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ABSTRACT 
When information retrieval systems return a ranked list of results 
in response to a query, they may be choosing from a large set of 
candidate results that are equally useful and relevant. This means 
we might be able to identify a diference between rankers A and 
B, where ranker A systematically prefers a certain type of relevant 
results. Ranker A may have this systematic diference (diferent 
“vibe”) without having systematically better or worse results ac-
cording to standard information retrieval metrics. We frst show 
that a vibe diference can exist, comparing two publicly available 
rankers, where the one that is trained on health-related queries will 
systematically prefer health-related results, even for non-health 
queries. We defne a vibe metric that lets us see the words that a 
ranker prefers. We investigate the vibe of search engine clicks vs. 
human labels. We perform an initial study into correcting for vibe 
diferences to make ranker A more like ranker B via changes in 
negative sampling during training. 
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1 INTRODUCTION 
Bias in machine learning has been studied in application areas such 
as banking, healthcare, criminal justice, hiring, facial recognition, 
and others [29]. Unfair outcomes that arise in such cases might 
be due to bias in the data. For example, if there were already a 
bias against women in a historic dataset of human hiring decisions, 
a machine learned hiring predictor might also be biased against 
women. Machine learning algorithms may also create their own 
unfair outcomes or amplify the existing bias in the training data. 
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When humans are in the loop using an ML system, they can rein-
force existing biases and introduce their own. For example, in a Web 
search engine, users tend to click the results that were surfaced by 
the existing ML algorithm [11, 14, 20], and among those top-ranked 
results, they will also prefer results that are most “attractive” [47]. 
These clicks can then become training data for the next iteration of 
the ML model. 

Responsible AI standards tend to suggest checking for bias, ex-
plaining model predictions, and monitoring model outcomes with 
human review.1 Understanding, detecting, and monitoring bias al-
low the machine learning practitioner to take action, attempting 
to correct the bias. They can particularly focus on cases where the 
bias could cause harm. 

For information retrieval systems such as Web search engines, 
we are not yet at the stage where we have standard tools for detect-
ing and monitoring bias. It is also possible for us still to be surprised 
by new sources of bias, which may be application-dependent. We 
may discover diferent potential biases in an e-commerce website 
search, a Web-scale engine, and a health-related website search. 
Diferent services have diferent purposes and diferent user audi-
ences around the world. Each user audience may have preferences 
for particular topic areas, content publishers, or clickbait terms. 
A machine-learned ranker, trained from such clicks, will return 
more results with those topics, publishers, and terms. This general 
pattern that the ML model is powerful enough to learn a bias is true 
whether the training data is user clicks or labels from relevance 
judges. 

Studies have already started to identify biases that are detectable 
in specifc search systems. It’s possible for a search system to have 
gender bias when trained on label data that prefers male results, 
and applying a more powerful machine learning model intensifes 
the bias [40]. When users are searching for information and already 
have some belief of what the answer is, they are more likely to click 
a result that confrms their bias [45]. The problem is that there are 
many potential types of bias in diferent search systems on the Web 
and elsewhere, and the kinds of bias that arise may be application-
dependent. This suggests that human review is needed to identify 
potential biases and harms, and rather than looking at a particular 
bias only (such as gender bias), the reviewer should be seeing a 
general overview of the patterns in search results, whatever they 
may be. 

1Links to Responsible AI standards: • https://blogs.microsoft.com/wp-content/ 
uploads/prod/sites/5/2022/06/Microsoft-Responsible-AI-Standard-v2-General-
Requirements-3.pdf • https://ai.google/responsibilities/responsible-ai-practices/ 
• https://aws.amazon.com/machine-learning/responsible-machine-learning/ 
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This paper defnes the vibe of a search system as a relative com-
parison to a baseline search system. For example, comparing a more 
powerful model, which may be amplifying bias, to a less powerful 
baseline. For example, comparing a model trained on clicks to a 
model not trained on clicks. The vibe is measured based on frst run-
ning a large number of queries in the two systems. Then we suggest 
several prototype vibe metrics, which compare the paired results 
of the systems and look for consistent diferences that are query-
independent. The goal is to fnd the largest and most systematic 
diferences across the query set for human review. 

We present three case studies, one using publicly available deep 
learning rankers, showing we can compare rankers that are readily 
available regardless of their architecture by comparing the vocab-
ulary diferences in their paired output rankings. In the second 
case study, we show that adding a health/medical-related vibe to 
a ranker is possible. The other case study compares proprietary 
rankers in Web search that have the same architecture but were 
trained on diferent types of data. In these case studies, we show 
that diferences in the underlying training data are refected in dif-
ferences in ranker vibe when we run a separate set of test queries. 
We quantify the user impact in simple ways; for example, given the 
vibe diference, how often do we also observe a diference in the 
top-ranked results that users see? Finally, having detected a vibe 
diference, in our open source case study we demonstrate that we 
can train the ranker with diferent negative sampling, to reduce the 
vibe diference from the baseline ranker, as a proof of concept that 
vibe is not only detectable but correctable. 
2 RELATED WORK 

2.1 Gender Bias in Information Retrieval 
Rekabsaz et al. [40] recently introduced a framework for measur-
ing gender bias in retrieval models. They defned a set of highly 
gender-related words to measure document female/male, namely 
the degree of female/male-related concepts in a document. Also, 
they represented two retrieval gender bias metrics. They provided a 
set of non-gendered queries among the queries of the development 
set of MS MARCO passage retrieval collection. They showed that 
the neural ranking models have higher degrees of bias than the 
BM25 retrieval model. Their results show the existence of signif-
cant gender bias (towards males) in the retrieved documents of all 
the models and confrm that the neural ranking models, despite bet-
ter retrieval performance, overall intensify gender bias in retrieval 
results toward males compared with BM25. 

Bigdeli et al. [7] proposed a simple yet efective sampling strategy 
for training ranking models that would allow the rankers to main-
tain their retrieval efectiveness while reducing gender biases. By 
using this intuition that neural ranking models are quite sensitive 
to the adopted negative sampling strategy, the authors proposed a 
systematic negative sampling strategy, exposing the neural rankers 
to representations of gender bias that need to be avoided when 
retrieving documents. 

Fabris et al. [15] proposed the Gender Stereotype Reinforcement 
(GSR) metric to quantify the tendency of a search engine ranked 
list support gender stereotypes. GRS exploits gender bias encoded 
in Word Embeddings [30]. The authors examine information re-
trieval ranking algorithms from diferent families and measure each 
system’s performance and GRS on TREC collections [22]. 

Zhao et al. [51] analyzed gender bias in ELMo’s contextual-
ized word vectors [41]. The authors conducted that training data 
for ELMo contains signifcantly more male than female entities, 
and trained ELMo embeddings encode gender information. They 
showed that ELMo encodes information about male and female 
entities’ genders diferently. Otterbacher et al. [37] examined how 
personality characteristics afect the ability of the users to recog-
nize gender-biased image search results. Chen et al. [9] investigated 
gender inequality in resume search engines. The authors showed 
negative correlations between rank and inferred gender in their 
dataset. They concluded that even when controlling for all other 
visible candidate features, there is a slight penalty against feminine 
candidates. 

2.2 Position Bias in Information Retrieval 
Multiple eye-tracking and other empirical investigations have 
shown position bias in search rankings [11, 14, 20]. These studies 
show that top-ranked results are much more likely to be viewed and 
clicked than those at lower ranks. The efect still exists even if the 
items in various rankings are randomly permuted [25]. These fnd-
ings prompted the development of numerous click models and other 
position bias-aware re-ranking techniques [10, 26, 43]. Wang et al. 
[44] studied the problem of position bias estimation for unbiased 
learning-to-rank algorithms. They proposed a new regression-based 
expectation-maximization (EM) algorithm to estimate position bias. 
Ai et al. [3] proposed a dual learning algorithm for automatic un-
biased learning to rank. The proposed algorithm jointly learns 
unbiased propensity and ranking models from user clicks. Wang et 
al. [43] introduced a new unbiased learning-to-rank framework by 
addressing the bias as a counterfactual efect. Agarwal et al. [2] pre-
sented the frst method for generating reliable propensity estimates 
without manual relevance assessments, disruptive interventions, 
or restrictive relevance modeling assumptions. 

2.3 Fairness 
Concerns regarding fairness and bias have lately increased due 
to the increasing prevalence of data-driven learning models in 
algorithmic decision-making2. 

Dixon et al. [13] introduced methods to quantify and mitigate 
unintended bias in text classifcation models. The authors defned 
a working defnition of unintended bias in the classifcation task. 
Based on their defnition, a model contains unintentional bias if 
it performs better for comments about some groups than others. 
They proposed a simple and novel technique to reduce the bias by 
strategically adding data. They showed this strategy could mitigate 
the unintended biases in a model without harming the overall model 
quality. 

Grag et al. [19] provided a counterfactual token fairness measure 
for counterfactual computing fairness in the text classifcation task. 
The authors proposed three methods for counterfactual token fair-
ness as follows: 1) blindness which substitutes all identity tokens 
with a special IDENTITY token; 2) counterfactual augmentation, 
which involves augmenting the model’s training set with gener-
ated counterfactual examples; and 3) counterfactual logit pairing 

2https://facctconference.org/ 
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which encourages the model to be robust to identity by adding a 
robustness term to the training loss. 

Zafar et al. [48] proposed a new notion of unfairness, and dis-
parate mistreatment, which is defned in terms of misclassifcation 
rates. The authors then suggested practical metrics for decision 
boundary-based classifers that account for disparate maltreatment. 
Zemel et al. [50] proposed a learning algorithm for fair classifca-
tion that attains both group and individual fairness. Abede et al. [1] 
investigated mechanisms for fair division of resources via social 
comparison. 

2.3.1 Fairness in Ranking. Fair-ranking research from the past is 
rare and recent. Yang et al. [46] showed how to incorporate various 
notions of group fairness into ranking quality measures. Zehlike 
et al. [49] introduced methods that maintain a high level of rank-
ing quality while diversifying the ranking results in terms of the 
inclusion of members from various groups in the ranking prefxes. 
Celis et al. [8] studied this problem from a theoretical perspective, 
with the results provided for the problem’s computational complex-
ity. Singh and Joachims [42] introduced a notion of group fairness 
based on equality of exposure for demographic groups. 

Rekabsaz et al. [39] provided a novel framework to measure 
the fairness in the retrieved text contents of ranking models. They 
also proposed a novel fairness metric of a ranked list. Then, they 
introduced a new model to mitigate biases by approaching deep 
retrieval models with an adversarial training method. The authors 
showed that the fairness of BERT rankers signifcantly improves 
by applying the proposed adversarial training. 

3 METHODOLOGY 
When ranker � and ranker � return relevant results, they can 
return diferent “favor” or “feel”. For example, for a health query, 
there is a big diference between a relevant document from the 
CDC (Centers for Disease Control and Prevention) and a relevant 
document that is from a questionable source and trying to sell you a 
miracle cure. Both are topically relevant, but a ranker can be trained 
that systematically favors one type of relevance or another. 

In this section, we frst defne the systematic diference between 
two rankers, called “vibe”. Then we provide diferent approaches 
and tools to characterize, quantify and even correct the vibe. 

3.1 Vibe: Systematic Diference Between two 
Rankers 

In an information retrieval system, for example, a search engine, 
we are supposed to rank a collection of items and show the most 
relevant of them to the user. The number of top items we can show 
the user in each step varies based on applications. For example, in 
a search engine, we typically provide the top 10 documents on the 
frst page to the user, and these top 10 documents can signifcantly 
impact user satisfaction with the system. 

By running a given query in diferent information retrieval sys-
tems (i.e., rankers), we might get diferent rank lists (e.g., top 10 
documents) but equally relevant to the user’s query. If this difer-
ence is systematic and not random, we might be able to detect it and 
even correct it if needed. In other words, two rankers might system-
atically promote diferent types of relevant documents across many 
queries. We call these kinds of diferences between two rankers 

Figure 1: An illustration of approach one. 

“vibe”3. For example, a ranker tends to show more health-related 
relevant documents to the user. Gender bias [40] in retrieval mod-
els can be considered as a specifc example of the vibe. Another 
example of detecting vibe is fnding the diference between two 
rankers, where rankers � and � are trained on clicks vs. judgments, 
respectively. 

3.2 Detecting Vibe 
In this section, we propose three approaches for detecting vibe 
diferences between two rankers. 

Let � and � be two publicly available rankers. To detect the vibe 
diference between two rankers, we frst need to specify a large set 
of queries � = {�1, �2, ..., � |� | }. For each query, we get the top � 
documents retrieved by each ranker e.g., � (�� ,�) = {�1, �2, ..., �� }. 
Using these ranking lists for all queries computed by two rankers, 
we propose three approaches to calculate the vibe diference be-
tween two rankers in the following sections. The frst two ap-
proaches use the Kullback-Leibler (KL) divergence between two 
relevance-based language models to fnd the contribution of each 
term in a ranker compared to another. In other words, these two 
approaches use the KL divergence method to compare the relevance-
based language model of diferent rankers, which is calculated difer-
ently in the two approaches. The third approach is a novel method 
based on term frequency competition to fnd the most contributed 
terms in fnding the vibe diference between two rankers. 

3.2.1 Approach one: KL-Agg. In this approach, we frst compute 
the relevance-based language model [5, 23, 27, 32–35] for a ranking 
list returned by each ranker for each query, i.e., � (�� ,�) as follows: 

� (�� ,�) = ��1(��� ,�) (1) 

where ��1(.) is a well-known and state-of-the-art variant of the 
relevance-based language models proposed by Lavrenko and Croft 
[27]. Our goal is to compare language models of two rankers to see 
how ranker � difers from ranker � across many queries. To achieve 
this goal, we use “KL contribution” to compare two relevance-based 

3Vibe defnition at Merriam-Webster Unabridged Dictionary: “A distinctive feeling or 
quality capable of being sensed”. 
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language models, i.e., � (�� ,�) and � (�� ,�) , and fnd out the terms 
contribute most to the KL divergence of � from � (or vice versa). 
Given relevance-based language models of two rankers for a query, 
their KL divergence is: ∑ � (� |� (�� ,�) )
��� (� (�� ,�) , � (�� ,�) ) = � (� |� (�� ,�) ). log( ), (2)

� (� |� (�� ,�) )� ∈T 

where T is the set of all terms in the relevance-based language 
model of the ranker � for query �� , and � (.) denotes term � ’s 
probability of occurrence under the distribution � (�� ,�) and � (�� ,� ) . 

To fnd the impact of a term � in detecting vibe diferences 
between a ranker � and a ranker �, we can aggregate Eq.2 over the 
query set � as follows: ∑ � (� |� (�,�) )

��� (��� ) = � (� |� (�,�) ). log( ) . (3)
� (� |� (�,�) )� ∈� 

��� (��� ) computes the impact of each term � in the ranker 
� compared to the ranker � over all queries. In our experiments, 
we fnd that there is a chance that a term has a high impact on 
both rankers compared to another one, i.e., has a high value in two 
directions ��� (��� ) and ��� (���). The reason is that a word 
may be a high-impact term in some queries in one ranker and has a 
high score in other queries in another ranker. To solve this problem, 
we compute Eq.3 in both directions (i.e., ranker � compared to 
ranker � and vice versa) and get a diference to compute the true 
impact of a term in a ranker compared to another one as follows: 

��� (��� ) = ��� (��� ) − ��� (���)∑ � (� |� (�,�) )
= � (� |� (�,�) ). log( )

� (� |� (�,�) )� ∈� ∑ � (� |� (�,�) )− � (� |� (�,� ) ). log( )
� (� |� (�,�) )� ∈� ∑ � (� |� (�,�) )

= � (� |� (�,�) ). log( )
� (� |� (�,�) )� ∈� ∑ � (� |� (�,�) )+ � (� |� (�,�) ). log( )
� (� |� (�,�) )� ∈� ∑ � (� |� (�,�) )

= (� (� |� (�,�) ) + � (� |� (�,� ) )). log( ) . 
� (� |� (�,� ) )� ∈� 

(4) 

��� (��� ) has a high value for terms that have high KL contri-
bution in the ranker � but have a low impact in another direction 
(i.e., in the ranker � compared to the ranker �). 

Using the impact function for terms, we compute a vibe metric 
to fnd the vibe diference between rankers � and � as follows: ∑ 1 

���� (�, �) = ��� (��� ), (5)|� | 
� ∈T� 

where T� is the set of all terms in the top retrieved documents for 
all queries by ranker �. 

Likewise, we can defne ���� (�, �) as follows: 

Figure 2: An illustration of approach two. 

∑ 1 
���� (�, �) = ��� (���) . (6)|� | 

� ∈T� 

Figure 1 illustrates the approach one workfow. 

3.2.2 Approach two: Agg-KL. In this approach, we frst aggre-
gate relevance-based language models of all queries to build a uni-
fed language model for each ranker as follows: 

� (�1,�) + � (�2,�) + ... + � (� |� |,�)
� (�,�) = , (7)|� |

and then compute the KL divergence between them to fnd the vibe 
diference between two rankers. 

By computing � (�,�) , we can show the impact of a term in a 
ranker compared to another directly. Therefore, the vibe diference 
between two rankers can be computed as follows:∑ 

� ��� (�, �) = ��� (� (�,�) , � (�,�) ) . (8) 
� ∈T� 

Figure 2 shows the approach two workfow. 

3.2.3 Approach three: TF Competition. Approach three is dif-
ferent than the previous two approaches. This approach treats each 
query as a competition between two rankers, where a high term 
frequency (TF) in the retrieved documents wins. More specifcally, 
to compute the impact of a term, we count the number of queries 
that the TF of that term was higher in a ranker than another. For 
example, for the word “gov”, there were 50 queries where TF was 
higher than in a ranker compared to another, and 200 queries where 
the TF was higher than another. In our experiments, we fnd that 
this approach can efectively fnd terms that are promoted by a 
ranker across many queries. 

3.3 Vibe Examples 
This section shows some examples of vibe diferences between 
the two rankers. We use the development (dev) set consisting of 
6, 980 general queries from the MS MARCO4 [6] passage dataset 
to get the results of two frst examples, i.e., examples 1 and 2. For 
4MicroSoft MAchine Reading COmprehension 
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the third example, we use a set of 6, 082 English queries from a 
major web search engine to show the vibe diference between click-
based and judgment-based proprietary rankers. We show these 
examples using our frst approach, i.e., KL-Agg, but we had similar 
observations using two other approaches. 

3.3.1 Example 1: Comparing two publicly available rankers 
on non-health/medical queries. 
For detecting the vibe diference between two rankers, we select 
two publicly available neural rankers: 1) Vanilla BERT (VBERT) 
[12], which is a contextualized language model and a powerful 
neural model that has been shown to be efective for ranking, and 
2) MonoT5 [36], which scores documents using a causal language 
model. The frst model, i.e., VBERT, is trained on health/medical-
related queries from the MS MARCO dataset, and MonoT5 is trained 
on general queries. Our goal in this example is to show that there is 
a health-related vibe in VBERT compared to MonoT5 when we need 
to run non-health queries to these systems. In other words, VBERT 
promotes health-related documents even if we run a non-health 
query. 

We use VBERT and MonoT5 to run the dev set consisting of 
6, 980 general queries from the MS MARCO passage dataset [6]. 
The most contributed terms and their scores computed by the frst 
approach Eq.4 are reported in Table 1. According to this table, our 
approach can detect health/medical words (e.g., “medic”, “organ”, or 
“bodi”, note that the words are stemmed using the Porter stemmer) 
when we compare VBERT against MonoT5. This shows that the 
VBERT model has a vibe related to health and prefers to select med-
ical or health-related documents. This can be very harmful to the 
system, especially when we need to run a non-health query to the 
retrieval system with a vibe related to health/medical. As an exam-
ple, for a non-health query “what is an aml surveillance analyst”, the 
ten most contributed terms in the vibe diference between VBERT 
and MonoT5 are {‘blood’, ‘bloodforming’, ‘cell’, ‘initi’, ‘myeloid’, 
‘develop’, ‘type’, ‘leukemia’, ‘lymphocyt’, ‘procedur’}, which are 
mostly about health/medical. 

If we compare MonoT5 against VBERT, the most contributed 
words are often numbers or words related to numbers (e.g., “5”, 
“10”, or “vote”). This shows that the MonoT5 has a vibe related to 
numbers for retrieving documents. 
3.3.2 Example 2: Adding a vibe to a ranker. 
In this example, we aim to add a health/medical-related vibe to the 
MonoT5 model. More specifcally, by adding 2000 medical-related 
queries (which are randomly selected from 78895 medical-related 
queries from the MS MARCO dataset) to the training of MonoT5 
(named MediMonoT5), this model prefers to retrieve documents 
that have medical topics, even for non-health/medical queries. 

Our results for this example are reported in Table 2. Like the 
previous example, we report the most contributed terms and their 
scores in this Table. As a frst observation, the impact scores of 
terms, even for most contributed terms, are very small, e.g., 8� − 5. 
The reason is that the diference between the two models is very 
small to ensure that the performance of the two systems is the same. 
In other words, we get the exact same performance for two models 
by running the dev set from the MS MARCO dataset but with a 
diferent vibe. According to this table, our approach detects medical 
words by comparing MediMonoT5 against MonoT5, e.g., “eunuch”, 
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Table 1: Example 1, most contributed terms and their scores 
in KL divergence between VBERT and MonoT5 based on Eq.4. 
Words are stemmed using the Porter stemmer. 

VBERT VS. MonoT5 MonoT5 VS. VBERT 

(‘defnit’,19.7), (‘dictionari’,10.4), (‘answer’,8.0), (‘noun’, 7.2), 
(‘type’,8.4), (‘exampl’,7.0), (‘sai’,6.3), (‘5’,6.0), 
(‘refer’,6.4), (‘depend’,5.5), (‘10’,5.8), (‘vote’,4.7), 
(‘medic’,5.3), (‘organ’,5.1), (‘0’,4.7), (‘now’,4.6), 
(‘translat’,4.7), (‘bodi’,4.7), (‘don’,4.3), (‘000’,3.8), 
(‘function’,4.3), (‘typic’,4.2), (‘see’,3.5), (‘think’,3.4), 

(‘term’,4.2), (‘temperatur’,4.1), (‘home’,3.3), (‘just’,3.2), 
(‘food’,4.1), (‘occur’,4.0), (‘percent’,3.2), (‘12’,3.1), 
(‘made’,3.9), (‘diet’,3.7), (‘onli’,3.1), (‘9’,2.9), 
(‘unit’,3.7), (‘salari’,3.6), (‘still’,2.8), (‘degree’,2.7), 
(‘english’,3.5), (‘high’,3.5), (‘15’,2.6), (‘22’,2.6), 

(‘largest’,3.5), (‘symptom’,3.5) (‘happen’,2.5), (‘ve’,2.4) 

Table 2: Example 2, adding some medical-related queries to 
the training of MonoT5 to change its vibe without decreasing 
its performance. Words are stemmed using the Porter stem-
mer. 

MediMonoT5 VS. MonoT5 MonoT5 VS. MediMonoT5 

(‘eunuch’,8e-5), (‘mai’,6e-5), (‘noun’,7e-5), (‘state’,6e-5), 
(‘record’,6e-5), (‘new’,6e-5), (‘consid’,6e-5), (‘stand’,6e-5), 
(‘earli’,6e-5), (‘incid’,6e-5), (‘brought’,6e-5), (‘lab’,6e-5), 
(‘work’,5e-5), (‘world’,5e-5), (‘dai’,5e-5), (‘live’,5e-5), 
(‘process’,5e-5), (‘food’,5e-5), (‘problem’,5e-5), (‘anim’,5e-5), 

(‘chang’,5e-5), (‘symptom’,5e-5), (‘john’,5e-5), (‘count’,5e-5), 
(‘grow’,5e-5), (‘articl’,5e-5), (‘rise’,5e-5), (‘anti’,5e-5), 
(‘devic’,5e-5), (‘relat’,5e-5), (‘onli’,4e-5), (‘found’,4e-5), 
(‘true’,5e-5), (‘vessel’,5e-5), (‘month’,4e-5), (‘requir’,4e-5), 

(‘dzuma’,5e-5), (‘ascot’,5e-5), (‘group’,4e-5), (‘make’,4e-5), 
(‘amina’,5e-5), (‘5’,4e-5), (‘side’,4e-5), (‘now’,4e-5), 

(‘averag’,4e-5), (‘made’,4e-5) (‘pai’,4e-5), (‘full’,4e-5) 

“incid”, and “symptom”. This means that MediMonoT5 prefers to 
select documents with medical words more than MonoT5 under the 
same conditions. This shows that we can add an arbitrary vibe to a 
model by adding a topic-specifc query set to the model’s training. 
This can be useful for retrieving documents for queries in a topic 
but harmful for retrieving documents for general queries. 

3.3.3 Example 3: Comparing click-based and judgment-
based rankers. 
In this case study, we compare two proprietary rankers in Web 
search that have the same architecture but were trained on two 
diferent types of data, i.e., clicks and judgments. For this case study, 
we use 6, 082 English queries from a major web search engine. 

The results of our frst approach for this case study are reported 
in Table 3. The interesting observations in these results are as 
follows: 

• Sites that require the login penalized by judges: An 
interesting observation here is seeing words like: “Quizlet”, 
“newgen”, “tsp”, “myhsc”, and “irctc”. For example, Quizlet 
is a website used for studying and learning, and one must 
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Table 3: Example 3, most contributed terms and their scores 
in KL divergence between click-based and judgment-based 
rankers. 

Click VS. Judgment Judgment VS. Click 

(‘quizlet’,4e-5), (‘jhini’,3e-5), 
(‘newgen’,3e-5), (‘bsel’,3e-5), 

(‘5c’,2e-5), (‘quote’,3e-5), 
(‘hov’,2e-5), (’latinboysextoy’, 2e-5), 

(‘fashcards’,2e-5), (‘chebi’,2e-5), 
(‘profuse’,2e-5), (‘barchart’,2e-5), 
(‘leave’,2e-5), (‘totowa’,2e-5), 
(‘limited’,2e-5), (typescript, 2e-5), 
(‘perino’,2e-5), (‘dictionary’,2e-5), 
(‘tsp’,2e-5), (‘góra’,2e-5), 
(‘d5’,2e-5), (‘mehboob’,2e-5), 

(‘inprivate’,2e-5), (‘hatim’,2e-5), 
(‘l08’,2e-5), (‘zacks’,2e-5), 

(‘fanpage20’,2e-5), (‘silsoft’,2e-5), 
(‘angler’,1e-5), (‘cooktop’,2e-5), 
(‘delta’,1e-5), (‘irrigated’,1e-5), 
(‘quiz’,1e-5), (‘hollins’,1e-5), 
(‘befkre’,1e-5), (‘multiline’,1e-5), 
(‘kasei’,1e-5), (‘induction’,1e-5), 

(‘col3negtelevision’,1e-5), (‘iso100’,1e-5), 
(‘tl’,1e-5), (‘f44’,1e-5), 

(‘myhsc’,1e-5), (‘ftchburg’,1e-5), 
(‘volume’,1e-5), (‘heterogenitet’, 1e-5), 
(‘irctc’,1e-5) (‘rbc’,1e-5) 

sign up or log in to use it. So, users can fnd this website 
useful and click on it; however, human judgment labels it as 
a non-relevant website. 

• Dictionary-style sites overrated by judges: As another 
observation, we fnd that the dictionary-style sites such as 
“chebi”5 are preferred by judges. In other words, the judges 
overrate dictionary-style sites, and the reason is that judges 
label a site that has provided a defnition for the user’s query 
as relevant content. 

• Less authoritative sites are preferred in clicks: Less 
authoritative sites like blogs, forums, and entertainment such 
as “col3negtelevision” and “fanpage20” are more present in 
the click-based system. These are results that users choose to 
click on, but the relevance judges are trained to be skeptical 
of some forms of user-generated content. 

4 CORRECTING VIBE 
After detecting the vibe, in this section, we aim to correct the 
ranker’s vibe to get the same or even better performance. To achieve 
this goal, we need to use an approach that does not require any 
change to the architecture of a ranker. We propose a straightfor-
ward but efcient sampling method for training a ranker that would 
permit the ranker to keep its retrieval efciency while decreasing 

5Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of 
molecular entities focused on ’small’ chemical compounds 
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the vibe. More specifcally, we provide a systematic negative sam-
pling strategy that exposes the ranker to vibe representations that 
should be avoided while retrieving documents. Bigdeli et al. [7] 
introduced a similar approach to reduce gender biases in neural 
rankers. 

To train a neural ranker, we provide two sets of positive and 
negative samples for each query to teach the ranker to prefer pos-
itive samples over negative ones. Most neural rankers utilize ei-
ther the top-retrieved documents by a fast ranker such as BM25 
[4, 16, 31] or random documents as a set of negative documents 
[17, 18, 21, 28, 38]. 

Let D���� be the original pool for selecting negative samples in 
training a neural ranker. We defne another source set for selecting 
negative samples D� ��� , which includes all negative documents 
with high-impact terms in the vibe of a ranker. For example, if we 
already know that a ranker has a health vibe and promotes docu-
ments with the “organ” word, D� ��� would be a set of documents 
containing the “organ” term. To choose these high-impact terms 
to use in selecting negative sampling documents, we get the vibe 
diference between the ranker � and a baseline search system such 
as BM25 using Eq.5 and fnd the top � terms as follows: 

W� = {�� ∈ ������ (T�) | 1 ≤ � ≤ �} (9) 

where ������ (.) returns a sorted list in descending order based on 
impacts of words computed by Eq.4. Then, we utilize these words 
in selecting negative documents as follows: 

D� ��� = {� ∈ D���� | W� ∩ � ≠ ∅}. (10) 

According to this question, we select negative documents that con-
tain at least one word from high-impact terms in the vibe diference 
between the ranker � and BM25, i.e., W� . 

To form the fnal negative samples, we use a free-parameter �, 
which shows what percentage of the documents are selected from 
the vibe documents D� ��� and the rest (i.e., 1 − �) from the original 
pool D���� . 

5 EXPERIMENTS 

5.1 Experiments for correcting vibe 
For these experiments, we aim to that train two models with identi-
cal positive samples but diferent negative samples. To achieve this 
goal, we trained two models based on Vanilla BERT, i.e., VBERT 
(which is pre-trained for the task of language modeling and next 
sentence prediction) [12] as follows: 

• Model one: Tuned-VBERT 
– Use VBERT and fne-tune it using MS MARCO medical 
queries (78, 895 queries) with random negative sampling. 

– Evaluate the trained model on general queries on MS 
MARCO dev set consisting of 6, 980 queries. 

• Model two: Tuned-VBERT-Neg 
– Use VBERT and fne-tune it using MS MARCO medical 
queries with not completely random negative samples, i.e., 
use D� ��� set to include negative documents based on 
their vibe. 

– Evaluate the trained model on general queries on the MA 
MARCO dev set consisting of 6, 980 queries. 
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Table 4: Comparison of the proposed negative sampling and baselines. The superscript ▲ indicates that the improvements BM25 
and Tuned-VBERT statistically signifcant. � is equal to 0.8 in all experiments. It means that 20 percent of negative samples are 
selected randomly. 

Model Type Model Name � MRR MAP P@10 NDCG@10 Vibe(Model,BM25) 

Word Based Retrieval BM25 - 0.1953 0.1920 0.0402 0.2299 -

Neural Ranking Model 
by Random Negative Sampling 

Tuned-VBERT - 0.2558 0.2516 0.0495 0.2985 0.2204 

Our Approach 

Tuned-VBERT-Neg 
Tuned-VBERT-Neg 
Tuned-VBERT-Neg 
Tuned-VBERT-Neg 
Tuned-VBERT-Neg 

1 
5 
15 
25 
35 

0.2648▲ 

0.2637▲ 

0.2582 
0.2711▲ 

0.2645▲ 

0.2608▲ 

0.2591 
0.2546 
0.2671▲ 

0.2601▲ 

0.0509 
0.0512 
0.0506 
0.0506 
0.0513 

0.3090▲ 

0.3087▲ 

0.3036 
0.3133▲ 

0.3094▲ 

0.1416 
0.1442 
0.1339 
0.1477 
0.1514 

Comparing these two models could be a clean way to show the vibe 
can be controlled. We implemented and trained our model using 
PyTerrier6 and OpenNIR7. 

As the baseline for selecting the top � high-impact terms in Eq.9, 
we use BM25, a fast and unsupervised ranking model. Therefore, we 
compute the vibe diference between the model trained on medical 
queries, i.e., Tuned-VBERT and BM25 using Eq.5, and fnd � high-
impact terms by Eq.4 and use them in negative sampling. For exam-

′ ′ple, if � = 5, then W� = {‘���� , ‘����� ′ , ‘����� , ′ ������ ′ , ‘����� ′}
(Note the terms are stemmed by the Porter stemmer) and we select 
documents that have at least one of these terms as negative samples. 
In our experiments, we fnd that the best value of � (the percent-
age of documents selected from the vibe documents D� ��� ) is 0.8. 
In other words, we need to select 20 percent of negative samples 
randomly. 

5.1.1 Evaluation Measures. For evaluating the performance of 
the models, we use mean average precision (MAP) of the top 1000 
documents, mean reciprocal rank (MRR), normalized discounted 
cumulative gain (NDCG) at 10 [24], and precision of the top 10 
retrieved documents (P@10). Statistically signifcant diferences of 
performance are determined using two-tailed paired t-test at 95% 
confdence level (p_value < 0.05). We also report the vibe metric 
between each model and BM25. 

5.1.2 Results and Discussion. The results of this experiment are 
reported in Table 4. This table reports Tuned-VBERT results with 
diferent values for �. The negative sampling process is the only 
diference between Tuned-VBERT and Tuned-VBERT-Neg models, 
and all other parameters are the same in both models. We aim to 
reduce the vibe in the Tuned-VBERT while not reducing the model’s 
performance. The ideal case would be reducing the vibe in a model 
and, at the same time, increasing its’ performance. According to 
Table 4, the Tuned-VBERT-Neg model with diferent values for 
� outperforms Tuned-VBERT in terms of retrieval measures, i.e., 
MAP, MRR, P@10, and NDCG@10. 

An interesting observation is that if we can fnd just one high-
impact term � = 1 and use it to select negative samples by Eq.10, this 
would decrease the vibe of the model and, at the same time, increase 
the system’s performance for general queries. This shows that the 
most contributed term in the vibe diference between Tuned-VBERT 

6https://github.com/terrier-org/pyterrier 
7https://github.com/Georgetown-IR-Lab/OpenNIR 

Table 5: Toning down the vibe of Tuned-VBERT (VBERT 
in short) by comparing this model with BM25 and using 15 
high-impact terms: {“unit”, “state”, “popul”, “includ”, “censu”, 
“answer”, “time”, “citi”, “counti”, “2010”, “town”, “area”, “lan-
guag”, “cell”, “seat”} to select negative samples for train-
ing Tuned-VBERT-Neg (VBERT-Neg in short). Words are 
stemmed using the Porter stemmer. 

VBERT VS. VBERT-Neg VBERT-Neg VS. VBERT 

(‘answer’,15.7), (‘time’,11.9), (‘defnit’,17.2), (‘noun’,12.7), 
(‘frst’,10.7), (‘best’,7.9), (‘bodi’,12.5), (‘type’,11.0), 

(‘popul’,7.8), (‘question’,7.3), (‘cell’,7.7), (‘creat’,6.6), 
(‘citi’,7.1), (‘fnd’,7.1), (‘dictionari’,6.5), (‘organ’,6.4), 
(‘dai’,6.1), (‘averag’,6.0), (‘4’,5.9), (‘acronym’,5.8), 

(‘counti’,6.0), (‘exampl’,5.9), (‘medic’,5.7), (‘form’,5.7), 
(‘surround’,5.6), (‘includ’,5.5), (‘caus’,5.7), (‘peopl’,5.6), 

(‘know’,5.1), (‘sai’,5.0), (‘group’,5.6), (‘system’,5.5), 
(‘town’,4.9), (‘origin’,4.8), (‘design’,5.3), (‘stand’,5.2), 

(‘see’,4.7), (‘recommend’,4.7), (‘program’,5.1), (‘mean’,5.1), 
(‘take’,4.5), (‘common’,4.5), (‘muscl’,4.6), (‘made’,4.5), 
(‘well’,4.5), (‘record’,4.5) (‘contain’,4.4), (‘call’,4.4) 

and BM25 helps to fnd the most helpful negative samples and use 
them in the model’s training. 

By increasing the number of high-impact terms, i.e., �, we see 
improvements in the performance, but we don’t see many changes 
in the vibe diferences. The reason is that a high-impact word can 
strongly correlate with other vibe words (words that have high 
impacts on the vibe diference), and by choosing a few terms, we 
are considering other vibe terms in negative samples. For example, 
the “organ” word strongly correlates with the “body” word, and if 
we just use “organ” to select negative samples, we shouldn’t see 
many changes in the vibe diference compared to when we use 
both. 

An example of this experiment is reported in Table 5. For this 
example, frst, we get the diference between Tuned-VBERT and 
BM25 to fnd 15 high-impact terms, i.e., W� in Eq.9: {“unit”, “state”, 
“popul”, “includ”, “censu”, “answer”, “time”, “citi”, “counti”, “2010”, 
“town”, “area”, “languag”, “cell”, “seat”}. We use these terms to fnd 
the vibe examples, i.e., D� ��� in Eq.10 and train Tuned-VBERT-Neg 
with these negative samples. Then we compare Tuned-VBERT and 
Tuned-VBERT-Neg by Eqs.5 and 6. 
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Figure 3: Efect of � on validation set. 

According to the Table 5, most of terms that we used in nega-
tive samples have disappeared in Tuned-VBERT-Neg, i.e., {“popul”, 
“includ”, “answer”, “time”, “citi”, “counti”, “town”}. This shows that 
Tuned-VBERT-Neg has less vibe than these words, and we are able 
to control the vibe in a model by the negative sampling strategy. The 
only word in the list that still appears in the high-impact terms of 
Tuned-VBERT-Neg compared to Tuned-VBERT is “cell”. The reason 
may be related to the presence of this term in positive examples. 

5.1.3 Analysis of the percentages of documents selected 
from the vibe documents. We evaluate our approach with dif-
ferent values for the percentages of documents from the vibe docu-
ments, i.e., � in negative sampling. Figure 3 shows this experiment’s 
results. When � is equal to 0, it means that we randomly select all 
negative samples in training. By increasing � to 0.4, we see the 
performance drop in all metrics, but when we set the value of � to 
0.6 and 0.8, the performance improves. This shows that the best 
value of � is 0.8, so we need to select 80 percent of negative samples 
from vibe documents and 20 percent of them randomly. 

5.2 Experiment for comparing two proposed 
approaches for detecting vibe 

In this section, we aim to compare the two frst proposed approaches 
for detecting vibe diferences between two rankers. Note that ap-
proach three can just fnd the high-impact terms in the diference 
between the two rankers. However, the two frst approaches can 
provide a quantity as the vibe metric. Therefore, in this section, we 
just compare these two approaches in terms of vibe metric. 

We use the test set from the MS MARCO passage dataset con-
sisting of 200 queries to compare these two approaches. In this 
experiment, we build two relevance-based language models for 
relevant (Rel) and non-relevant (Non-Rel) documents since we need 
to compare the distribution of each model with Rel and Non-Rel 
language models by using the proposed approaches. We use the 
test set instead of the dev set in this experiment since we for the 
test set we have more relevant documents for each query (9, 260 
relevant documents for 200 queries). We also use two publicly avail-
able neural rankers we selected in section 3.3.1, i.e., VBERT and 
MonoT5. 

The results of this experiments are reported in Table 6 and 7. 
According to Table 7, the vibe diference computed by approach 

two between MonoT5 and Rel language models (1.4566) is less than 
VBERT and Rel (1.5041). However, we see the opposite result in 
Table 6. Since we already know that the performance of the MonoT5 
is better than VBERT, we expect that the vibe diference between 
MonoT5 and Rel language models be less than VBERT and Rel. So, 
approach two might be better for computing the vibe metric. A 
similar conclusion can be drawn considering the Non-Rel language 
model. 

On the other hand, in our experiments, we fnd that approach 
one penalized terms that happened in both models. Therefore, it 
might be a better approach for fnding terms that are signifcantly 
diferent in both models, which is suitable for detecting the vibe 
diference. We leave further comparisons between these two models 
for future work. 

Table 6: The vibe metric computed by approach one, i.e., KL-
Agg, between four language models. 

VBERT MonoT5 Rel Non-Rel 
VBERT 0 1.0264 1.2016 3.6913 
MonoT5 0.9381 0 1.2391 3.6900 

Rel 1.2050 1.1867 0 3.7699 
Non-Rel 6.1695 6.2734 6.0073 0 

Table 7: The vibe metric computed by approach two, i.e., Agg-
KL between four language models. 

VBERT MonoT5 Rel Non-Rel 
VBERT 0 0.6881 1.5041 4.5858 
MonoT5 0.7700 0 1.4566 4.7509 

Rel 1.6606 1.7077 0 4.5861 
Non-Rel 3.6432 3.6032 3.6279 0 

6 CONCLUSIONS AND FUTURE WORK 
In this paper, we defne the vibe of a retrieval system as a relative 
comparison to a baseline search system. We proposed three ap-
proaches for detecting the vibe diference between the two ranking 
models. We studied three case studies: 1) comparing two publicly 
available rankers on general queries, 2) adding a vibe to a ranker, 
and 3) comparing click-based and judgment-based rankers. Finally, 
we proposed a practical approach to correct the detected vibe in a 
ranker based on negative sampling. We showed that the proposed 
approach for correcting the vibe could decrease the vibe and, at 
the same time, increase the permanence of the system for general 
queries. 

An interesting future work could be answering this question: 
“How to fnd a subset of negative samples to maximize the evaluation 
measures, e.g., MAP or P@10?”. Finding the correlation between 
the vibe metric and other evaluation measures can be an interesting 
future work. In this paper, we consider terms for detecting and 
correcting the vibe. However, using phrases instead of terms would 
be a more accurate approach. 
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Appendices 

A EXPERIMENTS 

A.1 Comparing click-based and judgment-based 
rankers using approach three (TF 
Competition) 

In this experiment, we aim to compare two proprietary rankers in 
Web search that were trained on two diferent types of data, i.e., 
clicks and judgments using the proposed approach three (see section 
3.2.3). Approach three is to treat each query as a competition, where 
a higher term frequency (TF) wins. For example, for the word “gov” 
there were 74 queries where the TF was higher in the click-based 
ranker and 247 queries where the TF was higher in the judgment-
based ranker. If it has TF= 0 on one side and TF> 0 on the other, 
we count it as a win for the one with some occurrence. The results 
of this experiment are reported in Table 8. Similar to the results of 
approach one (see section 3.3.3), we can see the word “quizlet” get 
a higher score for click-based ranker than judgment-based ranker. 

Our observations from these results are as follows: 
• Authoritative sites are preferred by judges: Authori-
tative sites like “gove”, “edu”, “nih”, “nbci”, and “nlm” are 
preferred by judges since they are reliable sites. 

• Sites that require the login penalized by judges: Similar 
to the results of approach one, we see sites that require the 
login before using their content are penalized by judges. 

• Sites that require technical background penalized by 
judges: sites like Stackoverfow, which is a question-and-
answer website for professional and enthusiast programmers, 
are penalized by judges since they are trying to judge pro-
gramming queries but have no technical background, so they 
don’t understand the query or which sites are good. 

Montazeralghaem, et al. 

• Less authoritative sites are preferred in clicks: Similar to 
the results of approach one, the forums and less authoritative 
sites are getting more clicks from users. 

Table 8: Comparing click-based and judgment-based rankers 
using approach three (TF Competition). 

Word Click Judgment % Click 

gov 74 247 23% 
imdb 10 97 9% 
title 22 105 17% 

quizlet 40 1 98% 
nih 4 41 9% 

fowers 6 45 12% 
cards 52 10 84% 

fashcards 35 3 92% 
net 191 103 65% 
us 282 417 40% 

store 97 157 33% 
hl 8 43 16% 

2021 431 302 59% 
see 160 256 38% 
gl 8 40 17% 

details 80 151 35% 
sur 33 5 87% 

forum 55 17 76% 
threads 34 6 85% 
blogspot 36 7 84% 
profle 29 74 28% 
nlm 4 29 12% 
ncbi 4 29 29% 

stackoverfow 23 2 92% 
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