
Hypencoder: Hypernetworks for Information Retrieval
Julian Killingback

jkillingback@cs.umass.com
University of Massachusetts Amherst

Amherst, MA, USA

Hansi Zeng
hzeng@cs.umass.edu

University of Massachusetts Amherst
Amherst, MA, USA

Hamed Zamani
zamani@cs.umass.edu

University of Massachusetts Amherst
Amherst, MA, USA

ABSTRACT
The vast majority of retrieval models depend on vector inner prod-
ucts to produce a relevance score between a query and a document.
This naturally limits the expressiveness of the relevance score that
can be employed. We propose a new paradigm, instead of producing
a vector to represent the query we produce a small neural network
which acts as a learned relevance function. This small neural net-
work takes in a representation of the document, in this paper we use
a single vector, and produces a scalar relevance score. To produce
the little neural network we use a hypernetwork, a network that
produce the weights of other networks, as our query encoder or as
we call it a Hypencoder. Experiments on in-domain search tasks
show that Hypencoder is able to significantly outperform strong
dense retrieval models and has higher metrics then reranking mod-
els and models an order of magnitude larger. Hypencoder is also
shown to generalize well to out-of-domain search tasks. To assess
the extent of Hypencoder’s capabilities, we evaluate on a set of hard
retrieval tasks including tip-of-the-tongue retrieval and instruction-
following retrieval tasks and find that the performance gap widens
substantially compared to standard retrieval tasks. Furthermore,
to demonstrate the practicality of our method we implement an
approximate search algorithm and show that our model is able to
search 8.8M documents in under 60ms.

1 INTRODUCTION
Efficient neural retrieval models are based on a bi-encoder (or two
tower) architecture, in which queries and documents are repre-
sented separately using either high-dimensional sparse [17, 18, 75]
or relatively low-dimensional dense vectors [19, 32, 33, 73, 76].
These models use simple and light-weight similarity functions,
e.g., inner product or cosine similarity, to compute the relevance
score for a given pair of query and document representations. We
demonstrate theoretically that inner product similarity functions
fundamentally limit the types of relevance that retrieval models can
express. Specifically, we prove that there is always a set of relevant
documents which cannot be perfectly retrieved regardless of the
query vector and specific encoder model.

Motivated by this theoretical argument, we introduce a new cat-
egory of retrieval models that can capture complex relationship be-
tween query and document representations. Building upon the hy-
pernetwork literature in machine learning [22, 59, 66], we propose

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Hypencoder–a generic framework that learns a query-dependent
multi-layer neural network as a similarity function that is applied to
the document representations. In more detail, Hypencoder applies
attention-based hypernetwork layers, called hyperhead layers, to
the contextualized query embeddings output by a backbone trans-
former encoder. Each hyperhead layer produces the weight and
bias matrices for a neural network layer in the query-dependent
similarity network, called the q-net. The q-net is then applied to
each document representation, which results in a scalar relevance
score. We demonstrate that the Hypencoder framework can be op-
timized end-to-end and can be used for efficient retrieval from a
large corpus. Specifically, we propose a graph-based greedy search
algorithm that approximates exhaustive retrieval using Hypencoder
while being substantially more efficient.

We conduct extensive experiments on a wide range of datasets
to demonstrate the efficacy of Hypencoder. We demonstrate that
our implementation of Hypencoder for single vector document
representations outperforms competitive single vector dense and
sparse retrieval models on MS MARCO [49] and TREC Deep Learn-
ing Track data [10, 13], in addition to complex retrieval tasks, such
as TREC DL-Hard [43], TREC Tip-of-the-Tongue (TOT) Track [3],
and the instruction following dataset FollowIR [69]. Across these
benchmarks Hypencoder demonstrates consistent performance
gain across experiments. Note that using the proposed approxima-
tion approach, retrieval from MS MARCO [49] with approximately
8.8 million documents only takes an average of 59.6 milliseconds
per query on a single NVIDIA L40S GPU.

A main advantage of hypernetworks in machine learning is their
ability to learn generalizable representations. To demonstrate that
Hypencoder also inherits this generalization quality, we evaluate
our model under various domain adaptation settings: (1) adaptation
to question answering datasets in biomedical and financial domains,
and (2) adaptation to other retrieval tasks, including entity and
argument retrieval, where Hypencoder again demonstrates superior
performance compared to the baselines.

We believe that these performance gains are just the by-product
of our main contributions; Hypencoder introduces a new way to
think about what retrieval and relevance functions can be, it opens
a new world of possibilities by bridging the gap between neural
networks and retrieval similarity functions. We believe Hypencoder
is especially important at this time given the new demands for
longer and more complex queries brought on by the widespread
usage of large language models and it is our belief that Hypencoder
represents an important step towards this goal. To help facilitate
this goal we will open source all our code for training, retrieval,
and evaluation.1

1Available at https://github.com/jfkback/hypencoder-paper

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/jfkback/hypencoder-paper

Conference’17, July 2017, Washington, DC, USA Julian Killingback, Hansi Zeng, and Hamed Zamani

encoder

pooler

d

encoder

pooler

q

encoder

pooler

d

encoder

pooler

q

encoder

score-head

qd

s

encoder

pooler

d

encoder

hyper-head

q

IP
s

𝐸𝑑 𝐸𝑞

s
𝐸𝑑

input
q-net

combine𝐸𝑑 𝐸𝑞

MLP

s

Vector Similarity HypencoderLearned Similarity Cross-encoding Similarity

Figure 1: Overview comparing Hypencoder to existing retrieval and reranking paradigms. Gray arrows indicate the arrow does
not represent an entity, it is the same as what it points to, in contrast black arrows do indicate a unique entity which is always
labeled.

2 RELATEDWORK
Vector Space Models. Vector-based models that use sparse vec-

tors have existed for decades, with each index representing a term
in the corpus vocabulary. Document-query similarity is computed
using measures like 𝑙2 distance, inner product, or cosine similarity,
with term weighting methods such as TF-IDF being a substantial
focus to improve performance. With the emergence of deep neural
networks, focus shifted to learning representations for queries and
documents. SNRM by Zamani et al. [75] was the first deep learning
model to retrieve documents from large corpora by learning latent
sparse vectors. Following works leveraged pretrained transformer
models like BERT [16] using single dense vector representations
[32]. Recent improvements have focused on training techniques
including self-negative mining [52, 53, 73, 77], data augmentation
[38, 53], distillation [26, 37, 38], corpus-pretraining [19, 30, 40, 71],
negative-batch construction [28] and curriculum learning [39, 76].
Alternative approaches include ColBERT [33], which uses multiple
dense vectors, and SPLADE [18], which revisits sparse representa-
tions using pretrained masked language models.

Though these methods vary substantially, they all share a funda-
mental commonality, that relevance is based on an inner product (or
in some cases cosine similarity). We believe that this is a significant
limitation of these methods and one which hampers the perfor-
mance of these models on complex retrieval tasks. Our method
circumvents this limitation by learning a query-dependent small
neural network that is fast enough to run on the entire collection
(or used in an approximate way; see Section 3.6 for details).

Learned Relevance Models. Light-weight relevance models us-
ing neural networks have demonstrated improved retrieval per-
formance compared to simple methods like inner products. Early
iterations came in the form of learning-to-rank models [8, 9] which
use query and document features to produce relevance scores for
reranking. While these models traditionally used engineered fea-
tures, more recent approaches adopted richer inputs. For instance,
MatchPyramid [51] and KNRM [72] use similarity matrices between
non-contextualized word embeddings, while Duet [47, 48] combines
sparse and dense term features in a multi-layer perceptron. DRMM

[74] utilized histogram features as input to neural networks for
scoring. Since the advent of BERT [16], focus has shifted to making
transformer models more efficient, such as PreTTR [42] which sep-
arately precomputes query and document hidden states. Recently,
LITE [31] extended ColBERT’s similarity using column-wise and
row-wise linear layers for scoring.

In the recommender systems community, learned similarity mea-
sures have been widely used [24, 25]. The common usage of neural
scoring methods in recommendation has inspired research into
efficient retrieval with more learned scoring signals. For instance,
BFSG [62] supports efficient retrieval with arbitrary relevance func-
tions by using a graph of item representations and a greedy search
strategy over nodes of the graph. A recent improvement on BFSG
uses the scoring models gradient to prune directions that are un-
likely to have relevant items [79]. Other works make use of queries
to form a query-item graph to produce more informative neighbors
[61].

Our work differs from these works in one major way, we do
not have a query representation and document representation thus
our method requires no combination step, instead we produce a
query-conditioned neural network for each query and directly apply
this to the document representation. This approach can reduce the
similarity network’s size and does not require choosing between
inference speed and larger query representations. Furthermore the
flexibility of our framework means we can replicate any existing
learned relevance model as discussed in Section 3.7. On a broader
note there has been surprisingly little work on neural based scoring
for full-scale retrieval, especially in the modern era of transformer
based encoders. We hope our work can be a useful foundation and
proof-of-concept for future work in this area.

Hypernetworks. Hypernetworks also known as hypernets are
neural networks which produce the weights for other neural net-
works. The term was first used by Ha et al. [22] who demonstrated
the effectiveness of hypernetworks to generate weights for LSTM
networks. Since then, hypernetworks have been used in a variety of
ways including neural architecture search [78], continual learning

Hypencoder: Hypernetworks for Information Retrieval Conference’17, July 2017, Washington, DC, USA

[66], and few-shot learning [57, 59] to name a few. Generally, hyper-
networks take a set of input embeddings that provide information
about the type of task or network where the weights will be used.
These embeddings are then projected to the significantly larger
dimension of the weights of the “main” network. As the outputs of
most hypernetworks are so large the hypernetworks themselves
are often very simple such as a few feed-forward layers in order to
keep computation feasible. Our case is unique in that our hyper-
network, the Hypencoder, is much larger than the small scoring
network which we call q-net (i.e. the “main” network). Additionally,
to the best of our knowledge, this paper represents the first work
to explore hypernetworks for first stage retrieval.

3 HYPENCODER
Neural ranking models can be generally categorized into early-
interaction and late-interaction models [14, 20, 27, 33, 34, 50, 68].
Currently, the most common implementation of early-interaction
models is in the form of cross-encoders (Figure 1 (second from the
left)), where the query text 𝑞 and document text 𝑑 are concatenated
(together with some predefined tokens or templates) and fed to a
transformer network that learns a joint representation of query
and document and finally produces a relevance score. The joint rep-
resentation prevents these models from being able to precompute
document representations, thus they cannot be used efficiently on
large corpora [21, 46].

The most popular implementation of late-interaction models
follows a bi-encoder (or two tower) network architecture (Figure 1
(left)), where query and document representations are computed
separately and a scoring function is used to estimate the relevance
score. Formally, let 𝐸𝑞 ∈ R𝑛×ℎ denote the representation learned for
query𝑞 consisting of𝑛 ℎ-dimensional vectors. Similarly, 𝐸𝑑 ∈ R𝑚×ℎ
denotes the representation learned for document 𝑑 consisting of𝑚
vectors of the same dimensionality. The relevance score between 𝑞
and 𝑑 is computed as follows:

𝜓 (𝐸𝑞, 𝐸𝑑) (1)

where𝜓 : R𝑛×ℎ × R𝑚×ℎ → R denotes the scoring function.
In order to take advantage of efficient indexing techniques, such

as an inverted index in the case of sparse representations [18, 75]
or approximate nearest neighbor (ANN) search in the case of dense
representations [32], many existingworks use pooling techniques to
obtain a single vector representation for each query and document
and then employs simple and light-weight scoring functions, such as
inner product or cosine similarity. There also exist more expensive
methods that do not use pooling and perform such light-weight
scoring functions at the vector level and then aggregate them, such
as the maximum inner product similarity used in ColBERT [33].

On the Limitations of Linear Similarity Functions (e.g., In-
ner Product). We believe the simple similarity functions used by
existing bi-encoder models are not sufficient for modeling complex
relationships between queries and documents. These functions in-
herently limit retrieval models to judge relevance in a way that
can be represented by an inner product. Furthermore, it has been
shown that the ability to compress and reconstruct information
is correlated with the size, and thus complexity, of neural models
[15]. This result indicates that using a relevance function as simple

as an inner product likely reduces the amount of information that
can be stored in a fixed representation size. These factors explain
why state-of-the-art dense retrieval models continue to underper-
form cross-encoder models, in terms of retrieval quality [36]. In the
following, we show the limitations of inner products (as a linear
similarity function) by theoretically demonstrating the impossibil-
ity of inner products to produce perfect rankings for some queries,
regardless of the method used to create the query and document
embeddings.

Let 𝐶 denote a corpus of 𝑁 documents, each being represented
by an ℎ-dimensional vector. A perfect ranking of documents in 𝐶
for a provided query is a ranking where all relevant documents are
ranked above all non-relevant documents. According to Radon’s
Theorem [54], any set of ℎ + 1 document vectors with ℎ dimensions
can be partitioned into two sets whose convex hulls intersect. An
important application of Radon’s Theorem is in calculating the Vap-
nik–Chervonenkis (VC) dimension [64] of ℎ-dimensional vectors
with respect to linear separability. For any ℎ + 2 vectors, the two
subsets of a Radon partition cannot be linearly separated. In other
words, for 𝑁 > ℎ + 1, there exists at least one group of documents
that is not linearly separable from the rest. In the real world, since
𝑁 ≫ ℎ + 1, there are indeed many such non-separable subsets. If
any two of these subsets contain all the relevant documents for
a query, then no linear similarity function can perfectly separate
relevant from irrelevant documents. This includes inner product
similarity and guarantees that, for some query, there will be an
imperfect ranking.

To overcome these limitations with inner product similarity we
use a multi-layer neural network with query-conditioned weights
as our similarity measure. As neural networks are universal ap-
proximators [29], Hypencoder’s similarity function can express far
more complex functions than those expressed by inner products.
A related alternative approach with the same benefits takes the
query and document representations, combines them (e.g., through
concatenation or similarity matrices), and feeds them to a neural
network to serve as a similarity function (Figure 1 (second from the
right)). However, this approach suffers from the following short-
comings: (1) query and document representations now need to be
combined before scoring – adding latency proportional to the com-
plexity of the method used to combine them; (2) having separate
query and document representations increases the input dimension
to the neural network further increasing latency; (3) for efficiency
reasons, the query representation is often pooled or compressed
before being input into network which reduces the information the
model receives. Hypencoder addresses these shortcomings. Since
the query is directly encoded as the neural network’s weights no
concatenation or other form of combining inputs is needed, the doc-
ument representation can be directly input to the scoring network.
This, in addition to the reduced network size from having only
document representations as input, allows for a substantial latency
improvement. Further, as Hypencoder produces a query-specific
neural network, every weight can be used to store query-related
information without any need for compression or additional over-
head. Lastly, we show in Section 3.7 that existing learned relevance
methods can be exactly replicated by Hypencoder with the addi-
tional flexibility of learning query-specific weights when desirable.

Conference’17, July 2017, Washington, DC, USA Julian Killingback, Hansi Zeng, and Hamed Zamani

3.1 Hypencoder Overview
An overview of our model is depicted in Figure 1 (right); it repre-
sents a new category of models that sit between a cross-encoder and
a bi-encoder model. Like a bi-encoder model, our method computes
the query and document representations separately, but unlike most
existing retrieval methods, our method allows for more compli-
cated matching signals like those present in cross-encoder models.
Following existing methods, we have a query encoder and a docu-
ment encoder. When a document 𝑑 is input into to the document
encoder, we obtain a representation similar to existing encoder
models, namely a set of one or more vectors 𝐸𝑑 ∈ R𝑚×ℎ that rep-
resent the document’s content, where𝑚 is the number of vectors
and ℎ is the dimension of the vectors. Though we focus on vectors
in this work, in theory, the representation can be anything a neural
network can output.

Now comes our unique contribution that allows our method to
consider more complex similarity signals. Given the query 𝑞, the
query encoder Φ first produces a set of contextualized embeddings
in a similar way to existing encoder models which we will call
𝐸𝑞 ∈ R𝑛×ℎ , where 𝑛 is the number of embeddings and ℎ is the
dimension of the embeddings. At this point while existing methods
apply a simple pooling mechanism, our query encoder instead
uses a hyper-head. The hyper-head takes 𝐸𝑞 and produces a set of
matrices and vectors that are then used as the weights and biases
for a small neural network which we coin the q-net. The q-net is a
query-dependent function for estimating relevance scores for each
document, meaning each q-net is unique to the query that created
it, unlike existing neural scoring methods which use a shared set
of weights for all queries. To find the relevance of a document, the
document representation 𝐸𝑑 is passed as input to the q-net which
outputs the relevance score.

Hypencoder is a generic framework which allows direct applica-
tion of existing paradigms from neural retrieval and, more broadly,
machine learning. For example, Hypencoder could easily work
with multiple vectors similar to existing multi-vector models, e.g.,
[33], or use training routines popularized in dense retrieval, e.g.,
[38, 52, 73, 76]. As an initial exploration, this paper focuses on show-
ing the efficacy of Hypencoder without additional complexity and
thus uses a single vector document representation and no complex
training recipes.

3.2 Query and Document Encoders
The Hypencoder framework is generic and can be applied to any
implementation of query and document encoders. In this work, we
use pretrained transformer-based encoder models commonly used
in the recent neural network literature. Specifically, we use a pre-
trained BERT base model [16] for encoding queries and documents.
Even though Hypencoder can operate on all token representations
produced for each document this work focuses on a single vector
representation of documents, which is more efficient in terms of
query latency, memory requirements, and disk usage. To do so,
we can either use the contextualized embedding representing the
[CLS] token or take the mean of all the contextualized embed-
dings for all the non-pad input tokens. Empirically, we found that
using the [CLS] token performs better. Therefore, the document
representation produced by the encoder is a single vector with 768

dimensions, i.e., the same as BERT’s output dimensionality. We
refer to it as 𝐸𝑑 ∈ R𝑚×ℎ , where𝑚 = 1 in our setting.

Since Hypencoder only uses the contextualized-query-token
representations once to produce the q-net, it can skip pooling tokens
without adding much cost. Therefore, we use all non-pad-token
representations produced by the query encoder as the intermediate
representation of the queries, denoted by 𝐸𝑞 ∈ R𝑛×ℎ , where 𝑛
is the number of tokens in the query 𝑞 and ℎ is the embedding
dimensionality (ℎ = 768 in BERT).

3.3 The Hyperhead Layers
The method to transform 𝐸𝑞 into the weights and biases for the q-
net is performed by the hyperhead layers and is completely flexible.
During our experimentation, we tried two mechanisms to do this
transformation as well as many minor variants and found them all
to have stable training, which suggests the Hypencoder framework
is robust to the exact hyperhead layer implementation. Though
we tried two approaches, we settled on one for the final set of
experiments in this paper which we will now describe.

For improved clarity, we focus only on the weight creation pro-
cess as the biases are created in the exact same way. The contextual-
ized query embeddings 𝐸𝑞 ∈ R𝑛×ℎ produced by the query encoder
are independently transformed by 𝑙 hyperhead layers, each of which
corresponds to a layer in the q-net. Each hyperhead layer converts
the embeddings 𝐸𝑞 into key and value matrices:

𝐾
𝑞

𝑖
= 𝜃𝐾𝑖 × [𝐸𝑞 ; 1] 𝑉

𝑞

𝑖
= 𝜃𝑉𝑖 × [𝐸𝑞 ; 1] (2)

where 𝜃𝐾𝑖 , 𝜃𝑉𝑖 ∈ Rℎ×ℎ denote learnable parameters for construct-
ing key and value matrices. In the above equation, the embedding
matrix 𝐸𝑞 is concatenated with a column of all ones (i.e., [𝐸𝑞 ; 1]) to
model both weight multiplication and bias addition.

Each key matrix 𝐾𝑖 and value matrix 𝑉𝑖 will be used for the
creation of the weights in the 𝑖th layer of the q-net. With the keys
and values in hand, single-head scaled-dot-product attention [65]
is performed using a query matrix 𝑄𝑖 ∈ R𝑟×ℎ where 𝑟 is the layer
dimensionality in the 𝑖th layer of q-net. In our case, all of the weights
except the last layer are square matrices, making 𝑟 = ℎ. Each 𝑄𝑖 is
a set of learnable embeddings, similar to those used as input tokens
for transformer models. Hence, the hidden layer representation
𝐻𝑖 ∈ R𝑟×ℎ is then computed as follows:

𝐻𝑖 = softmax
(
𝑄𝑖𝐾

𝑇
𝑖√
ℎ

)
𝑉𝑖 (3)

A ReLU activation [1] is then applied to each 𝐻𝑖 followed by
layer normalization [4]. Next a point-wise feed-forward layer is
applied to produce 𝐻𝑞

𝑖
:

𝐻
𝑞

𝑖
= 𝜃𝑊𝑖L-Norm (ReLU(𝐻𝑖)) + 𝜃𝑏𝑖 (4)

where L-Norm denotes layer normalization. Note that each weight
in q-net has a unique 𝜃𝑊𝑖 and 𝜃𝑏𝑖 . There are no learnable parameters
in layer normalization.

The final operation to get the 𝑖th weight𝑊 𝑞

𝑖
for q-net is:

𝑊
𝑞

𝑖
= 𝐻

𝑞

𝑖
+ 𝜃𝐻𝑖 (5)

Hypencoder: Hypernetworks for Information Retrieval Conference’17, July 2017, Washington, DC, USA

where 𝜃𝐻𝑖 ∈ R𝑟×ℎ is the same size as 𝐻𝑞
𝑖
and acts as a base weight

which allows the model to learn universal (i.e., query-independent)
patterns that are applicable for all queries.

The process for the bias vectors is identical except the query
matrix used in the attention operation𝑄𝑖 ∈ R𝑟×ℎ has 𝑟 = 1 as there
is only a single column in the output.

3.4 The q-net Network
Weights and biases produced by the hyperhead layers are not by
themselves a neural network. They need a certain arrangement
and additional components (e.g. non-linearity). This is where the
Hypencoder’s q-net converter comes in. The converter knows the
architecture of the q-net and given the weights and biases from
the hyperhead layers, it produces a callable neural network object
which takes as input the document representation 𝐸𝑑 .

It is worth highlighting that because the q-net’s architecture is
not strictly tied to how the hyperhead layer produces the weights
and biases, it is simple to modify the architecture of the q-net. All
the hyperhead layers need to know is howmany weights and biases
are needed and what shape they should be.

In our experiments, we use a simple feed-forward architecture
for the q-net. The output 𝑥𝑑

𝑖+1 for the input 𝑥
𝑑
𝑖
at a given layer 𝑖 is

given by:

𝑥𝑑𝑖+1 = L-Norm
(
ReLU(𝑊 𝑞

𝑖
(𝑥𝑑𝑖) + 𝑏

𝑞

𝑖
)
)
+ 𝑥𝑑𝑖 (6)

where L-Norm represents a layer normalization without learnable
parameters and the addition of 𝑥𝑑

𝑖
is a residual connection. No

residual connection is applied before the final layer (i.e., layer 𝑙).
The layer in Equation (6) is repeated 𝑙 times. Finally, a relevance
score is produced using a linear projection layer with an output
dimensionality of 1.

3.5 Training
Training Hypencoder is no different from training a bi-encoder
as it shares the same core components, i.e., a query encoder and
document encoder. The only difference is instead of using an inner
product to find the similarity the q-net is applied to the document
representations. Thus, our contributions are solely the architecture
and not a specific training technique. In this paper we employ a
simple distillation training setup, for more details see Section 4.2

3.6 Efficient Retrieval using Hypencoder
Being able to perform efficient retrieval is crucial for many real-
world search scenarios where an exhaustive search is not feasible.
For Hypencoder models, there is a clear parallel to dense models
as both represent documents as dense vectors, but the differences
between Hypencoder and dense models make it unclear whether
the same efficient search techniques will work. For instance, it
is clear that due to the linear nature of inner products, similar
document vectors are likely to have similar inner products with
a query vector; in the case of Hypencoder this assumption may
not hold true as the non-linear nature of the Hypencoder scoring
function could mean small differences in the input vector produce
significant differences in the output score.

To study the extent to which Hypencoder’s retrieval can be
approximated for efficient retrieval, we developed an approximate

search technique based loosely on navigating small world graphs
[35, 45]. In the index stage we construct a graph where documents
are nodes connected to their neighbors by edges. We use 𝐿2 distance
between document embeddings similar to [62].

After constructing the document graph, approximate search is
performed following Algorithm 1. In brief, a set of initial candidate
documents 𝐶 is selected at random, these candidates are scored
with the q-net (line 5) and in lines 16-19 the best 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 and
their neighbors become the next candidates. In lines 12-15, the
top scoring candidates are added to 𝑇–a set which stores the 𝑘
best scoring documents so far. The algorithm terminates when
one of three conditions is met: (1) the number of iterations equals
𝑚𝑎𝑥𝐼𝑡𝑒𝑟 ; see line 4, (2) there are no more candidates; see line 4, or
(3) no new documents are added to 𝑇 at a given step; see line 8.
We also consider an option without the final termination condition
which we call without early stopping. As the number of operations
is dependent on the number of initial candidates |𝐶 |, the running
time is not tied to the number of documents, resulting in a run time
complexity of 𝑂 (|𝐶 | + 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ·𝑚𝑎𝑥𝐼𝑡𝑒𝑟).

With this algorithm, we found that Hypencoder is able to signif-
icantly increase retrieval speed without a large loss in quality. See
the results in Section 4.4.4.

Algorithm 1 Hypencoder Efficient Search

Input: q-net 𝑞, #NN to return 𝑘 , initial candidates 𝐶 , # candi-
dates to explore every iteration 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ,𝑚𝑎𝑥𝐼𝑡𝑒𝑟
Output: 𝑘 closest neighbors to 𝑞

1: 𝑣 ← 𝐶 ⊲ set of visited elements
2: 𝑇 ← {−∞} ⊲ Stores top 𝑘 nearest neighbors to 𝑞 at any given

time
3: 𝑖 ← 0 ⊲ Current iteration
4: while |𝐶 | > 0 and 𝑖 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do
5: 𝑐 ← find top 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 values in 𝐶 using 𝑞
6: 𝑓 ← get lowest scoring element from 𝑇
7: if max𝑐∈𝑐 𝑐 < 𝑓 then
8: break ⊲ all candidates are worse than 𝑇 so stop now
9: 𝐶 ← {} ⊲ Reset 𝐶
10: for each 𝑒 ∈ 𝑐 do
11: 𝑓 ← get lowest scoring element from 𝑇
12: if 𝑞(𝑒) > 𝑓 or |𝑇 | < 𝑘 then
13: 𝑇 ← 𝑇 ∪ 𝑒
14: if |𝑇 | > 𝑘 then
15: 𝑇 ← 𝑇 \ {𝑓 }
16: for each 𝑛 ∈ NEIGHBORS(𝑒) do
17: if 𝑛 ∉ 𝑣 then
18: 𝐶 ← 𝐶 ∪ 𝑛
19: 𝑣 ← 𝑣 ∪ 𝑛
20: 𝑖 ← 𝑖 + 1
21: return 𝑇

3.7 Comparison to Existing Neural IR Methods
We argue that Hypencoder can exactly reproduce existing neural
ranking models. Let us start by formalizing the main components
of existing neural methods: (1) a query representation 𝐸𝑞 , (2) a

Conference’17, July 2017, Washington, DC, USA Julian Killingback, Hansi Zeng, and Hamed Zamani

document representation 𝐸𝑑 , (3) some combination function 𝑓𝑐 (·, ·),
and (4) the final neural network that produces a score 𝑓𝑠 (·). In com-
parison, Hypencoder does not have an 𝑓𝑐 (·, ·) as the q-net takes 𝐸𝑑
as its only input. We will now demonstrate that Hypencoder can
exactly replicate any neural retrieval method that has the compo-
nents above. The first step is to include 𝐸𝑞 and 𝑓𝑐 (·, ·) in the q-net.
This allows the q-net to exactly produce the input to 𝑓𝑠 (·) that the
existing neural retriever used. Next we reproduce the neural func-
tion from 𝑓𝑠 (·) with query-dependent weights in the q-net. When
𝐸𝑑 is input to the q-net, all the original components of the existing
neural retrieval model are present and thus the score can be exactly
replicated. There is one difference, which is the weights of 𝑓𝑠 (·) are
query-dependent. However, this can be remedied in two ways: (1)
shared weights can be used for all queries exactly replicating the
original neural method (2) the weights for 𝑓𝑐 can have a common
non-query-dependent base weight, similar to our implementation
(see details in Section 3.3), this way if there is no benefit using
query-dependent weights the shared weight can be used, but if
there is additional benefit the model and optimizer can learn to take
advantage of it. Thus, Hypencoder can not only exactly replicate
all existing neural retrieval methods it also allows the model to
dynamically leverage query-dependent weights when the model
determines they are beneficial.

4 EXPERIMENTS
4.1 Datasets
4.1.1 Training Dataset. The dataset used for training our models
is the training split of the MSMARCO passage retrieval dataset [49]
which contains 8.8M passages and has 503K training queries with
at least one corresponding relevant passage. The queries in the
MSMARCO training set are short natural language questions asked
by users of the Bing search engine.

To create the training pairs, we first retrieved 800 passages for
every query using an early iteration of Hypencoder. From these,
we sampled 200 passages — the top 100 passages and another 100
randomly sampled from the remaining 700 passages. These query-
passage pairs were then labeled using the MiniLM cross-encoder2
from the Sentence Transformers Library [55].

4.1.2 Validation Dataset. For validating and parameter tuning, we
use the TREC Deep Learning (DL) 2021 [11] and 2022 passage task
[11, 12]. As the passage collection for TREC DL ’21 and ’22 is large
and we wanted validation to be fast we created a subset with only
passages in the QREL files.

4.1.3 Evaluation Datasets. Our evaluation explores retrieval per-
formance in three different areas: in-domain performance, out-of-
domain performance, and performance on hard retrieval tasks.

For in-domain performance, we use the MSMARCO Dev set [49],
TREC Deep Learning 2019 [13], and TREC Deep Learning 2020 [10].
The MSMARCO Dev set contains around 7k queries with shallow
labels, the majority of queries only have a single passage labeled as
relevant. This collection uses queries from the same distribution
as the training queries making it a clear test of the in-domain
performance. On this dataset we report the standard evaluation
metrics: MRR and Recall@1000. The TREC Deep Learning 2019 and
2Available at https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2.

2020 datasets have a similar query distribution to MSMARCO Dev
but feature far fewer queries, i.e., 97 queries combined. The lower
number of queries is compensated by far deeper annotations with
every query having several annotated passages.

To assess out-of-domain performance, we evaluate on question
answering tasks on different domains, specifically, the TRECCOVID
[56] and NFCorpus datasets [7] for the biomedical domain and FiQA
[44] for the financial domain. We also evaluate on DBPedia [23]
as an entity retrieval dataset and on Touché [6] as an argument
retrieval dataset. We use the BEIR [63] versions of these datasets
from the ir_datasets library.3

To explore the full capabilities of Hypencoder we want to eval-
uate how it performs on retrieval tasks that are more challenging
than standard question-passage retrieval tasks. To some extent
hardness is subjective, but we tried to define a clear set of criteria
to define difficulty: (1) current neural retrieval models should strug-
gle on the task, (2) term matching models like BM25 should also
struggle on the task, (3) the queries are longer or otherwise more
complicated than standard web queries. An additional requirement
we had was that for tasks that were significantly different from the
MSMARCO training data we wanted adequate training data to fine-
tune the models before evaluation. We believe this is reasonable as
we are not investigating the models’ zero-shot performance but the
inherent limits of the model.

The first dataset we select was the TREC Tip-of-the-Tongue
(TOT) 2023 [3] that contains queries written by users that know
many aspects of the item they are looking for but not the name
of the item. Thus TOT queries tend to be verbose and can include
many facets. The TREC TOT 2023 dataset specifically looks at TOT
queries for movies with the corresponding movie’s Wikipedia page
as the golden passage. We use the development set as the test set
relevance labels are not public yet. There are 150 queries. Each
query has a single relevant passage. For training we use the data
from Bhargav et al. [5] which is around 15k TOT queries from
Reddit for the book and movie domain.

The second dataset is FollowIR [69] for instruction following
in retrieval. This dataset is built on top of three existing TREC
datasets: TREC Robust ’04 [67], TREC News ’21 [60], and TREC
Core ’17 [2]; it uses the fact that these datasets include instructions
to the annotators which can act as a complex instruction. To test
how well a retrieval system follows the instruction the creators of
FollowIR modify the instruction to be more specific and re-annotate
the known relevant documents. As training data we use MSMARCO
with Instructions, a recent modification of MSMARCO which adds
instructions to the queries as well as new positive passages and
hard negative passages which consider the instruction [70].

The final dataset is a subset of TREC DL-HARD [43]. The full
dataset uses some of the queries from TREC DL 2019 and 2020 as
well as some queries that were considered for DL 2019 and 2020 but
were not included in the final query collection. TREC DL-HARD
is built specifically with the hardest queries from the TREC DL
pool. The authors do so by using a commercial search engine to
find queries that are not easily answered. The standard TREC DL-
HARD dataset has 50 queries half of which appear in TREC DL
2019 or TREC DL 2020 and half of which are new queries which

3Available at https://ir-datasets.com/.

https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
https://ir-datasets.com/

Hypencoder: Hypernetworks for Information Retrieval Conference’17, July 2017, Washington, DC, USA

101 103 105
0.66

0.68

0.7

0.72

|𝐶 |

nD
CG

@
10

50

100

150

Q
ue
ry

La
te
nc
y
(m

s)

0 500 1,000

0.64
0.66
0.68
0.7
0.72

𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

nD
CG

@
10

0
200
400
600
800

Q
ue
ry

La
te
nc
y
(m

s)

0 10 20 30
0.3
0.4
0.5
0.6
0.7

𝑚𝑎𝑥𝐼𝑡𝑒𝑟

nD
CG

@
10

w/ early stop
w/o early stop

50
100
150
200

Q
ue
ry

La
te
nc
y
(m

s)

Figure 2: Relationship between the three main parameters of our efficient search: the size of the initial set of candidates 𝐶, the
number of neighbors to explore 𝑛𝐶𝑎𝑛𝑑𝑑𝑖𝑑𝑎𝑡𝑒𝑠, and the number of iterations𝑚𝑎𝑥𝐼𝑡𝑒𝑟 and both effectiveness in terms of TREC
DL ’19 nDCG@10 and efficiency in terms of Query Latency.

are labeled by the authors of TREC DL-HARD. We found that the
queries labeled by the authors had far fewer judged documents in
the top 10 documents compared to those labeled by TREC (around
15% versus 93%), this made the evaluation metrics unreliable so we
decided to only use those with TREC labeling.

4.2 Experimental Setup
4.2.1 Training Details. All the Hypencoders use BERT [16] base
uncased as the base model. We use PyTorch and Huggingface for
model implementation and training. All of our q-nets use a input
dimension of 768 and hidden dimension of 768. Unless otherwise
stated, we use 6 linear layers in the model not including the final
output projection layer.

We use a training batch size of 64 per device and 128 in total. A
single example in the batch is a query, positive document, and 8
additional documents ranging in relevance. The positive document
is the top ranked document by our teacher model. The other 8
documents are sampled randomly from the passages associated
with the query. For more details about the dataset see Section 4.1.1.
Passages were truncated to 196 tokens and queries to 32 tokens.

Our primary loss function is Margin MSE [26]. When computing
the loss, we construct (query, positive document, negative docu-
ment) triplets where all of the negatives for a query form their
own triplet. The loss is found by averaging the individual loss of all
the triplets. In addition to Margin MSE, we use an in-batch cross
entropy loss where the (query, positive document) is assumed to
be a true positive and all the other queries’ positive documents
are assumed to be negatives. We do not consider the additional
“hard” negatives from the query in the cross entropy loss as many
of these documents are relevant to the query. We use AdamW as
our optimizer with default settings and a learning rate of 2e-5 with
a constant scheduler after a warm up of 6k steps. Our training
hardware consist of two A100 GPUs with 80GB memory. Training
took around 6 days.

To select the best model we evaluate eachmodel on the validation
set every 50k steps and pick the model with the best R Precision
within the first 800k steps. We selected R Precision due to the fact
that it balances both recall and precision in a single metric and does
not require a predefined cutoff.

When training for the harder tasks we use AdamW with the
learning rate 8e-6 with a linear scheduler and a warm-up ratio of
1e-1. For TOT training we train for 25 epochs or 3.3k steps. For

FollowIR training we train for 1 epoch or around 10k steps. We use
a batch-size of 96 and cross entropy loss. Each example in the batch
includes a query, positive document, and hard negative document.
We use a maximum document and query length of 512 tokens.

4.3 Baselines
For comparison with Hypencoder, we include several baseline mod-
els andmodels whichwe include for referencewhich are not directly
comparable. Our main baselines which we evaluate on all datasets
are TAS-B [28], CL-DRD [76], BM25, and our own bi-encoder base-
line which we call BE-Base. We train BE-Base exactly the same
as Hypencoder except we use separate encoders and use a linear
LR scheduler. We select our main dense baselines TAS-B and CL-
DRD as they are both strong bi-encoder models which leverage
knowledge-distillation training and which use the same document
embedding dimension of 768. For in-domain results we include an
additional set of dense models: ANCE [73], TCT-ColBERT [37], and
MarginMSE [26]. We only include these models in the in-domain
results to save space in other sections and because TAS-B and CL-
DRD outperform the other baselines. For reference we also include:
the late-interactionmodel ColBERT v2 [58]; the neural sparsemodel
SPLADE++ SD [17]; RepLLaMA a 7b parameter bi-encoder model
[41]; DRAGON a bi-encoder trained with 5 teacher models and 20M
synthetic queries; MonoBERT a reranking model reranking the top
1k BM25 retrieavls [50]; and the reranking model cross-SimLM
reranking the top 200 passages from bi-SimLM [68]. Reference
results were taken from the RepLLaMA [41] and DRAGON [38]
papers.

4.4 Results and Discussion
4.4.1 In-Domain Results. Our in-domain results are presented in
Table 1; they demonstrate that compared with baselines and even
the reference models Hypencoder has very strong performance.
Hypencoder is significantly better than each baseline in nDCG@10
on the combined TREC DL ’19 and ’20 and statistically better than
all but CL-DRD on MSMARCO Dev RR@10. The most direct com-
parison, BE-Base, has far lower nDCG@10, RR, and RR@10 values
indicating the Hypencoder is able to bring a large boost in precision
based metrics over dense retrieval. In terms of recall Hypencoder
is either as good or better than all the baselines though the gap is
not as large as for precision based metrics.

Conference’17, July 2017, Washington, DC, USA Julian Killingback, Hansi Zeng, and Hamed Zamani

Table 1: Comparison on in-domain evaluation datasets. The
symbols next to each baseline indicate significance values
with 𝑝 < 0.05. Note, that † is a group of baselines.

TREC-DL ’19 & ’20 MSMARCO Dev
Model nDCG@10 RR R@1000 RR@10 R@1000
Single Vector Dense Retrieval Models & BM25 (Baselines)
BM25 † 0.491 0.679 0.735 0.184 0.853
ANCE † 0.646 0.811 0.767 0.330 0.958
TCT-ColBERT † 0.669 0.820 0.806 0.335 0.964
Margin MSE † 0.669 0.845 0.782 0.325 0.955
TAS-B ♠ 0.700 0.863 0.861 0.344 0.978
CL-DRD ♦ 0.701 0.844 0.838 0.382 0.981
BE-Base ♣ 0.713 0.855 0.868 0.359 0.980

Hypencoder 0.736†♠♦♣ 0.885†♦ 0.871†♦ 0.386†♣♠ 0.981†♠

Other Retrieval Models (Reference Models)
ColBERT v2 0.749 - - 0.397 0.984
SPLADE++ SD 0.723 - - 0.368 0.979
RepLLaMA 0.731 - - 0.412 0.994
DRAGON 0.734 - - 0.393 0.985
MonoBERT 0.722 - - 0.372 0.853
cross-SimLM 0.735 - - 0.437 0.987

ImpressivelyHypencoder is able to surpass DRAGONon nDCG@10
on the combined TREC DL ’19 and ’20 query set, though DRAGON
uses the same base model and is a bi-encoder, it uses 32 A100s to
train, 40x the training queries, and a complex 5 teacher curriculum
learning distillation training technique. In other words, DRAGON is
likely close to if not the ceiling for BERT-based bi-encoders and still
Hypencoder is able to match it with a simple distillation training
setup and far less training compute.

Hypencoder also beats both rerankers MonoBERT and cross-
SimLM; demonstrating that reranking cannot make up for a weak
retriever’s performance. Continuing in TREC-DL ’19 and ’20 we
find that Hypencoder even surpassed RepLLaMA which is more
than 60x larger and which also uses a significantly larger document
embedding dimension of 4096. In fact the only model beating Hy-
pencoder in nDCG@10 is ColBERTv2 which uses an embedding
for every token in the document compared to Hypencoder’s fixed
768 dimension token. MSMARCO Dev results are also good with
Hypencoder outperforming all the baselines and outperforming a
few of the reference models such as SPLADE++ and MonoBERT.

Overall Hypencoder’s in-domain results are exceptionally strong
given the simple training routine used, small encoder model size,
and document representation size. To the best of our knowledge,
Hypencoder sets a new record for combined TREC-DL ’19 and ’20
nDCG@10 with a 768 dimension dense document vector.

4.4.2 Out-of-Domain Results. Table 2 shows our results on the
select out-of-domain datasets, we only include our main baseline
models and BM25 due to space limitations. The general trend is that
Hypencoder has strong out-of-domain performance in question
answering tasks (Q&A) and entity retrieval tasks. This indicates
that despite Hypencoder’s more complex similarity function it is
still able to generalize well in a zero-shot manner to new tasks.

4.4.3 Results on Harder Retrieval Tasks. The results on the harder
retrieval tasks are in Table 3, like in the out-of-domain section
we only consider the main baseline models and BM25. We can
see that in the harder tasks Hypencoder remains dominant over

Table 2: Out-of-domain results in nDCG@10. We only com-
pare significance with BE-Base. Significance results with
𝑝 < 0.05 are shown with the ♣ and 𝑝 < 0.1 are shown with ♦.

Baselines Ours

Rep type sparse dense dense dense hypernet
BM25 TAS-B CL-DRD BE-Base Hypecoder

Q & A
TREC-Covid 0.656 0.481 0.584 0.651 0.688♦
FiQA 0.236 0.300 0.308 0.309 0.314
NFCorpus 0.325 0.319 0.315 0.327 0.324
Misc.
DBPedia 0.313 0.384 0.381 0.405 0.419♣
Touché v2 0.367 0.162 0.203 0.240 0.258♦

the baseline models with higher retrieval metrics in all but one
column. Additionally, the relative improvement compared to the
in-domain results are higher (on all metrics that Hypencoder is the
best for) suggesting that on harder tasks the added complexity that
can be captured by Hypencoder’s similarity function is especially
important. Additionally the high performance on TREC tip-of-the-
tongue (TOT) and FollowIR indicate that Hypencoder adapts well
to different domains through domain-specific fine-tuning.

On the evaluated subset of TREC DL-HARD we see that Hypen-
coder has stronger precision metrics than the baselines by a large
margin. As mentioned previously the higher relative improvement
suggests that Hypencoder is especially dominant on harder tasks
which, in part, explains its higher performance on TREC DL ’19
and ’20. Though on in-domain dataset Hypencoder does better or
the same on recall metrics, on TREC DL-HARD BE-Base has higher
recall than Hypencoder. We suspect that this may be because the
relevance function that the q-net applies is not smooth, which has
the benefit of being more discerning and likely accounts for some
of the precision gains. However, if the q-net makes a mistake the
non-smooth scoring could result in a much harsher score than the
linear inner product is capable of producing.

Moving to TREC tip-of-my-tongue (TOT) we see that Hypen-
coder continues to perform well. Tip-of-the-tongue is a complex
retrieval task with long queries and passages and multiple aspects,
the fact Hypencoder outperforms the baselines by a large margin
validates the need for a more complex relevance function.

Finally we have FollowIR which has three subsets – on all three
Hypencoder has the best performance on the retrieval evaluation
metrics of choice, in many cases by a sizable amount. Beside the
retrieval evaluation metrics we also include p-MRR which is a
metric released in the FollowIR [69] paper. The metric measures
the change in document ranks before and after an instruction is
modified to see how well the model responses to the additional
requirements. A p-MRR of 0 indicates no change in document rank
based on the instruction change and a p-MRR of +100 indicates
the documents were perfectly changed based on the instruction
while -100 indicates the opposite. For additional details we refer
readers to the original FollowIR paper [69]. As p-MRR is relative
to each model’s performance before the instructions are modified
it is not indicative of stand-alone retrieval performance. With that
said, Hypencoder is the only model to achieve a positive p-MRR

Hypencoder: Hypernetworks for Information Retrieval Conference’17, July 2017, Washington, DC, USA

Table 3: Evaluation metrics for the harder set of tasks which include TREC DL-HARD, TREC Tip-of-my-tongue TOT, and
FollowIR. Significance is shown at 𝑝 < 0.1. For FollowIR we do not perform significance tests on BM25.

TREC DL-HARD TREC TOT DEV FollowIR Robust ’04 FollowIR News ’21 FollowIR Core ’17
Model nDCG@10 RR R@1000 nDCG@10 RR nDCG@1000 AP p-MRR nDCG@5 p-MRR AP p-MRR
BM25 † 0.466 0.813 0.646 0.086 0.088 0.131 0.121 -3.1 0.193 -2.1 0.081 -1.1
TAS-B ♠ 0.574 0.789 0.777 0.097 0.089 0.162 0.203 -5.4 0.263 -0.8 0.170 -10.0
CL-DRD ♦ 0.573 0.790 0.719 0.088 0.082 0.151 0.206 -7.2 0.240 -0.3 0.162 -12.1
BE-Base ♣ 0.607 0.864 0.805 0.121 0.110 0.179 0.207 -3.7 0.239 -1.1 0.178 -7.7

Hypencoder 0.630†♠♦ 0.887♠♦ 0.798†♦ 0.134†♠♦ 0.125♠♦ 0.182♦† 0.212♠ -3.5 0.272 2.0 0.193 -11.8

indicating it correctly modified the document ranking based on
the instruction. This is no small feat as in the original FollowIR
paper no retrieval model of the size of Hypencoder was able to get
a positive p-MRR and even many much larger models trained on
large instruction retrieval datasets could not get a positive result.

4.4.4 Analysis of Efficiency. To be able to search large-scale collec-
tions Hypencoder has to work well while only doing computation
on a small subset of the document corpus. This led us to develop
the efficient algorithm in Section 3.6. To quantify the performance
we do a set of experiments varying the key parameters to see how
each impacts both search quality and query latency. The results of
these experiments can be seen in Figure 2. Note the document-to-
document graph used has 100 neighbors per document. The figures
show that each parameter has an important role in search quality.
The largest role is played by𝑚𝑎𝑥𝐼𝑡𝑒𝑟 which can drastically reduce
search performance if not set high enough, but which plateaus
after around 12. The value of 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 follows a similar pattern
with a drastic increase followed by a plateau. The parameter 𝐶 ,
the number of initial candidates, is unique in that it has a more
gradual rise and is the only parameter that causes a decrease in
effectiveness if raised too high. We suspect this happens because
only 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 are explored at each iteration but all candidates
in 𝐶 are considered visited and thus are not explored in the future.
This could mean that many good results from the initial candidates
are not explored, leaving potentially good neighbors of these nodes
undiscovered. Another interesting aspect of𝐶 is that time decreases
as it increases when early stopping is used. This is likely because
high quality candidates are found sooner allowing search to end
more quickly. In general, our approximation seems to behave as
expected in terms of both time and retrieval performance.

With the insights from our analysis above we developed two con-
figurations, one which optimizes for speed and one that optimizes
for retrieval quality. These two configurations compared against
exhaustive search can be seen in Table 4. Both approximate config-
urations significantly decrease the retrieval time when compared
to the exhaustive approach.

4.4.5 Impact of q-net Depth. Hypencoder performance suggests
that having a more complex relevance function does indeed help im-
prove retrieval performance as we had hypothesized. This raises the
question: what is the optimal complexity of this relevance function.
To answer this question we trained four versions of Hypencoder
each trained to produce a q-net with a different number of layers.
We selected [2, 4, 6, 8] as the number of q-net layers.

The results can be seen in Figure 3. The experiment shows that
there is a benefit beyond two layers and that at least four is required

Table 4: Average query latency and nDCG@10 on TREC DL
’19 and ’20 with efficient search. Efficient 1 uses parameters
(𝐶 = 10000, 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 64, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 16), Efficient 2 uses
parameters (𝐶 = 100000, 𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 328,𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 20). All
model inference was performed on an NVIDIA L40S with
BF16 precision.

Search Type Query Lat. (ms) DL ’19 DL ’20
Exhaustive 1769.8 0.742 0.731
Efficient 1 59.6 0.702 0.730
Efficient 2 231.1 0.722 0.731

2 4 6 80.72
0.73
0.73
0.74
0.74

Number of q-net layers

nD
CG

@
10

Figure 3: Average nDCG@10 on TREC DL ’19 and ’20 versus
number of layers in the q-net.

for the best performance. Performance stays the same with six,
indicating that this might be the point of diminishing returns. Lastly,
eight layers decrease performance. There could be a number of
reasons for this including that eight layers are harder to optimize
or because effectively learning how to use all eight layers takes
longer and thus might achieve better performance with extended
training time.

5 CONCLUSION
We propose a new class of retrieval model, the Hypencoder which
overcomes the limitations of inner product based similarity func-
tions that we prove to exist. Our model achieves a new state-of-the-
art on TREC DL ’19 and ’20 for BERT sized encoder models with
a single dense document vector and shows even stronger relative
improvement on harder retrieval tasks such as tip-of-the-tongue
queries. Further we demonstrate that learned relevance models can
be applied to large-scale search corpus in an efficient way with
our proposed approximate search algorithm. As Hypencoder is a
flexible framework there is much interesting future work to ex-
plore, such as multi-vector document representations and corpus
pretraining to name a few.

Conference’17, July 2017, Washington, DC, USA Julian Killingback, Hansi Zeng, and Hamed Zamani

ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelligent Infor-
mation Retrieval, in part by the NSF Graduate Research Fellowships
Program (GRFP) Award #1938059, and in part by the Office of Naval
Research contract number N000142412612. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of the
sponsor.

REFERENCES
[1] Abien Fred Agarap. 2018. Deep Learning using Rectified Linear Units (ReLU).

CoRR abs/1803.08375 (2018). arXiv:1803.08375 http://arxiv.org/abs/1803.08375
[2] James Allan, Donna K. Harman, E. Kanoulas, Dan Li, Christophe Van Gysel, and

Ellen M. Voorhees. 2017. TREC 2017 Common Core Track Overview. In Text
Retrieval Conference. https://api.semanticscholar.org/CorpusID:38019792

[3] Jaime Arguello, Samarth Bhargav, Fernando Diaz, Evangelos Kanoulas, and
Bhaskar Mitra. 2023. Overview of the TREC 2023 Tip-of-the-Tongue Track.
In The Thirty-Second Text REtrieval Conference Proceedings (TREC 2023), Gaithers-
burg, MD, USA, November 14-17, 2023 (NIST Special Publication, Vol. 500-xxx), Ian
Soboroff and Angela Ellis (Eds.). National Institute of Standards and Technology
(NIST). https://trec.nist.gov/pubs/trec32/papers/Overview_tot.pdf

[4] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. CoRR abs/1607.06450 (2016). arXiv:1607.06450 http://arxiv.org/abs/1607.
06450

[5] Samarth Bhargav, Georgios Sidiropoulos, and Evangelos Kanoulas. 2022. ’It’s
on the tip of my tongue’: A new Dataset for Known-Item Retrieval. In WSDM
’22: The Fifteenth ACM International Conference on Web Search and Data Mining,
Virtual Event / Tempe, AZ, USA, February 21 - 25, 2022, K. Selcuk Candan, Huan
Liu, Leman Akoglu, Xin Luna Dong, and Jiliang Tang (Eds.). ACM, 48–56. https:
//doi.org/10.1145/3488560.3498421

[6] Alexander Bondarenko, Maik Fröbe, Meriem Beloucif, Lukas Gienapp, Yamen
Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, HenningWachsmuth,
Martin Potthast, and Matthias Hagen. 2020. Overview of Touché 2020: Argument
Retrieval. In Working Notes of CLEF 2020 - Conference and Labs of the Evaluation
Forum, Thessaloniki, Greece, September 22-25, 2020 (CEUR Workshop Proceedings,
Vol. 2696), Linda Cappellato, Carsten Eickhoff, Nicola Ferro, and Aurélie Névéol
(Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-2696/paper_261.pdf

[7] Vera Boteva, Demian Gholipour Ghalandari, Artem Sokolov, and Stefan Riezler.
2016. A Full-Text Learning to Rank Dataset for Medical Information Retrieval.
In Advances in Information Retrieval - 38th European Conference on IR Research,
ECIR 2016, Padua, Italy, March 20-23, 2016. Proceedings (Lecture Notes in Computer
Science, Vol. 9626), Nicola Ferro, Fabio Crestani, Marie-Francine Moens, Josiane
Mothe, Fabrizio Silvestri, Giorgio Maria Di Nunzio, Claudia Hauff, and Gianmaria
Silvello (Eds.). Springer, 716–722. https://doi.org/10.1007/978-3-319-30671-1_58

[8] Christopher Burges, Robert Ragno, and Quoc Le. 2006. Learning to rank with
nonsmooth cost functions. Advances in neural information processing systems 19
(2006).

[9] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient
descent. In Machine Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11, 2005 (ACM International
Conference Proceeding Series, Vol. 119), Luc De Raedt and Stefan Wrobel (Eds.).
ACM, 89–96. https://doi.org/10.1145/1102351.1102363

[10] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview
of the TREC 2020 Deep Learning Track. In Proceedings of the Twenty-Ninth Text
REtrieval Conference, TREC 2020, Virtual Event [Gaithersburg, Maryland, USA],
November 16-20, 2020 (NIST Special Publication, Vol. 1266), Ellen M. Voorhees
and Angela Ellis (Eds.). National Institute of Standards and Technology (NIST).
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf

[11] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin.
2021. Overview of the TREC 2021 Deep Learning Track. In Proceedings of the
Thirtieth Text REtrieval Conference, TREC 2021, online, November 15-19, 2021 (NIST
Special Publication, Vol. 500-335), Ian Soboroff and Angela Ellis (Eds.). National
Institute of Standards and Technology (NIST). https://trec.nist.gov/pubs/trec30/
papers/Overview-DL.pdf

[12] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Jimmy Lin, Ellen M.
Voorhees, and Ian Soboroff. 2022. Overview of the TREC 2022 Deep Learning
Track. In Proceedings of the Thirty-First Text REtrieval Conference, TREC 2022,
online, November 15-19, 2022 (NIST Special Publication, Vol. 500-338), Ian Soboroff
and Angela Ellis (Eds.). National Institute of Standards and Technology (NIST).
https://trec.nist.gov/pubs/trec31/papers/Overview_deep.pdf

[13] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2020. Overview of the TREC 2019 deep learning track. CoRR
abs/2003.07820 (2020). arXiv:2003.07820 https://arxiv.org/abs/2003.07820

[14] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). Association for
Computing Machinery, New York, NY, USA, 65–74. https://doi.org/10.1145/
3077136.3080832

[15] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim
Genewein, Christopher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew
Aitchison, Laurent Orseau, Marcus Hutter, and Joel Veness. 2024. Language
Modeling Is Compression. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.
https://openreview.net/forum?id=jznbgiynus

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/V1/N19-1423

[17] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural IR
Models More Effective. In SIGIR ’22: The 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Madrid, Spain, July 11 -
15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane
Culpepper, and Gabriella Kazai (Eds.). ACM, 2353–2359. https://doi.org/10.1145/
3477495.3531857

[18] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. Association for Computing Machinery, New York, NY, USA,
2288–2292. https://doi.org/10.1145/3404835.3463098

[19] Luyu Gao and Jamie Callan. 2022. Unsupervised Corpus Aware Language Model
Pre-training for Dense Passage Retrieval. In Proceedings of the 60th AnnualMeeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio (Eds.). Association for Computational Linguistics, 2843–2853.
https://doi.org/10.18653/V1/2022.ACL-LONG.203

[20] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical
Match in Information Retrieval with Contextualized Inverted List. In North
American Chapter of the Association for Computational Linguistics. https:
//api.semanticscholar.org/CorpusID:233241070

[21] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen
Wu, W. Bruce Croft, and Xueqi Cheng. 2020. A Deep Look into neural ranking
models for information retrieval. Information Processing & Management 57, 6
(2020), 102067. https://doi.org/10.1016/j.ipm.2019.102067

[22] David Ha, Andrew M. Dai, and Quoc V. Le. 2017. HyperNetworks. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=rkpACe1lx

[23] Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein Erik
Bratsberg, Alexander Kotov, and Jamie Callan. 2017. DBpedia-Entity v2: A Test
Collection for Entity Search. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo,
Japan, August 7-11, 2017, Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li,
Arjen P. de Vries, and Ryen W. White (Eds.). ACM, 1265–1268. https://doi.org/
10.1145/3077136.3080751

[24] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for
Sparse Predictive Analytics. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo,
Japan, August 7-11, 2017, Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li,
Arjen P. de Vries, and Ryen W. White (Eds.). ACM, 355–364. https://doi.org/10.
1145/3077136.3080777

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017, Rick
Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (Eds.). ACM,
173–182. https://doi.org/10.1145/3038912.3052569

[26] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan,
and Allan Hanbury. 2020. Improving Efficient Neural Ranking Models
with Cross-Architecture Knowledge Distillation. CoRR abs/2010.02666 (2020).
arXiv:2010.02666 https://arxiv.org/abs/2010.02666

[27] Sebastian Hofstätter, O. Khattab, Sophia Althammer, Mete Sertkan, and Allan
Hanbury. 2022. colberter. Proceedings of the 31st ACM International Conference
on Information & Knowledge Management (2022). https://api.semanticscholar.
org/CorpusID:247628023

[28] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling. In SIGIR ’21: The 44th International ACM SIGIR Conference

https://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
https://api.semanticscholar.org/CorpusID:38019792
https://trec.nist.gov/pubs/trec32/papers/Overview_tot.pdf
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.1145/3488560.3498421
https://doi.org/10.1145/3488560.3498421
https://ceur-ws.org/Vol-2696/paper_261.pdf
https://doi.org/10.1007/978-3-319-30671-1_58
https://doi.org/10.1145/1102351.1102363
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec30/papers/Overview-DL.pdf
https://trec.nist.gov/pubs/trec30/papers/Overview-DL.pdf
https://trec.nist.gov/pubs/trec31/papers/Overview_deep.pdf
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/2003.07820
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://openreview.net/forum?id=jznbgiynus
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/V1/2022.ACL-LONG.203
https://api.semanticscholar.org/CorpusID:233241070
https://api.semanticscholar.org/CorpusID:233241070
https://doi.org/10.1016/j.ipm.2019.102067
https://openreview.net/forum?id=rkpACe1lx
https://openreview.net/forum?id=rkpACe1lx
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1145/3038912.3052569
https://arxiv.org/abs/2010.02666
https://arxiv.org/abs/2010.02666
https://api.semanticscholar.org/CorpusID:247628023
https://api.semanticscholar.org/CorpusID:247628023

Hypencoder: Hypernetworks for Information Retrieval Conference’17, July 2017, Washington, DC, USA

on Research and Development in Information Retrieval, Virtual Event, Canada, July
11-15, 2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones,
and Tetsuya Sakai (Eds.). ACM, 113–122. https://doi.org/10.1145/3404835.3462891

[29] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. 1989. Multilayer
feedforward networks are universal approximators. Neural Networks 2, 5 (1989),
359–366. https://doi.org/10.1016/0893-6080(89)90020-8

[30] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2022. Unsupervised Dense Infor-
mation Retrieval with Contrastive Learning. Trans. Mach. Learn. Res. 2022 (2022).
https://openreview.net/forum?id=jKN1pXi7b0

[31] Ziwei Ji, Himanshu Jain, Andreas Veit, Sashank J. Reddi, Sadeep Jayasumana,
Ankit Singh Rawat, Aditya Krishna Menon, Felix Yu, and Sanjiv Kumar. 2024. Effi-
cient Document Ranking with Learnable Late Interactions. CoRR abs/2406.17968
(2024). https://doi.org/10.48550/ARXIV.2406.17968 arXiv:2406.17968

[32] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, No-
vember 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.).
Association for Computational Linguistics, 6769–6781. https://doi.org/10.18653/
V1/2020.EMNLP-MAIN.550

[33] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, Jimmy X. Huang,
Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun
Liu (Eds.). ACM, 39–48. https://doi.org/10.1145/3397271.3401075

[34] Minghan Li, Sheng-Chieh Lin, Barlas Oğuz, Asish Ghoshal, Jimmy J. Lin, Yashar
Mehdad, Wen tau Yih, and Xilun Chen. 2022. CITADEL: Conditional Token
Interaction via Dynamic Lexical Routing for Efficient and Effective Multi-Vector
Retrieval. In Annual Meeting of the Association for Computational Linguistics.
https://api.semanticscholar.org/CorpusID:253708231

[35] Yury Lifshits and Shengyu Zhang. 2009. Combinatorial algorithms for nearest
neighbors, near-duplicates and small-world design. In Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY,
USA, January 4-6, 2009, Claire Mathieu (Ed.). SIAM, 318–326. https://doi.org/10.
1137/1.9781611973068.36

[36] J. Lin, R. Nogueira, and A. Yates. 2022. Pretrained Transformers for Text Ranking:
BERT and Beyond. Springer International Publishing.

[37] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling Dense Rep-
resentations for Ranking using Tightly-Coupled Teachers. CoRR abs/2010.11386
(2020). arXiv:2010.11386 https://arxiv.org/abs/2010.11386

[38] Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar
Mehdad, Wen-tau Yih, and Xilun Chen. 2023. How to Train Your Dragon: Diverse
Augmentation Towards Generalizable Dense Retrieval. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino,
and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore,
6385–6400. https://doi.org/10.18653/v1/2023.findings-emnlp.423

[39] Zhenghao Lin, Yeyun Gong, Xiao Liu, Hang Zhang, Chen Lin, Anlei Dong, Jian
Jiao, Jingwen Lu, Daxin Jiang, Rangan Majumder, and Nan Duan. 2023. PROD:
Progressive Distillation for Dense Retrieval. In Proceedings of the ACM Web
Conference 2023 (Austin, TX, USA) (WWW ’23). Association for Computing
Machinery, New York, NY, USA, 3299–3308. https://doi.org/10.1145/3543507.
3583421

[40] Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Yingyan Li, and Xueqi
Cheng. 2021. B-PROP: Bootstrapped Pre-training with Representative Words
Prediction for Ad-hoc Retrieval. Proceedings of the 44th International ACM SI-
GIR Conference on Research and Development in Information Retrieval (2021).
https://api.semanticscholar.org/CorpusID:233307194

[41] Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. 2024. Fine-
Tuning LLaMA for Multi-Stage Text Retrieval. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2024, Washington DC, USA, July 14-18, 2024, Grace Hui Yang,
Hongning Wang, Sam Han, Claudia Hauff, Guido Zuccon, and Yi Zhang (Eds.).
ACM, 2421–2425. https://doi.org/10.1145/3626772.3657951

[42] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Efficient Document Re-Ranking for Trans-
formers by Precomputing Term Representations. In Proceedings of the 43rd In-
ternational ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, Jimmy X. Huang,
Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun
Liu (Eds.). ACM, 49–58. https://doi.org/10.1145/3397271.3401093

[43] Iain Mackie, Jeffrey Dalton, and Andrew Yates. 2021. How Deep is your Learning:
the DL-HARD Annotated Deep Learning Dataset. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval.

[44] Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott,
Manel Zarrouk, and Alexandra Balahur. 2018. WWW’18 Open Challenge: Fi-
nancial Opinion Mining and Question Answering. In Companion of the The Web
Conference 2018 on TheWeb Conference 2018,WWW2018, Lyon , France, April 23-27,
2018, Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G.
Ipeirotis (Eds.). ACM, 1941–1942. https://doi.org/10.1145/3184558.3192301

[45] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836. https://doi.org/10.1109/
TPAMI.2018.2889473

[46] Bhaskar Mitra and Nick Craswell. 2018. An Introduction to Neural Information
Retrieval. Found. Trends Inf. Retr. 13, 1 (Dec. 2018), 1–126. https://doi.org/10.
1561/1500000061

[47] Bhaskar Mitra and Nick Craswell. 2019. An Updated Duet Model for Passage
Re-ranking. CoRR abs/1903.07666 (2019). arXiv:1903.07666 http://arxiv.org/abs/
1903.07666

[48] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match using
Local and Distributed Representations of Text for Web Search. In Proceedings of
the 26th International Conference onWorld WideWeb, WWW 2017, Perth, Australia,
April 3-7, 2017, Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy
Gabrilovich (Eds.). ACM, 1291–1299. https://doi.org/10.1145/3038912.3052579

[49] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of the Workshop on Cogni-
tive Computation: Integrating neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, Spain, December 9, 2016 (CEUR Workshop Proceedings, Vol. 1773),
Tarek Richard Besold, Antoine Bordes, Artur S. d’Avila Garcez, and Greg Wayne
(Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf

[50] Rodrigo Frassetto Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019.
Multi-Stage Document Ranking with BERT. CoRR abs/1910.14424 (2019).
arXiv:1910.14424 http://arxiv.org/abs/1910.14424

[51] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text Matching as Image Recognition. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA,
Dale Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 2793–2799. https:
//doi.org/10.1609/AAAI.V30I1.10341

[52] Prafull Prakash, Julian Killingback, and Hamed Zamani. 2021. Learning Robust
Dense Retrieval Models from Incomplete Relevance Labels. In SIGIR ’21: The 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, Canada, July 11-15, 2021, Fernando Diaz, Chirag Shah,
Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai (Eds.). ACM, 1728–
1732. https://doi.org/10.1145/3404835.3463106

[53] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training
Approach to Dense Passage Retrieval for Open-Domain Question Answering. In
Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2021, Online, June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettle-
moyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (Eds.). Association for Computational Linguistics,
5835–5847. https://doi.org/10.18653/V1/2021.NAACL-MAIN.466

[54] Johann Radon. 1921. Mengen konvexer Körper, die einen gemeinsamen Punkt
enthalten. Math. Ann. 83, 1 (1921). https://doi.org/10.1007/BF01464231

[55] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[56] Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, Kyle Lo,
Ian Soboroff, Ellen M. Voorhees, Lucy Lu Wang, and William R. Hersh. 2021.
Searching for scientific evidence in a pandemic: An overview of TREC-COVID. J.
Biomed. Informatics 121 (2021), 103865. https://doi.org/10.1016/J.JBI.2021.103865

[57] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. 2019. Meta-Learning with Latent Embedding
Optimization. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.
net/forum?id=BJgklhAcK7

[58] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(Eds.). Association for Computational Linguistics, Seattle, United States, 3715–
3734. https://doi.org/10.18653/v1/2022.naacl-main.272

[59] Marcin Sendera, Marcin Przewiezlikowski, Konrad Karanowski, Maciej Zieba,
Jacek Tabor, and Przemyslaw Spurek. 2023. HyperShot: Few-Shot Learning
by Kernel HyperNetworks. In IEEE/CVF Winter Conference on Applications of

https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1016/0893-6080(89)90020-8
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.48550/ARXIV.2406.17968
https://arxiv.org/abs/2406.17968
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.1145/3397271.3401075
https://api.semanticscholar.org/CorpusID:253708231
https://doi.org/10.1137/1.9781611973068.36
https://doi.org/10.1137/1.9781611973068.36
https://arxiv.org/abs/2010.11386
https://arxiv.org/abs/2010.11386
https://doi.org/10.18653/v1/2023.findings-emnlp.423
https://doi.org/10.1145/3543507.3583421
https://doi.org/10.1145/3543507.3583421
https://api.semanticscholar.org/CorpusID:233307194
https://doi.org/10.1145/3626772.3657951
https://doi.org/10.1145/3397271.3401093
https://doi.org/10.1145/3184558.3192301
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1561/1500000061
https://doi.org/10.1561/1500000061
https://arxiv.org/abs/1903.07666
http://arxiv.org/abs/1903.07666
http://arxiv.org/abs/1903.07666
https://doi.org/10.1145/3038912.3052579
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1910.14424
https://doi.org/10.1609/AAAI.V30I1.10341
https://doi.org/10.1609/AAAI.V30I1.10341
https://doi.org/10.1145/3404835.3463106
https://doi.org/10.18653/V1/2021.NAACL-MAIN.466
https://doi.org/10.1007/BF01464231
https://arxiv.org/abs/1908.10084
https://doi.org/10.1016/J.JBI.2021.103865
https://openreview.net/forum?id=BJgklhAcK7
https://openreview.net/forum?id=BJgklhAcK7
https://doi.org/10.18653/v1/2022.naacl-main.272

Conference’17, July 2017, Washington, DC, USA Julian Killingback, Hansi Zeng, and Hamed Zamani

Computer Vision, WACV 2023, Waikoloa, HI, USA, January 2-7, 2023. IEEE, 2468–
2477. https://doi.org/10.1109/WACV56688.2023.00250

[60] Ian Soboroff, Shudong Huang, and Donna Harman. 2020. TREC 2020 News Track
Overview. In Proceedings of the Twenty-Ninth Text REtrieval Conference, TREC
2020, Virtual Event [Gaithersburg, Maryland, USA], November 16-20, 2020 (NIST
Special Publication, Vol. 1266), Ellen M. Voorhees and Angela Ellis (Eds.). National
Institute of Standards and Technology (NIST). https://trec.nist.gov/pubs/trec29/
papers/OVERVIEW.N.pdf

[61] Shulong Tan, Weijie Zhao, and Ping Li. 2021. Fast Neural Ranking on Bipartite
Graph Indices. Proc. VLDB Endow. 15, 4 (2021), 794–803. https://doi.org/10.14778/
3503585.3503589

[62] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2020. Fast Item Ranking
under Neural Network based Measures. In WSDM ’20: The Thirteenth ACM Inter-
national Conference on Web Search and Data Mining, Houston, TX, USA, February
3-7, 2020, James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (Eds.).
ACM, 591–599. https://doi.org/10.1145/3336191.3371830

[63] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evalua-
tion of Information Retrieval Models. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and
Benchmarks 2021, December 2021, virtual, Joaquin Vanschoren and Sai-Kit Yeung
(Eds.). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html

[64] V. N. Vapnik and A. Ya. Chervonenkis. 1971. On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities. Theory of Probability & Its
Applications 16, 2 (1971), 264–280. https://doi.org/10.1137/1116025

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[66] Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F.
Grewe. 2020. Continual learning with hypernetworks. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net. https://openreview.net/forum?id=SJgwNerKvB

[67] Ellen M. Voorhees. 2004. Overview of the TREC 2004 Robust Track. In Proceed-
ings of the Thirteenth Text REtrieval Conference, TREC 2004, Gaithersburg, Mary-
land, USA, November 16-19, 2004 (NIST Special Publication, Vol. 500-261), Ellen M.
Voorhees and Lori P. Buckland (Eds.). National Institute of Standards and Tech-
nology (NIST). http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf

[68] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang,
Rangan Majumder, and Furu Wei. 2023. SimLM: Pre-training with Represen-
tation Bottleneck for Dense Passage Retrieval. In Proceedings of the 61st An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Asso-
ciation for Computational Linguistics, Toronto, Canada, 2244–2258. https:
//doi.org/10.18653/v1/2023.acl-long.125

[69] Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan,
Benjamin Van Durme, Dawn J. Lawrie, and Luca Soldaini. 2024. FollowIR:
Evaluating and Teaching Information Retrieval Models to Follow Instruc-
tions. CoRR abs/2403.15246 (2024). https://doi.org/10.48550/ARXIV.2403.15246
arXiv:2403.15246

[70] Orion Weller, Benjamin Van Durme, Dawn J. Lawrie, Ashwin Paranjape, Yuhao
Zhang, and Jack Hessel. 2024. Promptriever: Instruction-Trained Retrievers
Can Be Prompted Like Language Models. CoRR abs/2409.11136 (2024). https:
//doi.org/10.48550/ARXIV.2409.11136 arXiv:2409.11136

[71] Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 2022. RetroMAE: Pre-
Training Retrieval-oriented Language Models Via Masked Auto-Encoder. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association for Computa-
tional Linguistics, 538–548. https://doi.org/10.18653/V1/2022.EMNLP-MAIN.35

[72] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
2017. End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, Noriko Kando,
Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.).
ACM, 55–64. https://doi.org/10.1145/3077136.3080809

[73] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net. https://openreview.net/forum?id=zeFrfgyZln

[74] Zhou Yang, Qingfeng Lan, Jiafeng Guo, Yixing Fan, Xiaofei Zhu, Yanyan Lan, Yue
Wang, and Xueqi Cheng. 2018. A Deep Top-K Relevance Matching Model for Ad-
hoc Retrieval. In Information Retrieval - 24th China Conference, CCIR 2018, Guilin,
China, September 27-29, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 11168), Shichao Zhang, Tie-Yan Liu, Xianxian Li, Jiafeng Guo, and Chenliang
Li (Eds.). Springer, 16–27. https://doi.org/10.1007/978-3-030-01012-6_2

[75] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik G. Learned-Miller, and
Jaap Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning a Sparse
Representation for Inverted Indexing. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh
Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk
Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM,
497–506. https://doi.org/10.1145/3269206.3271800

[76] Hansi Zeng, Hamed Zamani, and Vishwa Vinay. 2022. Curriculum Learning
for Dense Retrieval Distillation. In SIGIR ’22: The 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Madrid, Spain,
July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette,
J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, 1979–1983. https://doi.org/
10.1145/3477495.3531791

[77] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, M. Zhang, and Shaoping
Ma. 2021. Optimizing Dense Retrieval Model Training with Hard Negatives.
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (2021). https://api.semanticscholar.org/
CorpusID:233289894

[78] Chris Zhang, Mengye Ren, and Raquel Urtasun. 2019. Graph HyperNetworks
for Neural Architecture Search. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=rkgW0oA9FX

[79] Weijie Zhao, Shulong Tan, and Ping Li. 2024. GUITAR: Gradient Pruning toward
Fast Neural Ranking. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2024, Washington
DC, USA, July 14-18, 2024, Grace Hui Yang, Hongning Wang, Sam Han, Claudia
Hauff, Guido Zuccon, and Yi Zhang (Eds.). ACM, 163–173. https://doi.org/10.
1145/3626772.3657728

https://doi.org/10.1109/WACV56688.2023.00250
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.N.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.N.pdf
https://doi.org/10.14778/3503585.3503589
https://doi.org/10.14778/3503585.3503589
https://doi.org/10.1145/3336191.3371830
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://doi.org/10.1137/1116025
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=SJgwNerKvB
http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf
https://doi.org/10.18653/v1/2023.acl-long.125
https://doi.org/10.18653/v1/2023.acl-long.125
https://doi.org/10.48550/ARXIV.2403.15246
https://arxiv.org/abs/2403.15246
https://doi.org/10.48550/ARXIV.2409.11136
https://doi.org/10.48550/ARXIV.2409.11136
https://arxiv.org/abs/2409.11136
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.35
https://doi.org/10.1145/3077136.3080809
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.1007/978-3-030-01012-6_2
https://doi.org/10.1145/3269206.3271800
https://doi.org/10.1145/3477495.3531791
https://doi.org/10.1145/3477495.3531791
https://api.semanticscholar.org/CorpusID:233289894
https://api.semanticscholar.org/CorpusID:233289894
https://openreview.net/forum?id=rkgW0oA9FX
https://doi.org/10.1145/3626772.3657728
https://doi.org/10.1145/3626772.3657728

	Abstract
	1 Introduction
	2 Related Work
	3 Hypencoder
	3.1 Hypencoder Overview
	3.2 Query and Document Encoders
	3.3 The Hyperhead Layers
	3.4 The q-net Network
	3.5 Training
	3.6 Efficient Retrieval using Hypencoder
	3.7 Comparison to Existing Neural IR Methods

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Baselines
	4.4 Results and Discussion

	5 Conclusion
	Acknowledgments
	References

