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ABSTRACT

In this work, we explore a Multilingual Information Retrieval (MLIR)
task, where the collection includes documents in multiple languages.
We demonstrate that applying state-of-the-art approaches devel-
oped for cross-lingual information retrieval to MLIR tasks leads
to sub-optimal performance. This is due to the heterogeneous and
imbalanced nature of multilingual collections — some languages
are better represented in the collection and some benefit from
large-scale training data. To address this issue, we present KD-SPD,
a novel soft prompt decoding approach for MLIR that implicitly
“translates” the representation of documents in different languages
into the same embedding space. To address the challenges of data
scarcity and imbalance, we introduce a knowledge distillation strat-
egy. The teacher model is trained on rich English retrieval data,
and by leveraging bi-text data, our distillation framework trans-
fers its retrieval knowledge to the multilingual document encoder.
Therefore, our approach does not require any multilingual retrieval
training data. Extensive experiments on three MLIR datasets with
a total of 15 languages demonstrate that KD-SPD significantly out-
performs competitive baselines in all cases. We conduct extensive
analyses to show that our method has less language bias and better
zero-shot transfer ability towards new languages.
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1 INTRODUCTION

In Cross-Lingual Information Retrieval (CLIR), a user submits a
query in one language, and the system responds by retrieving doc-
uments in another language. Hence, in addition to a ranking model,
CLIR systems require an extra component of language translation
to align the vocabulary in the query language with that of the
document language. This translation gap can be bridged by em-
ploying dictionaries [77], statistical translation tables [5], machine
translations [60], or, more recently, multilingual pre-trained large
language models [25].

Motivated by many real-world applications, such as web search,
where the retrieval collection includes documents from multiple
languages [8, 30], this work focuses on a multilingual retrieval
setting, where the query is in one language and the collection is a
mixture of languages. We refer to this task as MLIR, and it has been
previously explored by [38, 50, 52]. Even though CLIR and MLIR are
tightly coupled, effective MLIR models must overcome additional
major challenges. For instance, instead of one pair of languages
between query and document, the translation component in the
MLIR model needs translation knowledge for multiple language
pairs. Xu et al. [74] found that in such scenarios, the distribution
of relevant documents to a given query often differs in different
languages — which highlights the challenges in designing effective
MLIR models that also perform fairly across languages.

The advent of multilingual versions of pre-trained Transformer-
based language models, such as mBERT [13] and XLM-R [9], pro-
vides the possibility of jointly learning representations for many
languages. Because tokens in different languages are projected
into the same semantic space, the pre-training phase imparts the
model with multilingual translation knowledge. Like monolingual
retrieval, fine-tuning these models with multilingual retrieval data
allows the model to learn the knowledge of query-document match-
ing and perform retrieval tasks under a multilingual setting.

However, we find that this modeling pipeline, which delivers
state-of-the-art results in many CLIR tasks [17, 75, 78], suffers from
two major shortcomings when applied to MLIR settings. First, to
learn query-document matching knowledge on multiple language
pairs effectively, this models requires access to multilingual re-
trieval training data that covers the languages present in the target
collection. However, many languages suffer from the scarcity of
multilingual training data with reliable relevance judgment [31].
Therefore, it is challenging to achieve broad language coverage in
training data. For languages not covered in the training data, the
model has to retrieve documents in a so-called zero-shot manner,
creating a performance gap between the observed and non-observed
languages [45]. Second, due to the unbalanced pre-training data in
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Figure 1: Average score given to parallel documents in Arabic
and Russian by mDPR [82]. Queries and relevant judgments
are from the TREC 2020 Deep Learning Track. Passages are
translated by mMARCO [6]

different languages, the performance of multilingual pre-trained
models varies by language in many downstream tasks [69, 71]. MLIR
models built on such pre-trained models can inherit language bias,
leading to inconsistent ranking results. To demonstrate this case,
we pair the test queries from TREC 2020 Deep Learning Track [11]
with their relevant passages translated into Arabic and Russian by
mMARCO [6]. Then for each language, we score query-document
pairs using the multilingual dense passage retriever (mDPR) [82].
Figure 1 illustrates the difference in ranking the same set of relevant
documents in these two languages. We observe that mDPR scores
Russian documents higher than their Arabic version. We argue that
such language bias in MLIR would lead to sub-optimal ranking
results, e.g., highly relevant documents in Arabic have lower scores
than slightly relevant documents in Russian.

To address these issues, we present KD-SPD,! a multilingual
dense retrieval model based on knowledge distillation (KD) and
soft prompt decoder (SPD) for the MLIR task. KD-SPD does not
require any multilingual relevance labels for training, thus auto-
matically solving the data scarcity issue in low-resource languages.
Our approach solely requires monolingual retrieval training data
in English, which we obtain from MS MARCO [47], and a large col-
lection of parallel and comparable documents. Note that such data
is abundant and easily collected through automatic bi-text mining
algorithms [15]. We use CCAligned [15] in our experiments.

We first train a monolingual dense retrieval model M, such as
ANCE [73], for the English language. Since this model has the rele-
vance matching ability, we freeze its document encoder and then
minimize the distance between the representations learned by M for
any English document and the representations learned by KD-SPD
for its parallel or comparable version in other languages. In fact, M
acts as a monolingual teacher model for the multilingual student
model KD-SPD. Therefore, our approach implicitly “translates” the
representation of documents in different languages into the same
language embedding space. We hypothesize that although different
languages possess unique properties such as distinct grammar or
vocabulary, they also have common traits for expressing similar
meanings. To capture these unique and shared features, KD-SPD
uses decomposable soft prompt, which is derived as the product of

KD refers to the model training framework, and SPD refers to the model architecture.
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a shared matrix and a low-rank language-specific matrix for each
language. Our proposed encoder-decoder architecture transforms
documents into contextualized token embeddings and decodes the
outputs with language-specific prompts to obtain a final representa-
tion. Through joint training across multiple languages, we observe
that the learned prompts are capable of reducing language bias and
possess the transferable capacity to generalize to unseen languages.

We performed extensive experiments on three MLIR datasets
with a total of 15 languages from diverse linguistic families, in-
cluding both high- and low-resource languages. We also conduct
experiments on different relevant distributions with respect to lan-
guage. In terms of mean average precision (MAP), our proposed
method significantly outperforms several strong baseline meth-
ods in all multilingual settings, including a 20.2% improvement
over mDPR and a 9.6% improvement over a multilingual knowledge
distillation method from Sentence-BERT (SBERT) [53]. Further anal-
ysis demonstrates that KD-SPD has less language bias and better
zero-shot transfer ability toward new languages.

2 RELATED WORK

2.1 Neural Matching Models for MLIR

With respect to language settings, MLIR and CLIR are closely re-
lated. CLIR mostly focuses on retrieval between two particular
languages, while MLIR considers multiple language pairs between
query and document. In general, information retrieval involving
a multilingual setting has two sub-tasks: translation and query-
document matching. One method involves translating the query
into the language of the document set, then using a monolingual
retrieval model to evaluate relevance. The translation sub-task can
be performed using Statistical Machine Translation (SMT) [5] or
Neural Machine Translation (NMT) [56]. The two-step process of
translation followed by retrieval is widely used; however, with the
advent of bilingual word representation [2, 67] and multilingual
pre-trained language models [10, 14], it is possible to bypass the
translation step and match the query and document in different
languages within a shared representation space.

Multilingual pre-trained language models usually prepend a
special token to the input sequence to support downstream applica-
tions. Because the special token embedding is contextualized based
on other tokens in the sequence, once finetuned, they are effec-
tive across various tasks, including retrieval tasks [39, 40, 78, 79].
Named cross-encoder, the model takes the concatenation of the
query and document as input. An embedding of the “[CLS]” to-
ken is fed into a feed-forward layer to produce a score for the
input pair [48]. With multilingual knowledge from pre-training,
these language models help bridge the vocabulary between query
and document languages. Like monolingual retrieval, multilingual
retrieval models based on cross-encoder are computationally ex-
pensive and usually rely on a lexical-based sparse retrieval as the
first step to finding relevant information. Dense retrieval based
on a bi-encoder architecture is proposed to overcome the sparse
retrieval bottleneck [28, 32, 43]. With the separation of the query
document encoders, dense retrieval has already shown success on
monolingual retrieval tasks [18, 29]. By replacing the underlying
language model with its multilingual version, dense retrieval is
extended to a multilingual setting [82].
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However, the translation gap prevents the multilingual retrieval
models from achieving the same level of performance as models in
the monolingual (i.e., English-to-English) setting [25]. Supporting
the model with abundant multilingual retrieval data is one way to
reduce the effect of the translation gap. Sasaki et al. [61] constructed
large-scale, weakly supervised CLIR collections based on the linked
foreign language articles from Wikipedia pages. Bonifacio et al. [6]
built MLIR training data using neural machine translation models.
Besides retrieval data, approaches like utilizing external knowl-
edge in language-specific modules are also suggested to close the
language gap. Bonab et al. [5] showed that when fine-tuned with
retrieval data, dictionary-oriented word embedding could improve
the performance of a CLIR model. Huang et al. [25] proposed a
mixed attention transformer architecture to learn relevance judg-
ments and word-level translation knowledge jointly. Yang et al.
[76] designed a language adapter component to efficiently transfer
models based on monolingual data to a cross-lingual setting.

These approaches mostly focus on improving CLIR performance
where the query and the target documents are from two particular
languages. In this work, we focus on MLIR, a more general setting
where the document collection comprises a diverse mix of lan-
guages, which is gaining increasing attention recently [35]. While
being able to bridge the translation gap between multiple languages,
the model for MLIR task also needs to be language-agnostic when
ranking documents in different languages. Our approach implicitly
“translates” documents in different languages into an embedding
space tuned for English retrieval.

2.2 Multi-task & Prompt-based Learning

The goal of multi-task learning is to leverage the shared underlying
structure of different tasks to improve the performance of each
task [55]. A common approach is to transfer the knowledge from a
model fine-tuned on multiple source tasks to the target task [1, 51,
66]. For example, Aghajanyan et al. [1] introduce a pre-finetuning
stage that involves multi-task learning steps on diverse NLP tasks.
They show that training stability can be improved by applying task-
heterogenous batches with task-rebalancing loss scaling. Recent
works show that the zero-shot and few-shot performance of pre-
trained large language models can be boosted by prompted multi-
task learning [41, 58, 68]. For instance, Sanh et al. [58] develop a
system that maps any NLP task into a human-readable prompt
form where each supervised dataset contains multiple prompts
with diverse wording. The experiments imply that the multi-task
training on these prompted datasets can improve the zero-shot
performance of the pre-trained models. Other works [83] focus on
zero-shot classification (ZAC), introducing a meta-tuning training
paradigm to optimize the zero-shot classification objective via fine-
tuning. They consolidate various classification tasks into a single
QA format, compiling a dataset of classification tasks with human-
authored prompts for meta-tuning.

Soft Prompt tuning has shown great potential to adapt large
language models to downstream tasks [4, 33, 65, 70]. Vu et al. [65]
further study the generalizability and transferability of the soft
prompts. They first learn a prompt on one or more source tasks
and use it as the initialized prompt for a target task. The simple
target prompt initialization method can match or outperform full
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fine-tuning across all model sizes. Asai et al. [4] extend the work
by training an attention module to interpolate the source prompts
and newly initialized target prompt for each downstream task.
During the multi-task training, only the target prompt and attention
weights are updated, while the soft prompts and original language
model’s parameters are frozen. A recent approach [70] learns a
transferable shared prompt by applying matrix decomposition and
knowledge distillation from multiple source task-specific prompts
and using the low-ranking matrix updating for target task adaption.

KD-SPD builds upon the idea of prompt-oriented, parameter-
efficient multi-task learning. It treats retrieval in each language
as a distinct task while jointly modeling them to capture shared
underlying structures. The primary insight is that languages, de-
spite unique properties, share common features and concepts. We
utilize decomposable prompts to model these aspects. Unlike con-
ventional parameter-efficient approaches, experiments show that
updating prompts jointly with model parameters enhances retrieval
performance.

2.3 Knowledge Distillation

Proposed by Hinton et al. [23], knowledge distillation is a method
to train a model, called the student, using valuable information pro-
vided by the output of another model, called the teacher. This way,
the teacher model’s knowledge can be transferred into the student
model. The idea of knowledge distillation is wildly used in the field
of computer vision [36, 72, 80], natural language processing [53, 57]
and information retrieval [24, 37, 42, 59, 81].

In the field of information retrieval, it is common for the teacher
model to be a complex reranker model with higher capacity but
lower efficiency compared to the efficient dual-encoder based stu-
dent model. Santhanam et al. [59] apply the KL divergence loss to
align query-document scores between teacher and student models.
Another approach is balanced topic-aware query sampling [24],
which shows further improvement on top of the original knowledge
distillation loss. To address the performance gap, Zeng et al. [81] pro-
pose a curriculum learning based knowledge distillation framework
that trains a student model with increasing difficulty. In addition to
monolingual retrieval, multilingual distillation frameworks have
also been proposed. Li et al. [35] explore using query-document
scores as the distillation signals. The cross-lingual token alignment
task has also been studied as an optimal transport problem, with
Huang et al. [26] proposing a distillation framework to build a CLIR
model via bitext data.

Our model training framework is also an extension of knowledge
distillation. A typical framework for knowledge distillation relies on
a teacher model to solely provide target distributions [21, 44]. Our
approach has different sources of knowledge: the major knowledge
is from the teacher model, and we also consider the cross-lingual
knowledge shared by the prompt matrix. Moreover, from the lan-
guage perspective, rather than focusing on one CLIR task, our model
simultaneously learns retrieval knowledge for multiple CLIR tasks.

3 METHODOLOGY

Our goal is to incorporate the knowledge of query-document match-
ing from a well-trained monolingual retrieval model into a mul-
tilingual transformer-based retrieval architecture, such that it is
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capable of generating contextual representations under the MLIR
setting and thus performing query-document matching in different
languages. In this section, we first define the MLIR task and outline
our approach. Then we present the key component of our model:
a soft prompt-based encoder-decoder architecture. Finally, we in-
troduce the model training via a knowledge distillation framework
and build the MLIR model with components from both the teacher
and student models. Due to space limitations, we focus on the MLIR
case of searching a multilingual collection with an English query as
an example to describe our method. It is worth noting that English
may also be included in the multiple collection.

3.1 Overview

Given a query q in language X and a target collection Dy which
contains documents in language set Y = {Y, Y2,... Y}, suppose
di;—the i document in language Y,—has the ground truth rele-
vance label Rel(q, di;), then the aim is to design an MLIR model f
that retrieves a list of documents from Dy such that

f(q.d;) = f(q.djj), VY Rel(q,dy;) = Rel(q,dy;) 1)

where f(-, ) indicates the ranking score calculated by the model.
To build model f, we first assume there exists an oracle model g for
the retrieval task in language X. Thus, given g and monolingual
collection Dy, g satisfies:

9(q,dxi) 2 g(q,dxj), V Rel(q,dxi) = Rel(q, dx;) (2)

We can achieve (1) with model f” if for any d. in Y and its translation
dyx in X, the model matches the oracle:

f(q.d:) = g(q.dx)
Suppose both f” and g follow the architecture of dense retrieval,
the ranking score calculation is the dot-product of the query and
document embeddings, thus:

fi@fh )" = ge(9)gp(dx)
where f; and g are query encoders; f}, and gp are document
encoders for f” and g respectively. We then reuse g as the query
encoder of f*. With f; = gg, we have:

95 (@) (fp(ds) = gp(dx)) " =0 ©
It is safe to assume gg(q) is a nonzero vector. Therefore the goal
of finding f”’ is equivalent to reducing the embedding distance
between parallel documents. In our method, we retrain gp as the
teacher model by removing its parameters from the computational
graph and train f}) as the student model. Note that in practice, the
oracle model g does not exist. We can use an off-the-shelf English-
to-English (monolingual) dense retrieval model as a substitute for g.
Because gp is fixed, the essence of knowledge distillation training
is to push multilingual document representations generated by
f}, toward their corresponding English document representations
generated by gp. Moreover, Equation (3) suggests that the training
of f{, does not rely on either query g or ground truth relevant
judgment. A group of parallel or comparable sentences from English
to any other language involved in the collection is adequate to
train f). Parallel or comparable sentences between two languages
are often referred as bitext data. Unlike multilingual retrieval data,
which often require relevance labels, bitext data are easier to acquire,
especially for low-resource languages [22, 63].

Zhigi Huang, Hansi Zeng, Hamed Zamani, & James Allan

7 Language-specific vectors S

Mean Pooling

{ v CCITITD D v Add & Norm
. .

. |
\\H ‘ |:|’l Feed Forward

Uy l Share Prompt p* l Uzh N x

7 7 E{ )
v
p p Mutl-Head
Lo L) XLM-R K Attention
Encoder
) Text

SPD

I

Prompt P

(b) Multilingual document encoder.

( Prompt P

(a) Soft prompt decomposition.

Figure 2: SPD model architecture.

3.2 Soft Prompt Decoder

We focus on the design of the document encoder of the student
model, fé which handles multilingual documents. In general, the
function of f}) is similar to a neural machine translation model. The
difference is that f}) translates the input text into an embedding
in the target language rather than natural language text. Thus, we
build f}, based on the encoder-decoder architecture. For the encoder
component of f};, we exploit multilingual pre-trained language
models (i.e., mBERT or XLM-R). The token representation generated
by the encoder is then fed to the decoder component. However,
unlike the decoder with an autoregressive generation process, we
propose a soft prompt-based decoder (SPD) architecture.

Soft Prompt Matrix. We consider f, as a multitask model where
translating (mapping) each language in the multilingual collection
into the target language space is viewed as a single task. Using the
language name as the task identifier, a prompt P € R™*¢ for lan-
guage Y; with the same dimension as the token embedding d and
vector length as I is used as input to the decoder. Thus, the prompt
matrix serves as the language-based decoding initialization vector.
Inspired by the prompt decomposition from multitask prompt tun-
ing [70], we decompose Py into two parts, as shown in Figure 2a:
language-specific low-rank vectors u; € R! and v, € R for lan-
guage Yi; And a shared prompt P* € RP*? across all languages. The
language-specific prompt can be parameterized as Wy = uy. - VII,
which has the same dimension as the shared prompt P*. The final
prompt P for language Y is then formulated as follows.

ISkZP*GWkZP*Q(uk~VZ) (4)

where © denotes the Hadamard product between two matrices. The
shared prompt enables efficient knowledge sharing across all source
languages and commonalities across translation tasks. Meanwhile,
the language-specific vectors still allow each translation task to
maintain its own parameters to encode language-specific knowl-
edge. Additionally, prior studies on multitask prompt learning also
showed that soft prompt learned from multitask data can be effi-
ciently transferred to a new task [62, 64]. In section 5.5, we show
that with a shared prompt, the SPD has a better zero-shot transfer
ability toward new languages.
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Cross-attention Decoder. The decoder network follows a cross-
attention-based multi-layer transformer architecture. Each layer
has two sub-layers. The first is a multi-head query-key-value (QKV)
cross-attention module, and the second is a position-wise fully
connected feed-forward network. We employ residual connection
and layer norm around each of the sub-layers.

Let Ty, € RI4k1%d denote the token representations generated
by the encoder component for document dy. in language Y;, where
|di| is the number of tokens in di. The first decoder layer applies
the cross-attention module between Ty, and prompt matrix Pr. On
the mth head, the attention mechanism is defined as follows:

WPy - Wn'dek

Attention,, = Softmax(
d/M

) Wi Ta,

where M is the number of heads and W1, W,]f, and W2 are matrices
with dimension d/MXd. Thus, the prompt matrix has different atten-
tion weights over encoder token representations in each subspace
projection (head). The output of multi-head QKV cross-attention
module is the concatenation of M heads with linear projection:

CrossAttention(Py, Tg4.) = W°[Attentiony, .. ., Attentiony]

We further define the output of the attention-based sub-layer with
the residual connection and layer norm:

hy, = LN(ISk + CrossAttention (Py, Tdk))

where LN(-) denotes the layer norm operation. Because Py, is the
query element in the cross-attention module, we use the prompt
matrix to query the information from the encoder output and store
it in a hidden representation hy, which has the same dimension
as the prompt matrix. Next, we apply the second sub-layer and
generate the output of the first decoder layer for d, H:ik € RIxd,

H(lz.k = DecoderLayer, Py, Tg,) = LN(hy, +FFN(hg, ))

where FFN(-) denotes the fully connected feed-forward network
with a rectified activation function. Then we use the hidden repre-
sentation from the previous layer (i.e. H{lik) to query the encoder

output again in the next layer, that is:
1
HZ: = DecoderLayer, , ; (H;’.k, Ta.)

until reaching the maximum layer N designed for the decoder.
Finally, we average Hgi over the prompt vector dimension as the
document embedding in the target language space. A complete
architecture of f} is depicted in Figure 2b.

) = MeanPool(Hgk)

3.3 Multilingual Dense Retrieval

Knowledge Distillation Training. Assume that dg, is the English
version of d. From the property of g, we know that the document
embedding of dg, generated by gp contains rich knowledge for
query-document matching in English. Equation (3) suggests that if
we could let f}) “behave” like gp, namely, if for any dj., the output of
1} (dy) is close to the output of gp (dgn ), then the document embed-
ding generated by f}, can have a similar retrieval performance as g
in the English domain. Therefore, we require the English document
encoder gp as the teacher model and our multilingual document

SIGIR °23, July 23-27, 2023, Taipei, Taiwan

I
I ANCE @00 [
| .27" — Document ——> I
| O%n Encoder (Fixed) \ |
| MSE }
| (elele)
| Wdar — Do?fr?\ent — -/ ‘
| Odzn Encoder I
| |
|MLIR (Testing) |
| ANGE ‘
I O%en — Query —— (0 0 0O) I
| Encoder I
: S T . Score }
| mdar DofuPrEent — -/’ ‘
| Odzn Encoder |

|

Figure 3: Model building pipeline for MLIR.

Table 1: Summary of MLIR evaluation datasets. Avg. #d*/q
denotes the average number of relevant documents per query

Dataset Statistics CLEF mTREC LAReQA

Query size 133 54 1,190
Collection size 241K 35.2M 13,014
Languages in collection 3 4 11
Avg. #d*/q 135 668 1.0

encoder f}) as the student. During training, we define the distilla-
tion loss as the mean square error (MSE) between two embeddings
and sample B examples from each language to form a batch.

1 K
loss == —
0SS XB Z v
k=11

B
|/ (ski) = gp (exi)|? ®)
=1
where sg; is a sentence in language Yj. and eg; is its parallel (trans-
lation) in English.
Query-document matching,. In this section, we discuss an MLIR
task of searching multilingual collections using an English query to
introduce the KD-SPD framework. The query encoder in the final
retrieval model can be directly copied from the teacher model in
the English domain. Specifically, at test time, the matching score of
q and d, is calculated based on the dot-product between gr and f}):

f(q.d) = gp(9)fp(d)

An overview of our MLIR model building pipeline is shown in Fig-
ure 3. In fact, we can also apply KD-SPD to other language settings
in MLIR task. For example, suppose the task requires searching an
English collection using queries in multiple languages. In this case,
KD-SPD can be built as a query encoder, and the retrieval model can
reuse the teacher’s document encoder. More generally, if the MLIR
task involves a query language set X and a collection language set
Y, we can consider English as a bridge to build KD-SPD via two
knowledge distillations: X to English for query encoder and Y to
English for document encoder.
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4 EXPERIMENTAL SETUP
4.1 Dataset

Evaluation data. We focus on retrieval from multilingual collec-
tions with English queries. To comprehensively evaluate model
performance on this MLIR task, we create three test sets with var-
ious combinations of collection size, relevance distribution, and
language settings. Note that some multilingual evaluation datasets
have separate query sets per language, which does not thoroughly
evaluate the MLIR performance. Thus, we focus on a setting where
the same set of test queries is evaluated on all languages in the
collection. Table 1 shows the statistics of our evaluation datasets.

o CLEF. The data is from the Cross-Language Evaluation Forum

(CLEF) 2000-2003 campaign for bilingual ad-hoc retrieval tracks [7].

We include documents in French, German, and Italian to build
a multilingual collection. The English query is a concatenation
of the title and description fields of the topic files. Among the
CLEF C001 - C200 topics, we only consider a topic with human-
annotated relevant documents in all three languages as a valid
query, leading to 133 queries in total.
o mTREC. The query and relevance judgments are from the test
split of the passage ranking task from the TREC 2020 Deep Learn-
ing Track [11]. There are three relevance judgment levels marked
by 3,2,1. We build the multilingual collection from mMARCO [6],
which is a machine-translated version of the MS MARCO passage
collection [47]. We select translated passages in four languages:
Arabic, Chinese, Russian, and Indonesian, to form a large-scale
multilingual collection. Because translation leads to parallel rele-
vant documents, this evaluation set allows us to study the effect of
relevant distribution over languages. We first equally distributed
relevant documents on each relevance level among four lan-
guages. In section 5.2, we explore biased relevant distribution.
LAReQA.LAReQA [54] is a benchmark for language-agnostic an-
swer retrieval from a multilingual candidate pool. It is built based
on two multilingual question-answering datasets: XQuAD [3]
and MLQA [34]. The query is formed using the question, and the
collection is formed by breaking contextual paragraphs into sen-
tences. Each query (question) appears in 11 different languages?
and has 11 parallel relevant sentences (answers). To match our
MLIR setting, we evaluate English queries on a collection of
sentences in 11 languages (including English).
Bitext training data. To support the multilingual knowledge
distillation, we use the parallel sentences from the CCAligned
dataset [15]. To train one KD-SPD model covering all three evalua-
tion datasets (15 languages®), we sample 4 million parallel sentences
per language except English. For English, to be consistent with other
languages, we sample another 4 million sentences and pair each
sentence with itself. Thus, our training data comprises 60 million
sentence pairs in 15 languages. We append a language code to each
sentence for SPD to identify the language of the input document.
Retrieval fine-tuning data. For a competitive baseline, we further
fine-tune mDPR [82] baseline (see section 4.3.2) using cross-lingual
triples from mMARCO [6]. We sample 6 million cross-lingual triples
per language to form a multilingual training set for languages in
CLEF and mTREC. Because languages in LAReQA are not fully

?Languages in LAReQA (ISO code): ar, de, el, en, es, hi, ru, th, tr, vi, zh
3List of training languages (ISO code): ar, de, el, en, es, fr, hi, id, it, pt, ru, th, tr, vi, zh
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covered by mMARCO, we use mDPR on LAReQA without fine-
tuning. Note that our KD-SPD model does not use this data.

4.2 Implementation Details

We initialize the encoder component of the SPD model using the pre-
trained XLM-R model [9] (base-sized) and the decoder component
(including prompt matrices) using the Xavier initialization [20].
We train the SPD as a student model using bitext data. To learn
the retrieval knowledge in the English domain, we employ the
document encoder of ANCE [73] as the teacher. When testing, the
query encoder of the final model is also a reuse of the query encoder
of ANCE (except in section 5.4, where we investigate the impact of
different teachers). For hyper-parameters, we set the length of the
prompt token vector [ = 30 and the number of SPD decoding layers
N = 6. We truncate the input sequence length at 180 tokens and
sample 4 examples per language to build a mini-batch. The model
is trained with a learning rate of 2 x 10~> for one epoch of all bitext
data. For evaluation on the CLEF dataset, where the document
length is usually longer than 180 tokens, we split long documents
into overlapping passages of fixed length with a stride of 90 tokens
and compute the score for each query passage pair. Finally, we select
a document’s maximum passage score as its ranking score [46].

Evaluation. We examine the top 100 ranked documents and
report comprehensive metrics, including mean average precision
(MAP), normalized discounted cumulative gain (nDCG@10), preci-
sion (P@10), mean reciprocal rank (MRR), and recall (R@100). We
determine statistical significance using the two-tailed paired t-test
with p-value less than 0.05 (i.e., 95% confidence level).

4.3 Compared Methods

From a modeling perspective, we compare KD-SPD with both non-
neural and neural approaches. From the system design perspective,
we compare KD-SPD with end-to-end solutions and pipeline solu-
tions via rank list merging.

4.3.1 Non-neural baselines. For non-neural baselines, we generally
consider a three-step pipeline to address MLIR. First, we break
the collection into subsets by language and translate the query
to each subset language. Since the translated queries and subset
collection are in the same language, we then use a lexical-based
sparse retrieval technique (e.g., BM25) to obtain a ranked list for
each language. Finally, we merge language-specific ranked lists into
a final ranked list. We investigate different strategies of translation
and ranked list merging that we elaborate below.

SMT: We translate the query based on a statistical machine trans-
lation (SMT) method. Specifically, we first build a translation table
from the parallel corpus for each language pair using GIZA++ [49].
Then we select the top 10 translations from the translation table for
each query term and apply Galago’s* #combine operator to form a
translated query. Finally, we run BM25 with default parameters to
retrieve documents in the same language as the query translation.
NMT: We translate the query into collection languages using Google
Translation® (a neural-based commercial machine translation sys-
tem). Then we run BM25 with default parameters to retrieve docu-
ments from each subset collection using the translated query.

*https://www.lemurproject.org/galago.php/
Shttps://translate.google.com/
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Table 2: A comparison of model performance. The highest value is marked with bold text.

improvements are marked by f (over mDPR) and } (over KD-Encoder).
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For KD-SPD, statistically significant

. CLEF mTREC LAReQA

Retrieval Method

MAP  nDCG@10 P@10 MRR  R@100 MAP nDCG@10 P@10 MRR  R@100 MAP nDCG@10 P@10 MRR  R@100
SMT+Round Robin 0.1348 0.2540 0.2429 04017 03732 0.0242 0.0557 0.0630  0.1592  0.0778  0.2678 0.3858 0.2332 06610  0.4415
SMT+Score 0.1459 0.2737 0.2421 04679  0.3508  0.0187 0.0468 0.0648  0.1060  0.0661  0.2269 0.3407 0.2126 06527  0.3506
NMT+Round Robin ~ 0.1783 0.3732 0.3474 05793 0.4118  0.0653 0.1735 01870 03965  0.1872  0.5717 0.6178 0.556 07139 0.8345
NMT+Score 0.1950 0.3806 0.3474  0.6140  0.4206  0.0522 0.1570 01685 03970  0.1691  0.5063 0.5671 0.5178  0.7091  0.8002
mDPR+Round Robin ~ 0.1823 0.3412 03165  0.5448  0.4330  0.0490 0.1358 01537  0.2913  0.1324  0.4935 0.5223 0.5163  0.6493  0.8394
mDPR+Score 0.1941 0.3433 03203  0.5364  0.4401  0.0492 0.1459 01574 03154  0.1300  0.4852 0.5142 04462  0.6452  0.8418
mDPR 0.2025 0.3466 03195 05367  0.4504  0.0549 0.1675 01870  0.3954  0.1291  0.4452 0.5031 0.4462 07653  0.7970
KD-Encoder 0.1973 0.3883 03594  0.5641 04315  0.0639 0.2208 0.2293 04556  0.1629  0.5931 0.6058 0.5730  0.7673  0.8805
KD-SPD 0.2200"  0.4160™ 037141 0.6356™F 0.4689% 0.0748™F 024147 02556 050671F 0.17057 0.6265TF  0.6316'F  0.6049™F 0.79047F 0.89127

+Round Robin: We merge multiple rank lists in the round-robin
style, that is, iteratively extracting the top-ranked document from
K languages in random order to be the next K of the final rank list.
+Score: We merge multiple rank lists by ranking scores generated
by the retrieval component. Scores within each rank list are first
min-max normalized to [0, 1].

The non-neural baselines are the combination of translation with
merging strategies: SMT+Round Robin, SMT+Score, NMT+Round
Robin, and NMT+Score.

4.3.2  Neural baselines. As a dense retriever, we compare KD-SPD
with other dense retrieval methods in the following:

mDPR: Models that follow the dense passage retriever (DPR) par-
adigm has proven to be effective for many retrieval tasks. Zhang
et al. [82] extended DPR to non-English languages by changing the
underlying pre-trained language model from BERT to multilingual
BERT (mBERT). We adopt the checkpoint of mDPR trained on MS
MARCO dataset [47]. For CLEF and mTREC, which have fewer
languages in the collections, we further fine-tune mDPR using the
mMARCO dataset [6]. We apply mDPR to MLIR in two ways: First,
we break the MLIR task into multiple CLIR tasks by language and
use mDPR to retrieve documents from subset collections. Then we
merge the rank lists from different CLIR tasks, named mDPR+Round
Robin and mDPR+Score, respectively. Second, we apply mDPR as
an end-to-end solution for MLIR, in which we use it to directly
index and search from the multilingual collection.

KD-Encoder: There are methods that can transfer the knowl-
edge from a model built for a monolingual task to a multilingual
model, enabling it to address the same task in a multilingual set-
ting. Reimers and Gurevych [53] proposed a knowledge distillation
method to create multilingual versions from the same monolingual
models. We refer to this idea as the KD-Encoder and apply it to
the MLIR task. To compare with our approach, we adopt the same
teacher model and train KD-Encoder with the same bitext data.

5 EXPERIMENTAL RESULTS

5.1 Retrieval Performance

Table 2 lists the evaluation results on the three MLIR datasets.
Comparing non-neural approaches, given BM25 as the same re-
trieval component, we can see that methods based on NMT outper-
form those based on SMT. For document collections with mostly
high-resource languages, NMT based method can also achieve

higher nDCG, precision, and MRR scores than end-to-end neural
approaches (i.e., NMT+Score on CLEF). It highlights that translation
quality is an important factor in MLIR.

Usually, for a pipeline approach, the error can accumulate for
each step and lead to a sub-optimal result [16, 19]. In MLIR, without
evaluating the content with respect to the query, merging rank lists
only based on the score or rank within sub-collection will cause
errors from multiple languages to accumulate. However, comparing
the pipeline with the end-to-end approach of mDPR, we can see
that end-to-end mDPR does not show a consistent advantage over
the pipeline mDPR. There are two plausible reasons. First, similar
to other multilingual models, mDPR based on a multilingual pre-
trained language model also inherits the language bias in the pre-
training step. Second, the fine-tuning steps of mDPR only focus on
ranking documents within the same language space. Even trained
with multilingual retrieval data, the candidate documents are still
monolingual, and the score comparison is between two particular
languages. These two reasons cause the ranking score generated by
mDPR to be inconsistent across languages. Moreover, KD-Encoder
performs better than mDPR on mTREC and LAReQA, On CLEEF, it
also scores higher nDCG, precision, and MRR than mDPR. Such
results suggest that mapping parallel text from different languages
to the same location in the vector space via knowledge distilla-
tion can efficiently transfer monolingual retrieval knowledge to
multilingual settings. Finally, with the support of soft prompt de-
coding, KD-SPD achieves the best retrieval performance among all
compared methods. In terms of precision-oriented metrics, it consis-
tently and significantly outperforms both mDPR and KD-Encoder.

5.2 Biased Relevant Distribution

In the MLIR task, some queries strongly prefer one language over
others and some do not. Thus, different queries tend to have differ-
ent relevant document distributions among languages. This special
feature requires the retrieval system to rank documents indepen-
dent of their language. In the experiment on mTREC shown in
Table 2, relevant documents were distributed equally among four
languages for each query. The parallel translations of mTREC allow
us to test with different relevant document distributions. In this
section, we simulate the language preference in MLIR task: For each
query, we first randomly select a language as the primary language
and assign 60% of the top relevant documents (sorted by relevance
judgment level) to that language. And the other three become the
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Table 3: Performance comparison of biased distributed rele-
vant documents in mTREC. Significance tests are marked by
+ (over mDPR) and ¥ (over KD-Encoder).

Biased mTREC
Retrieval Method tasedm

MAP nDCG@10 P@10 MRR  R@100

SMT+Round Robin 0.0134 0.0304 0.0426 0.0759 0.0621

SMT+Score 0.0149 0.0356 0.0426  0.1083  0.0698
NMT+Round Robin  0.0331 0.0939 0.1278  0.2902  0.1500
NMT+Score 0.0438 0.1055 0.1389 03430  0.1751
mDPR~+Round Robin ~ 0.0301 0.0902 01074 02922  0.1150
mDPR+Score 0.0516 0.1576 0.1778 03655  0.1206
mDPR 0.0508 0.1571 01759 03652  0.1174
KD-Encoder 0.0681 0.2028 0.2078 04055  0.1494
KD-SPD 007537 023177 023527 0.4579%F 0.16847F

minor languages for this query, among which we equally distribute
the remaining 40% of the relevant documents. Table 3 shows the
results on biased distributed relevant documents of mTREC. As
expected, the performance of methods based on round-robin merge
drop significantly. The reason is that the rank list from minor lan-
guages introduces more errors compared to the scenario where
languages are uniformly distributed. We can see that KD-SPD is
also affected by the change in distribution yet still performs the
best among all compared methods.

5.3 Analysis of Knowledge Distillation

To study how SPD behaves after knowledge distillation, we com-
pare the rank distance and score difference of parallel relevant
documents in the rank lists generated by different models. In this
experiment, again, we take advantage of parallel translations in
mTREC and build duplicate relevant documents in four languages.
Thus, for each query, there are semantically similar relevant docu-
ments in different languages. Given a query, we locate all parallel
relevant documents in four languages within the top 1,000 candi-
dates from rank lists generated by mDPR, KD-Encoder, and KD-SPD,
respectively. Then we compute the maximum rank distance and
score difference among the four parallel documents. The equation
to compute the score difference is as follows:

Q|
1 1
S=— —_— ,',d~—' /',d~
J i

where Q is the query set, Ry, is the set of relevant documents for
the query g;, and Y is the language set. The averaging rank distance
can also be obtained in a similar way. Figure 4 shows the results
averaged over 54 queries in mTREC. We can see that KD-SPD
has the smallest rank distance and score difference over parallel
documents. The rank and score of parallel documents reflect the
language bias in MLIR models. Thus, KD-SPD is less biased toward
languages when ranking documents from a multilingual collection.
Moreover, because the query embedding is fixed given the same
query, the low mean and standard deviation values indicate that KD-
SPD is able to generate similar embeddings for parallel documents
in different languages. This matches the model design purpose.
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Figure 4: Parallel document analysis for MLIR models.

5.4 Ablation Study

In this section, we conduct experiments on two aspects that could
affect the performance of KD-SPD: The number of layers in the
decoder and the choice of the teacher model for distillation.
Decoder architecture. Following the idea of weights share in
Transformers [12, 27], we replace the multi-layer (6-layer) decoder
with a recurrent decoder block. Instead of N distinct layers, a de-
coder block has the same architecture as one decoder layer and
is called recurrently for N = 12 steps. The weights of a decoder
block are shared between steps. After each step, we add a temporal
embedding 7 € R'*? to the hidden states.

ngl =15+ DecoderBlock(ans Tg,)

This approach significantly reduces the size of model parameters.
Named universal transformer-based SPD (UTSPD), Table 4 shows
its performance, compared to KD-Encoder and KD-SPD. We can see
that only with 2.1% more parameters, KD-UTSPD performs better
than KD-Encoder. By reducing the parameter size, we show that the
performance gain in SPD mainly relies on the prompt design and
decoder component based on the cross-attention module. Because
reducing parameters limits the model’s generalization ability, there
is a performance drop from distinct layers to shared weights.

Teacher model The teacher model bounds the retrieval perfor-
mance of KD-SPD. We hypothesize that a better teacher model in
the English domain can lead to a better SPD model for MLIR task.
Based on the leaderboard of MS MARCO passage ranking, we re-
place ANCE [73] with coCondenser [18] for knowledge distillation.
To be consistent with coCondenser, we also change the pre-trained
multilingual language model used in SPD from XLM-R to mBERT.
The evaluation of SPD trained with different teacher models is
shown in Table 5. In general, KD-SPD learned from coCondenser
performs better than the one learned from ANCE. This suggests
that improvements with respect to the retrieval performance in the
English domain can be transferred to MLIR task via KD-SPD.

5.5 Zero-shot Transfer

We explore the zero-shot ability of KD-SPD. For documents in
languages that are not observed in the training data, we first define
the language-specific vectors by averaging all trained language-
specific vectors from known languages. Then KD-SPD follows the
same steps as other languages to generate a prompt matrix for the
new language. Hence, observed languages’ knowledge transfers to
the new language via the shared prompt matrix.
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Table 4: Ablation I: Decoder architecture. The numbers in the bracket are differences in percentage to KD-Encoder.

CLEF LAReQA
Model Par;.it;x:ter eQ.
MAP nDCG@10 P@10 MRR R@100 MAP nDCG@10 P@10 MRR R@100
KD-Encoder 278.6M 0.1973 0.3883 0.3594 0.5641 0.4315 0.5931 0.6058 0.5730 0.7673 0.8805
KD-SPD 320.0M (+14.8)  0.2200 (+11.5) 0.4160 (+7.1) 0.3714 (+3.3)  0.6356 (+12.7) 0.4689 (+8.7) 0.6265 (+5.6) 0.6316 (+4.2) 0.6049 (+5.6) 0.7904 (+3.0) 0.8912 (+1.2)
KD-UTSPD  2845M (+2.1)  0.2075 (+5.2)  0.4023 (+3.6) 0.3722 (+3.6)  0.5964 (+5.7)  0.4576 (+6.0) 0.6212 (+4.7) 0.6279 (+3.6) 0.5996 (+4.6) 0.7674 (+0.0) 0.8870 (+0.7)

Table 5: Ablation II: Effect of Teacher model. Significance tests with respect to KD-SPD (ANCE) are marked in a.

CLEF LAReQA
Teacher
MAP nDCG@10 P@10 MRR R@100 MAP nDCG@10 P@10 MRR R@100
KD-SPD (ANCE) 0.2200 0.4160 0.3714 0.6356 0.4689 0.6265 0.6316 0.6049  0.7904 0.8912
KD-SPD (coCondenser) 0.24874  0.4546%  0.4008% 0.68264 0.49764 0.6501%  0.6694%  0.6436* 08012 0.9172

Table 6: Zero-shot CLIR: English-to-Finnish. Significance
tests are marked by { (over mDPR) and I (over KD-Encoder).

Retrieval CLEF Finnish

Method MAP  nDCG@10 P@10 MRR  R@100
SMT 0.0739 0.1179 00900 01390  0.1828
NMT 0.1613 0.2562 0.1560 0.4591 0.4251
mDPR 0.1682 0.2143 01300 03095 05010
KD-Encoder ~ 0.1845 0.2796 01920 04537 05237
KD-SPD 022867 033217 0.2220%F 0.50927F 0.59587F

Table 7: Zero-shot MLIR. Significance tests are marked by
(over mDPR) and i (over KD-Encoder).

CLEF DE-IT-FI

Retrieval

Method MAP  nDCG@10 P@10 MRR  R@100
SMT+Round Robin 0.1099 0.2245 0.208 0.4096  0.2909
SMT+Score 0.1269 0.2242 0.218 03726 02974
NMT+Round Robin ~ 0.1263 0.2748 0.254 05039 03384
NMT+Score 0.1447 0.2806 0.258 05101 0.344
mDPR+Round Robin ~ 0.1481 0.2734 0.268 0391 0.3974
mDPR+Score 0.1728 0.3002 0.282 04816 0.4083
mDPR 0.1952 0.3377 0.306 05175 0.4107
KD-Encoder 0.1963 0.4262 0.382 06753  0.4152
KD-SPD 02174 0.4494™  0.4100™F 0.7099F  0.45457F

In this study, we focus on Finnish as the target language and use
a collection of 54,694 Finnish documents from the CLEF dataset.
It’s worth mentioning that Finnish, a member of the Uralic lan-
guage family, is distinct from the 15 languages used in training.
Among the 133 English queries in the CLEF dataset, 50 have rele-
vant annotations in the Finnish collection, forming a new set of test
queries. The results in Table 6 show the performance of KD-SPD in
Cross-Language Information Retrieval (CLIR) between English and
Finnish, and we observe that KD-SPD significantly outperforms
other methods, demonstrating the transferability of knowledge
from the prompt matrices to new languages. Next, we expand the
evaluation to a more challenging setting, combining Finnish with
German and Italian. The resulting collection contains both observed
and unobserved languages. Table 7 shows KD-SPD’s zero-shot per-
formance in the multilingual information retrieval (MLIR) setting,

where it still achieves the best results. This highlights KD-SPD’s
strong ability to transfer knowledge in a zero-shot scenario.

6 CONCLUSIONS AND FUTURE WORK

In this work, we presented a knowledge distillation (KD) frame-
work based on soft prompt decoding (SPD) to address the multi-
lingual information retrieval (MLIR) task. Using the soft prompt
matrix as a task indicator, KD-SPD can implicitly translate doc-
uments from multiple languages into the same embedding space
as the query language. We proposed prompt decomposition to en-
able efficient knowledge sharing across all source languages. Our
knowledge distillation framework transfers knowledge from a well-
trained monolingual retrieval model to KD-SPD, greatly reducing
the retrieval data requirements for training MLIR models. Our com-
prehensive experimental results show that KD-SPD significantly
outperforms other baselines on three qualitatively different MLIR
evaluation datasets. Further analysis demonstrates that KD-SPD
has less language bias and better zero-shot transfer ability toward
new languages. For future work, as a general knowledge transfer
framework, we are interested in extending KD-SPD to transfer other
monolingual task-specific knowledge into the multilingual space.
Exploring the applications of KD-SPD to multimodal information
retrieval is also an exciting future direction.
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