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1 Introduction

At its core, information access and seeking is an interactive process. In existing
search engines, interactions are limited to a few pre-defined actions, such as “re-
query”, “click on a document”, “scrolling up/down”, “going to the next result
page”, “leaving the search engine”, etc. A major benefit of moving towards gen-
erative IR systems is enabling users with a richer expression of information need
and feedback and free-form interactions in natural language and beyond. In other
words, the actions users take are no longer limited by the clickable links and but-
tons available on the search engine result page and users can express themselves
freely through natural language. This can go even beyond natural language,
through images, videos, gestures, and sensors using multi-modal generative IR
systems. This chapter briefly discusses the role of interaction in generative IR
systems. We will first discuss different ways users can express their information
needs by interacting with generative IR systems (Section 2). We then explain
how users can provide explicit or implicit feedback to generative IR systems and
how they can consume such feedback (Section 3). Next, we will cover how users
interactively can refine retrieval results (Section 4). We will expand upon mixed-
initiative interactions and discuss clarification and preference elicitation in more
detail (Section 5). We then discuss proactive generative IR systems, including
context-aware recommendation, following up past conversations, contributing to
multi-party conversations, and feedback requests (Section 6). Providing explana-
tion is another interaction type that we briefly discuss in this chapter (Section 7).
We will also briefly describe multi-modal interactions in generative information
retrieval (Section 8). Finally, we describe emerging frameworks and solutions
for user interfaces with generative AI systems (Section 9). We conclude with
a question: Will the myriad interaction possibilities afforded by generative AI
systems be embraced by a broad user base, or will they remain merely a research
curiosity?



2 Expressing Information Needs

An information need is what prompts users to seek information through vari-
ous means, such as asking others, consulting printed resources, other media, or
searching online. It arises from the awareness of a gap in a user’s knowledge or
understanding, necessitating the acquisition of information to bridge that gap
[12, 25]. Bridging the gap helps to fulfill a specific purpose or goal, which is
typically driven by a work task [13].

Prompt-based interactions with large language modelss (LLMs), and more
broadly, multi-modal interactions with LLMs-based systems, provide an oppor-
tunity to fundamentally rethink the processes of searching for, finding, and using
information, and how to support these activities. This fresh perspective has the
potential to significantly transform user experience by enhancing how users ex-
press their information needs and achieve their goals.

We will frame our considerations using the information need model proposed
by Robert Taylor in the 1960s [69, 70]. Taylor identified four levels of infor-
mation need, each helping us to understand how users formulate questions in
their minds, how they articulate them, and how they interact with informa-
tion systems. The four levels of information need are: (1) Visceral Need: An
inexpressible, unformulated need, felt as a vague sense of dissatisfaction, (2)
Conscious Need: The user is aware of the need but cannot fully articulate
it, (3) Formalized Need: The need can be clearly expressed and defined, (4)
Compromised Need: The articulated need, as presented to an information
system, often simplified or altered to fit the system’s capabilities.

Traditional search systems typically support levels 3 and 4, but not 1 and 2.
We believe that LLMs-based information access systems have the potential to
support all four levels. Therefore, we use these four levels to structure our spec-
ulative list of ways users could be assisted in their interactions with generative
AI. We will draw, in part, on well-known information seeking models [45, 40].

Support for Visceral Need: (1) exploratory interactions: provide users with
broad, exploratory dialogue that might help users clarify their thoughts; suggest
related topics to help users better understand and articulate their needs. This
is an example of Clarification which we describe in Section 5. (2) prompt sug-
gestions: offer prompt suggestions or follow-up questions to guide users towards
more specific questions. This is an example of Proactive Interactions which we
describe in Section 6.

Support for Conscious Need: (1) partial expression of needs: accept par-
tially formed questions or statements of need; (2) proactive support for refine-
ment : generate relevant information that helps users refine their understanding
of what they’re looking for; (3) guided conversations: engage in a dialogue to
help users articulate their needs more precisely. We describe such approaches in
more detail in Result Refinement (Section 4) and Proactive Interactions (Section
6).

Support for Formalized Need: (1) direct queries: respond directly to well-
formulated questions with relevant information; (2) structured responses: provide
detailed, structured responses that address specific aspects of the user’s need;



(3) advanced features: offer options (e.g., filters) for further exploration or clar-
ification based on the formalized need.

Finally, support for Compromised Need: (1) flexibility of syntax : offer
flexibility to allow for iterative refinement of queries without strict syntax re-
quirements; (2) flexibility of language: interpret and respond to a wide range of
query formats, reducing the need for users to adapt their language significantly;
(3) feedback loop: offer feedback on questions, suggesting modifications or alter-
native phrasings to better match the user’s needs and system’s capabilities. We
describe such approaches in more detail in Proactive Feedback (Section 3).

Overall, the key advantages of LLMs in assisting users at all four levels of
information need are:

– Natural Language Processing: LLMs can understand and respond to
queries expressed in natural language, making them accessible even at the
visceral and conscious need levels.

– Contextual Understanding: Advanced LLMs can maintain context over
multiple interactions, allowing for a more nuanced exploration of information
needs.

– Broad Knowledge Base: LLMs draw upon a vast range of information,
potentially addressing needs across various domains and levels of specificity.

– Adaptive Responses: LLMs can tailor their responses based on the per-
ceived level of the user’s information need, understanding and responding
to both simple and complex questions and providing more or less detail as
appropriate.

– Iterative Refinement: The conversational nature of LLMs interactions
allows users to refine their queries progressively, moving from visceral to
formalized needs through dialogue

– Enhanced Expressiveness: Prompt-based interactions allow users to ex-
press their needs in more nuanced and detailed ways. Users can specify the
format, tone, and depth of the information they seek, which can lead to more
tailored and useful outputs. For instance, users can request summaries, de-
tailed explanations, comparisons, or creative content, depending on their
needs.

However, it’s important to note that while LLMs offer powerful capabilities
in addressing information needs across Taylor’s levels, they also have limitations.
They may sometimes provide plausible-sounding but incorrect information, lack
true understanding of context beyond the immediate conversation, and cannot
replace the critical thinking and expertise of human information professionals in
complex scenarios.

While LLMs can offer enhanced capabilities for expressing information needs,
they also introduce new challenges. Such as Capability Gap: users may struggle
to formulate their intentions clearly and effectively, leading to a gap between
what they want and what the LLMs provides. Instruction Gap: users need to
learn how to craft effective prompts, which can involve understanding the LLMs’s
capabilities and limitations. Evaluation of Outputs: users must critically evalu-
ate the LLMs’s responses for accuracy and relevance, as LLMs can sometimes



generate incorrect or misleading information. A recent paper introduced these
three gaps and termed them collectively the ”Gulf of Envisioning” [64].

In the following sections we address selected aspects of user-LLMs-based-
system-interactions, 3 Proactive Feedback 4, Result Refinement 5 Clarification,
6 Proactive Interactions, 7 Explanation, and 8 Multi-Modal Interactions. In Sec-
tion 9, User Interfaces, we discuss recent user interface frameworks and solutions.

3 Proactive Feedback

Recent developments in large language models have paved the path towards com-
plex interactions between the user and the system. Generative IR models are able
to satisfy user’s information needs in multiple interaction turns. Among many
possibilities, this enables users to provide feedback to the system. Feedback can
be provided when is explicitly requested by the system, for example in the form
of clarifying questions or preference elicitation [5, 82, 52, 49]. Section 5 discusses
these aspects in more detail. Feedback can be also requested for assessing the
quality of the system at the end or in the middle of a conversation. For instance,
Amazon’s Alexa Prize Challenge [51] has sought explicit rating feedback from
users upon the completion of the conversation. Zamani et al. [85] introduce the
possibility of improving this simple approach by asking context-aware questions
for feedback and making natural language interactions within the conversation.

Feedback can be provided proactively by the user, which is the focus of this
section. Perhaps the simplest type of feedback that users provide can be in the
form of repeating or reformulating the user’s need in the same search session.
If detected, this often means that the user’s need has not been addressed yet.
Besides such simple scenarios, users may provide explicit positive or negative
feedback. Explicit positive feedback are often easier to identify and interpret.
They are often in the form of appreciation and hold a positive sentiment. Ex-
plicit negative feedback, on the other hand, is more challenging, more diverse,
and perhaps more important for system designers as they help the system to
improve and identify its limitations. Pointing out what parts of the system’s
response is inaccurate, why it is does not satisfy the user’s needs, or express-
ing frustration and disappointment are examples of explicit negative feedback.
Current state-of-the-art technologies often cannot successfully take advantage
of explicit negative feedback and often limit themselves to acknowledging the
system’s limitations and apologizing from the users. There are huge potentials
in successfully comprehending negative feedback from users.

In generative IR systems, grounding as relevance feedback is also relevant to
the concept of explicit feedback. Trippas et al. [71] define grounding as discourse
for the creation of mutual knowledge and beliefs. Examples include providing
indirect feedback by reciting their interpretation of the results. This process can
potentially enable CIS systems to better understand a user’s awareness of the
results, background knowledge, or information need.

We would like to highlight the potentials in providing implicit feedback as
well. Progress in commercial (web) search engines is in debt to large-scale implicit



feedback collected from user interactions, such as clicks, skipped results, dwell
time, and cursor (mouse) movement. Implicit feedback in generative IR systems
is more challenging, because it is more likely to deal with abandonment in each
session. This means that users may leave the system as they receive the answer
they want without providing any positive feedback. Alternatively, they may leave
the system as they lose hope in getting the right answer from the system. Besides
abandonment, changing topics and asking follow-up questions can be interpreted
as an implicit feedback signal in generative IR. Interpreting these user behaviors
is essential in improving generative IR systems.

Research in understanding and modeling implicit (negative) feedback is rel-
atively sparse and future technologies can greatly benefit from further research
in this space.

4 Result Refinement

4.1 An Overview of Result Refinement

Result refinement is relatively understudied, compared to other modes of inter-
action in generative IR. Search result refinement has a long history of research in
IR, especially in areas such as information filtering (e.g., recommender systems)
where users access semi-structured information [16]. Figure 1 shows an example
search result page from Amazon.com, where users are able to select certain at-
tributes of the items (e.g., size) in the catalog to narrow down the results being
presented to them. Search result refinement for semi-structured data is a rela-
tively trivial task, as the refinement pane usually concerns the most important
attributes of the items, given the query and the top item list. In the preference-
based search literature, example-critiquing approaches have been explored [73],
where the model suggests examples to the user, and with the user’s feedback,
it then models the user’s preference. In conversational recommender systems, a
similar approach is taken as part of the preference elicitation process [37]. In
this process, the conversational system starts the conversation by asking the
user’s opinion about movies, aiming to optimize the decision space. A similar
approach is taken in conversational product recommendation [97, 96]. In these
works, the high-level idea is to extract important attributes from user reviews
of products and model a probabilistic decision space. Then the conversational
system takes a greedy approach in which, at every step, it aims to ask about
an item attribute that minimizes the uncertainty of the decision space. Search
result refinement is more challenging in web search, where the system deals with
unstructured data. One of the earliest, simplest, and yet most effective ways
is using vertical in the search result page [8]. Search result verticals divide the
search results based on very high-level categories, such as images, videos, and
news. Even though, very high level, it still can be considered as a näıve approach
to refinement, as it approaches the user information from the result type. In most
cases, the same user query can be satisfied with different modalities, which turns
out to be one of the most important aspects of search, hence major commercial
search engines still employ this approach. Finally, some early approaches tried



to diversify, but also refine search results based on automatically extracted infor-
mation facets. Faceted search [72] provides a means of navigation through topic
facets for the users, enabling them to narrow down their information needs, as
well as the search space. These early systems mainly relied on automatic facet
extractors [36].

4.2 Technical Challenges

In the generative era, result refinement faces both algorithmic and interactive
challenges.

Algorithmic challenges. As the items or documents are being represented
using model parameters, refining the results based on a single attribute of the
item is less trivial. To address this challenge, several works study controllable
recommendation via disentanglement [17], where the goal is to represent items
as separated attribute vectors instead of a single latent vector. Some of these at-
tributes would be mapped to actual attributes in the catalog (e.g., color, style),
or some latent attributes. LLMs have shown to be capable of extracting query
facets, relying solely on their intrinsic knowledge [41]. However, as shown in the
literature, LLMs are not yet capable of effectively grounding [63], which leads to
suboptimal planning of LLMs utilizing their intrinsic knowledge to take the best
next action. For example, for cases where humans would As the items or docu-
ments are being represented using model parameters, refining the results based
on a single attribute of the item is less trivial. To address this challenge, sev-
eral works study controllable recommendation via disentanglement [17], where
the goal is to represent items as separated attribute vectors instead of a single
latent vector. Some of these attributes would be mapped to actual attributes
in the catalog (e.g., color, style), or some latent attributes. LLMs have shown
to be capable of extracting query facets, relying solely on their intrinsic knowl-
edge [41]. However, as shown in the literature, LLMs are not yet capable of
effectively grounding [63], which leads to suboptimal planning of LLMs utilizing
their intrinsic knowledge to take the best next action. For example, in conversa-
tions where most humans would ask for refinement, LLMs fail to take the same
action.

Interactive challenges. As mentioned above, there has been research on
various modes of refinement, i.e., search verticals, item attributes, faceted search,
and example critique. While each of these modes has been utilized for a specific
interaction medium (e.g., web search vs. conversational search), generative sys-
tems could potentially mix them. For example, prompting the user about their
preferred search result modality, rather than making an assumption. Moreover,
Chen et al. [14] review the interactive challenges of LLMs in the light of per-
sonalization, highlighting the importance of user–system interactions in result
presentation, specifically refinement. Among other challenges, they refer to labo-
rious data collection for training LLMs to be effective interactive systems, which
can hinder the learning process.



(a) (b)

Fig. 1. Examples of search result refinement from Amazon.com. The refinement panes
on the left help users browse through the search results.

5 Clarification

In a generative retrieval setting where the system aims to provide a comprehen-
sive response to the user, whether in a conversational or web search setting, it
is of utmost importance to ensure that the user’s intent is predicted with high
confidence. This is particularly critical, as in traditional web search scenarios,
the system would diversify the list of results to ensure that various facets or
interpretations of the query are covered in the top results [57]. However, in a
generative scenario, usually, a single answer is provided to the user, limiting the
information that can be exchanged between the user and the system.

5.1 An Overview of Search Clarification

Clarifying questions have been studied extensively [34] in the context of conver-
sational question-answering [52], information-seeking conversations [5], and web
search [82].

Another line of research studies the role of mixed-initiative interactions for
user preference elicitation [49, 37]. The goal here is to understand the user pref-
erence when multiple documents (items) can be deemed relevant to their infor-
mation need. Radlinski et al. [49] study this problem for movie recommendation,
where the user information need is typically generic (e.g., “romantic movies”)
with multiple potentially relevant items. The dialogue system’s goal in this set-
ting is to engage in a conversation to elicit user preference in a more fine-grained
way.



There has been a body of research studying the effect of mixed-initiative in-
terventions such as clarifying questions on user experience [35, 84, 95, 98]. Kiesel
et al. [35] study the effect of voice query clarification on user experience and find
even in cases where the system performance is not improved, users have better
experience. In web search, Zamani et al. [84] study the effect of incorporating a
clarification pane on the search result page, implemented in Bing.com. Analyz-
ing the click logs, they find that the clarification pane improves user experience.
More specifically, among the seven templates they use to generate the clarifying
questions, they find clear preference towards certain question templates in terms
of user engagement. Zou et al. [95] study the effect of the clarification pane in
the same setting in a controlled experimental setup where they introduce three
quality levels and measure user satisfaction and performance. They find that
asking a low-quality question in a search session risks lower user engagement
with questions of higher quality in the same session. This finding was confirmed
in a follow-up work [98].

User engagement (i.e., click-through rate) can be considered as a user-oriented
quality measure of clarifying questions. Sekulic et al. [58, 60] extract various
SERP- and document-based features to predict user engagement while interact-
ing with clarifying questions in a web-based interface [83]. Rahmani et al. [50]
study the effect of various query- and question-based features to predict user
satisfaction in the MIMICS dataset [83] where they find, among others, a posi-
tive sentiment in the clarifying question leads to higher user satisfaction. Sekulic
et al. [61] instead predicts the usefulness of clarifying questions in the retrieval
pipeline. Following an early study on the effect of different types of clarifying
questions on retrieval performance [38], they train a classifier to predict the
usefulness of a clarifying question and its answer in the retrieval pipeline and
incorporate it in the retrieval pipeline if only it is predicted to be useful.

5.2 Technical Challenges

Planning. While the early works in this area focused mainly on ranking clarify-
ing questions from a pre-collected question bank [3, 4], more recent studies aim
towards leveraging the generation power of LLMs to generate clarifying ques-
tions [88]. However, generative systems based entirely on LLMs are not effective
in proactive interactions, especially in generating clarifying questions when nec-
essary [23, 63]. Initial experiments reveal the power of LLMs in understanding
the context of a query or a search session [1] and generate potential questions
based on the context when prompted [21]; however, they fail at planning when to
ask and which question to ask [21, 63]. Shaikh et al. [63] conduct a study where
they compare human–human conversations with system–human conversations
and find that LLMs fail at effectively planning when to ask clarifying questions
in a conversation, even though they can generate high-quality questions if they
are explicitly prompted to do so. Deng et al. [22] propose a proactive chain-of-
thought approach to enhance the planning capability of LLMs such as ChatGPT
and show that it has a considerable effect on their interaction capabilities.



Evaluation. Evaluating generative systems comes with various challenges.
On top of that, evaluating interactive generative systems involves even more chal-
lenges as the user response to a system output is required. A line of research looks
at simulating and modeling the user–system interactions in a mixed-initiative
setting [90, 11, 55, 2, 10, 48, 59]. User simulation can be beneficial to genera-
tive IR models in two ways: (i) they provide a means for evaluating generated
content, and (ii) they can be used for training. Zhang and Balog [90] propose
a user simulator for conversational recommendation to evaluate the system per-
formance. This is followed by the work done by Sekulic et al. [59] and Owoicho
et al. [48] in using GPT-based models to simulate users in a mixed-initiative
information-seeking conversational system where the main goal of the simulator
is to provide an answer to a generated clarifying question. They show that such
simulators can lead to reliable evaluation of conversational systems.

There are various considerations to take into account in simulating and eval-
uating interactive generative systems:

– User effort: In interacting with the system, users bear different levels of
cognitive load, which can lead to user fatigue as the number of interactions
increases.

– User information gain: To model the true value of a clarifying question in a
conversation, we need to model both the gain and effort a clarifying question
brings to the conversation [2, 10].

– Information nuggets: Information gain can be modeled by breaking the user’s
information need into information nuggets and measuring how much asking a
certain clarifying question would help us provide further information nuggets
to the user.

– User model: As proposed by Balog [11], an effective user simulator should
have various components, including a user mental model. Realistically, a
single user simulator does not cover the needs and behavior of the wide
range of users interacting with the system.

6 Proactive Interactions

Typically, users initiate the interaction with a generative retrieval system, for
example by submitting a chit-chat utterance, asking a question, or submitting an
action request. In mixed-initiative conversational systems, the agent is also able
to initiate the conversation. This is also called a proactive, system-initiative,
or agent-initiative conversation. Existing generative AI systems are relatively
under-developed when it comes to proactive interactions [43]. A major reason is
that initiating a conversation by the system is not only challenging, but can also
be risky; frequent and non-relevant proactive interactions may annoy users and
hurt user satisfaction and trust [85]. Therefore, whether and when to initiate a
proactive interaction are the key decisions a proactive CIS system should make.
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Fig. 2. A generic pipeline for conversation initiation in CIS systems by Wadhwa and
Zamani [74].

6.1 An Overview of Proactive Generative Retrieval Systems

Wadhwa and Zamani [74] explored proactive conversational information access
systems, discussing their challenges and opportunities. The authors introduced a
taxonomy of proactive interactions, delineating three dimensions: (1) initiation
moment (when to initiate a conversation), (2) initiation purpose (why to initiate
a conversation), and (3) initiation means (how to initiative a conversation). They
identified five purposes for initiating interactions: (1) filtering streaming infor-
mation, (2) context-aware recommendation, (3) following up a past user-system
conversation, (4) contributing to a multi-party human conversation, and (5) re-
questing feedback from users. A generic pipeline for these systems is depicted
in Figure 2. In this pipeline, several algorithms constantly monitor the user’s
context and information streams to produce conversation initiation instances,
which are stored in a database. A conversation initiator component then selects
an appropriate instance based on the situation, initiating a fluent and accurate
utterance. Figure 2 is sufficiently generic for illustrating proactive interactions in
generative retrieval models and we use it to describe research and open questions
in proactive retrieval in more detail.

Initiating a conversation through recommendation stands as one of the most
common scenarios for proactive interaction. For instance, a conversational in-
formation access system might suggest an item based on the user’s situational
context, such as their location, time, and preferences. It is worth noting the
distinction from traditional conversational recommendation setups, where users
typically initiate the conversation by requesting specific items [66, 92]. Recent
efforts in joint modeling of search and recommendation and developing unified



information access systems [80, 81, 87] represent a step towards developing proac-
tive, and thus mixed-initiative, systems in search and recommendation. However,
proactive conversations extend beyond mere recommendations.

For example, Avula and Arguello [9] devised a system for conducting wizard-
of-oz experiments, investigating proactive interactions during conversational col-
laborative search. This system could seamlessly integrate into collaborative plat-
forms like Slack,4 where during a collaborative search task, an external u ser
(acting as a wizard) provides information. Though advancements in this area
are nascent, there exists considerable potential for systems to initiate context-
based conversations, engaging users and eliciting feedback.

Consider a scenario where a user employs a mapping application to navigate
to a restaurant. Leveraging contextual cues, a proactive generative retrieval sys-
tem could subsequently initiate a conversation upon the user’s return journey,
inquiring about their dining experience. Such interactions not only enhance user
engagement but also facilitate feedback collection, aiding in profile refinement.
Similarly, in situations where a user encounters difficulty in task completion, a
conversational system could autonomously engage in conversation, offering as-
sistance [85].

6.2 User Responses to Proactive Interactions

While in generative retrieval systems, users have the freedom to provide a natural
language response in any form, they can be categorized as follows [74]:

– Null action: Users provide no response to the initiated conversation. It is
important to note that null action should not necessarily be construed as
negative feedback, as users may find the initiation useful but may not desire
further engagement.

– Interruption or negation: Users respond in a manner consistent with ter-
minating any further engagement by the generative retrieval system. It is
perhaps safe to interpret such responses as negative feedback.

– Relevant response: Users provide a pertinent response to the initiated inter-
action, typically occurring when the interaction involves a question or solicits
feedback.

– Postpone: Users respond to the initiated conversation and request the system
to remind them at a later time.

– Critique or clarification-seeking response: Users engage further with the gen-
erative retrieval system, either seeking more information or critiquing exist-
ing engagement.

– Follow-up: Users provide a follow-up response to obtain additional informa-
tion or perform actions related to the initiated conversation.

– Topic drift: Users respond but shift the topic of the initiated conversation.

4 https://slack.com/

https://slack.com/


6.3 Technical Challenges

Here, we outline key technical hurdles in implementing the pipeline shown in
Figure 2.

Producing System-Initiative Instances. The initial step in the system-
initiation pipeline involves identifying reasons for initiating a conversation and
generating a proactive instance. Proactive instances encapsulate all relevant in-
formation about a conversation, including its purpose, content, and context.
This process entails addressing each initiation purpose component outlined in
Figure 2. While some purposes, such as filtering streaming information and rec-
ommendation, have received attention in the literature, others like following up a
past conversation or contributing to a multi-party conversation remain relatively
unexplored. Thus, a major technical challenge lies in developing models capable
of identifying the reasons for conversation initiation across various goals, includ-
ing filtering information, recommendation, conversation follow-up, contributing
to multi-party conversations, or requesting feedback.

Developing an Initiator Model. The subsequent step involves selecting
a proactive instance from the instance collection using an initiator component.
The primary challenge in this component stems from our limited understanding
of the optimal moment to initiate a conversation. Consequently, future research
should emphasize conducting user studies to explore the ideal timing for con-
versation initiation. Weak signals gleaned from user interactions with existing
conversational systems, even those lacking proactive capabilities, could provide
valuable insights. For instance, instances, where users initiate trivial conversa-
tions (e.g., out of boredom), could serve as noisy but potentially useful signals
for predicting optimal conversation initiation moments. Machine learning mod-
els trained on situational context and user profiles could leverage such signals.
Furthermore, interactive systems that log user interactions offer the opportunity
to iteratively refine prediction accuracy based on user feedback.

Generating System-Initiative Utterances. The final step entails gener-
ating a (natural language) interaction based on a proactive instance and present-
ing it to the user. Techniques from dialogue systems and text generation research
can be leveraged for this purpose. Since users typically do not anticipate proac-
tive utterances, a notable technical challenge lies in providing context within the
generated utterance to ensure user comprehension. This context could reference
previous interactions with the system, user experiences, or explanations regard-
ing the rationale behind initiating the conversation. Given that each instance is a
structured data object, neural models designed for unstructured text generation
from structured data, such as tables, could be potentially useful.

6.4 Evaluation of Proactive Systems

Assessing proactive generative IR systems poses significant challenges. While IR
research has traditionally focused on creating collections for specific information-
seeking tasks, these collections are typically based on predefined needs (e.g.,



TREC5 tracks) or observations (e.g., clickthrough data). However, these evalua-
tion methods do not readily apply to scenarios involving proactive interactions.
Although evaluating proactive generative IR systems remains largely unexplored
in the literature, we can envision two classes of evaluation methodologies: (1)
modular evaluation, and (2) end-to-end evaluation.

In modular evaluation, the quality of each component in Figure 2 is evaluated
in isolation? For example, how accurate is the initiator component in identify-
ing opportune moments for proactive interactions? This methodology simplifies
evaluation in proactive systems, but does not provide a complete picture of the
overall performance of the system from the user’s perspective, and does not
reflect real-world complexities.

In end-to-end evaluation, one can explore both offline and online evaluation
strategies. For offline evaluation, each instance would encompass all necessary
information for the system at a given timestamp, including past user-system
interactions, user profiles, situational contexts, and streams of new information.
The model’s performance would then be assessed based on the generated proac-
tive interactions, if applicable. Crafting a single evaluation metric capable of
capturing all facets of conversation initiation evaluation presents a challenge,
necessitating further investigation. Recently, Samarinas and Zamani [56] intro-
duced a large-scale benchmark for proactive interactions to ongoing multi-party
human conversations and proposed normalized proactive discounted cumulative
gain (npDCG) for end-to-end evaluation of such systems. In a separate inves-
tigation, Sen et al. [62] suggested evaluating proactive recommendation within
search sessions by aggregating a correlation measure over the session. This mea-
sure assesses the relationship between the expected outcome—comprising the
list of documents retrieved with a true user query—and the predicted outcome,
representing the list of documents recommended by a proactive search system.

In the realm of online evaluation, conventional A/B tests can serve as a
valuable tool for assessing the system’s efficacy. Additionally, interpreting user
feedback—both positive and negative—can provide valuable insights into system
performance.

7 Explanation

Explanation can be seen as a critical tool in search result presentation in gener-
ative systems, as users are interested in comprehensive justification and expla-
nation of the presented results [28, 14]. Also, it can lead to more user trust in
the results, potentially aiding the user to distinguish between a low-quality and
a high-quality response.

7.1 An Overview of Explanation in IR

Zhao et al. [94] provide a survey on the explainability of LLMs where they provide
a taxonomy of explanations, together with methods for explaining Transformer-

5 https://trec.nist.gov/
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based LLMs. Also, they discuss various methods for evaluating explanations for
both local and global explanations. Krishna et al. [39] show that not only are
explanations useful in user–system interactions, but they also improve the per-
formance of LLMs. They study automatic rationale generation in a chain of
thought (CoT) manner. Deng et al. [24] show that rephrasing the user input
leads to a better understanding of the user request which in turn results in bet-
ter performance of the LLM, which is complementary to CoT reasoning. In their
tutorial, Anand et al. [6, 7] review Transformer-based explanation generation.
Zhang et al. [89] addresses search explainability via the lens of query understand-
ing, where the system’s task is to predict the user intent considering their query
as input. LiEGe [79] explains all the documents in the ranking jointly using a
listwise explanation generator.

Evaluating explanations is challenging. For free-text generations, human eval-
uation is employed. In other cases, because of a lack of explanation, proxy ex-
planations such as clicks, query descriptions, query aspect annotation, and topic
annotation can be used. For feature-based models, explanations are evaluated
based on the effectiveness of predicted features. As for counterfactual explana-
tions, model-based evaluation is employed.

7.2 Modes of Explanation in Generative IR

The main mode of explanation used in generative models is free-form text, where
the model would further elaborate why the provided answer is relevant to the
user’s input. The explanation often consists of two major parts: (i) a further
description of user information need, and (ii) an explanation of the reasons why
the generated response is relevant to the user’s input. The system has a limited
information bandwidth and cannot present the users with multiple intents of
their query. Therefore, describing what the system “thinks” the user wants helps
the user understand whether the system understands their intent or not [89].
This type of explanation aims to ensure the user that their information need is
properly understood by the system and can lead to increased trust in the system.
Also, in case of misunderstanding the user’s information need, it provides the
opportunity for the user to realize what is missing in their input. This can be
seen as similar to scanning the SERP by the user, through which the user would
have an idea if the system understands their information need correctly.

Another form of explanation is to provide citations. This has been studied
more extensively in the NLP community where the generated text attribution
[29]. The URL citations are supposed to provide evidence of the source of infor-
mation from the web. However, there are concerns regarding the quality of the
citations, as there is no clear way of controlling the LLM to ground its responses
on the cited page [91]. Citing source documents, while being useful as a form of
explanation, still does not provide a comprehensive idea of the relevance of the
source. Comparing it to a typical SERP where the users are exposed to the URLs
of the results, users already have a quality perception by scanning through the
page title, summary, and URL. Even though the LLM-based search interfaces
aim to mimic this experience, it is not yet clear which parts of the generated



response are extracted from the cited document. Moreover, it is not clear how
much the system depends on its intrinsic knowledge (i.e., model parameters)
vs. the retrieved document. Therefore, more research in this area is required to
understand how much different techniques and modes of explanation affect the
users’ perception of quality and trust. One potential alternative is to treat the
system as an information-gathering tool [53], rather than an information system.
In such cases, the responses would look like “After searching the web, I found
numerous sources of information about your query. Two of more trustworthy
sources mention that ....” With such a response, not only does the user learn
about the search space of the given query, but also they learn about the most
important information extracted from the topic documents.

8 Multi-Modal Interactions

Research has demonstrated the advantageous role of multimodal signals in both
keyword-based and recommendation-driven searches, spanning from contextual
item recommendations [33, 76] to visual and multimedia recommendations [46].
These signals also address challenges like cold-start issues [18, 47, 15] and aiding
in explaining and visualizing recommendation outcomes [68]. A recent survey
by Deldjoo et al. [19] offers insights into the role of multimedia content in rec-
ommendation systems, delineating how such content—comprising audio, visual,
and textual elements—enriches real-world recommendation challenges.

A significant challenge in Multimedia Information Systems lies in fusing mul-
tiple modalities to derive meaningful representations. Recent advancements in
multi-modal large language models employ joint representation techniques to
establish a latent space where multiple modality information can be compared.
However, aligning content data like text and images is relatively straightforward
compared to aligning content with user preferences such as ratings or social
media data.

Deldjoo et al. [20] explored multi-modal conversational information-seeking
tasks from multiple perspectives. They investigated (1) Why using multi-modal
interactions, (2) Which tasks to support in multi-modal conversational systems,
(3) When to integrate multiple modalities in conversations, and (4) How to
research multiple modalities and conversations to enable multi-modal conversa-
tional information seeking. Deldjoo et al. [20] highlight the importance of each
of these perspectives through a real-world example:

Imagine a person is cycling along the road on their way to work. She
is planning her day, including tasks from presenting a budget, hosting
a new client, picking up their children after school, and making dinner.
The cyclist passes a flower on the sideroad, which caught her eye and
wanted to know what this plant is. Since she is cycling on a busy road,
she quickly stops, takes a photo, and keeps riding. Meanwhile, she asks
her earbuds to tell her which plant that was by a spoken query such as
“what was that plant and is it edible?”



The authors argue that generative IR systems with multi-modal interactions
and multi-modal sensors can accomplish the user’s need in this and even more
complex scenarios. Dealing with multi-modal interactions is a multidisciplinary
topic, spanning across research areas from information retrieval, recommender
systems, multi-media, human-computer interactions, computer vision, and even
psychological and cognitive sciences. The intersection of the research areas that
enable people to search for information through multi-modal conversations has
not received the attention it deserves and it might partially be due to the com-
plexity of the topic in terms of both modeling and evaluation. Prior work are
mostly limited to two modalities (image and text), e.g., [67, 78], and further de-
velopment in multi-modal foundation models [42, 26] and multi-modal retrieval-
augmented generation models [54], is expected to speed up progress in this area.

9 User Interfaces

While in Section 2 we focused on general interaction methods to assist users in
expressing their information needs when interacting with generative AI, in this
section we review recent work on interaction techniques and user interfaces for
information access with LLMs. The design space is huge, and it is still under-
researched and poorly understood. For example, out of approximately 750 pre-
prints related to LLMs published on arXiv in the field of Information Retrieval
between 2020-2024, only 22 mentioned ”user interface” in their abstracts.

New human-LLM interaction frameworks are only starting to emerge. For ex-
ample, recent work [27] reviewed 73 papers published in HCI conferences since
2021 to investigate the dynamics of human-LLM interaction. Authors identified
four key phases in the interaction flow and developed a taxonomy of four pri-
mary interaction modes. The four phases are: planning - before an interaction,
facilitating - during an interaction, iterating - refining an interaction, and test-
ing - testing an interaction. The interaction modes include: Standard Prompting,
User Interface, Context-based and Agent Facilitator. The User Interface mode
is of most interest to us as it enhances user interactions with LLMs beyond the
conversational interface by improving input, output, iteration, and reasoning
processes. This mode contains five approaches, which could be used separately
or in combination. (1) Structured prompt approaches assist users in creating
multi-component prompts, which could range from zero-shot to few-shot, and
support specification of constraints. Tools like PromptMaker [30] combine pre-
fixes, settings, and examples in prompt creation. (2) Varying output approaches
allow users to specify output formats. Early examples like GenLine and Gen-
Form [31] facilitate generation of user specified mixed outputs, such as HTML,
JavaScript, and CSS code. User’s control over output format allows for high
level of personalization and, potentially, enhances consumption of information.
(3) Iteration of interaction approaches include features such as debugging, error
labeling, regenerating, and self-repairing, enabling users to refine their origi-
nal prompts and workflows. BotDesigner [86], for instance, helps users identify
and label errors within conversations and offers a ”retry” button to regener-



ate outputs. (4) Testing of interaction facilitates the testing of various prompt
variations, useful for quick testing of complex solutions. Tools like VISAR [93]
use visual programming to enable rapid prototyping and testing of writing or-
ganization. (5) UI to support reasoning incorporates direct manipulation in the
Chain-of-Thought process, allowing users to actively participate in and reorga-
nize reasoning sequences. Other approaches in this area offer visual programming
techniques, such as chain designs and mind maps and enable a more interactive
and user-defined reasoning framework [32, 65, 93]. For example, Graphologue
[32] introduced: (1) graphical diagrams which convert text-based responses from
LLMs into diagrams; (2) graphical dialogues which enable graphical, non-linear
dialogues between humans and LLMs; and (3) interactive diagrams which allow
users to adjust graphical presentation, its complexity and submit context-specific
prompts.

MacNeil et al. [44] explores three methods for integrating LLMs into user in-
terfaces through a framework called Prompt Middleware. The three methods are:
(1) Static Prompts are predefined prompts generated by experts through prompt
engineering. They can be invoked by using UI elements (e.g., buttons), allowing
users to send high-quality prompts to with minimal effort. This method lever-
ages best practices but limits user control over prompt generation. (2) Template-
Based Prompts involve generating prompts by filling in a template with options
selected from the UI. The template integrates expertise and best practices, giving
users more control through UI options. This method is exemplified by the Feed-
backBuffet prototype, a writing assistant that uses template-based prompts to
generate feedback on writing samples [44]. (3) Free-Form Prompts: This method
grants users full control over the prompting process. Although challenging, it is
beneficial in scenarios where complete control is desired.

Wang et al. [75] present a proactive interface design that addresses chal-
lenges users face in initializing and refining prompts, providing feedback to the
system, and managing cognitive load. They describe three interaction techniques
(Perception Articulation, Prompt Suggestions, Conversation Explanation) and
how they can be supported by user interface elements. Perception articulation
is supported by a pre-task questionnaire and main prompt template - the first
supports information need at the visceral level, while the latter at the formalized
level. Prompt suggestions are provided through supportive function tabs, which
support conscious need. Conversation explanations are also delivered through
supportive function tabs, with a feedback mechanism allowing users to rate
the usefulness of these explanations. This feature supports compromised needs.
Evaluation with participants demonstrated the effectiveness of these supportive
functions in reducing cognitive load, guiding prompt refinement, and increasing
user engagement. In interviews, participants appreciated the perception articu-
lation functions for setting expectations and the conversation explanations for
balancing expectations and satisfaction.

On one hand, the design space of user interfaces for LLMs offers a myriad of
new interaction possibilities. On the other, taking advantage of the new possi-
bilities can lead to complexity, which can make interfaces harder to comprehend



and can overwhelm users. From the history of search interface evolution, we
know that more complex search interfaces have not been widely accepted. For
example, faceted search UIs led to a sharp learning curve and increased cognitive
load [77]. History likes to repeat itself. Will it be the case with user interfaces for
LLMs? Will the more complex interfaces for LLMs become only niche products?

10 Conclusions

As mentioned multiple times throughout this chapter, handling complex inter-
action types and modalities has been relatively under-explored and the authors
find it a rich area of investment for the further development of generative in-
formation retrieval systems. This chapter pointed out prior work on various
interaction types, from expressing information need to result refinement and
mixed-initiative interactions, including clarification, feedback, and proactive in-
teractions. Recent developments in (multi-modal) foundation models, including
large language models, have paved the path towards better understanding com-
plex user interactions, but we are still far from ideal generative information
retrieval systems that can satisfy user needs efficiently, effectively, fairly, and
robustly.
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