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ABSTRACT

Evaluating retrieval-augmented generation (RAG) presents chal-
lenges, particularly for retrieval models within these systems. Tra-
ditional end-to-end evaluation methods are computationally expen-
sive. Furthermore, evaluation of the retrieval model’s performance
based on query-document relevance labels shows a small correla-
tion with the RAG system’s downstream performance. We propose
a novel evaluation approach, eRAG, where each document in the
retrieval list is individually utilized by the large language model
within the RAG system. The output generated for each document is
then evaluated based on the downstream task ground truth labels.
In this manner, the downstream performance for each document
serves as its relevance label. We employ various downstream task
metrics to obtain document-level annotations and aggregate them
using set-based or ranking metrics. Extensive experiments on a
wide range of datasets demonstrate that eRAG achieves a higher
correlation with downstream RAG performance compared to base-
line methods, with improvements in Kendall’s 7 correlation ranging
from 0.168 to 0.494. Additionally, eRAG offers significant compu-
tational advantages, improving runtime and consuming up to 50
times less GPU memory than end-to-end evaluation.
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1 INTRODUCTION

Retrieval-augmented generation (RAG) has emerged as a prominent
approach in natural language processing, combining the strengths
of retrieval and generation models [35], with use cases in decreas-
ing hallucination [1, 29], knowledge-grounding [9, 16, 34], and
personalization [25, 26]. Evaluating RAG systems is important as
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it ensures the effectiveness of integrating retrieval-based methods
with generative models [10, 23]. Traditionally, RAG evaluation has
primarily relied on end-to-end assessment, which entails compar-
ing the generated output with one or more ground truth references
[20]. While this is crucial, it presents several limitations, especially,
for evaluating retrieval models in RAG systems.

First, end-to-end evaluation lacks transparency regarding which
retrieved document contributed to the generated output, hindering
interpretability of the system’s behavior. Secondly, it is resource-
intensive, consuming significant time and computational power,
particularly when dealing with a large set of retrieval results con-
sumed by the LLM. To process long input sequences resulting from
the utilization of all retrieved documents by the LLM, GPUs with
substantial memory capacities are essential for end-to-end evalu-
ation. Moreover, many ranking systems rely on interleaving (i.e.,
replacing one or more documents in the result list) for evaluation
and optimization, which further complicates the evaluation, as
slight variations in retrieval results necessitate re-computation of
the RAG pipeline. Finally, optimizing ranking models often requires
document-level feedback, such as user clicks [3, 6]. However, end-
to-end evaluation only provides list-level feedback for the retrieval
results. That said, this paper studies retrieval evaluation in RAG.

Human annotations can be a potential solution for evaluating
retrieval models in RAG, however, accurate annotations are often
challenging and costly to obtain. More recently, with the emergence
of large language models (LLMs) and their advanced capabilities
in reasoning and text comprehension, they have been utilized to
annotate documents for retrieval evaluation [10, 23]. Nevertheless,
these approaches predominantly evaluate the retriever in RAG sys-
tems based on human preferences, whereas the primary objective
of the retrieval model in RAG is to serve the LLM that leverages
the retrieved results [35]. That said, our extensive investigation on
a diverse set of RAG systems for open-domain question answer-
ing, fact verification, and dialogue systems reveals that employing
human annotations, such as the provenance labels in the KILT bench-
mark [20], for evaluating the retrieval models within a RAG system
exhibits only a minor correlation with the downstream RAG per-
formance. This indicates a lack of meaningful relationship between
the evaluated metrics and the downstream performance of RAG.

In this paper, we propose eRAG, a new approach for evaluating
retrievers in RAG systems, where we apply the LLM in RAG system
on each document in the retrieval result list individually and use
the LLM’s output to provide document-level annotations. These
annotations can be obtained using any arbitrary downstream task
metric, such as accuracy, exact match, or ROUGE [17]. We can then
apply a set-based or ranking metric as an aggregation function to
obtain a single evaluation score for each retrieval result list.

We evaluate our proposed approach on question answering, fact-
checking, and dialogue generation from the knowledge-intensive
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language tasks (KILT) benchmark [20]. Our results demonstrate that
our proposed approach achieves the highest correlation with the
downstream performance of the RAG system in comparison with
the baselines. Specifically, we observe an absolute improvement in
Kendall’s tau correlation ranging between 0.168 and 0.494 across the
evaluated datasets. Furthermore, we investigate the impact of differ-
ent retrieval augmentation methods, the quantity of retrieved docu-
ments, and the LLM size on correlation. Finally, we demonstrate that
our approach offers significant computational advantages, consum-
ing up to 50 times less memory compared to end-to-end evaluation.
To facilitate research in this domain, we make eRAG’s implementa-
tion publicly available at: https://github.com/alirezasalemi7/eRAG.

2 EVALUATING RETRIEVERS IN RAG

Generally, two predominant methods are used for obtaining rele-
vance labels for retrieval evaluation. The first approach involves
human judgment to assess the relevance of a query to documents
within a corpus. The main issue with this approach is that human
annotation can be costly and is often impractical for evaluating all
documents in a corpus [28]. Moreover, human annotation relies
on human preferences to judge the relevance of documents to a
query. However, a document deemed relevant based on human
preferences may not be useful for an LLM in fulfilling its task.

The second approach utilizes the downstream ground truth out-
put associated with the query to provide weak relevance labels.
In this method, a retrieved document containing the downstream
ground truth is considered relevant [8, 14, 24, 27]. This method also
presents its own challenges. This approach is impractical, partic-
ularly in scenarios where the task involves long-text generation
or text classification, as downstream task labels might not exist
within documents. Also, one document can be useful for an LLM
in fulfilling its task without containing the ground truth labels.

Even though we are not aware any work that use LLMs for
evaluating retrieval models in RAG, LLMs can be leveraged to la-
bel documents based on their relevance to a query. Inspired by
Thomas et al. [30], the LLM functions as a binary classifier, indi-
cating whether a document is relevant to the query or not. The
mentioned challenges persist even with the judgment of LLMs, espe-
cially if the LLM responsible for labeling differs from the LLM in the
RAG pipeline. Besides, employing LLMs as judges in this scenario
can pose challenges due to the computational cost of running them
on a large set of retrieved documents and memory constraints.

To mitigate these problems, we propose eRAG, a novel approach
that involves utilizing the LLM in RAG system itself as the arbiter
for generating labels to evaluate the retrieval model.

Using Downstream Large Language Model in RAG as Doc-
ument Annotator. Consider a retrieval model R that produces
a ranked list R; with k documents for the LLM M tasked with
performing a specific task, utilizing a downstream evaluation func-
tion & 5. The LLM M takes a ranked list of documents as its input
along with the query g, and generates an output represented as
7 = M(q,Ry). For the documents in Ry, we feed each document in-
dividually to the LLM M with the query and evaluate the generated
answer to create the label for each document, expressed as:

Gqld] = Ep(M(g, {d}).y) Vd € Ry 1
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where y is the expected downstream output for the query. We can
employ the created Gy to utilize any ranking metric to evaluate R.

Note that the runtime cost of a vanilla transformer [32] scales
quadratically with its input length. Consequently, for end-to-end
evaluation, the cost of running a transformer on a ranked list with
k documents, with an average length of d, to generate an output
with length [ is O(Ik?d?). Conversely, in our approach, as each
document is individually fed to the LLM for k times, the cost is
O(Ikd?), proving to be more efficient than end-to-end evaluation.

Retrieval Evaluation Metrics. For a ranked list Ry, comprising
k retrieved documents generated by a retrieval model R, an evalua-
tion metric E assigns a score Eg (Ry, Gq) € [0, 1], by comparing
the ranked list with the relevance scores Gy which is a function that
maps each document to a scalar relevance score for the document
with respect to the query g (i.e., G4(d) = sg). Various definitions ex-
ist for the evaluation metric Eg; in this paper, we examine Precision
(P), Recall (R), Mean Average Precision (MAP), Mean Reciprocal
Rank (MRR) [2], Normalized Discounted Cumulative Gain (NDCG)
[11], and Hit Rate. Note that when dealing with non-binary rele-
vance labels, precision considers the average value of relevance
labels, while Hit Ratio considers the maximum value among them.

3 EXPERIMENTS

3.1 Setup

Datasets and Evaluation. We use Natural Questions (NQ) [15],
TriviaQA [13], HotpotQA [33], FEVER [31], and Wizard of Wikipedia
(WoW) [4] datasets from the KILT [20] benchmark. Due to the un-
availability of ground truth labels for the test set, we utilize the
publicly accessible validation set. As the retrieval corpus, we employ
the Wikipedia dump of the KILT benchmark and adhere to the pre-
processing outlined by Karpukhin et al. [14], where each document
is segmented into passages, each constrained to a maximum length
of 100 words. The concatenation of the article title and passage
is used as a document. The KILT benchmark furnishes document-
level relevance labels (called Provenance) for its datasets, and these
are employed for evaluating retrieval performance. In line with
our preprocessing method, we define all passages within a positive
document as positive passages for our evaluation. For relevance
evaluation using an LLM, we employ Mistral' [12] to annotate each
document within the retrieved list, determining whether it is rele-
vant to the query or not. We adopt the metrics recommended by
the KILT benchmark, namely Exact Match (EM) for NQ, TriviaQA,
and HotpotQA, Accuracy for FEVER, and F1 for the WoW dataset.

Experiments Configuration. In all experiments, unless explicitly
stated otherwise, we employ T5-small [21] with Fusion-in-Decoder
(FiD) [9] as the LLM. We employ AdamW [19] with a weight decay
of 1072 and a learning rate of 5 x 10~ for 10 epochs, incorporating
linear warmup for the initial 5% of training steps. The effective
batch size is set to 64. Each model is trained using an A100 Nvidia
GPU. For document retrieval during training, we utilize BM25 [22]
implemented in Pyserini [18] to retrieve 50 documents to augment
the input with them. For fast vector search in dense retrieval with
Contriever? [7], we use Faiss [5] flat index.

!https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
Zhttps://huggingface.co/facebook/contriever
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Table 1: The correlation between each evaluation approach and the downstream performance of the LLM. T5-small with FiD
with 50 retrieved documents is used. We do not report correlation for the Answers method for FEVER and WOW datasets
because the answers to queries do not exist in the document since FEVER is a classification dataset and WoW is long-text
generation. For the WoW dataset, we only report correlation on Precision and Hit Ratio because other metrics do not support
non-integer relevance labels. Tau is Kendall’s tau and rho is Spearman’s rho.

Relevance BM25 Contriever
Annotation Metric NQ TriviaQA HotpotQA FEVER WoW NQ TriviaQA HotpotQA FEVER WowW
tau rho tau rho tau rho tau rho tau rho tau rho tau rho tau rho tau rho tau rho
MAP | 0349 0417 | 0.298 0364 | 0359 0423 | - - - ~ [ 0303 0366 | 0.265 0325 | 0379 0429 | - - - -
Containing MRR | 0361 0417 | 0313 0340 | 0398 0449 | - - - - | 0301 0353 | 0257 0292 | 0.384 0430 | - - - -
the NDCG | 0357 0427 | 0.298 0365 | 0370 0435 | - - - - | 0313 0378 | 0270 0331 | 0385 0437 | - - - -
Answer P 0353 0411 | 0276 0333 | 039 0454 | - - - - | 0346 0403 | 0283 0340 | 0.406 0449 | - - - -
R 0325 0325 | 0.232 0232 | 0375 0375 | - - - - | 0319 0319 | 0215 0215 | 0.401 0401 | - - - -
Hit Ratio | 0325 0325 | 0.232 0232 | 0375 0375 | - - - - | 0319 0319 | 0215 0215 | 0401 0401 | - - - -
MAP | 0.181 0218 | 0.142 0.172 | 0.007 0.009 | 0.026 0.032 | 0.015 0021 | 0.161 0.19 | 0.113 0.137 | 0.128 0.155 | 0.045 0.056 | 0.055 0.080
MRR | 0.177 0205 | 0.151 0.175 | 0.074 0.080 | 0.036 0040 | 0013 0017 | 0.152 0173 | 0120 0.136 | 0.151  0.169 | 0.045 0.049 | 0.059  0.081
KILT NDCG | 0179 0.216 | 0.142 0172 | 0.021 0.026 | 0.029 0.036 | 0.013 0019 | 0.159 0.193 | 0.115 0.140 | 0.134 0.162 | 0.045 0.056 | 0.056 0.081
Provenance P 0163 0.192 | 0.140 0.165 | 0.139  0.164 | 0.043 0.051 | 0.011 0015 | 0.131 0157 | 0.108 0.130 | 0.181 0.215 | 0.033 0.040 | 0.045 0.064
R 0216 0216 | 0.187 0.187 | 0.113  0.113 | 0.050 0.050 | 0.019 0.023 | 0.157 0157 | 0.135 0.135 | 0.163 0.163 | 0.038 0.038 | 0.056 0.068
Hit Ratio | 0216 0.216 | 0.187 0.187 | 0.113 0.113 | 0.050 0.050 | 0.019 0.023 | 0.157 0.157 | 0.135 0.135 | 0.163 0.163 | 0.038 0.038 | 0.056  0.068
MAP | 0045 0055 | 0.176 0216 | 0.034 0042 | 0.018 0.022 | -0.005 -0.008 | 0.032 0.039 | 0.174 0213 | 0.051 0.063 | 0.021 0026 | -0.002 -0.003
Relevance MRR | 0.060 0.062 | 0.189 0.196 | 0.001 0001 | -0.021 -0.022 | -0.008 -0.011 | 0.048 0.050 | 0.143 0.151 | 0.034 0.038 | -0.007 -0.007 | 0.004  0.005
Annotation | NDCG | 0049 0.060 | 0.178 0.218 | 0.032 0.039 | 0018 0.022 | -0.006 -0.009 | 0.036 0.044 | 0.175 0.214 | 0.049 0.060 | 0.022 0.028 | 0.000  0.000
with LLM P 0.028 0034 | 0.137 0.166 | -0.004 -0.006 | 0.021 0025 | -0.005 -0.008 | 0.002 0.003 | 0.138 0.167 | 0.010 0.013 | 0.014 0017 | -0.006 -0.010
(Mistral 7B) R 0014 0.014 | 0.032 0032 | -0.016 -0.016 | 0.019 0.019 | 0.003 0.003 | 0.000 0.000 | 0.030 0.039 | -0.042 -0.042 | -0.017 -0.017 | 0.017  0.021
Hit Ratio | 0.014 0.014 | 0.032 0.032 | -0.016 -0.016 | 0.019 0.019 | 0.003 0.003 | 0.000 0.000 | 0.039 0039 | -0.042 -0.042 | -0.017 -0.017 | 0.017 0.021
MAP | 0492 0575 | 0474 0578 | 0.610 0694 | 0386 0463 | - ~ | 0467 0544 | 0.427 0519 | 0634 0705 | 0399 0479 | - -
MRR | 0.503 0577 | 0.486 0553 | 0.629 0.695 | 0.592 0.611 | - - | 0466 0537 | 0.424 0495 | 0.639 0698 | 0.481 0504 | - -
eRAG NDCG | 0505 0.590 | 0.486 0.592 | 0.612 0.697 | 0.404 0484 | - - | 0481 0560 | 0440 0.536 | 0.635 0.705 | 0.403 0484 | - -
Annotations p4 0.529 0598 | 0.484 0577 | 0.594 0663 | 0320 0391 | 0.504 0.669 | 0.522 0.586 | 0.482 0.571 | 0.633 0.695 | 0378 0449 | 0.540 0.712
R 0519 0519 | 0.426 0426 | 0.619 0619 | 0301 0301 | - - | 048 0488 | 0.408 0408 | 0.631 0631 | 0299 0299 | - -
Hit Ratio” | 0.519 0519 | 0426 0426 | 0619 0619 | 0.301 0301 | 0390 0.532 | 0.488 0.488 | 0.408 0408 | 0.631 0.631 | 0.299 0.299 | 0.414 0.561
¢ For non-integer relevance labels, precision is equal to average of the relevance labels.
b For non-integer relevance labels, hit ratio is equal to maximum of the relevance labels.
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T5-small with FiD and 50 retrieved documents) in Table 1. The
results indicate that eRAG attains the highest correlation compared
to other evaluation approaches. Furthermore, the results show that
regardless of the retrieval model employed, eRAG consistently out-
performs others in terms of correlation with the LLM’s downstream
performance. Interestingly, the most common approaches, KILT
Provenance and Annotation with LLMs, that are, document-level
relevance labels and using LLMs to assign a relevance label to each
retrieved document, have the lowest correlation with the down-
stream performance of the LLM. This finding confirms that the
LLM as the consumer of the retrieved results in RAG is the best
judge for the performance of the retrieval model.

How do different retrieval evaluation methods in RAG per-
form as the size of retrieval results increases? To address this,
we varied the number of retrieved documents and computed the
correlation between the metric with highest correlation for each
method in Table 1 at each specified number of retrieved documents
and the downstream performance of the LLM given that number
of retrieved documents. For the sake of space, we limit our exper-
iments to three datasets: NQ for question answering, FEVER for
fact-checking, and WoW for long-text generation. The results of
this experiment are shown in Figure 1. The outcomes of this experi-
ment reveal that irrespective of the quantity of retrieved documents,

Provenance ~ —— Answers

Figure 1: The correlation between evaluation approaches
and the LLM’s downstream performance varying number
of retrieved documents by BM25. T5-small with FiD is used.
The metric with the highest correlation in Table 1 is used.

our suggested evaluation strategy consistently exhibits a higher
correlation with the downstream performance of the LLM. Further-
more, the results illustrate that augmenting the number of retrieved
documents leads to a decline in correlation—a intuitive observation,
as all metrics assess each document-relevance label independently
for scoring a ranked list, while the LLM uses information from the
entirety of these documents to accomplish its task.

How does our method correlate with the downstream RAG
performance as the size of large language models increases?
In addressing this question, we computed the correlation between
our retrieval evaluation strategy and the downstream performance
of the LMs with two distinct sizes (i.e., T5-small with FiD consisting
of 60M and T5-base with FiD consisting of 220M parameters). For
the sake of space, we limit our experiments to three datasets: NQ
for question answering, FEVER for fact-checking, and WoW for
long-text generation. The results illustrated in Figure 2 indicate that,
for certain datasets, there is a higher correlation with the smaller
LLM, while for others, a higher correlation is observed with the
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Figure 2: The correlation between eRAG and the downstream
performance of different LLM sizes. In this experiment, T5-
small (60M parameters) and T5-base (220M parameters) with
FiD are used. The documents are retrieved using BM25.
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Figure 3: The correlation between eRAG and the downstream
performance of FiD and IPA LLMs. T5-small with 10 docu-
ments retrieved by BM25 is used. The number of documents
is chosen based on the limitations of the input size in IPA.

larger model. Nonetheless, in none of the cases is there a significant
difference between the correlations, suggesting that the proposed
approach is effective regardless of the LLM size.

How does different retrieval-augmentation approaches af-
fect the correlation between eRAG and the downstream RAG
performance? We applied eRAG to two LLMs. One LLM utilizes
In-Prompt Augmentation (IPA), where the retrieved results are ap-
pended to the input of the LLM. The other LLM employs Fusion-in-
Decoder (FiD) [9], wherein each retrieved document is individually
processed by the encoder, and subsequently, the representations
for all documents are concatenated together and fed to the decoder.
For the sake of space, we limit our experiments to NQ for question
answering, FEVER for fact-checking, and WoW for long-text gen-
eration. The correlation between eRAG and the outputs of each
LLM is illustrated in Figure 3. Interestingly, the results suggest that
although there is no significant difference between the correlation
of eRAG with IPA and FiD LLMs, eRAG consistently exhibits a
higher correlation with the FiD. This observation can be elucidated
by considering the distinction between IPA and FiD methodologies.
In IPA, all documents are concatenated together and then presented
as a single input to the LLM. In contrast, FiD processes each docu-
ment individually by feeding them separately to the LLM’s encoder.
Given that our approach aligns more closely with FiD, we believe
this alignment is a contributing factor to the higher correlation
between eRAG and the downstream performance of FiD.

How much more efficient is eRAG compared to the end-to-
end evaluation? Here, we consider two factors: inference time
and memory consumption. For inference time, we compare the total
time required for end-to-end evaluation to generate scores with the
total time used by eRAG. In this experiment, we opt for the batch
size of each approach to be as large as possible, maximizing the
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Table 2: The runtime and memory consumption of eRAG in
comparison with end-to-end evaluation. T5-small with FiD,
consuming 50 documents is used.

Dataset Runtime (GPU) Memory Consumption (GPU)
E2E eRAG E2E eRAG-Query | eRAG-Document
NQ 918 sec | 351sec | 75.0 GB 49 GB 1.5 GB
TriviaQA | 1819 sec | 686 sec | 46.2 GB 5.4 GB 1.5GB
HotpotQA | 1844 sec | 712sec | 52.4 GB 5.5 GB 1.5 GB
FEVER 3395 sec | 1044 sec | 66.5 GB 4.1 GB 1.5 GB
Wow 912sec | 740 sec | 47.9 GB 6.5 GB 1.5 GB

utilization of the entire GPU memory. The results of this experiment
are reported in Table 2. The findings indicate that, on average, eRAG
is 2.468 times faster than end-to-end evaluation. Further elaborating,
the speedup for eRAG ranges from 1.232 to 3.252 times compared to
end-to-end evaluation across the datasets, where the least speedup
is for the long-text generation task (i.e., WoW).

To compare memory consumption between eRAG and end-to-
end evaluation, we conducted two experiments. First, we compared
the maximum memory required by end-to-end evaluation to assess
a query with the maximum memory demanded by eRAG for the
same evaluation. To carry out this comparison, we configured the
batch size for end-to-end evaluation to 1, while for eRAG, we set
it to the same number of documents used for one query by end-
to-end evaluation (we call this query-level configuration). In the
subsequent experiments, we set both batch sizes to 1 to assess the
extent to which eRAG demonstrates superior memory efficiency
compared to end-to-end evaluation under the most efficient con-
figuration (we call this document-level configuration). The results
of these experiments are reported in Table 2. The findings indi-
cate that in the query-level configuration, eRAG exhibits between
7 to 15 times greater memory efficiency compared to end-to-end
evaluation. Furthermore, in the document-level configuration, this
efficiency gap widens, with eRAG demonstrating 30 to 48 times
more memory efficiency than end-to-end evaluation across differ-
ent dataset. In summary, these experiments suggest that eRAG is
more efficient than end-to-end evaluation of a vanilla transformer,
excelling in both inference time and memory utilization.

4 CONCLUSION

This paper explores various approaches for evaluating retrieval
models within a RAG pipeline. Additionally, it introduces eRAG, a
novel approach for evaluating retrieval models in the RAG pipeline.
eRAG leverages the per-document performance of the LLM on the
downstream task to generate relevance labels. The findings suggest
that the proposed approach exhibits significantly higher correlation
with the downstream performance of the LLM. Furthermore, eRAG
demonstrates greater efficiency than end-to-end evaluation in terms
of both memory consumption and inference time.
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