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Abstract

Decoding methods for large language mod-
els (LLMs) usually struggle with the trade-
off between ensuring factuality and main-
taining diversity. In this paper, we propose
REAL (Residual Entropy from Asymptotic
Line) sampling1, which predicts the step-
wise hallucination likelihood of an LLM.
When an LLM is likely to hallucinate,
REAL lowers the p threshold in nucleus
sampling. Otherwise, REAL sampling in-
creases the p threshold to boost the di-
versity. To predict the step-wise halluci-
nation likelihood without supervision, we
construct a THF (Token-level Hallucination
Forecasting) model, which predicts the
asymptotic entropy (i.e., inherent uncer-
tainty) of the next token by extrapolating the
next-token entropies of an infinitely large
language model from a series of LLMs
with different sizes. If an LLM’s entropy
is higher than the asymptotic entropy (i.e.,
the LLM is more uncertain than it should
be), the THF model predicts a high hallu-
cination hazard, which leads to a lower p
threshold in REAL sampling. In the FAC-
TUALITYPROMPTS benchmark (Lee et al.,
2022), we demonstrate that REAL sampling
based on a 70M THF model can substan-
tially improve the factuality and diversity of
7B LLMs simultaneously. After combined
with contrastive decoding, REAL sampling
outperforms 13 sampling methods, and gen-
erates texts that are more factual than the
greedy sampling and more diverse than the
nucleus sampling with p = 0.5.

1 Introduction

Hallucination is a major problem that limits the
applications of LLMs (large language models), es-
pecially in open-ended generation tasks (Zheng

∗The work was mostly done at Amazon.
1Our code is released at https://github.com/

amazon-science/llm-asymptotic-decoding

et al., 2023; Huang et al., 2023; Tonmoy et al.,
2024; Sun et al., 2024). Recent studies2 show
that an LLM often “knows” if it is hallucinating.
The findings suggest that the decoding methods of
LLMs are major sources of the hallucination.

Sampling is one of the most widely used decod-
ing strategies in LLM due to its simplicity, effi-
ciency, and high generation diversity (Holtzman
et al., 2020; Hewitt et al., 2022; Meister et al.,
2022). Nevertheless, recent studies show that hal-
lucination often happens as the result of sampling
the tokens with lower probabilities from a high-
entropy distribution (van der Poel et al., 2022;
Marfurt and Henderson, 2022; Manakul et al.,
2023; Rawte et al., 2023; Varshney et al., 2023).
Figure 1 (a) illustrates a simple example. When
an LLM is uncertain about who is the screenwriter
of a movie, the next-token distribution usually has
a high entropy, where some incorrect answers re-
ceive high probabilities.

Nucleus (top-p) sampling (Holtzman et al.,
2020) is one of the representative methods3 pro-
posed to alleviate the issue. By decreasing the
constant global p threshold, we can trade the gen-
eration diversity for higher factuality (Dziri et al.,
2021; Lee et al., 2022; Aksitov et al., 2023). For
example, Figure 1 shows that a lower p threshold
could reduce the chance of sampling the incorrect
writer names in (a), but it would also eliminate the
legitimate starts of the possible next sentences in
(b). This tradeoff limits nucleus sampling’s ability
to generate both high diversity and high factual-
ity outputs. Some existing methods such as typ-

2Burns et al. (2022); Li et al. (2023); Azaria and Mitchell
(2023); Slobodkin et al. (2023); CH-Wang et al. (2023); Or-
gad et al. (2024) show that we can predict hallucination based
on its internal states and Agrawal et al. (2023); Guan et al.
(2023); Manakul et al. (2023); Zhang et al. (2023a); Varsh-
ney et al. (2023) show that an LLM can sometimes improve
itself by editing or verifying its own answer.

3OpenAI provides top-p sampling at https://
platform.openai.com/playground?mode=chat.

https://github.com/amazon-science/llm-asymptotic-decoding
https://github.com/amazon-science/llm-asymptotic-decoding
https://platform.openai.com/playground?mode=chat
https://platform.openai.com/playground?mode=chat
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Figure 1: (a) For the factual question, only a few next
tokens are correct but the target LLM assigns high
probabilities to many tokens, so our THF model pre-
dicts the next token from the LLM is likely to be incor-
rect if using a large p threshold. (b) In contrast, many
tokens could be used at the beginning of a sentence, so
sampling from more tokens should increase the diver-
sity without hurting the factuality.

ical (Meister et al., 2022) and eta (Hewitt et al.,
2022) sampling are proposed to adjust the thresh-
old by characterizing the token-wise distributions
of LLM. However, this distribution alone is often
not enough to detect the hallucination. For exam-
ple, both distributions in Figure 1 are similar but
the high entropy of (a) arises due to the LLM’s
own limitation while that of (b) arises due to the
“inherent uncertainty” of the task.

In this paper, we tackle this problem from a
brand-new angle: estimating inherent uncertainty
by extrapolating the entropy of LLMs with differ-
ent sizes. Given several LLMs with different sizes
in the same family, which are pretrained using the
same corpus, we empirically observe the smaller
average entropies of a larger LM distribution as
shown in Figure 2.4 As LLM’s model size be-
comes larger, the entropy of its distribution should
be closer to the inherent uncertainty. As a result,
we can extrapolate the entropy decay curve to esti-
mate the asymptotic entropy, the entropy from an
imaginary LLM with an infinite size, which ap-
proximates the inherent uncertainty (i.e., ground
truth entropy). For example, for the questions dis-
cussed in Figure 3 (a), the LLM tends to be more
certain about the answer as the size of LLM in-
creases, so we can reasonably expect the asymp-
totic entropy to be low. In contrast, the entropies
from different model sizes in Figure 3 (b) should

4Please see more discussions about why entropy decays
as the size increases in Appendix D.
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Figure 2: The entropies of the Pythia’s distributions
versus the model sizes in a logarithmic scale. The en-
tropies are averaged across 9M tokens in Wikipedia.
The blue entropy decay curve plots empirical entropies
from Pythia LMs; the green curve is the entropies pre-
dicted by our THF model.

be similar, so the next token distribution should
have a high asymptotic entropy / inherent uncer-
tainty.

Based on this insight, we propose a tiny unsu-
pervised model to predict the hazard of generat-
ing a nonfactual next token, called THF (Token-
level Hallucination Forecasting) model. As shown
in Figure 3, we parameterize the decay curves of
next-token entropies for LLMs and use the THF
model to predict the curve parameters. Next,
the THF model estimates the LLM’s hallucination
hazard by computing the difference between the
asymptotic entropy and the LLM’s entropy, which
we call the residual entropy (RE). If the LLM is
much more uncertain than it should be (i.e., the
LLM’s entropy is much larger than the asymptotic
entropy), the THF model would forecast a high RE
and hence a high hallucination hazard.

Relying on the residual entropy predicted
by our THF model, we propose a novel
context-dependent decoding method for open-
ended text generation, which we call ‘REAL
(Residual Entropy from Asymptotic Line) sam-
pling’. REAL sampling adjusts the p threshold
in the top-p (nucleus) sampling based on the fore-
casted hallucination hazard. For example, in Fig-
ure 1 (a), the THF model learns that a movie usu-
ally does not have many credited screenwriters but
the LLM’s distribution entropy is high, so REAL
sampling should use a lower threshold to miti-
gate the hallucination. On the other hand, in Fig-
ure 1 (b), the THF model learns that the given
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Figure 3: Given the input context, the LLMs with different sizes generate the next-token distributions. By extrapo-
lating the curve using a tiny THF model, we estimate the asymptotic entropy, the entropy from an imaginary LLM
with an infinite size, and measure the hallucination hazard using the residual entropy. (a) The LLM’s entropy is
much higher than the asymptotic entropy. This implies that the LLM is more uncertain than it should be and thus
likely to hallucinate next. (b) LLM’s high entropy is fine because the next token is inherently uncertain.

prompt can be completed in many different ways,
so REAL sampling should increase the threshold
to boost the generation diversity.

To the best of our knowledge, REAL sampling
is the first sampling method that is tightly bounded
by the ideal threshold that separates all the fac-
tual and nonfactual next tokens without making
assumptions on the distribution of the nonfactual
next tokens. Besides enjoying the theoretical guar-
antee, REAL sampling achieves significant and
robust empirical improvements in various tasks.
In our main experiments, we follow the eval-
uation protocol in FACTUALITYPROMPTS (Lee
et al., 2022) and find that sentences generated by
Pythia 6.9B LLM (Biderman et al., 2023b) with
our REAL sampling contains fewer hallucinations
and fewer duplicated n-grams in both in-domain
and out-of-domain settings. Our human evalua-
tion indicates that REAL sampling not only im-
proves factuality but also informativeness, fluency,
and overall quality. Furthermore, we also demon-
strate that the THF model improves performance
on several hallucination detection tasks. Finally,
we show that REAL sampling improves factuality
without hurting LLM’s story-writing capability.

Overall, our main contributions include
• We propose a THF model to predict the asymp-

totic entropy of an infinitely large LLM and pro-
pose REAL sampling that dynamically adjusts
the sampling threshold based on the THF model.

• We theoretically prove that the threshold from
our REAL sampling is upperbounded by the
ideal value if the top predicted tokens are ideal
and the residual entropy is estimated accurately.

• We demonstrate that the tradeoffs between factu-
ality and diversity exist in the 13 state-of-the-art
unsupervised sampling methods and our REAL

sampling can consistently boost their factuality
given the same diversity, and vice versa. Fur-
thermore, we conduct comprehensive analyses
on the THF model and REAL sampling, includ-
ing evaluating our design choices and their gen-
erality using hallucination detection tasks.

2 Preliminary and Motivation

Given a context c and a next token candidate w in a
vocabulary V , an LLM (θ) outputs the next token
probability p(w|c, θ). Assuming wc

i is the ith most
likely token given the context c, top-p (nucleus)
sampling first determines the number of tokens J
such that

J∑
i=1

p(wc
i |c, θ) ≤ tp <

J+1∑
i=1

p(wc
i |c, θ). (1)

Then, it sets the probabilities from wc
J+1 to wc

|V |
to 0 and re-normalizes the distribution of the top
J tokens. In top-p sampling, tp is a fixed global
hyperparameter.

As illustrated in Figure 1, lower tp would lead
to a better factuality but worse diversity. In prac-
tice, many users would like to select from diverse
responses. Furthermore, diverse and factual re-
sponses could also improve LLM’s performance
in reasoning tasks (Li et al., 2022b; Wang et al.,
2022; Bertsch et al., 2023; Yao et al., 2023; Naik
et al., 2023; Yu et al., 2024). If we can estimate
the hallucination possibility of the next token, we
can have a better context-dependent tp. Notice
that hallucination in this paper refers to the claims
generated by LLMs whose non-factuality could be
verified using existing literature.

It is notoriously challenging to estimate the
hallucination likelihood of each token in general
open-ended text generation tasks. One common



strategy is to annotate if each generated token is
factual and learn a classifier through supervised
learning (Zhou et al., 2021). However, this ap-
proach has several drawbacks. First, human an-
notators often need to take a very long time to
check if the generated text is factual, especially in
an open-ended generation task, and provide token-
level annotation. Second, due to the expense of
getting the labels, the classifier is often trained us-
ing a few domain-specific examples that are gen-
erated by a specific LLM. Therefore, the classi-
fier might not generalize well in other domains,
other languages, or other LLMs. This motivates
us to develop an unsupervised hallucination fore-
casting model that only needs the LLMs with dif-
ferent sizes. Then, we can apply our method to
any domain, any language, and any LLM without
the expensive human annotations.

3 Method

As the LLMs get larger, their performances in-
crease at the cost of higher inference expense, so
an institute often trains LLMs (e.g., GPT-4 fam-
ily (OpenAI, 2023)) with different sizes using the
same training data to let the users balance the cost
and quality. We denote the parameters of an LLM
family as {θs1 , θs2 , ...θsN }, where sn is the log-
arithm of the number of parameters of the nth
model. In this paper, we focus on improving the
generation of the largest LLM (θsN ) in its family
that can fit into our GPU memory.

In this section, we leverage the LLM family
to train a THF model, which aims at predicting
the entropy of the ideal (ground-truth) distribution
without actually knowing the ideal distribution. In
Section 3.1, we first parameterize the entropy de-
cay curve of each next token prediction to predict
asymptotic entropy (AE). In Section 3.2, we intro-
duce the architecture of the THF model and how
it learns to predict the residual entropy (RE). Fi-
nally, we describe REAL sampling, our context-
dependent token truncation method based on the
THF model in Section 3.3.

3.1 Parameterization and Extrapolation of
the Entropy Decay Curve

As we see in Figure 3, the asymptotic entropy
(AE) eAE

c is the entropy of the next-token distri-
bution from an infinitely-large LLM (lims→∞ θs).
Formally, we define eAE

c as

lim
s→∞

eθsc = lim
s→∞

∑
w

p(w|c, θs) log (p(w|c, θs)) . (2)

To simplify our discussion, we assume an ideal
distribution exists and the LLM’s output ap-
proaches the ideal distribution as its size increases,
so AE is the next-token inherent uncertainty.5

When training the LM to predict the next
token, we cannot get the ideal distribution
(lims→∞ p(w|c, θs)), which is a critical challenge
of text generation (Zhang et al., 2023b). Con-
sequently, we cannot compute eAE

c using Equa-
tion (2). Nevertheless, we can use the LLM family
to get the pairs of the LLM size and its correspond-
ing entropy (si, e

θsi
c ) given each context c. Then,

we can model the entropy decay by formulating it
as a one-dimensional regression problem and esti-
mate eAE

c by extrapolation.
We parameterize the entropy decay trend using

a fractional polynomial (Chang et al., 2020):

ec(s) = zc + bc(
ac,0.5

xc(s)0.5
+

K∑
k=1

ac,k
xc(s)k

), (3)

where s is the logarithm of the model size ,
xc(s) = max(1, qc(s − gc)) is a normalized
model size, ec(s) is our entropy prediction, and
ac,0.5, ac,k, bc, qc, gc, and zc are the parameters of
the curve. All the parameters are non-negative
to ensure the non-increasing property of ec(s),
so the estimation of asymptotic entropy êAE

c =
lims→∞ ec(s) = zc.

Given a context c, one approach is to estimate
all the K+5 parameters by fitting the (si, e

θsi
c ) on

the fly. However, this approach has several prob-
lems. First, it is time-consuming to run all the
LLMs in the family and fit the curve. Second, we
often cannot get many (si, e

θsi
c ) pairs and the en-

tropy signal of LLMs could be noisy, so the param-
eter estimation is unstable especially if we want to
use a large degree of fractional polynomial K. To
address the problems, we propose to use a tiny LM
to predict the parameters in the next subsection.

3.2 Residual Entropy Prediction using the
THF Model

The proposed THF (Token-level Hallucination
Forecasting) model takes the input context and

5Although the scaling law has shown that the distribution
of a larger language model is indeed closer to the ideal distri-
bution (Kaplan et al., 2020), we acknowledge that the LLMs
with infinite size might not output the ideal distribution in the
real world due to the limited amount of pretraining data and
other LLMs’ limitations. We leave the study of the system-
atic distribution bias of the infinitely large language model as
our future work.
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Figure 4: The architecture and the training of the THF model. We use the THF model to predict the parameters of
the entropy decay curves and we train the THF model by minimizing the distances between the predicted entropy
curves and the empirical entropies from the LLM family.

outputs the parameters of the entropy decay curve.
As illustrated in Figure 4 (a), the THF model
projects the last hidden state of a pretrained tiny
LM decoder to a vector with K + 5 variables,
which are passed through an exponential layer to
ensure the positivity of the output parameter pre-
dictions. Our experiment uses the smallest LM,
θs1 , to initialize the weights of the LM.

We train the THF model by minimizing the
root mean squared error (RMSE) between the pre-
dicted entropy (ec(si)) and the empirical entropy
from LLMs (e

θsi
c ). Specifically, our loss of each

batch could be written as

L =

√√√√ 1

|B|N
∑
c∈B

N∑
i=1

(e
θsi
c − ec(si))2, (4)

where B is a training batch.
The entropy signal could be noisy even though

all the LLMs are trained on the same corpus. For
example, Figure 4 (b), LLM’s entropy of similar
contexts are very different, and LLMs with a larger
size sometimes have a larger empirical entropy.

Using a tiny model to predict the entropy de-
cay not only reduces the inference time but also
stabilizes the parameter estimation. As a model
gets smaller, it cannot memorize the small dif-
ferences among similar input contexts (Biderman
et al., 2023a), so similar inputs tend to bring about
similar predictions. For example, when the tiny
model receives three similar input contexts in Fig-
ure 4 (b), if its hidden states and output parameters
for the entropy decay curves are all identical, the
gradient descent would encourage the predicted
curves to be close to all the empirical entropy mea-

surements of similar context inputs, which effec-
tively increases the number of (si, e

θsi
c ) pairs and

cancels out some noise of the empirical entropies.
As shown in Figure 3, we use the THF model to

predict residual entropy (RE) during inference6 as
a measurement of the hallucination hazard:

dRE
c = e

θsN
c − eAE

c ≈ d̂RE
c = ec(sN )− zc. (5)

It is worth mentioning that we cannot expect a
tiny model to very accurately estimate the inher-
ent uncertainty at every position, which requires
the knowledge that even the generation LLM can-
not memorize (e.g., how many screenwriters ev-
ery movie has). Nevertheless, the tiny THF model
could still learn that the entropy should be higher
at the beginning of a clause but lower if the next
token should be something very specific such as
an entity. In our experiment, we found that such a
rough estimation is sufficient to improve the state-
of-the-art decoding methods.

3.3 REAL Sampling

We convert the residual entropy (RE) to the thresh-
old between 0 and 1 for the cumulative probability
in Equation (1) using

t̂pc = exp(
−d̂RE

c

T
) = exp(

− (ec(sN )− zc)

T
), (6)

6Notice that although the entropy of LLMs, e
θsN
c , is mea-

surable during the inference, we use the predicted entropy
ec(sN ) to estimate the residual entropy d̂RE

c . This reduces
the possible inconsistency between the LLM and the THF
model and allows us to estimate the RE without actually run-
ning the LLM, which makes our method efficient in halluci-
nation detection applications.



where T is our temperature hyperparameter used
to control the tradeoff between factuality and di-
versity. When the T is high, the t̂pc would be closer
to 1, so the generation diversity increases at the
cost of the lower factuality.

Let’s assume the top tokens from the LLM are
factual and its top token distribution is correct (i.e.,
the same as the distribution of an infinitely large
LLM after normalization). Then, there is an ideal
threshold gpc for the LLM, which sums the proba-
bilities of all the top factual tokens (e.g., the lower
p in Figure 1 (a)), and we can derive an elegant
relation between the ideal threshold gpc and the
threshold of REAL sampling (tpc ) based on an ideal
THF model.

Theorem 3.1. If the residual entropy is estimated
perfectly (i.e., d̂RE

c = dRE
c ), and there is an ideal

threshold gpc such that the distribution of the top
tokens above the threshold is ideal, then

tpc = exp(
−dRE

c

T
) ≤ (gpc )

1
T . (7)

Please see our proof in Appendix A. That is,
when the ideal threshold exists and our RE is ac-
curate, our threshold tpc is not larger than the ideal
threshold raised to power 1

T .
The theoretical guarantees that REAL sam-

pling can exclude all hallucinated token candidates
when T = 1 and the preconditions are satisfied.
Furthermore, it reveals the role of T in the REAL
sampling and explains why we should use this ex-
ponential function instead of other formulas.

4 Experiments

We first evaluate REAL sampling in open-
ended text generation tasks using FACTUALI-
TYPROMPTS. Section 4.1 compares REAL sam-
pling with 13 sampling baselines and Section 4.2
reports our ablation studies to justify each of our
design choices. The human evaluation for FACTU-
ALITYPROMPTS in Section 4.3 further strengthens
our conclusions. Next, we explore other appli-
cations such as hallucination detection using the
THF model in Section 4.4 and story writing using
REAL sampling in Section 4.5.

We use the de-duplicated variant of Pythia LLM
series (Biderman et al., 2023b) to train our THF
model. The training corpus consists of 5M lines
from Wikipedia 2021 and 5M lines from Open-
WebText (Radford et al., 2019) (around 5.6% of
their text). By default, we use Pythia 6.9B as our

LLM generation model (θsN ) and the THF model
is based on the transformer from Pythia 70M.

4.1 Retrieved-based Evaluation in
FactualityPrompts

Lee et al. (2022) propose an evaluation bench-
mark, FACTUALITYPROMPTS, that first lets dif-
ferent LLMs generate continuations of each
prompt sentence and retrieves the relevant
Wikipedia pages (Hanselowski et al., 2018) to
evaluate the generation factuality. There are 8k
factual prompts and 8k nonfactual prompts from
FEVER (Thorne et al., 2018), which test if LLM
could generate the factual continuations even if the
prompt is not factual.

Metrics: FACTUALITYPROMPTS uses EntailR
and NEER to evaluate the factuality. EntailR is
the ratio of the generated sentences entailed by the
sentences in the relevant Wikipedia pages, while
NEER is the ratio of the entities that are not in the
pages. Lee et al. (2022) use distinct n-grams (Dist-
n) (Li et al., 2016) to measure the diversity across
generations and use repetition ratio (Rep) (Holtz-
man et al., 2020) to measure the diversity within
a generation. A good method should get high
EntailR and Dist-n, but low NEER and Rep.

To compare the performances of methods in one
figure, we first normalize all metrics from a gener-
ation LLM using max-min normalization and av-
erage the scores from all the prompts as EntailRn,
NEERn, Dist-2n, and Repn. Next, we define the
aggregated metrics Agg. Factuality = EntailRn −
NEERn and Agg. Diversity = Dist-2n − Repn.
The scores of the original 4 metrics will be re-
ported in Figures 11 and 12.

Methods: Our baselines include six entropy-based
decoding methods: typical (Meister et al., 2022),
eta (Hewitt et al., 2022), EDT (Zhang et al.,
2024), adaptive (Zhu et al., 2024), microstat (Basu
et al., 2021), and EAD w/o ELI (Arora et al.,
2023) sampling, one heuristic-based method: fac-
tual (F) (Lee et al., 2022) sampling, two popu-
lar thresholding methods: top-p (Holtzman et al.,
2020) and top-k (Fan et al., 2018), and four distri-
bution modification methods: temperature (Ficler
and Goldberg, 2017) sampling, contrastive search
(CS) (Su and Collier, 2022) , contrastive decoding
(CD) (Li et al., 2022a), and DoLa (Chuang et al.,
2023). Our methods include
• REAL (Pythia): REAL sampling using 70M

THF model and the degree of the fractional poly-
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model trained on Pythia.

Figure 5: Open-ended text generation performance comparison between REAL sampling and state-of-the-art un-
supervised thresholding methods. The factuality and diversity are evaluated using the FACTUALITYPROMPTS
benchmark from Lee et al. (2022). We also conduct an ablation study and compare REAL sampling with distribu-
tion modification methods. CS and CD refer to contrastive search and contrastive decoding, respectively.

nomial K = 10 in Equation (3).

• REAL + CD (Pythia): Combining our meth-
ods with contrastive decoding (CD) (Li et al.,
2022a). We first truncate the tokens using the
threshold t̂pc in REAL sampling and apply the
contrastive decoding (i.e., computing the prob-
abilities of the top tokens using the logit differ-
ences between θsN and θs1).

• * (OPT) or * (LLaMA): In the methods, we
replace the Pythia 6.9B with OPT-6.7b (Zhang
et al., 2022) or OpenLLaMA2-7b (Geng and Liu,
2023) as the generation LLM, respectively. No-
tice that the THF model is still trained using the
Pythia family.

Main Results: In Figure 5a, REAL sampling con-
sistently outperforms top-p and all other thresh-
olding methods across the whole spectrum. Over-
all, we often improve the factuality more when the
temperature T is low (i.e., diversity is relatively

Pearson r R2 MSE (↓) Mean L1 (↓)
REAL[Exp] 0.843 0.708 0.786 0.64
REAL[Logistic] 0.842 0.707 0.788 0.641
REAL 0.843 0.71 0.78 0.639
REAL[K=6] 0.843 0.71 0.781 0.639
REAL[K=4] 0.844 0.712 0.776 0.636
REAL[K=3] 0.843 0.709 0.782 0.64
REAL[K=2] 0.844 0.711 0.778 0.638
REAL[K=1] 0.844 0.711 0.777 0.641

Table 1: Comparing LLM’s entropy predictions ec(sN )
from different THF models with empirical entropies
e
θsN
c using Pearson correlation coefficient (r), mean

squared error (MSE), average L1 norm (Mean L1), and
coefficient of determination (R2) (Draper and Smith,
1998). REAL means REAL[K=10], which uses frac-
tional polynomials in Equation (3).

low) probably because lower T emphasizes the ef-
fect of d̂RE

c in Equation (6). Notice that some di-
versities actually come from hallucination, so it
is hard to increase the diversity and the factual-
ity at the same time, especially by only adjusting



High Residual Entropy (RE) → High Hallucination HazardLow Hallucination Hazard
(a) (b) (c) (d) (e)

Figure 6: The visualization of the estimated residual entropy (d̂RE
c ) and entropy decay curves. The top three

lines come from the first three testing factual prompts in FACTUALITYPROMPTS and continuations generated by
Pythia 6.9B. A darker red highlights a larger hallucination hazard (d̂RE

c ) forecasted by our THF model based on the
context before the position, and thus it leads to a smaller p threshold in REAL sampling. The bottom figures (a)-(e)
visualize the empirical entropy decay curves from five tokens in the third example, along with the corresponding
curves predicted by our THF model and asymptotic entropies.

the truncation threshold without changing the dis-
tribution of LLM like our methods.

In Figure 5b, REAL + CD is prominently bet-
ter than using contrastive decoding CD alone. One
possible reason is that CD might reduce the diver-
sity when there are many correct next tokens and
REAL sampling could alleviate the problem. The
result shows that REAL sampling is complemen-
tary with other distribution modification methods.

To evaluate our generalization capability, we
use the THF model trained on the Pythia family
to improve OPT and OpenLLaMA2. Figures 5d
and 9f indicates that REAL sampling can still im-
prove the factuality, and the improvement is espe-
cially prominent if CD is used.

To explain the strong generalization ability
across the serious misalignment between the train-
ing and testing objectives, we visualize the resid-
ual entropy (RE) from our THF model in Figure 6.
We observe that the residual entropy tends to be
larger at the positions where the LLMs generally
are more likely to hallucinate. For example, in
Figure 6 (c), the THF model forecasts a high hallu-
cination hazard for ‘New’, which is the first token
in an entity name. Nevertheless, we also observe
that the THF model cannot always predict LLM’s
entropy accurately due to its small size, and (e) is
an example.

Complementary Results in Appendix: At the
high diversity side, Figures 9a and 9c shows that
top-k and EAD w/o ELI outperforms top-p sam-
pling, respectively, while Figure 9b shows that
the factual-nucleus (F) sampling outperforms top-
p sampling at the low diversity side. Notice
that factual-nucleus sampling relies on the heuris-

tic/assumption that hallucination is more likely to
happen near the end of the sentence. The assump-
tion might not work well in some languages or ap-
plications such as code generation.

REAL sampling could be easily combined with
these approaches to boost their performance. In
Figure 9a, Figure 9b, and Figure 9c, the com-
binations are often significantly better than using
REAL sampling alone.

Speed Comparison Without optimizing for
speed7, our current naive implementation simply
runs the 70M THF model at every decoding step.
Even so, the decoding time only increases around
11% (from 7.46 to 8.29 seconds).

4.2 Ablation Study in FactualityPrompts

Methods: Our ablated methods include
• REAL[410M] or REAL[1B] (Pythia): REAL

sampling using 410M or 1B THF model.
• REAL w/o AE (Pythia): Our method after re-

moving the asymptotic entropy (AE) estimation
as t̂pc = exp(−ec(sN )

T ).
• exp(-e/T) (Pythia): Instead of using the THF

model to predict the entropy, we estimate the en-

tropy from the LLM and set t̂pc = exp(−e
θsN
c
T ).

The method simply reduces the p threshold
whenever encountering a flat distribution (e.g.,
distributions in both (a) and (b) of Figure 1).

• REAL[exp]: REAL sampling using an expo-
nential (exp) decay function (ec(s) = zc +

7Since the size of our 70M THF model is 100 times
smaller than 7B LLM, the inference time of the THF model
should be negligible if we parallelly run both the LLM and
THF model at each decoding step.



Model Comparision Overall Factuality Informativeness Fluency
win tie loss win tie loss win tie loss win tie loss

REAL vs Top-p 29.5† 53.5 17 26 53.5 20.5 26 51 23 24.5 58.5 17
CD vs Top-p 34.5† 46 19.5 31 49.5 19.5 33.5 41.5 25 25.5 53.5 21
REAL vs CD 25.5 49 25.5 22.5 46.5 31 27.5 41.5 31 23.5 60 16.5

REAL+CD vs CD 27 53 20 23.5 53.5 23 26.5 52 21.5 19.5 64.5 16
REAL+CD vs REAL 27.5 50.5 22 30 47.5 22.5 31.5 40 28.5 21.5 56.5 22
REAL+CD vs Top-p 38† 44 18 35.5† 43 21.5 30.5 45.5 24 27 54.5 18.5

Table 2: Human evaluation for the open-ended generation. We highlight the better number between win and loss.
† the win is significantly more than loss under Fisher’s exact test (Fisher, 1922) with p = 0.05.

bc exp(−max(0, qc(s− gc)))) in Equation (3).
• REAL[logistic]: REAL sampling using a logis-

tic function (ec(s) = zc+
bc

1+exp(max(0,qc(s−gc))
).

• REAL[K=*]: REAL sampling that set the maxi-
mal degree K in Equation (3) as *. For example,
when K = 1, ec(s) = zc + bc(

ac,0.5
xc(s)0.5

+
ac,1
xc(s)

).

Main Results: In Figure 5c, the worse perfor-
mance of REAL w/o AE (especially with low
diversity) verifies the effectiveness of predicting
asymptotic entropy (AE). The 70M THF model
(REAL) performs similarly compared to the larger
THF models (REAL (410M) and REAL (1B));
using the LLM entropy predicted by THF model
(REAL w/o AE) is much better than using the
empirical LLM entropy (exp(-e/T)). These two
results in our ablation study suggest that a tiny
model indeed stabilizes the entropy decay curve
prediction. Table 1 indicates that all parameteriza-
tions perform similarly well (r = 0.84) in terms of
predicting the entropy of 6.9B LLM, even though
our THF model only has 70M parameters.

Complementary Results in Appendix: Fig-
ures 9d and 9e shows that our scores in
FACTUALITYPROMPTS are not sensitive to
the parameterization functions and polynomial
degrees K, especially when K > 1. In Figure 10,
we observe that a more complex THF model
(i.e., a higher K or a larger model size) seems to
perform slightly better given factual prompts due
to its prediction power but perform slightly worse
given nonfactual prompts. Since THF is trained
only on factual text, the results suggest that a
more complex model could perform better in an
in-domain setting.

4.3 Human Evaluation in FactualityPrompts
To verify that our methods are still better from
the humans’ perspective, we ask the workers from
Amazon Mechanical Turk (MTurk) to evaluate the
factuality and the quality of the generated con-

tinuations using the Internet. Given 100 factual
prompts in FACTUALITYPROMPTS, we generate
the next sentences using Top-p (p = 0.6), REAL
(T = 2.0), CD (α = 0.3), and REAL + CD
(T = 1.5) due to their similar diversities.

Results: In Table 2, our methods constantly out-
perform the corresponding baselines (i.e., REAL
wins Top-p more and REAL + CD wins CD
more) and the improvement of REAL + CD vs
Top-p is larger than CD vs Top-p. The factual-
ity evaluation results verify the effectiveness of
the retrieved-based evaluation. Furthermore, our
methods also achieve better informativeness and
fluency. Consequently, we get the largest improve-
ment in the overall metric.

4.4 Hallucination Detection for Open-ended
Text Generation

Perplexity and entropy are widely used to detect
the hallucination (van der Poel et al., 2022; Mar-
furt and Henderson, 2022; Muhlgay et al., 2023;
Manakul et al., 2023; Rawte et al., 2023; Varsh-
ney et al., 2023). However, high perplexity or en-
tropy could mean multiple correct answers instead
of hallucination as in Figure 1 (b), so we test if
the residual entropy (RE) and asymptotic entropy
(AE) could be useful unsupervised signals for the
hallucination detection tasks.

Setup: We test the features using three hal-
lucination detection datasets: Factor (Muhlgay
et al., 2023), extended True-False dataset (TF
ext) (Azaria and Mitchell, 2023), and HaDes (Liu
et al., 2022). The hallucination datasets are cre-
ated using very different methods and none of the
input text comes from Pythia. Factor (Muhlgay
et al., 2023)8 creates nonfactual sentence continu-
ations by revising the factual continuation given a

8https://github.com/AI21Labs/factor MIT
license

https://github.com/AI21Labs/factor


Dataset → Factor TF ext HaDes
AvgCreation Method → Revising a Factual Sentence using ChatGPT Template + Table BERT Infill

Subset / Size → Wiki / 47025 News / 7663 Expert / 355 All / 9830 All / 1000
Feature Subsets ↓ Metrics → 1-4 ACC AUC 1-4 ACC AUC 1-4 ACC AUC ACC AUC ACC AUC

1 Feature (6.9B_per) 0.374 0.315 0.367 0.312 0.347 0.290 0.619 0.691 0.528 0.599 0.444
2 Features (6.9B_per + heur_ent) 0.424 0.322 0.359 0.313 0.347 0.300 0.624 0.700 0.503 0.581 0.447

2 Features (6.9B_per + RE) 0.393 0.319 0.390 0.303 0.364 0.320 0.635 0.711 0.521 0.580 0.454
6 Features (6.9B and 70M) 0.490 0.341 0.432 0.326 0.534 0.356 0.654 0.754 0.578 0.646 0.511

All (6.9B, 70M, RE, and AE) 0.498 0.341 0.465 0.326 0.619 0.346 0.671 0.769 0.565 0.669 0.527

Table 3: Hallucination detection in open-ended text generation. A random forest classifier predicts the hallucina-
tion using the features from Pythia 6.9B LLM, Pythia 70M LM, and THF model. 1 Feature (6.9B per) refers to
only using the perplexity of Pythia 6.9B to detect hallucination (Muhlgay et al., 2023; Varshney et al., 2023). The
average of all the scores are reported and the better performances in each section are highlighted.

context using ChatGPT, HaDes (Liu et al., 2022)9

provides human factuality labels on the phrases in-
filled by BERT, and TF ext (Azaria and Mitchell,
2023)10 mostly uses templates and tables in dif-
ferent topics to create the factual and nonfactual
sentences. Our task is to classify these sentences
(continuations) into either factual or nonfactual
classes.

We use the training and testing split in HaDes.
For Factor and TF ext, we split each subset into
equally large training set and testing set. We train
a random forest classifier with 100 estimators to
combine these unsupervised features from the in-
put phrase/sentence.

Metrics: The factuality classification tasks are
evaluated using the area under the precision recall
curve (AUC) and accuracy (ACC). In the Factor
dataset, one of the four sentence continuations is
factual. Thus, we follow Muhlgay et al. (2023) to
measure the accuracy of detecting the factual sen-
tence (1-4 ACC) instead.

Methods: We consider the following features:
• Perplexity of Pythia 6.9B (6.9B_per),
• Entropy of Pythia 6.9B (6.9B_ent),
• Perplexity of Pythia 70M (70M_per),
• Entropy of Pythia 70M (70M_ent),
•

√
6.9B_per ·max(0, 70M_per − 6.9B_per) (heur_per)

•
√

6.9B_ent ·max(0, 70M_ent− 6.9B_ent) (heur_ent)

• d̂RE
c in Equation (5) (RE)

• zc in Equation (3) (AE),
where all features are averaged across the tokens
in the input phrase/sentence. Given a subset of the
above features, we conduct an exhaustive feature
selection to boost/stabilize the performance.

9https://github.com/microsoft/HaDes MIT
license

10https://github.com/balevinstein/
Probes/ MIT license

Wining Rate (500 continuations) (8k continuations)
Flu. Coh. Lik. Overall Dist-2 Rep (↓)

Top-p 50 50 50 50 18.600 7.463
REAL 53 53.4 52.6 52.6 17.952 4.563

Table 4: Out-of-domain creative writing experiment.
The generation model is Pythia 6.9B and the winning
rates on fluency, coherency, likability, and overall are
measured using GPT3.5 against Top-p sampling with
p = 0.5. REAL means REAL sampling (T = 1.8).

We would like to know if we can approxi-
mates RE without performing extrapolation, so
we design a simple hallucination detection heuris-
tic heur_ent. The goal of heur_ent is to detect
the large LLM entropy 6.9B_ent and the large dif-
ference between 6.9B_ent and 70M_ent, which
induce a high hallucination hazard in Figure 3 (a).

Results: In Table 3, 2 Features (6.9B_per +
RE) usually outperforms 2 Features (6.9B_per
+ heur_ent) and 1 Feature (6.9B_per), which
indicates that adding the RE features can im-
prove the widely-used perplexity measurement of
LLM (Muhlgay et al., 2023; Varshney et al., 2023)
and the improvement cannot be achieved by the
simple heuristics using the similar signal. Simi-
larly, compared to 6 Features (6.9B and 70M),
the better performance of All (6.9B, 70M, RE,
and AE) demonstrates that even letting the ran-
dom forest combine all the features from the
Pythia 6.9B and 70M, residual entropy (RE) and
asymptotic entropy (AE) from our THF model still
provide extra information for hallucination detec-
tion. The results suggest that RE and AE could
be auxiliary unsupervised signals that improve the
entropy-based hallucination detection methods.

4.5 Out-of-Domain Creative Writing

Creative writing is not the focus of this paper be-
cause the hallucination problem is usually not se-

https://github.com/microsoft/HaDes
https://github.com/balevinstein/Probes/
https://github.com/balevinstein/Probes/


rious in the tasks. Nevertheless, we still evaluate
our methods on a story-writing task. In the task,
the prompt is composed of three example stories
from the ROC story dataset (Mostafazadeh et al.,
2016) and the first two sentences from the fourth
story. Then, we use different decoding methods to
complete the fourth story and control their hyper-
parameters to have similar Dist-2. Finally, we use
gpt-3.5-turbo-0125 to evaluate the winning rate of
REAL sampling against top-p sampling in four as-
pects.

Results: In Table 4, REAL is similar to top-p
even when the THF model’s training data (i.e.,
Wikipedia and OpenWebText) do not include lots
of short stories. This shows that REAL sampling
could improve the factuality of top-p sampling
without sacrificing its creative writing ability.

5 Related Work

Due to the importance of LLM’s hallucination
problems, various mitigation approaches are pro-
posed. For a comprehensive discussion, please see
the recent surveys from Huang et al. (2023); Ton-
moy et al. (2024). Nevertheless, as far as we know,
REAL sampling is the first method that can im-
prove both factuality and diversity in open-ended
text generation without annotations or domain-
specific heuristics/assumptions.

Some methods can improve the factuality by
relying on domain-specific assumptions. For ex-
ample, Lee et al. (2022) assume the hallucina-
tion is more likely to appear in the latter part of
a sentence. Burns et al. (2022) assume there is
a set of statements that are either true or false.
Several studies (van der Poel et al., 2022; Mar-
furt and Henderson, 2022; Chang et al., 2023; Shi
et al., 2023; Chen et al., 2023) reduce the intrinsic
hallucination by assuming that the generated text
should be relevant to a source document. A more
recent work (Luo et al., 2025) assumes that LLMs
store the knowledge on the higher layer. These
methods might not be applicable to other domains
(e.g., other languages or open-ended text gener-
ation tasks) and could (potentially) be combined
with our method to achieve better performance in
the specific domain (e.g., see Figure 9b).

In terms of methodology, our method is re-
lated to some recent extrapolation-based methods
in other applications. For example, Das et al.
(2024) use a linear regressor to extrapolate the dis-
tribution of a deeper LM, Lu et al. (2024) extrapo-

late the probability distribution to obtain negative
examples for text quality assessment, and Zheng
et al. (2024) extrapolate the weights of an LM af-
ter training on more preference data. Chang et al.
(2024) is our follow-up work that uses a similar
idea to extrapolate the probability distribution of
an infinitely-large LLM and address the limita-
tions of contrastive decoding. However, none of
them studies the threshold for sampling the next-
token distribution.

6 Conclusion

Figure 1 suggests that it is difficult or some-
times even impossible in open-ended text gener-
ation tasks to predict the hallucination likelihood
of the next token only based on the LLM’s dis-
tribution without considering the inherent uncer-
tainty of the task. In this paper, we demonstrate
the feasibility of training a tiny model to forecast
the hallucination hazard of LLM without super-
vision and domain-specific heuristics. Based on
this finding, we propose REAL sampling along
with its theoretical guarantee. Our comprehen-
sive experiments indicate that most existing sam-
pling methods cannot consistently outperform top-
p sampling in FACTUALITYPROMPTS. In con-
trast, our proposed REAL sampling not only out-
performs top-p sampling but also can be combined
with other decoding methods (e.g., contrastive de-
coding) to further reduce hallucination. We also
demonstrate a THF model trained on one LLM
family could be used to forecast/detect the halluci-
nation from the LLM from another family, which
highlights the strong out-of-domain generalization
ability of our THF model.
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A Proof of Theorem 3.1

In this section, we prove Theorem 3.1 as follows.

Proof. To simplify our notations, we write the
conditional probability p(w|c) as p(w) in the fol-
lowing derivation and Figure 7 since every proba-
bility is conditioned on c.

In Figure 7, we illustrate our notations. One
condition of Theorem 3.1 is that the top token dis-
tribution is ideal, so we can decompose the next-
token distribution Da into factual/ideal distribu-
tion Df (i.e., the distribution from an infinitely
large LLM) and hallucination distribution Dh that
we want to truncate. We denote the factual to-
ken as wf and the hallucinated tokens as wh. The
ideal p threshold that separates two distributions
is gpc , so the probabilities of each factual token
and hallucinated token in Da are gpc · p(wf ) and
(1− gpc ) · p(wh), respectively. From Figure 7, we
can see that

gpc min
wf

(p(wf )) ≥ (1− gpc )max
wh

(p(wh)). (8)

The condition of Theorem 3.1 states that d̂RE
c =

dRE
c , so we know

tpc = exp(
−dRE

c

T
) = exp(

Ent(Df )− Ent(Da)

T
), (9)

where Ent(D) is the entropy of the distribution
D.

Based on the above two conditions, we can get

− T · log(tpc) = Ent(Da)− Ent(Df )

=−
∑

gpc · p(wf ) log(g
p
c · p(wf ))

−
∑

(1− gpc ) · p(wh) log((1− gpc ) · p(wh))− Ent(Df )

=gpc · Ent(Df )− gpc log(g
p
c ) + (1− gpc ) · Ent(Dh)

− (1− gpc ) log(1− gpc )− Ent(Df )

=− (1− gpc ) · Ent(Df ) + (1− gpc ) · Ent(Dh)

+ (1− gpc ) log(g
p
c )− (1− gpc ) log(1− gpc )− log(gpc )

=(1− gpc ) (Ent(Dh)− Ent(Df ) + log(gpc )− log(1− gpc ))

− log(gpc )

=(1− gpc )
(
−
∑

p(wh) log(p(wh))

+
∑

p(wf ) log(p(wf )) + log(
gpc

1− gpc
)

)
− log(gpc )

≥(1− gpc )

(
−
∑

p(wh) log(max
wh

p(wh))

+
∑

p(wf ) log(min
wf

p(wf )) + log(

max
wh

p(wh)

min
wf

p(wf )
)


− log(gpc )

=− log(gpc ) (10)
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Figure 7: Illustration of the notations used in Ap-
pendix A. All the next tokens are sorted based on its
probabilities.

Therefore,

tpc = exp(
−dRE

c

T
) ≤ (gpc )

1
T . (11)

In Equation (10), we can observe that the larger
or equal sign would become equal if p(w) is a
uniform distribution, so the threshold from REAL
sampling is closer to the optimal value when the
LLM’s entropy is higher (i.e., the distribution is
flatter, so LLM is more uncertain).

B Method Details

Our experiment uses the smallest LM, θs1 , to ini-
tialize its weights. We choose a decoder-only
transformer architecture because of its training ef-
ficiency. Due to the preference of the LM tokeniz-
ers, we always append a space at the beginning
of the context for all generation LLMs. Besides,
we choose to model the curves of entropy decay
rather than perplexity decay because perplexity is
even more noisy due to its dependency on the ac-
tual next token compared to entropy.

In open-ended text generation, we empirically
observe that the RE d̂RE

c gradually decreases as
the context length increases because the LLM
tends to be more certain about the next token given
a long context. To avoid the systematic shift of
t̂pc , we only input the last 40 tokens into the THF
model. This truncation also further reduces the
computational cost for a long context input and
stabilizes the estimation of the curve parameters
by limiting the prediction power of the tiny THF
model (Li et al., 2022a).

We download the Wikipedia from
http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor and download Open-
WebText (Radford et al., 2019) from https://
github.com/jcpeterson/openwebtext
(GPL-3.0 license). We only use around 5.6% of
text in both datasets to accelerate our training

http://medialab.di.unipi.it/wiki/ Wikipedia_Extractor
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because our preliminary studies show that our
performance is not sensitive to the training corpus.

In the training corpus, we first compute the en-
tropies of each word using the Pythia with sizes
70M, 160M, 410M, 1B, 1.4B, 2.8B, and 6.9B.
When computing the Log(model size), we use the
number of parameters after excluding the token
embeddings. We set the highest degree of our frac-
tional polynomial K = 10 by default and fine-tune
the pretrained Pythia 70M for 3 epochs to predict
their entropy decay curves. We set the learning
rate as 5e − 5 and the warm-up step as 100. Fur-
thermore, we initialize all values in the weight and
bias of the linear layer before the final exponen-
tial layer with 0 to prevent our exponential layer
from causing too large gradients at the beginning
of training.

During training, the maximal length of context
is 1024 to ensure that the THL model can handle
the long context in hallucination detection. We set
the batch size to be 128 for 70M model and 32 for
410M model based on the limit of our GPU mem-
ory. Our preliminary experiments show that the
performances of text generation and hallucination
detection are not sensitive to these hyperparame-
ters.

C Experiment Details

In our experiments, we choose Pythia and OPT
because it has a high pretraining transparency and
our computational resources do not allow us to run
the LLMs with larger model sizes. Our code is
built on Huggingface.

C.1 Details for Open-Ended Text Generation

We conduct our main experiments using automatic
metrics in FACTUALITYPROMPTS because both
NEER and EntailR are shown to have high cor-
relations (∼0.8) with the hallucination labels from
an expert (Lee et al., 2022). When we compute
EntailRn, NEERn, Dist-2n, and Repn, we separate
the max-min normalization for each LLM gener-
ation model and each prompt type (e.g., The de-
coding method for Pythia, OPT, or OpenLLaMA
that achieve the highest EntailR given the factual
prompts will all receive 1 in the EntailRn metric
for factual prompts).

Setup We use the first 1k (non)factual prompts as
our validation set to select the THF models and the
rest 7k prompts as our test set. For each decoding
method, the LLM generates 4 continuations for

each prompt. The maximal length of the contin-
uation is set as 128.

All the training and experiments are done by 8
NVIDIA V100 32GB GPUs. To allow the batch
decoding during inference, we append <eos> se-
quences before the input prompts. In our speed
comparison experiment, we set our batch size as
8.

Methods In addition to top-k sampling (Fan et al.,
2018), we also test the following generation meth-
ods:
• REAL + Top-k: Using the THF model to dy-

namically adjust the threshold in top-k sampling
as tkc = tk · exp(−d̂RE

c ), where tk is a constant
hyperparameter.

• F: Factual-nucleus sampling (F) (Lee et al.,
2022) exponentially reduces the p value accord-
ing to the distance to the last period. As sug-
gested in the paper, we set the decay ratio λ =
0.9 and fix the highest and the lowest sam-
pling threshold to be the default values: 0.9 and
0.3, respectively. That is, t̂pc = max(0.3, 0.9 ·
0.9x−1), where x is the distance to the last pe-
riod.

• REAL + F: Combining our methods
with factual-nucleus sampling using
t̂pc = max(0.3, 0.9x−1) · exp(−d̂RE

c
T ).

• EAD w/o ELI: Entropy-Aware Decoding with-
out Lower-Bound Interventions is proposed
in Arora et al. (2023). The method uses the typ-
ical sampling when the entropy is higher than
a threshold determined by α. Otherwise, the
greedy sampling is used. ELI is a backtracking
algorithm that could be applied to all the other
sampling methods. To keep the comparison fair
and simple, we did not implement ELI.

• REAL + EAD w/o ELI: We replace the typical
sampling with REAL sampling and set α = 0.5.
For contrastive decoding (CD) (Li et al.,

2022a), we fix the temperature for the amateur
model to be 1 and choose the smallest model in
the LLM family as the amateur model (i.e., Pythia
70M in CD and OPT-125m in CD (OPT)). Un-
like OPT, we do not report the CD performance for
OpenLLaMA2 because the smallest model in the
family is too large (OpenLLaMA2-3b). To make
the comparison fair, we use sampling rather than
beam search proposed in Li et al. (2022a)11.

11It is our future work to improve the factual-
ity/effectiveness/efficiency of beam search using THF model
as in Wan et al. (2023); Tu et al. (2023).



For DoLa (Chuang et al., 2023),
we try two layer subsets suggested in
the paper: 0,2,4,6,8,10,12,14,32 and
16,18,20,22,24,26,28,30,32. We report the
results of the former one because of its much
better performance than the latter one.

C.2 Details for Human Experiments

In each task, the workers are asked to judge their
factuality, fluency, informativeness, and overall
quality. In the meanwhile, each worker needs
to provide the URL(s), the statement(s) in the
URL(s), and/or reason(s) that can justify their fac-
tuality annotations. Given a metric and a decod-
ing method in a task, the worker provides a 1 to 5
score and we compare the scores to get the pair-
wise comparison results. Every task is answered
by 2 workers.

After having generated continuations from dif-
ferent methods in FACTUALITYPROMPTS12, we
first exclude the continuations that cause diffi-
culties in comparing the factuality, including the
same continuations from different methods, the
continuations that are less than 10 characters, and
the continuations that mention “External links”.
Then, we select the remaining top 100 testing
factual prompts based on the original order of
FACTUALITYPROMPTS and randomly select 100
prompting stories.

We collaborate with a list of MTurk workers
in multiple projects, so their annotation quality
is much higher than the average MTurk work-
ers. Then, we further manually filter MTurk
workers based on the supporting URL and state-
ments/reasons they provided. We control the
hourly wage of these trusted MTurk workers to be
around $14 and provide $2.2 reward for each task
in FACTUALITYPROMPTS.

In each task, the order of the text generated
by all methods is randomized. In FACTUALI-
TYPROMPTS, the factuality score 5 means no hal-
lucination, and the score 1 means less than 25%
of the continuation is factual. We allow the work-
ers to select the “unsure” option if they really can-
not find the relevant statement from the Internet
and we also allow the workers to select “no in-
formation that is worth checking” option because
the 7B LLM sometimes states their own opinions.
We treat both options as score 1 in our evaluation.

12https://github.com/nayeon7lee/
FactualityPrompt Apache-2.0 license

Please see Figure 8 for more details of our MTurk
task.

The average Pearson correlation between the
two workers in every task is 23.5% for overall,
37.3% for factuality, 14.2% for informativeness,
and 12.3% for fluency. Notice that we only change
the truncation threshold in the sampling methods
on top of the same generation LLM, so the gen-
erated next sentences are sometimes very similar.
This makes workers sometimes hard to give dif-
ferent scores to different generations. We observe
that the agreements of informativeness and flu-
ency are low while their average absolute scores
are high. One possible reason is that all genera-
tions have similarly good fluency, so workers tend
to disagree about which ones are slightly less flu-
ent.

C.3 Details for Hallucination Detection

The maximal depth of the random forest is set
as 5. For Hades, we use only the perplexity and
the entropy of the first token in the input phrase
as our features, which works better than averag-
ing the perplexities and entropies of all the tokens
in the input phrase. In the last two rows of Ta-
ble 3, we use the code of HaDes (Liu et al., 2022)
to perform exhaustive feature selection based on
the testing scores, so we can view the results as
validation scores. In Hades and TF ext, we choose
the best feature set based on AUC and in Factor,
we select features using 1-4 ACC.

C.4 Details for Creative Writing
Experiments

Chiang and Lee (2023) suggest that asking Chat-
GPT to rate first and give explanation next could
increase the quality of the scores. Following the
suggestion, we design our prompt and report it in
Template D.1. To avoid the position bias in the
evaluation, we alternatively assign the generation
from REAL sampling and from top-p sampling to
be story continuation A.

D Why does the Entropy Decay as the
Model Size Increases?

First, in Figure 2, we empirically observe that
the average entropy across our Wikipedia valida-
tion set (around 9M tokens) steadily decreases as
the model size increases. Furthermore, there are
90.2% contexts given which the smallest Pythia
LM (70M) has a larger next-token entropy com-

https://github.com/nayeon7lee/FactualityPrompt
https://github.com/nayeon7lee/FactualityPrompt


pared to Pythia LLM (6.9B). We visualize some
of the decay curves in Figure 6.

Intuitively speaking, a small language model is
less likely to learn the ideal distribution, so it tends
to put higher probabilities on more words so that
it won’t receive a large penalty from the cross-
entropy loss. Since its output distribution is closer
to a uniform distribution, the entropy is higher.

We can also provide a more formal explanation
by treating a smaller LLM as a n-gram LM with
a smaller n. To simplify our explanation, let’s
just assume our vocabulary is A,B,C and we want
to show the average entropy 1-gram LM is larger
than the average entropy 2-gram LM, which pre-
dicts the next word just based on one context word.
Let’s denote the probability of seeing the word x as
P(x) and the probability of seeing the word y given
the context x is P(y|x). Since the entropy func-
tion is a concave function, we know that entropy
of 2-gram LM =

∑
x=A,B,C P (x)Ent(P (y|x)) ≤

Ent(
∑

x=A,B,C P (y|x)P (x)) = the entropy of 1-
gram LM. The intuitive explanation of this proof
is that the probability distribution of 1-gram LM
merges the 3 distributions of 2-gram LM, and
merging distributions would lead to a higher en-
tropy overall. We can easily generalize the above
proof to show that the average entropy of n-gram
LM is always larger than the average entropy of
(n+1)-gram LM.

Template D.1. You are an English writing expert and
you can compare and evaluate two continuations on
these metrics with the following definitions -

1. Fluency: Which continuation has better writing
and grammar comparitively?

2. Coherence: Which continuation has a better logi-
cal flow and the writing fits together with respect to the
plot?

3. Likability: Which continuation is more interesting
and enjoyable to read?

You will be given two continuations - continuation A
and continuation B.

Specify which continuation you prefer for each met-
ric by responding with just the letter “A” or “B” fol-
lowed by a hyphen and two line justifications for your
preference.

Assign an overall winner continuation as the letter
“A” or “B” based on the category wins and provide two
line justifications.

IMPORTANT - DO NOT GIVE ANY OTHER TEXT
APART FROM THE METRICS, PREFERENCE, AND
JUSTIFICATIONO.

EXAMPLE OUTPUT 1:
Fluency: B
A: A has some complex sentences that are difficult to

follow, with occasional grammatical errors.
B: B is well-written with minor grammatical mis-

takes and clear sentence structures.
Coherence: B
A: The plot of A is somewhat confusing and dis-

jointed, especially with the sudden introduction of an
old sage.

B: B maintains a coherent narrative, with each event
logically building on the previous one, enhancing the
continuation’s flow.

Likability: B
A: A is heartfelt but its erratic narrative structure

detracts from its overall appeal.
B: B is compelling and maintains consistent charac-

ter development, making it more enjoyable and engag-
ing.

Overall Winner: B
A: A is moderately fluent, coherent, and interesting.
B: B is perfect except for some minor grammar is-

sues.
EXAMPLE OUTPUT 2:
Fluency: A
A: A has a few minor grammatical issues, but over-

all, it demonstrates strong control of language.
B: B is well-written but has slightly more noticeable

issues in grammar and sentence structure.
Coherence: A
A: B has a strong coherence, effectively conveying

the progression of events.
B: A maintains a consistent and engaging narrative

flow, though some parts are a bit abstract.
Likability: A
A: B’s realistic and emotional narrative is likely to

resonate more with a wide range of readers.
B: A is imaginative and intriguing, but its abstract

nature might not appeal to all readers.
Overall Winner: A
A: A is very good and it would be better if it can be

more interesting.
B: B is too abstract to be interesting.
Context: {Context}
Continuation A: {Context} {Story Continuation A}
Continuation B: {Context} {Story Continuation B}



Please judge if AI-generated continuations contain some hallucinations and judge its fluency, informativeness, and overall quality. Please use
the Internet (especially Wikipedia) to verify the factuality

The instruction does not have any change compared to the last batch. Notice that in Qx-4, a continuation that is full of hallucination could still
be very informative. In Qx-1, if you think all of the continuation is a hallucination, please select "(Almost) no information (25%-0%) is factual"
rather than "The continuation does not contain any information that is worth checking."

If this is the first time you do this task, please read the task explanation by clicking the blue box above ↑ before labeling.

We estimate that each task will take around 5-15 minutes (not including reading the instruction). If you often require less than 5 minute to
complete the task, you should try harder. On average, we expect the workers to spend 10 minutes on each task if you pay your full attention
and become familiar with the task. If it is really hard to judge the facuality after spending reasonable amount of effort given the wage we
provided, you can select the unsure answer.

Your responses might be compared with other responses and/or examined manually by the requester. We will reject the responses and
sometimes even block the worker if the worker obviously does not pay attention to the task.

Please read the context and the AI-generated continuations.
Context:

Annie Parisse starred on an American soap opera.

Continuation 1:

She played the role of Kelly Taylor from 1998 to 2000.

Continuation 2:

She is the sister of actress Jennifer Parisse.

Continuation 3:

She played the role of Kelly Taylor from 1997 until 2000.

Continuation 4:

She also appeared in a number of movies, including _The Godfather_ and _The Godfather Part II_.

Continuation 1:
    She played the role of Kelly Taylor from 1998 to 2000.
    

Q1-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q1-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q1-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q1-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Very General.     Almost no information.   

Q1-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q1-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Continuation 2:
    She is the sister of actress Jennifer Parisse.
    

Q2-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q2-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q2-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q2-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Very General.     Almost no information.   

Q2-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q2-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Continuation 3:
    She played the role of Kelly Taylor from 1997 until 2000.
    

Q3-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q3-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q3-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q3-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Provide few general information     Almost no information.   

Q3-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q3-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Continuation 4:
    She also appeared in a number of movies, including _The Godfather_ and _The Godfather Part II_.
    

Q4-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q4-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q4-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q4-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Very General.     Almost no information.   

Q4-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q4-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Optional

Additional comments:

Task Instructions (Click to expand)

Task Overview:

Given a context sentence from Wikipedia, please first read multiple continuations. In each continuation, you need to answer 6 questions.
First, verify the factuality by searching the Internet of this continuation in Qx-1. Put the URL and the evidence statements you found in Qx-2 and Qx-3, respectively. See the
following section for more details.
In the remaining questions (Qx-4, Qx-5, and Qx-6 ), judge their informativeness/specificity, fluency, and overall quality.

Factuality Evaluation:

Please first judge if the continuation contains any factual information that you can verify. If there is no information that is worth checking, please see the responses to the
continuation 4 in the following example.
If there is factual information, search the Internet to check the factuality of the continuation (e.g., you can try to google the continuation as the query).
In this task, we do not consider the factuality of the context and do not consider time factor. If a continuation was true at a certain time, there is no hallucination in that
continuation. For example, "Obama is the president of USA" is not a hallucination.
After spending reanonable amount of time, if you still cannot find the evidence of verifying the factuality, you can select unsure in Qx-1. Then, please paste the most relevant
evidence you found to Qx-3 and the corresponding URL in Qx-3.
If you want to input multiple URL and evidence, please separate them using --- and new lines.
Qx-3 Supporting Statement:

You can either paste a statement from the URL or write your own reason based on the URL.
If your evidence is from a table in the URL, please paste the row/column of the table (including the header column/row) and append "(table)" at the end of your
statement.
If you provide your reason rather than pasting text, please add "(reason)" at the end.

Example:

Context: Adrian Molina has worked on The Good Dinosaur and Coco.
Continuation 1: The Good Dinosaur is a Pixar film directed by Peter Sohn and produced by John Lasseter, Andrew Stanton, and Jim Morris.

Q1-1 Hallucination: Some information (75%-50%) is factual. <- The Good Dinosaur is a Pixar film directed by Peter Sohn
Q1-2 Supporting URL: https://en.wikipedia.org/wiki/The_Good_Dinosaur
Q1-3 Supporting Statement: The Good Dinosaur is a 2015 American animated adventure film[7] produced by Pixar Animation Studios and distributed by Walt Disney
Studios Motion Pictures. The film was directed by Peter Sohn (in his feature directorial debut) and produced by Denise Ream
Q1-4 Informativeness: Very Specific.
Q1-5 Fluency: Very Fluent.
Q1-6 Overall: Acceptable.

Continuation 2: The Good Dinosaur was released in November 2015 and was nominated for an Oscar for Best Animated Feature.
Q2-1 Hallucination: Some information (75%-50%) is factual. <- The Good Dinosaur was released in November 2015
Q2-2 Supporting URL: https://en.wikipedia.org/wiki/The_Good_Dinosaur
Q2-3 Supporting Statement: Release dates November 10, 2015 (Paris) November 25, 2015 (United States) (Table) --- I search Oscar in the wikipedia page and does not
get any match (reason) --- The film received a nomination for Best Animated Feature Film at the 73rd Golden Globe Awards
Q2-4 Informativeness: Very Specific.
Q2-5 Fluency: Very Fluent.
Q2-6 Overall: Good.

Continuation 3: He also directed the animated film Elio.
Q3-1 Hallucination: Everything is factual
Q3-2 Supporting URL: https://en.wikipedia.org/wiki/Adrian_Molina
Q3-3 Supporting Statement: Molina was announced to write and direct the upcoming feature film Elio
Q3-4 Informativeness: Specific.
Q3-5 Fluency: Very Fluent.
Q3-6 Overall: Excellent.

Continuation 4: I don't think its fair to call this movie a Pixar movie when it's not
Q4-1 Hallucination: The continuation does not contain any information that is worth checking.
Q4-2 Supporting URL: N/A
Q4-3 Supporting Statement: This is a personal opinion from AI saying the movie is not like a Pixar movie (reason)
Q4-4 Informativeness: General.
Q4-5 Fluency: Has some minor fluency issues. <- we don't know which movie this continuation refers to
Q4-6 Overall: Acceptable.

Notice:

If you have any additional comments or some suggestions to the requester, please use the field for additional comments at the bottom.

Please judge if AI-generated continuations contain some hallucinations and judge its fluency, informativeness, and overall quality. Please use
the Internet (especially Wikipedia) to verify the factuality

The instruction does not have any change compared to the last batch. Notice that in Qx-4, a continuation that is full of hallucination could still
be very informative. In Qx-1, if you think all of the continuation is a hallucination, please select "(Almost) no information (25%-0%) is factual"
rather than "The continuation does not contain any information that is worth checking."

If this is the first time you do this task, please read the task explanation by clicking the blue box above ↑ before labeling.

We estimate that each task will take around 5-15 minutes (not including reading the instruction). If you often require less than 5 minute to
complete the task, you should try harder. On average, we expect the workers to spend 10 minutes on each task if you pay your full attention
and become familiar with the task. If it is really hard to judge the facuality after spending reasonable amount of effort given the wage we
provided, you can select the unsure answer.

Your responses might be compared with other responses and/or examined manually by the requester. We will reject the responses and
sometimes even block the worker if the worker obviously does not pay attention to the task.

Please read the context and the AI-generated continuations.
Context:

Annie Parisse starred on an American soap opera.

Continuation 1:

She played the role of Kelly Taylor from 1998 to 2000.

Continuation 2:

She is the sister of actress Jennifer Parisse.

Continuation 3:

She played the role of Kelly Taylor from 1997 until 2000.

Continuation 4:

She also appeared in a number of movies, including _The Godfather_ and _The Godfather Part II_.

Continuation 1:
    She played the role of Kelly Taylor from 1998 to 2000.
    

Q1-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q1-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q1-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q1-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Very General.     Almost no information.   

Q1-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q1-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Continuation 2:
    She is the sister of actress Jennifer Parisse.
    

Q2-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q2-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q2-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q2-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Very General.     Almost no information.   

Q2-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q2-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Continuation 3:
    She played the role of Kelly Taylor from 1997 until 2000.
    

Q3-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q3-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q3-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q3-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Provide few general information     Almost no information.   

Q3-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q3-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Continuation 4:
    She also appeared in a number of movies, including _The Godfather_ and _The Godfather Part II_.
    

Q4-1: How serious the hallucination problem is for the AI-generated continuation?
 Everything is factual.     Most information (99%-75%) is factual.     Some information (75%-50%) is factual.     Less than half (50%-25%) is factual.   

 (Almost) no information (25%-0%) is factual.     Unsure.     The continuation does not contain any information that is worth checking.   

Q4-2: Please provide the URL(s) that can be used to verify the factuality of the continuation.
Please seperate URLs using --- (If you choose "no information that is worth checking", please fill N/A)

Q4-3: Please write or paste the evidence statement(s) that supports your factuality judgement based on the
above URL(s).
Please seperate the statements from different URLs using --- (If you choose unsure, please paste the most relevant statement from the URL. If you choose "no information that is worth
checking", please briefly justify your judgement)

Q4-4: How informative is the continuation? (i.e., How much information the AI tries to provide no matter
whether the information is factual or not)

 Very Specific.     Specific.     General.     Very General.     Almost no information.   

Q4-5: How fluent is the continuation?
 Very Fluent.     Fluent.     Has some minor fluency issues.     Has some major fluency issues.     The contiuation is not understandable.   

Q4-6: Considering factuality, informativeness, fluency, and relevancy to the context, what's the overall
quality of the continuation?

 Excellent.     Good.     Acceptable.     Dissatisfactory.     Poor.   

Optional

Additional comments:

Task Instructions (Click to expand)

Task Overview:

Given a context sentence from Wikipedia, please first read multiple continuations. In each continuation, you need to answer 6 questions.
First, verify the factuality by searching the Internet of this continuation in Qx-1. Put the URL and the evidence statements you found in Qx-2 and Qx-3, respectively. See the
following section for more details.
In the remaining questions (Qx-4, Qx-5, and Qx-6 ), judge their informativeness/specificity, fluency, and overall quality.

Factuality Evaluation:

Please first judge if the continuation contains any factual information that you can verify. If there is no information that is worth checking, please see the responses to the
continuation 4 in the following example.
If there is factual information, search the Internet to check the factuality of the continuation (e.g., you can try to google the continuation as the query).
In this task, we do not consider the factuality of the context and do not consider time factor. If a continuation was true at a certain time, there is no hallucination in that
continuation. For example, "Obama is the president of USA" is not a hallucination.
After spending reanonable amount of time, if you still cannot find the evidence of verifying the factuality, you can select unsure in Qx-1. Then, please paste the most relevant
evidence you found to Qx-3 and the corresponding URL in Qx-3.
If you want to input multiple URL and evidence, please separate them using --- and new lines.
Qx-3 Supporting Statement:

You can either paste a statement from the URL or write your own reason based on the URL.
If your evidence is from a table in the URL, please paste the row/column of the table (including the header column/row) and append "(table)" at the end of your
statement.
If you provide your reason rather than pasting text, please add "(reason)" at the end.

Example:

Context: Adrian Molina has worked on The Good Dinosaur and Coco.
Continuation 1: The Good Dinosaur is a Pixar film directed by Peter Sohn and produced by John Lasseter, Andrew Stanton, and Jim Morris.

Q1-1 Hallucination: Some information (75%-50%) is factual. <- The Good Dinosaur is a Pixar film directed by Peter Sohn
Q1-2 Supporting URL: https://en.wikipedia.org/wiki/The_Good_Dinosaur
Q1-3 Supporting Statement: The Good Dinosaur is a 2015 American animated adventure film[7] produced by Pixar Animation Studios and distributed by Walt Disney
Studios Motion Pictures. The film was directed by Peter Sohn (in his feature directorial debut) and produced by Denise Ream
Q1-4 Informativeness: Very Specific.
Q1-5 Fluency: Very Fluent.
Q1-6 Overall: Acceptable.

Continuation 2: The Good Dinosaur was released in November 2015 and was nominated for an Oscar for Best Animated Feature.
Q2-1 Hallucination: Some information (75%-50%) is factual. <- The Good Dinosaur was released in November 2015
Q2-2 Supporting URL: https://en.wikipedia.org/wiki/The_Good_Dinosaur
Q2-3 Supporting Statement: Release dates November 10, 2015 (Paris) November 25, 2015 (United States) (Table) --- I search Oscar in the wikipedia page and does not
get any match (reason) --- The film received a nomination for Best Animated Feature Film at the 73rd Golden Globe Awards
Q2-4 Informativeness: Very Specific.
Q2-5 Fluency: Very Fluent.
Q2-6 Overall: Good.

Continuation 3: He also directed the animated film Elio.
Q3-1 Hallucination: Everything is factual
Q3-2 Supporting URL: https://en.wikipedia.org/wiki/Adrian_Molina
Q3-3 Supporting Statement: Molina was announced to write and direct the upcoming feature film Elio
Q3-4 Informativeness: Specific.
Q3-5 Fluency: Very Fluent.
Q3-6 Overall: Excellent.

Continuation 4: I don't think its fair to call this movie a Pixar movie when it's not
Q4-1 Hallucination: The continuation does not contain any information that is worth checking.
Q4-2 Supporting URL: N/A
Q4-3 Supporting Statement: This is a personal opinion from AI saying the movie is not like a Pixar movie (reason)
Q4-4 Informativeness: General.
Q4-5 Fluency: Has some minor fluency issues. <- we don't know which movie this continuation refers to
Q4-6 Overall: Acceptable.

Notice:

If you have any additional comments or some suggestions to the requester, please use the field for additional comments at the bottom.

Figure 8: The MTurk template for our human experiment.
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Figure 9: We first compare open-ended text generation methods in FACTUALITYPROMPTS including top-k (Fan
et al., 2018), factual (F) (Lee et al., 2022), and EAD w/o ELI (Arora et al., 2023) sampling. Then, we compare
different functions to model the entropy decay. Finally, we conduct another out-of-domain evaluation for REAL
sampling that uses OpenLLaMA-7b as the generation LLM and the THF model trained on Pythia.
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Figure 10: Comparing Pythia generation performance in FactualPrompt benchmark given different sizes of THF
models and different K (highest degrees of fractional polynomial). REAL means REAL[70M] and REAL[K=10].
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Figure 11: The entailment ratio (EntailR) versus repetition ratio (Rep). A lower repetition ratio is better, so the
better methods are closer to the top-left corner. (Factual) in the captions means the prompt sentence is factual. The
y-axis standard errors of every curve in this figure are 0.0015 on average and smaller than 0.005.
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Figure 12: The named entity error ratio (NEER) versus distinct bi-gram (Dist-2). Lower NEER is better, so the
better methods are closer to the bottom-right corner. (Factual) in the captions means the prompt sentence is factual.
We hide the hyperparameter values in the figures to avoid blocking the curves. The y-axis standard errors of every
curve in this figure are 0.002 on average and smaller than 0.006.


