section 3.1). We report values based on TDT2 cost
and F1l-measure, which are described in more detail in Section 3.2.1. In the following
experiments we optimized for F1-measure in order to compare these data to those we
obtained in previous experiments [5, 4].

The results in this section are based on the evaluation methodology for new event
detection developed for the TDT Pilot Study (Section 3.2.3). In the next section,
we discuss our methodology for parameter estimation. In Section 7.3.2, we evaluate
the effectiveness of using event clustering as an approach to new event detection, and
in Section 7.3.4, we evaluate the use of proper nouns in our classifier formulation

process.
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7.3.1 Parameter Estimation Experiments

Our approach to parameter selection was to use the means of the parameters that
gave rise to optimal effectiveness during training and development. We found the
parameters that gave rise to optimal new event detection effectiveness over the events
with known judgements in the TDT1, TDT2-Train, and TDT2-Development corpora,
and we used the mean of these parameters when evaluating predictive experiments.

Using classifiers with different numbers of features led to different parameter set-
tings, and we found that the parameters were most stable using 50-feature classifiers.
In what follows, we used # = 0.2 and § = 0.0005 when time is factored into the
threshold model, and @ = 0.3 and # = 0 otherwise. The corpora and events that were
used for development appeared to have optimal effectiveness at the same ( and, on
average, the same 6.

The effectiveness using 50-feature classifiers and the parameters we found in our
optimization process described above are listed in Tables 7.1 - 7.4 below. The results
for the TDT2 corpora in these tables are based on using newswire and automatic
speech transcription sources (ASR+NWT).

Table 7.1. New Event Detection: TDT1 corpus using 50-feature queries.

# of | Miss | F/A TDT2

skip | Docs | Rate | Rate | Recall | Prec | F1 Cost
0| 1124 | 40% | 1.27% 60% | 52% | 0.56 | 0.0205

1] 1099 | 44% | 1.12% 56% | 54% | 0.55 | 0.0197

2| 1074 | 48% | 1.14% 52% | 50% | 0.51 | 0.0208
311051 | 57% | 1.17% 43% | 45% | 0.44 | 0.0227
411028 | 41% | 1.19% 59% | 52% | 0.55 | 0.0199

5| 1006 | 64% | 1.22% 36% | 40% | 0.38 | 0.0247

6| 984 | 50% | 1.25% 50% | 48% | 0.49 | 0.0222

71 962 | 50% | 1.06% 50% | 50% | 0.50 | 0.0204

8| 942 | 53% | 1.08% 47% | 47% | 0.47 | 0.0211

9| 923 | 68% | 1.00% 32% | 40% | 0.35 | 0.0234

10| 904 | 78% | 0.90% 22% | 33% | 0.27 | 0.0244
Pool | 1008 | 53% | 1.13% 47% | 48% | 0.47 | 0.0217
Mean 54% | 1.13% 46% | 47% | 0.46 | 0.0218
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Table 7.2. New Event Detection: TDT2-Train corpus using 50-feature queries.

#of | Miss | F/A TDT2

skip | Docs | Rate | Rate | Recall | Prec | F1 Cost,
0 3969 | 46% | 3.20% 54% | 13% | 0.21 | 0.0405

1] 3934 | 65% | 3.21% 35% | 9% | 0.14 | 0.0444

2| 3900 | 52% | 3.31% 48% | 10% | 0.17 | 0.0427

3| 3869 | 40% | 3.36% 60% | 12% | 0.20 | 0.0409

41 3839 | 63% | 3.39% 3% | 8% | 0.13 | 0.0459

5 3809 | 55% | 3.31% 45% | 9% | 0.16 | 0.0434

6| 3780 | 52% | 3.25% 48% | 10% | 0.16 | 0.0422

7| 3753 | 65% | 3.25% 35% | 7% | 0.12 | 0.0449

8 | 3727 | 54% | 3.43% 46% | 9% | 0.15 | 0.0444

9| 3701 | 58% | 3.40% 42% | 7% | 0.13 | 0.0450

10 | 3677 | 58% | 3.53% 42% | 7% | 0.12 | 0.0463
Pool | 3814 | 55% | 3.33% 45% | 9% | 0.15 | 0.0436
Mean 55% | 3.33% 45% | 9% | 0.15 | 0.0437

Table 7.3. New Event Detection: TDT2-Development corpus using 50-feature
queries.

#of | Miss | F/A TDT?2

skip | Docs | Rate | Rate | Recall | Prec | F1 Cost,
0 599 | 60% | 1.74% 40% | 50% | 0.44 | 0.0291

1| 574 | 40% | 1.81% 60% | 55% | 0.57 | 0.0257

21 554 | 42% | 2.06% 58% | 50% | 0.54 | 0.0286

31 535 44% | 1.93% 56% | 50% | 0.53 | 0.0278

4 517 | 61% | 1.60% 39% | 47% | 0.42 | 0.0279

5| 499 | 50% | 1.44% 50% | 50% | 0.50 | 0.0241

6| 485 | 36% | 1.49%% 64% | 56% | 0.60 | 0.0217

7 471 | 1% | 1.53% 29% | 36% | 0.32 | 0.0293

8| 457 | 69% | 1.80% 31% | 33% | 0.32 | 0.0315

9| 444 | 54% | 1.39% 46% | 50% | 0.48 | 0.0244

10 | 431 | 58% | 2.15% 42% | 36% | 0.38 | 0.0327
Pool | 506 | 53% | 1.73% 47% | 48% | 0.47 | 0.0275
Mean 53% | 1.72% A7% | 47% | 0.47 | 0.0275

Tables 7.1 - 7.4 list the effectiveness of our approach using 50-feature classifiers
across the 11 passes through the corpus as described in Section 3.2.3 above. Recall
that a skip value of n implies that relevant documents 1..n were removed from the

stream for each event, and the goal was to detect the (1 + n)-th document for each
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Table 7.4. New Event Detection: TDT2-Evaluation corpus using 50-feature queries.

#of | Miss | F/A TDT2

skip | Docs | Rate | Rate | Recall | Prec | F1 Cost,
0| 1312 | 65% | 1.72% 35% | 35% | 0.35 | 0.0298

1] 1278 | 54% | 1.76% 46% | 37% | 0.41 | 0.0280
21250 | 76% | 1.71% 24% | 22% | 0.23 | 0.0320
311225 | 65% | 1.91% 35% | 26% | 0.30 | 0.0318
411202 | 71% | 1.86% 29% | 21% | 0.24 | 0.0325

5| 1181 | 60% | 1.64% 40% | 30% | 0.34 | 0.0280

6| 1161 | 61% | 1.40% 39% | 30% | 0.34 | 0.0259
71143 | 78% | 1.60% 22% | 18% | 0.20 | 0.0312

8 | 1125 | 64% | 1.53% 36% | 23% | 0.28 | 0.0279

9| 1111 | 64% | 1.55% 36% | 23% | 0.28 | 0.0280

10 | 1097 | 71% | 1.85% 29% | 17% | 0.21 | 0.0324
Pool | 1189 | 66% | 1.69% 34% | 26% | 0.30 | 0.0297
Mean 66% | 1.68% 34% | 26% | 0.29 | 0.0298

event. Hence, a skip value of 1 implies that the second document was the goal, and so
on. Pooled averages are based on responses across the available events. The pooled
average is story-weighted in the sense that events with more relevant documents are
more heavily weighted. The effectiveness measures are stable for the first few skip
values, but become worse at higher values because fewer events are included in the
pass.

The effectiveness reported in the first row of these tables (skip = 0) is for the
actual task of new event detection. We summarize these results in the Table 7.5

below.

Table 7.5. Cross-Corpora Comparison of New Event Detection

#of | Miss | F/A TDT?2

Corpus | Events | Rate | Rate | Recall | Prec | F1 Cost
TDTI1 25| 40% [ 1.27% | 60% | 52% | 0.56 | 0.0205
TDT2-Train 35| 46% | 3.20% | 54% | 13% | 0.21 | 0.0405
TDT2-Dev. 25| 60% | 1.74% | 40% | 50% | 0.44 | 0.0291
TDT2-Eval. |  34] 65% | 1.72% | 35% | 35% | 0.35 | 0.0298
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The data suggest that we find between 35%-60% of the documents discussing new
events at relatively low false alarm rates of 1.27%-3.2%. The predictive experiment
on the TDT2-Evaluation corpus is listed in the fourth row. The data indicate that
our parameter estimation process led to an F1l-measure that was within the range of
those obtained on the TDT2-Train and TDT2-Development corpora. 2

The effects of modeling the temporal relationship between documents in our
threshold model are illustrated in Figure 7.1 3. Each point represents effectiveness at a
particular combination of § and # (Equation 7.1), obtained from threshold parameter
searches on the TDT1 corpus.

In Figure 7.1, the points in the graph that are closer to the origin reflect higher
classification accuracy. The points connected by a line represent effectiveness of the
threshold model when § = 0, i.e., when time is not modeled. However, there is always
a parameter setting for 6, where 8 > 0 is more effective. In general we found that

across the corpora effectiveness is optimal when the time component was used in the

threshold model.

7.3.2 Clustering Approaches to New Event Detection

The approach we use for new event detection does not cluster documents in any
way. In our algorithm, a document contains a new event if the document does not
result in a positive decision score with respect to any of the existing classifiers us-
ing Equation 7.2 (page 106). It is evident; however, that our new event detection

algorithm is similar to the on-line single-link+time strategy for event clustering that

2The TDT cost measures in Tables 7.1 - 7.5 are worse than those obtained by a heuristic that
decides that no document contains a new event. For example, this simple approach would yield an
Fl-measure of 0.0, but a cost of 0.0200 using the TDT2 cost function parameters applied to Equation
3.1 (page 34). It should be noted that the cost function parameters were intended for evaluating
TDT tracking and detection data, and that different parameters are currently being considered in
TDT3 to address this issue.

3Note that Figure 7.1 is not a DET graph, and that the axes are on different scales.
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Figure 7.1. Effects of varying threshold parameters # and g.

was evaluated in Chapter 6. In that chapter, it was determined that different com-
parison strategies resulted in different groupings of documents. This implies that the
number of clusters, and thus the number of new events identified, are different. If
we view the instantiation of a cluster seed as tantamount to detecting a new event,
we find that the on-line single-link strategies tend to return more new events than
the on-line average-link strategy at optimal parameter settings, which would appear
to be advantageous in terms of misses, but not for false alarms. In the sections

that follow, we compare event clustering strategies and compare the effectiveness of

document/cluster comparison strategies as approaches to new event detection.

7.3.2.1 Retrospective Experiments
In this section, we evaluate our new event detection system varying the compar-
ison strategies between documents and classifiers, and varying the dimensionality of

the classifiers. We ran an analogous set of experiment to those we ran for event clus-
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tering in Section 6.4, in which we compared on-line single-link strategies and on-line
average-link strategies. Recall that in clustering, comparison values are determined
for each cluster using the maximum or average decision scores resulting from the cur-
rent document being processed. The classifier for the current document becomes a
member of the cluster with highest comparison value. If no existing cluster results
in a positive comparison value, then the document’s classifier initiates a new cluster
and the document is assumed to discuss a new event.

We found optimal parameters for classifiers of dimensionality 25, 50, 100, and 200
using the optimization process described in the previous section. The effectiveness
measures reported are based on finding the actual new event, i.e, results based on
skip = 0. Results for the TDT1, TDT2-Train, and TDT2-Development corpora that

led to maximum F1-measure on each corpus are listed in Figures 7.2 to 7.4 below.

New Event Detection - TDT1

0.9
0.8
0.7
06 W Average-Link

05 — | Single-Link

04 — | O Single-Link+Time
0.3 —
0.2+ —
0.1 —

Maximum F1-Measure

25 50 100 200
Number of Features

Figure 7.2. New Event Detection: TDT1 corpus
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Figure 7.3. New Event Detection: TDT2-Train corpus
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Figure 7.4. New Event Detection: TDT2-Development corpus

113



At optimal average effectiveness, new event detection is similar using different
numbers of features for classifiers. However, an event-level comparison across dimen-
sionality revealed that some classifiers benefit from using fewer features while others
benefit from more. This analysis also suggested that choosing the appropriate dimen-
sionality for each event would yield over 50% improvements in Fl-measure on the
TDT2-Train and TDT2-Development corpora. We have yet to find a methodology
for determining the appropriate dimensionality for an individual event automatically,
and we look forward to studying this problem in our future work.

The data from Figures 7.2 - 7.4 suggest that the on-line single-link strategy is on
average better at detecting new events when 3 > 0, that is, when the time component
of the threshold model is used. The on-line single-link strategies, in general, appear to
be more effective than the average-link strategy using optimal parameters. However,
all the strategies had lower accuracy on the TDT2-Train corpus. We believe this was
caused by the “Monica Lewinsky Scandal” and the “Asian Financial Crisis”, which
were two events that contained heavy news coverage comprising 10% of the documents

in the corpus.

7.3.2.2 Predictive Experiments

We ran predictive experiments on the ASR and closed caption (CCAP) versions
of the TDT2-Evaluation corpus. We used the parameters that on average gave rise
to optimal effectiveness in the retrospective experiments using 50-feature classifiers.
In the following analysis, we use Detection Error Tradeoff (DET) curves as well as
the 11-pass evaluation methodology that is described above. The DET curve for the
predictive experiment using the ASR data is listed in Figure 7.5, and the pooled-
average hard decision results are listed in Table 7.6.

The DET graph in Figure 7.5 illustrates that the on-line single-link strategies have

lower curves and thus more favorable error rate tradeoffs than the on-line average-
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Table 7.6. Comparison of clustering strategies for New Event Detection (Pooled
averages, TDT2-Evaluation corpus, ASR+NWT).

On-line | Miss | F/A TDT2

Strategy | Rate | Rate | Recall | Prec | F1 Cost,
single-link+time | 66% | 1.69% | 34% | 26% | 0.30 | 0.0297
single-link | 63% | 2.31% | 37% | 22% | 0.28 | 0.0352
average-link | 73% | 4.22% | 27% | 10% | 0.15 | 0.0559

link strategy. The improvement from the time component of the threshold model
appears to be less distinguished than the results from the retrospective runs would
have suggested. Nevertheless, from Table 7.6, on average we see a 7.1% improve-
ment in Fl-measure, and a 15.6% improvement in TDT2 cost when the temporal
relationship between stories is modeled. This suggests the desirability of using the
time component of the threshold model for an actual application.

We also tested the comparison strategies and parameter settings that gave rise
to good event clustering in Chapter 6. In the following experiments we evaluate
event clustering as the new event detection task. The threshold parameter for these
experiments are those obtained from the optimization process for event clustering
using F'1 as the target utility measure. In the following experiments, we used 6 = 0.26
and # = 0.001 for the on-line single-link+time strategy, and # = 0.33 and # = 0 for
the on-link single-link strategy. For on-line average-link, # = 0.15. The results for
these experiments are listed in Table 7.7.

Table 7.7. New Event Detection using good parameters for Event Clustering (Pooled
averages, TDT2-Evaluation corpus, ASR+NWT).

On-line | Miss F/A TDT2

Strategy | Rate Rate | Recall | Prec | F1 Cost
single-link+time | 41% | 7.50% 59% | 12% | 0.20 | 0.0818
single-link | 35% | 10.09% | 65% | 10% | 0.17 | 0.1059
average-link | 66% | 6.53% | 35% | 9% | 0.14 | 0.0769

The parameters for the on-line clustering strategies were different, and generally

lower for new event detection, and we see an improvement in miss rates, but a sig-
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nificant decrease in false alarm rates when applying the lower effective clustering
parameters. The improvement in F1 and the decrease in cost resulting from using
parameters optimized for new event detection are listed in Table 7.8.

Table 7.8. Percent improvement using New Event Detection threshold parameters.

On-line TDT2

Strategy F1 Cost
single-link+time | 50.0% | -63.7%
single-link | 64.7% | -66.8%
average-link | 7.1% | -27.3%

The data in Tables 7.6 to 7.8 suggest that on average, new event detection im-
proved when different threshold parameters were determined explicitly for the task.
These data suggest that good clustering strategies do not necessarily lead to effective
new event detection. Recall that the on-line average-link strategy was shown to be an
effective event clustering strategy, but does not result in finding many new events. In
addition, the on-line single-link strategies need different parameter settings for event

clustering and new event detection.

7.3.3 Impact of ASR technology

In the following experiments, we evaluate the effects of using text from the au-
tomatic speech recognition (ASR) process. The ASR process has an expected word
error rate of 15%. We substituted the broadcast news documents with automatic
transcriptions (ASR) with cleaner data containing closed caption manual transcrip-
tions (CCAP). The newswire (NWT) documents remained the same. We used the
same parameters for the CCAP+NWT data that were used on the ASR+NWT data
above. The DET curves resulting from this experiment are in Figure 7.6, and the
pooled-average results from the 11-pass evaluation methodology are listed in Table

7.9 below.
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Table 7.9. Comparison of clustering methodologies for New Event Detection (Pooled
averages, TDT2-Evaluation corpus with Closed Caption source).

Miss | F/A TDT2
Type | Rate | Rate | Recall | Prec | F1 Cost
single-link+time | 61% | 1.53% 39% | 31% | 0.35 | 0.0271
single-link | 61% | 1.73% 39% | 29% | 0.33 | 0.0291
average-link | 73% | 3.02% | 27% | 14% | 0.18 | 0.0442

The on-line single-link strategies were more effective than the on-line average-link
strategy for new event detection for both the CCAP and ASR sources. Furthermore,
using the on-link single-link+time strategy gives rise to the best DET curve in Figure
7.6, and the most effective pooled-average results for F1-measure and TDT2 cost in
Table 7.9. In addition, a comparison of the ASR and CCAP DET curves in Figures
7.5 and 7.6 indicates that the on-line average-link strategy benefits more than the
on-line single-link strategies when the ASR data is replaced with CCAP data.

In Table 7.10, we summarize the percent improvements in effectiveness realized by
replacing ASR sources with CCAP sources. For both F1-measure and TD'T2 cost, the
CCAP sources result in relatively high percent improvements in effectiveness over the
ASR sources for both on-line single- and average-link strategies. In general, we would
expect the ASR technology to give rise to more out-of-vocabulary (OOV) words than
the manual transcription process, and thus we expect the OOV words to be the cause
of an increase in classification error. This analysis suggests that the ASR technology
hinders new event classification using our approaches.

Table 7.10. Percent improvement using CCAP vs. ASR transcriptions.

On-line TDT2

Strategy F1 Cost
single-link+time | 16.7% | -9.4%
single-link | 17.8% | -17.3%
average-link | 20.0% | -20.9%
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7.3.4 Can Natural Language Phrases Increase Effectiveness?

A retrieval system that uses single-word features has its drawbacks. Consider a
retrieval task where a user is interested in information about Harley Davidson Mo-
torcycles. Documents containing the word “Davidson” without the word “Harley”
become unwanted relevant candidates using weighted independent words. Boolean
combinations of words introduce ambiguity between the concept they are intended
to represent and other concepts that contain the same words. For example, a user
interested in documents about The World Bank is not necessarily interested in re-
trieving documents about the merger that created the world’s largest bank. In these
examples, specifying the query as a phrase would assist in discriminating between
relevant and non-relevant documents. Previous research in document classification
extends the feature space by extracting natural language phrases and more general
multiword features.

The utility of multiword features and their effects on retrieval have gotten mixed
reviews in the previous literature. Lewis has documented some of the earlier work
pertaining to representation and ambiguity issues arising from the use of phrases.
He shows that “[tJhe optimal effectiveness of a text representation based on using
simple noun phrases...will be less than that of a word-based representation” [47]. In
addition, TREC routing and filtering systems using multiword features do not appear
to significantly outperform systems that use only single-word features [68].

These negative conclusions regarding multiword features are offset by several pos-
itive results that have been reported. For example, Fagen reports 2.2%-22.7% im-
provements in average precision using phrasal indexing [29]. Strzalkowski and Car-
ballo [81] describe improvements in ad hoc retrieval using natural language phrases.
Boolean features comprising multiple words have been used to improve precision by

Hearst [37]. Papka and Allan [58] showed that in the context of massive query expan-
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sion (queries with several hundred features), retrieval effectiveness improves by using
proximity operators on pairs of words.

There are several methods for extracting phrases. N-gram models based on mutual
information metrics are used to find sets of adjacent words that are likely to cooccur
within sentences [9]. Part-of-speech tagging using pre-specified syntactic templates
or more complex natural language parsing [29, 88| gives rise to related multiple words
comprising noun, verb, and prepositional phrases. Riloff and Lehnert [66] use in-
formation extraction techniques that build multiword features as an integral part of
their message understanding system.

In what follows we attempt to embed a statistical natural language parser into our
new event detection system. The parser was developed by Eugene Charniak at Brown
University [17], and it is based on a Hidden Markov Model that predicts productions
for a context-free grammar of the English language. The parser was trained using the
Penn Tree-Bank of hand parses for the Wall Street Journal, and obtains recall and
precision of roughly 77% on Tree-Bank experiments [18].

We use Charniak’s parser for its ability to detect proper nouns and dates. In
effect, our goal was to select features associated with the who, what, where, and when
of the document. Figure 7.7 shows some examples of proper nouns that we were able
to extract from the parse of a document discussing the O.J. Simpson murder trial.
The lists in Figure 7.7 were organized manually since the parser did not distinguish
between people, places, things, and dates, but grouped them all into two tags: one for
singular proper nouns, and one for plural proper nouns. The phrases were obtained
by finding words in a document containing a proper noun part-of-speech tag. When
a tag was found, we produced the phrase within which the word occurred by selecting
the words in the subtree spanned by its parent.

We tried a series of experiments on the TDT1 data where we parsed each document

and extracted proper nouns and dates. Our hypothesis is that if proper noun phrases
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Who o.j. simpson, nicole brown simpson, ronald goldman, a los angeles police
spokeswoman, a los angeles police detective, shapiro, jose camacho, allen wat-
tenberg, michele kestler.

What los angeles television station knbc, the week tabloid national enquire, ross
cutlery, the national enquire offer, ford bronco, the los angeles police crime lab,
wattenberg and wattenberg,

Where chicago, o’ hare international airport, a chicago hotel, the brentwood section,
los angeles airport.

When thursday night, thursday, june 12, the first time thursday, friday, tuesday, the
july 4 holiday weekend, thursday, may 3.

Figure 7.7. Proper Nouns Produced by Natural Language Parser

and dates are important lexical features, then increasing their weight in a classifier
should result in an effectiveness increase for new event detection, and decreasing their
weights should result in an effectiveness decrease.

We augmented the classifier formulation process using single-word lexical fea-
tures. After formulating a classifier for each document, we identified the features
that mapped to words in the proper noun phrases contained in the document from
which it was formulated. We initially set the feature weight using the usual weight
assignment, and then we increased and decreased the feature weights only for words
that appeared in the proper noun phrases collected from the parse.

Figure 7.8 shows the DET curves for an experiment using the TDT1 corpus and
200-feature classifiers. We determined that 47.5% of the words that were contained
in the proper noun phrases extracted from the parse appeared in the classifiers. In
addition, 21.2% of the lexical features in the classifiers mapped to words in the proper

noun phrases. In general, we see that classification improves at false alarm levels below

122



5% when the weights of the lexical features in the proper noun phrases are doubled.
When the weights of these features are halved, classification tends to get worse at
false alarm levels below 5%. Unfortunately this improvement does not appear to be
stable throughout the entire curve. In the graph, the curves cross for different weight
settings, which suggests that one weight setting is not more robust than another.

We also observed that effectiveness was reduced when all the words associated
with proper noun phrases were removed from the classifier by setting their weights
to zero. We did not see that more gains resulted from quadrupling weights. We also
tested this approach using 25-feature classifiers, and found no apparent improvement
from increasing weights in the features mapping to the words of proper noun phrases.

Our attempts to use the parser on the TDT2 corpora failed. The major problem
was that the automatic speech recognition data lacked the punctuation needed for
the parser to work. The closed caption data, on the other hand, had too much
punctuation. We found many spurious periods that appeared to be used to indicate
a pause in the flow of the news story. This additional punctuation also prevented the
parser from working.

Several feature selection issues associated with natural language phrases became
apparent from this experiment. For example, we found that many proper noun
phrases were already represented in the classifier. Another problem is that in broad-
cast news there are many references to news correspondents’ names. Reporters use
their own names for communication cues within live coverage to signal transitions, so
a reporter’s name that appears often in the text is likely to be selected for the clas-
sifier. It could be that a reporter’s name indicates the type of coverage, for example,
Wolf Blitzer often covered politics from the White House, but in general, names of
reporters are not good features, and should be removed from a classifier. In addition,
there are many dates and proper noun phrases that have no significant bearing on

the content of the story, so using all of these features in an oblivious manner will
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most likely hurt rather than help effectiveness. Even if these problems were solved,
we believe that a more effective use of the parse data needs to be established in order
to show significant gains and justify the direct application of this technology to our

new event detection system.

7.4 TDT Pilot Study

In this section we compare our approach to new event detection to implemen-
tations from other TDT sites. The data presented in this section are results from
the TDT Pilot Study, and include an evaluation of systems from Carnegie Mellon
University (CMU), and from Dragon Systems (DRAGON). It should be noted that
CMU and Dragon Systems have not since worked on the problem of new event de-
tection, and we therefore use the results and descriptions of the systems discussed at
the TDT Pilot Study Workshop [5]. In what follows, we compare their approaches
to the system we implemented for the Pilot Study, which is similar to our current

implementation.

7.4.1 CMU and Dragon System Approaches

Carnegie Mellon Univeristy embedded the SMART retrieval engine in their sys-
tem. They used a clustering strategy with a detection threshold that governed the
minimum document-cluster similarity score required for the system to label the cur-
rent document as containing a new event. They also used a combining threshold, which
was the minimum score required for adding a document to an existing cluster. Time
was incorporated in the detection decision by limiting comparison to documents that
appeared within a constant window size of time from the document being processed.
They reported that experiments using a cluster representation between dimensional-
ity 50 and 100 yielded the best results. They also reported that experiments using

no prototyping yielded better results than those using prototyping.
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The Dragon system used a language modeling approach of single-word (unigram)
frequencies for cluster and document representations: their document representation
did not use tf-idf scores, which were used by our system and the CMU system.
Dragon’s cluster comparison methodology is based on the Kullback-Leibler distance
measure [5]. The modification included a decay term which decreased the similarity
measure for clusters containing documents closer in sequence to the current document
on the stream. In addition, they used a pre-processing step in which an iterative k-
means clustering algorithm was used to build 100 background models (clusters) from
an auxiliary corpus. In their decision process, a document is considered to contain a

new event when it is closer to a background model than to an existing story cluster.

7.4.2 Cross-System Comparisons

The new event detection results using the data and the systems described above
are presented in Figure 7.9. The DET curves show the UMASS system has miss
rates that are lower than the other systems between false alarm rates of 1% and
10%. Below the 1% false alarm rate, the UMASS and CMU systems outperform the
Dragon system. At the 10% level of false alarms the systems converge, and at 30%,
the UMASS system experiences higher miss rates than the CMU and Dragon systems.

Table 7.11. Effectiveness measures for systems presented at the first TDT workshop.

Miss | F/A
System | Rate | Rate | Recall | Precision | F1
UMASS | 50% | 1.34% 50% 45% | 0.45
CMU | 59% | 1.43% 41% 38% | 0.39
DRAGON | 58% | 3.47% 42% 21% | 0.28

A comparison of average effectiveness using the reported measures are listed in
Table 7.11. The UMASS system has a miss rate that is 18% lower than the other
systems at lower false alarm levels. These data suggest that our text representation

and classification model are relatively effective for new event detection. The difference
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in effectiveness indicates that the UMASS system, on average, correctly detected two
additional new events. This improvement is not significant based on a sign test across

event-level effectiveness.

7.5 Discussion of Approach to New Event Detection

In this chapter, we presented our algorithm for new event detection, and analyzed
extensions to our classification model that incorporate the properties of broadcast
news. In particular, we showed a method for modeling the temporal relationship
between documents, and a method for incorporating proper noun phrases into the
classifier formulation process. Our results suggest that these extensions can be mod-
eled efficiently and lead to improved classification accuracy for new event detection.

We evaluated the use of on-line clustering as an approach to new event detection,
and we found that the on-line single-link+time strategy appeared to be more effec-
tive than the other on-line clustering strategies tested. Our analysis suggests that
good strategies and parameter settings for event clustering do not necessarily result
in effective new event detection. In addition, we showed that the ASR technology

negatively affects classification.

7.5.1 The Good News

The effectiveness of our approach to new event detection is sufficient for certain
applications. We find that on the TDT2 data, we correctly classify 35%-60% of the
new events from broadcast news with relatively low false alarm rates. At the lowest
reported false alarm rate of 3.2%, our results suggest that a user will need to read
only 650 of the 20,000 documents available over a two-month period. This implies
that our system can significantly reduce the workload of someone searching for new

events in large amounts of news.
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7.5.2 The Bad News

Though our approach appears to be comparable to other approaches to new event
detection, classification using these methods is far from perfect. From the TDT2
assessment process, we know that assessors of the same event were in agreement
on 90% of the assessments [31], so we would like to see miss rates of 10% at much
lower false alarm levels than ones we measured. A major problem is that even with
several extensions to the general word-cooccurrence model, the improvements we are
experiencing from the various techniques are incremental. With the exception of
modeling the temporal relationship between documents, other approaches, including
average-link clustering and additional feature selection, did not appear to have a
significant impact on new event detection effectiveness.

Another major problem is the limitation of the word-cooccurrence model. When
we analyze system misses, which occur when documents containing new events are
labeled as “not new”, we find that at low dimensionality, misses occur because im-
portant event-level features are not appearing in the classifier, or are not sufficiently
weighted in the classifier. For example, we found the first story about the “Crash of
US Air Flight 4277, resulted in a positive decision score from a classifier formulated
for an earlier document about the “Crash of US Air Flight 1016”. The distinguishing
lexical feature is the flight number, which does not always have a high term frequency
in a relevant document. Figure 7.10 contains the query syntax of a classifier that re-
sults from one of the US Air plane crashes, which often resulted in positive decision
scores for documents discussing other plane crashes. We had similar problems with
other disaster events. For example, the first story discussing the “Oklahoma City
bombing” resulted in a positive decision score from a classifier formulated from a
document discussing the earlier “World Trade Center bombing”. At higher dimen-

sionality, the two bombing events were separable, but the airline crashes were not.
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However, as we mentioned previously, choosing the correct dimensionality automati-

cally for a classifier is a hard problem.

ql04 = #WSUM( 1.0
1.175688 accident
1.125646 crash
1.070033 plane
0.935901 cause
0.935901 investigate
0.935901 look
0.852374 air
0.852374 aircraft
0.852374 survivor
0.752039 usair );

Figure 7.10. General “US Air plane crash” classifier.

Other problems appear to be associated with events that are heavily covered in the
news. These events often span several hundred days and contain significantly more
documents than other events in the corpora. The more documents discussing an
event, the more its effectiveness is weighted in the pooled-measures and DET curve,
and also the greater prior probability that false alarms will occur. For example, errors
in the “Monica Lewinsky Case”, which has the most documents of all the events in
the TD'T2 corpora, are a major cause of poor effectiveness on the TDT2-Train corpus.

We also noticed that some domains, such as courtroom coverage, led to errors. For
example, using the best parameters on the TDT1 corpus, the system could not distin-
guish between documents from the “O.J. Simpson Trial” and documents pertaining
to other court cases. Different events in the same country are also problematic. For
example, documents related to various events in Bosnia caused our system to miss
“Carter’s Visit to Bosnia”. These examples indicate that the system was unable to

detect certain events that are discussed in the news at different levels of granularity.
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CHAPTER 8
CONCLUSION

We have implemented and evaluated solutions to the news classification problems
of new event detection, event clustering, and event tracking. The results presented
in this work are based on problem definitions, evaluation methodologies, and data
developed by the Topic Detection and Tracking (TDT) project. We used the same
text representation for all three problems, which was based on the Inquery [12] re-
trieval engine, and extended Inquery’s functionality with classification processes that
incorporate the properties of broadcast news as a major component. In the following
sections, we summarize our research contributions, and discuss our conclusions based

on the experimental results presented in this work.

8.1 Summary of Research Contributions

The research presented in this dissertation furthers the understanding of issues
relating to unsupervised and supervised document classification problems. The prob-
lem of new event detection has not been the focus of research prior to the TDT Pilot
Study, and to the best of our knowledge, this work is the first thorough investigation
of the problem. We introduced a single-pass classification algorithm for new event de-
tection, and we presented methods that model the properties of broadcast news which
extend previously studied text representations. Our results suggest that our single-
pass algorithm is a good basis for new event detection, and we find that modeling the

properties of broadcast news leads to improved classification effectiveness.
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We also tested previous approaches to document clustering and evaluated their
effectiveness in the context of event clustering for the domain of broadcast news.
In general, previous approaches to clustering are based on retrospective solutions,
where all the data are available before clustering begins. We re-evaluated single-link,
average-link, and complete-link clustering strategies, but used them in an on-line
environment, in which a cluster is determined for the current document before looking
at the next document. We introduced a classifier-based approach to the problem, and
presented a threshold model that incorporates the temporal relationship between news
stories. Our results suggest that an on-line single-link clustering strategy extended
with a time component is more effective than other comparison strategies for both
event clustering and new event detection.

The representation we used for new event detection and clustering is derived
from a classifier formulation process previously used for supervised text classification
problems such as filtering and routing. We tested previous approaches to classifier
formulation, but applied them to the TDT tracking problem. Much of the related
work in this area is based on news story classification by topic. Here, we evaluated
several approaches, and applied them to on-line event-based document classification.
This work furthers our understanding of feature selection, feature weight assignment,
and threshold estimation issues for on-line environments. The major focus of our
tracking experiments was to evaluate the impact of relatively few training samples
on classification accuracy. We introduced a theoretical framework for estimating
classifier thresholds that is useful for understanding the bias inherent in threshold

estimates using small numbers of relevant training documents.

8.2 Discussion of Experimental Results
New event detection is an abstract document classification task that we have

shown can be reasonably solved using a single-pass approach. Our algorithm for this
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problem is based on a notion of event identity. Our approach is to represent the events
discussed in each document with a query syntax and a threshold, which together form
a classifier for the content of the document. When a document appearing on the
news stream is not classified as a positive instance by any of the existing classifiers,
we assume the document discusses a new event. If the document is classified as a
positive instance, then we assume the document is similar in content to a previously
processed document, and therefore does not discuss a new event. Our results indicate
that we find between 35%-60% of the documents discussing new events at relatively
low false alarm rates of 1.27%-3.2%.

Our approach to new event detection is very similar in nature to on-line clustering
algorithms. The step in a clustering algorithm in which the decision is made to
assign a document to an existing cluster or to initiate the formation of a new cluster
is tantamount to deciding whether a document discusses a new event. With this
in mind, we explored different cluster comparison strategies which included on-line
single-, average-, and complete-link strategies. Each of these strategies gives rise to a
different on-line clustering of the documents, and thus a different set of new events.
We found that our implementation of complete-link did not work well for either new
event detection or event clustering. While the average-link approach worked well
for clustering, but not for new event detection, the on-line single-link-+time strategy
worked best for both tasks.

The motivation for exploiting the property of time was based on an analysis of
the TDT corpora which suggested that documents closer together on the stream
were more likely to discuss the same event than documents further apart. Time was
incorporated as a component of our threshold model, which resulted in improved
effectiveness for the on-line single-link strategy when applied to new event detection

and event clustering.
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In addition, we explored a process that extracts the lexical features that capture
the who, what, when, and where contained in news. The processes involved a natural
language parser that was used to extract proper noun phrases and dates from the
stories in the news stream. Unfortunately, the parser did not work on the TDT2
corpora due to missing or inaccurate punctuation in the automatic and manual tran-
scriptions of the radio and television broadcast news sources. We were able, however,
to experiment with the parser on the TDT1 corpus, and the results suggested that
many of the words in the proper noun phrases were already in the classifiers that
were being formulated. When we increased the weights of the classifier features that
appeared in proper noun phrases and dates, classification accuracy improved, and
when we decreased their weights, classification accuracy declined. This suggests that
identifying proper noun phrases and dates can help new event detection; however, in
order to extract them from data with punctuation errors, a more robust extraction
process is needed.

The automatic speech transcription (ASR) process affected not only the natural
language parser, but also the effectiveness of our approach to new event detection
and event clustering. We found that effectiveness improved between 9.4% to 20.9%
for both single- and average-link approaches when the ASR data was replaced by
manual Closed Caption (CCAP) transcriptions. The impact of the ASR technology
was minimal for event tracking. The ASR process was developed by Dragon Systems,
which is currently among the best recognition processes available. However, the
system has been reported to produce word error rates of 15% on similar data. A
reduction in word error rates should lead to improved new event detection as well.

The majority of our experimental runs for all three problems involved an exhaus-
tive search for system parameters, including the parameter specifying the number of
lexical features to use when formulating classifiers, i.e., classifier dimensionality, as

well as the parameters for our threshold model. Our current solution for new event

134



detection uses constant dimensionality and two global threshold parameters. Our ex-
periments indicated that a good set of values existed for these parameters in 80% of
the events tested. In addition, we found that if it had been possible to determine op-
timal dimensionality automatically, we would have realized an over 50% effectiveness
improvement in the classification of new events.

Unlike ranked retrieval, true text classification tasks require that a system make
hard decisions about a document’s relevance. Therefore, threshold parameter esti-
mation becomes an integral part of the classification approach. We found that the
threshold parameters that optimized pooled average effectiveness measure were sim-
ilar across the TD'T corpora, and thus an averaging of optimal parameters resulted
in comparably effective classification relative to other systems evaluated at TDT2.
However, when we compared optimal threshold parameters that worked well for event
clustering against those we determined for new event detection, we found that good
parameters for new event detection were consistently lower than good parameters
for event clustering. We therefore believe that a good clustering approach does not
necessarily lead to a good solution for new event detection. Additional evidence that
suggests this hypothesis is true was our application of on-line average-link clustering,
which was effective for event clustering, but not for new event detection.

We presented several experiments for the event clustering problem, where we com-
pared single-pass clustering solutions that included on-line single-link and average-link
cluster comparison strategies. The data suggest that augmenting on-line single-link
clustering with a time component was the most effective approach when using au-
tomatic and manual transcriptions for broadcast news sources. Other clustering ex-
periments suggested that average-link is comparable to single-link+time when audio
sources for news are manually transcribed. However, our single-link+time approach

resulted in the lowest story-weighted cost realized by the systems evaluated at TDT2,
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and we suggest using single-link+time for on-line clustering of broadcast news because
it is both efficient and effective.

We viewed the tracking problem as an instance of on-line document classifica-
tion, and used extensions to techniques that have been previously shown to work well
for the related problem of document filtering. We compared variations of a static
classifier formulation process that included expansion with multiword features and
weight-learning steps. In addition, we tested adaptive classifier formulation, which
has the effect of including new features in the classifier over time. We found insignif-
icant effectiveness improvements using these variations, which in most cases require
significant computing resources. The main problem with the weight learning ap-
proaches is that classifiers and thresholds formulated using the static approach with
few relevant training instances often separated their training data, and thus further
improvements from supervised weight learning were limited. The adaptive technique
appeared to work well on the target evaluation condition (Nt = 4), but proved less
robust than the static approach for Nt < 4. We suggest using the static classifier
formulation approach because it is relatively fast, effective, and uses fewer parameters
than the other approaches.

In addition, we introduced a theoretical framework for automatic threshold pa-
rameter estimation for our static classifier formulation process. We view the threshold
as a statistic of the incoming data stream that is estimated using an optimization pro-
cess for a pre-specified utility measure applied to the training data. We defined the
notion of bias in terms of threshold estimators, and illustrated that the amount of bias
increases when fewer relevant training samples are used. We present two approaches
that learn threshold estimation bias and result in effective estimates of parameters.

In retrospect, the comparisons between our approaches and those of other TDT
participants indicate that different views of the tasks lead to different retrieval models

which however result in similar effectiveness. Our systems, in general, were compara-
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ble in effectiveness to the best systems for each of the problems, and we attribute this
to our efforts in parameter estimation. In addition to similar overall effectiveness, the
common element among the systems is the underlying model of word-cooccurrence
used to determine when two documents discuss the same event. We believe this model
is the key to the event classification solutions, and that improvements in effectiveness
will come more from modeling the properties of events than from modifying existing

retrieval models.
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CHAPTER 9

FUTURE WORK

Our approaches to on-line new event detection, clustering, and tracking answered
several questions regarding the use of existing Information Retrieval representations
in on-line classification environments. Our work on parameter estimation using few
relevant documents suggests that we can obtain classification accuracy relatively close
to optimal effectiveness using exhaustive parameter searches; however, the accuracy
of our approaches even at optimal parameter settings is far from perfect.

One area of concern for all three classification problems was selecting the dimen-
sionality and the types of lexical features to use in a text classifier. Our plan for future
work involves improving the feature selection and extraction methodologies of our ap-
proach to new event detection. In several experiments, we found that classifiers did
not contain all the features that distinguish an event from its more general topic. For
example, distinguishing lexical features such as a flight number and accident location
were not necessarily included in each classifier formulated from a plane crash story.
Other problems included over-weighting a feature, such as Bosnia, in classifiers that
were used to track events about more specific news coverage. We plan to extend our
classifier representation with a model that distinguishes event-level from topic-level
features. Other aspects of feature selection to develop include finding a more effec-
tive use of the proper noun phrase data, which should lead to additional effectiveness
gains and justify the direct application of natural language parsing technology to our

new event detection system.
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Our results suggest that cleaner data improves classification effectiveness. In the
new event detection and event clustering experiments, we saw improvements in all
cluster comparison strategies using the cleaner closed caption data. In addition,
removing broadcast news header and trailer snippets resulted in improved effective-
ness for both problems. There would appear to be several applications for text pre-
processing steps that may result in further improvements to classification accuracy,
such as removing reporters’ names and other text that is specific to the broadcast
news program. Another example is a processing step that would resolve some of the
word errors resulting from the automatic speech recognition process.

There appear to be several applications for event classification, and the interest
in Topic Detection and Tracking (TDT) is increasing with each phase of TDT. We
expect several new approaches to the problems we discussed here to emerge from this
research effort, and we look forward to future TDT comparisons, which may help us
understand how improvements in text classification can be made.

What remains to be seen is whether or not this technology can be used to solve
other abstract text classification problems. One such problem we plan to investi-
gate involves classifying stories as “good news” or “bad news” with respect to the
prospects of financial instruments such as stocks, bonds, and commodities. Currently,
several prediction models exist that find patterns in price fluctuations. However, these
models do not incorporate the news and events that are responsible for the actual
price movements. From a research perspective, this domain may be suitable for the
approaches that we have pursued in this dissertation. For example, a proper noun
extraction technique could be used to match news stories to related underlying finan-
cial instruments. If these matches are accurate, then the short term price movements
of the related instruments could be used as relevance feedback to train classifiers to
detect the types of news stories that result in increases or decreases in prices. In addi-

tion, there could be several possibilities for incorporating domain knowledge into the
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classification process. For example, news about a company reporting strong earnings
is not necessarily an instance of “good news”. A model of expected versus reported
earnings would need to be included in the classification process, which should result in
improved stock price predictions. In addition to the financial markets, we are hopeful

that this technology will be useful for applications in other areas.
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APPENDIX A

The following sections list the events that were annotated for the TDT corpora.
Some of the events did not have relevance judgments and were excluded from the

relevance judgement listing in Table 3.2.

1 Events in TDT1 Corpus
1. Aldrich Ames Spy Case

2. The Arrest of ‘Carlos the Jackal’

3. Carter in Bosnia

4. Cessna Crash on White House Lawn

5. Salvi Clinic Murders

6. Comet Collision with Jupiter

7. Cuban Refugees Riot in Panama

8. Death of Kim Jong II

9. DNA Evidence in OJ Trial
10. Haiti Ousts Human Rights Observers
11. Hall’s Helicopter Down in N. Korea
12. Flooding in Humble, Texas

13. Breyer’s Supreme Court Nomination
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14. Nancy Kerrigan Assault

15. Kobe Japan Earthquake

16. Detained U.S. Citizens in Iraq

17. New York City Subway Bombing
18. Oklahoma City Bombing

19. Pentium Chip Flaw

20. Quayle’s Lung Clot

21. Serbians Down F-16

22. Serb’s violation of Bihac Safe Area
23. Faulkner’s Admission into the Citadel
24. Crash of US Air Flight 427

25. World Trade Center Bombing

2 Events in TDT2-Train Corpus

1. Asian Economic Crisis

2. Monica Lewinsky Case

3. Peruvian Anti-torture Laws

4. McVeigh’s Navy Dismissal & Fight
5. Upcoming Philippine Elections

6. Israeli Palestinian Raids
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Fossett’s Balloon Ride

Casey Martin Sues PGA

Karla Faye Tucker

Mountain Hikers Lost

State of the Union Address

Pope Visits Cuba

1998 Winter Olympics

African Leaders and World Bank President
Current Conflict with Iraq

$1 Million Stolen at World Trade Center
Babitt Casino Case

Bombing Alabama Clinic

Cable Car Crash

China Airlines Crash

Tornado in Florida

Diane Zamora

Violence in Algeria

Shevardnadze Assassination Attempt
Shoplifter’s Hand Amputated

Oprah Lawsuit
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27. Unearthing of Pharoah’s Tomb
28. Mary Kay LeTourneau

29. Buffett Buys Silver

30. Pension for Ms. Schindler

31. John Glenn Back in Space

32. Sgt. Gene McKinney

33. Superbowl ’98

34. David Satcher Confirmed

35. Holocaust Museum Resignation
36. Reverend Lyons Arrested

37. Quality of Life Campaign, New York City

3 Events in TDT2-Development Corpus
1. LaSalle Boat Found

2. India Parliamentary Elections
3. Tello (Maryland) Murder

4. Grossberg Baby Murder

5. Asteroid Coming?

6. Dr. Spock Dies

7. National Tobacco Settlement

144



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Mt. Cook Climbing Accident
Great Lake Champlain?
Viagra Approval

Jonesboro Shooting
Boehner-Gingrich Chat Taped
JJ the Whale

Thai Police Lt. Arrested
Strike in Germany

Capps Replacement Elections
Albright to Canada

Boeing Discrimination Suit
James Earl Ray’s Retrial?
World Figure Skating Champs
Guiness Beer Gag

UCONN Spring Weekend
POW Memorial Museum
Kenya Boosts Tourism
Mandela Visits Angola

Bird Watchers Hostage

Race Relations Meetings
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28. Rats in Space!

29. Marcus Allen Retires

4 Events in TDT2-Evaluation Corpus

1. Spanish Dam Broken
2. Debella Treatment Cures Cancer?
3. Carter Family Reunion
4. India Begins Nuclear Testing
5. Israeli-Palestinian Talks (London)
6. Tony Awards "98
7. Mother-Tongue Teaching
8. Nigerian Protest Violence
9. Removal and Restoration of Food Stamps
10. Anti-Suharto Violence
11. Unabomber Trial and Conviction
12. Denmark Strike
13. Akin Birdal Shot & Wounded
14. Human Rights Conference Ethiopia
15. Contaminated Apple Juice Case vs. Odwalla Inc.

16. Abortion Clinic Acid Attacks
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

World AIDS Conference

Job Incentives

Saudi Soccer Coach Sacked
GM Strike

NBA Finals "98

Anti-Chinese Violence in Indonesia
Afghan Earthquake

Unwed Fathers’ Law

German Train Derails
Anti-obesity Drug

Puerto Rico Phone Strike
Nazi-plundered Art

Turkish Military Officers Fired
Clinton-Jiang Debate

Martin Fogel’s Law Degree
Cubans Returned Home
Oregon Bomb for Clinton?

Goldman Sachs - Going Public?
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