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ABSTRACT
Web search queries can often be characterized by various facets.
Extracting and generating query facets has various real-world ap-
plications, such as displaying facets to users in a search interface,
search result diversification, clarifying question generation, and en-
abling exploratory search. In this work, we revisit the task of query
facet extraction and generation and study various formulations
of this task, including facet extraction as sequence labeling, facet
generation as autoregressive text generation or extreme multi-label
classification. We conduct extensive experiments and demonstrate
that these approaches lead to complementary sets of facets. We also
explored various aggregation approaches based on relevance and di-
versity to combine the facet sets produced by different formulations
of the task. The approaches presented in this paper outperform
state-of-the-art baselines in terms of both precision and recall. We
confirm the quality of the proposed methods through manual anno-
tation. Since there is no open-source software for facet extraction
and generation, we release a toolkit named Faspect1, that includes
various model implementations for this task.

CCS CONCEPTS
• Information systems→ Information extraction; Query in-
tent; • Computing methodologies → Natural language gener-
ation.
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1 INTRODUCTION
Search queries can often be characterized by multiple facets, which
are implicit or explicit aspects of the query. Implicit facets are often
called latent topics. Explicit facets, on the other hand, are words or
phrases that represent query aspects. For example, given the query
‘James Webb’, some facets can be ‘James Webb satellite’, ‘assembly
of James Webb’, ‘first images from James Webb telescope’, ‘launch of
James Webb’, and‘James E. Webb’. In an open domain setting, facets
1Faspect is available at https://github.com/algoprog/Faspect.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICTIR ’22, July 11–12, 2022, Madrid, Spain
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9412-3/22/07. . . $15.00
https://doi.org/10.1145/3539813.3545138

are diverse and cannot be simply extracted using knowledge bases.
The facets sometimes do not necessarily correspond to attributes,
but they can be considered as query subtopics. For instance for
the search query ‘starting a business’, some facets would be ‘loans’,
‘requirements’, ‘ideas’, ‘tips’, ‘cost’. A plausible solution to facet
extraction or generation is to exploit the top retrieved documents
returned in response to the query [10, 14].

Query facet identification has many applications. The display
of facets for a query can assist the user in refining and specifying
the original query and in exploring various subtopics [19]. In a
conversational search system, explicit facets can be used for asking
clarifying questions [27–29]. Query facets, either implicit or explicit,
can also be used for diversifying the search results [5].

Early methods for open domain query facet extraction focused
on frequency of terms and phrases in the search engine result list
[7, 23, 24]. There also exist some supervised approaches that score
each phrase based on some co-occurrence features [13, 14]. Recently,
Hashemi et al. [10] showed that neural models can be employed
for effective generation of query facets.

In this paper, we revisit this task by providing various formu-
lations of the task and exploring their effectiveness. First, we for-
mulate query facet extraction as a sequence labeling task on the
top retrieved documents. Second, we formulate query facet genera-
tion as an autoregressive text generation problem. Third, we cast it
as an extreme multi-label classification task. Finally, we formulate
it as a prompt-based (or conditioned) text generation from pre-
trained large language models (i.e., GPT-3). We also complement
these formulations by borrowing ideas from simple yet effective
unsupervised facet extraction based on term and phrase frequency.
We study all these formulations from various precision- and recall-
oriented angles. We demonstrate that facet generation models are
more effective than facet extraction models. Our analysis demon-
strates that these formulations provide complementary information.
Following this observation, we explore a number of approaches for
aggregating the facets produced by different models. We show that
a round-robin approach that diversifies the source of generated
facets can lead to significant improvements in terms of recall.

The main contributions of this work include:

(1) Introduction of novel formulations for the facet extraction
and generation task driven by the recent advancements in
text understanding and generation.

(2) Through offline evaluation, we demonstrate that the models
studied in this paper significantly outperform state-of-the-
art baselines.We demonstrate that their combination leads to
improvement in recall. The manual annotation of the results
highlights the high quality of generated facets.

(3) Despite the importance of facet extraction and generation,
to the best of our knowledge, there is no open-source toolkit
for this task. Thus, another contribution of this work is an
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open-source toolkit, named Faspect, that includes various
implementations of facet extraction and generation methods
included in this paper. Such resource will smooth the path
for researchers and practitioners to use facet extraction and
generation in their research.2

2 RELATEDWORK
The majority of the early work on facet extraction focused on
methods that use various external resources. Dakka and Ipeirotis
[4] extracted potential facet terms based on entity hierarchies in
Wikipedia and WordNet. In a subsequent work, Li et al. [16] devel-
oped a faceted retrieval system that displays relevant facets from
Wikipedia hyperlinks and categories. Stoica et al. [22] proposed a
method that generates hierarchical faceted metadata from textual
descriptions of items using hypernym relations in WordNet. Oren
et al. [19] developed a faceted interface for semi-structured RDF
data. Kohlschtter et al. [12] presented a facet extraction method
based on personalized PageRank link analysis and annotated tax-
onomies. While methods using curated resources can work well in
some cases, they cannot scale easily to many domains.

There also exist some unsupervised methods for extracting facets
from unstructured and semi-structured text. Dou et al. [7] devel-
oped one of the first open domain facet extraction systems, named
QDMiner, that discovers query dimensions by aggregating frequent
lists within the top web search results using textual patterns. Wang
et al. [23] extracted facets by clustering similar text fragments from
the top retrieved documents. Based on the clusters and a language
model trained from a query log, they scored each facet. Wei et al.
[24] built a facet tree based on semantic relations between potential
facet words. Deveaud et al. [5] used LDA on retrieved documents to
identify latent (implicit) query concepts. Even though this method
can be useful for retrieval, it fails to extract explicit facets, because
every latent representation is not easily interpretable.

More recently, we have seen the introduction of some super-
vised methods for facet extraction. For example, Kong and Allan
[13] proposed a probabilistic graphical model that learns the likeli-
hood of each candidate term to be a facet term, in addition to the
likelihood of two terms being grouped together in a query facet. In
their subsequent work [14], the authors proposed a graphical model
that optimizes the expected performance measure and uses a per-
formance prediction model that selectively shows facets for some
queries. Most recently, Hashemi et al. [10] proposed an encoder-
decoder transformer-based model that can learn multiple intent
representations for each search query. Thus, their method can be
potentially used for facet generation.

Inspired by all the mentioned methods in this section, we study
various formulations of extractive (supervised and unsupervised)
and generativemethods and their combination. Some of the strongest
methods mentioned in this section are used as baselines in our ex-
periments.

3 FACET EXTRACTION AND GENERATION
Problem Statement: In this paper, we focus on the extraction and
generation of facets from the search engine result page (SERP) for
a given query. Let 𝑇 = {(𝑞1, 𝐷1, 𝐹1), (𝑞2, 𝐷2, 𝐹2), · · · , (𝑞𝑛, 𝐷𝑛, 𝐹𝑛)}
2Faspect is available at https://github.com/algoprog/Faspect.

be a training set containing 𝑛 triplets (𝑞𝑖 , 𝐷𝑖 , 𝐹𝑖 ), where 𝑞𝑖 is an
open domain search query, 𝐷𝑖 = [𝑑𝑖1, 𝑑𝑖2, · · · , 𝑑𝑖𝑘 ] denotes the top
𝑘 documents returned by a retrieval model in response to query
𝑞𝑖 , and 𝐹𝑖 = {𝑓𝑖1, 𝑓𝑖2, · · · , 𝑓𝑖𝑚} is a set of 𝑚 ground truth facets
associated with query 𝑞𝑖 . Each facet 𝑓𝑖 𝑗 may or may not appear
in the top retrieved documents 𝐷𝑖 . The task is to train a facet
extraction, generation, or classification model𝑀𝜃 parameterized by
𝜃 such that for any unseen query 𝑞 with a result list 𝐷 , the model
𝑀𝜃 (𝑞, 𝐷) returns an accurate list of facets.

Overview: In the following, we describe five methods for facet ex-
traction or generation. These formulations provide complementary
information, thus theoretically we can benefit from aggregating
their results. We empirically validate this in our experiments. The
first formulation casts the facet extraction problem as a sequence
labeling task, while the second formulation looks at the facet genera-
tion problem as autoregressive text generation. The third formulation
treats the task as an extreme multi-label classification problem. The
last formulation looks at all the documents in SERP and selects a
number of facets based on a simple frequency-based approach. This
results in a simple unsupervised yet effective solution.

3.1 Facet Extraction as Sequence Labeling
We can cast the facet extraction problem as a sequence labeling
task, which has been successfully used for entity recognition [9],
keyphrase extraction [21], and question answering [26]. To this
aim, for every document 𝑑𝑖 𝑗 in the result list returned in response
to query 𝑞𝑖 , we create a sequence labeling output based on the
BIO tagging format. In more detail, we tokenize the document
𝑑𝑖 𝑗 and assign a label B, I, or O to each token. For every token
𝑤𝑥 ∈ tokenize(𝑑𝑖 𝑗 ), we use the following labeling function:

𝑦𝑖 𝑗𝑥 =


B if𝑤𝑥 is the beginning token for a facet in 𝐹𝑖 .
I if𝑤𝑥 is a facet token other than the beginning token.
O otherwise.

Thus, the label B is always followed by a number of I labels for
terms with more than one token. The reason we use three labels
instead of two, is to be able to deal with edge cases where two
different facets are consecutive words in a document. Note that
the labels B and I are only used if a whole facet text from 𝐹𝑖 is
mentioned in 𝑑𝑖 𝑗 . Therefore, our first component 𝑀𝜃ext classifies
each document token to B, I, or O. We use RoBERTa [6, 17] for
modeling𝑀𝜃ext and apply an MLP with the output dimensionality
of three to each token representation of BERT.We use [CLS] query
tokens [SEP] doc tokens [SEP] as the BERT input and optimize
the following likelihood objective:

𝜃∗ext = argmin
𝜃ext

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

1
|𝑑𝑖 𝑗 |

|𝑑𝑖 𝑗 |∑︁
𝑥=1

− log 𝑝 (𝑦𝑖 𝑗𝑥 |𝑀𝜃ext (𝑞𝑖 , 𝑑𝑖 𝑗 )𝑥 ) (1)

where log𝑝 (𝑦𝑖 𝑗 |𝑀𝜃ext (𝑞𝑖 , 𝑑𝑖 𝑗 )) =
∑ |𝑑𝑖 𝑗 |
𝑥=1 log 𝑝 (𝑦𝑖 𝑗𝑥 |𝑀𝜃ext (𝑞𝑖 , 𝑑𝑖 𝑗 )𝑥 ).

The probability 𝑝 (𝑦𝑖 𝑗𝑥 |𝑀𝜃ext (𝑞𝑖 , 𝑑𝑖 𝑗 )𝑥 can be computed by applying
a softmax operator to the model’s output for the 𝑥 th token.

At inference, we get the model output for all the documents
in 𝐷𝑖 and sort them by frequency. This means that a facet that is
generated multiple times from different documents in SERP gets a
higher weight.
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3.2 Autoregressive Facet Generation
In the second formulation, we perform abstract facet generation
using an autoregressive text generationmodel. To this aim, for every
query 𝑞𝑖 , we concatenate the facets in 𝐹𝑖 using a separation token.
Let𝑦′

𝑖
denote this concatenation. We use BART [15], a Transformer-

based encoder-decoder model for text generation. We train two
variations of this generative model: (1) one variation only takes the
query tokens and generates the facets, and (2) another variation that
takes the query tokens and the document tokens for all documents
in SERP (separated by [SEP]) as input and generates facet tokens
one by one. Therefore, we use the following objective:

𝜃∗gen = argmin
𝜃gen

𝑛∑︁
𝑖=1

1
|𝑦′
𝑖
|

|𝑦′𝑖 |∑︁
𝑥=1

− log 𝑝 (𝑦′𝑖𝑥 |𝑣,𝑦
′
𝑖1, · · · , 𝑦

′
𝑖𝑥−1) (2)

where 𝑣 is the BART encoder’s output.
During inference, we perform autoregressive text generation

with beam search and sampling, conditioning the probability of the
next token on the previous generated tokens.

3.3 Facet Generation as Extreme Multi-Label
Classification

In the last supervised formulation, we treat the facet generation
task as an extreme multi-label text classification problem. The intu-
ition behind this approach is that some facets tend to appear very
frequently across different queries. For instance, the ‘for sale’ facet
can appear for multiple queries related to products, or the facet
‘review’ can be relevant for various queries related to movies, books,
games, etc. After identifying a set of frequent facet terms 𝐹 , we can
train an extreme multi-label classifier to estimate the probability
of relevance of each individual term given a query and relevant
documents. Before picking the most frequent facets, we apply some
pre-processing, removing prepositions and query tokens from the
beginning and end of the facet phrase. For example, the facet term
‘world series of lacrosse 2018’ for the query ‘world series 2018’, would
be normalized to ‘lacrosse’.

In this work, we use RoBERTa [6, 17] to model 𝑀𝜃mcl , and get
the probability of every facet by applying a linear transformation
to the representation of the [CLS] token followed by sigmoid acti-
vation. We train the model by optimizing the binary cross-entropy
objective:

𝜃∗mcl = argmin
𝜃mcl

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(𝑦𝑖 − 1) log(1 − 𝑦′𝑖, 𝑗 ) − 𝑦𝑖 log𝑦′𝑖, 𝑗 (3)

where 𝑦′
𝑖, 𝑗

= 𝑝 (𝑦𝑖 𝑗 |𝑀𝜃mcl (𝑞𝑖 , 𝐷𝑖 )) is the probability of relevance of
the facet 𝑓𝑗 ∈ 𝐹 given the query 𝑞𝑖 and the list of documents𝐷𝑖 , and
it can be computed by applying a sigmoid operator to the model’s
output for the 𝑗 th facet class.

3.4 Facet Generation by Prompting Large
Language Models

In this approach, we investigate the few-shot effectiveness of large-
scale pre-trained autoregressive language models. We experiment
with GPT-3 [1] and generate facets using a task description fol-
lowed by a small number of examples as seen in Figure 1. Through
prompting, we define the number of facets in the beginning of every

Figure 1: Prefix passed to GPT-3 for conditioning the facet
generation. The input query is in green and the generated
output in blue. The first five queries are provided to let GPT-3
for prompting.

example output, so that we can have control over the number of
facets GPT-3 can generate.

3.5 Unsupervised Facet Extraction from SERP
To complement the proposed approaches, we use a simple yet ef-
fective unsupervised method that extracts frequent ngrams from
the returned documents 𝐷𝑖 . We filter out the majority of ngrams
based on a number of criteria. We skip ngrams that start or end
with verbs, prepositions, determiners, or symbols. We also filter out
ngrams that end with pronouns. For this purpose we use the part-
of-speech tags given by the average perceptron tagger of the NLTK
library [18].3 We sort the remaining ngrams using the following
scoring function:

𝑠 (𝑞𝑖 , 𝑓 ′) = (1 + 𝛼 ∗ overlap(𝑞𝑖 , 𝑓 ′)) × freq(𝑓 ′, 𝐷𝑖 ) (4)

where 𝑓 ′ is a facet candidate ngram for query 𝑞𝑖 , the function
overlap(𝑞𝑖 , 𝑓 ′) returns the percentage of words from the query ap-
pearing in 𝑓 ′, freq(𝑓 ′, 𝐷𝑖 ) computes the frequency of ngram 𝑓 ′ in
the top retrieved documents 𝐷𝑖 , and 𝛼 is a hyperparameter. The in-
tuition behind the introduction of the query overlap in this scoring
function is that many facets often appear as prefix or suffix of the
query. For example, for the query ‘cars’, some candidate ngrams
could be ‘cars for sale’ or ‘used cars’ which are viable candidate
facets for this query.

3.6 Facet Lists Aggregation
As we see in our experiments, these aforementioned methods pro-
vide complementary information and thus their aggregation is
expected to lead to improvements, especially in terms of recall.
We explored three aggregation methods: Learning to Rank, MMR
diversification and Round Robin Diversification.
3https://www.nltk.org
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Table 1: Evaluation of facet extraction and generation methods. The superscript * denotes statistically significant improvements
compared to all the baselines in terms of two-tailed paired t-test with Bonferroni correction with 99% confidence.

Term Overlap Exact Match Set BLEU Set BERT-Score
Model Prec. Recall F1 Prec. Recall F1 1-gram 2-gram 3-gram 4-gram Prec. Recall F1

QDist [25] 0.1275 0.1108 0.1121 0.0084 0.0103 0.0087 0.2042 0.1752 0.1578 0.1439 0.5185 0.5114 0.5108
QFI [14] 0.1525 0.1840 0.1606 0.0137 0.0162 0.0155 0.2141 0.1845 0.1597 0.1561 0.5113 0.5174 0.5156
QFJ [14] 0.1504 0.1853 0.1584 0.0143 0.0151 0.0144 0.2144 0.1879 0.1591 0.1540 0.5174 0.5208 0.5185
QDMiner [8] 0.1629 0.1879 0.1690 0.0207 0.0278 0.0223 0.2225 0.1970 0.1680 0.1605 0.5118 0.5170 0.5124
NMIR [10] 0.1856 0.1965 0.1905 0.0354 0.0388 0.0370 0.2524 0.2139 0.1906 0.1741 0.5311 0.5368 0.5344

Facet Generation (query+docs) 0.2014* 0.3084* 0.2361* 0.0417* 0.0655* 0.0496* 0.2972* 0.2339* 0.2030 0.1855* 0.5361* 0.5412* 0.5382*
Facet Generation (query) 0.1816 0.2861* 0.2161* 0.0304* 0.0458* 0.0355* 0.2993* 0.2355* 0.2032 0.1852* 0.5319 0.5401* 0.5356
Sequence Labeling 0.2075* 0.2424* 0.2131* 0.0588* 0.0878* 0.0678* 0.2236 0.1637 0.1380 0.1260 0.5389* 0.5252 0.5314
Extreme Facet Classification 0.0608 0.0626 0.0594 0.0254 0.0373 0.0294 0.1227 0.0638 0.0386 0.0305 0.5455* 0.5182 0.5310
Unsupervised Facet Extraction 0.1748 0.2465* 0.1971 0.0149 0.0287 0.0192 0.2915 0.2203 0.1851 0.1669 0.5260 0.5362 0.5307
GPT-3 (few-shot prompting) 0.0948 0.1396 0.1063 0.0249 0.0354 0.0283 0.1928 0.1185 0.0837 0.0724 0.5373* 0.5201 0.5280

Facet Relevance Ranking: We use a bi-encoder model [11] to
assign a score to each candidate facet for each query and re-rank
them based on their score in descending order. We compute the
facet relevance score using the dot product of the query and facet
representations: sim(𝑞𝑖 , 𝑓𝑖 ) = 𝐸 (𝑞𝑖 ) ·𝐸 (𝑓𝑖 ). For the embedding func-
tion 𝐸, we use the average token embedding of BERT pre-trained
on multiple text similarity tasks [20].4 To find the optimal param-
eters for the embedding function 𝐸, we minimize the following
cross-entropy loss for every positive query-facet pair (𝑞𝑖 , 𝑓 +𝑖 ) in
the MIMICS dataset:

L(𝑞𝑖 , 𝑓 +𝑖 , {𝑓
−
𝑖, 𝑗 }

𝐵−1
𝑗=1 ) = − log

𝑒𝑠𝑖𝑚 (𝑞𝑖 ,𝑓 +𝑖 )

𝑒𝑠𝑖𝑚 (𝑞𝑖 ,𝑓 +𝑖 ) +∑𝐵−1
𝑗=1 𝑒

𝑠𝑖𝑚 (𝑞𝑖 ,𝑓 −𝑖,𝑗 )
(5)

where 𝐵 is the training batch size, and {𝑓 −
𝑖, 𝑗
}𝐵−1
𝑗=1 the set of in-batch

negative examples.
MMR diversification: In the second aggregation method, we

use a popular diversification approach, named Maximal Marginal
Relevance (MMR) [2]. The intuition is that different models may
generate redundant facets and a relevance ranking model looks at
facet independently. Thus, it may select redundant facets and di-
versification can potentially resolve this issue. Our MMR approach
selects facets one by one and scores each facet as:

arg max
𝑓𝑖 ∈𝑅−𝑆

[
𝜆sim(𝑞, 𝑓𝑖 ) − (1 − 𝜆)max

𝑓𝑗 ∈𝑆
sim(𝑓𝑖 , 𝑓𝑗 )

]
(6)

where 𝑅 the list of extracted facets for the given query 𝑞, and
𝑆 the set of already selected facets. 𝜆 is a hyper-parameters. For
the similarity function, we use the same model used in relevance
ranking (see above).

Round Robin Diversification: In the round-robin based ap-
proach, we iterate over the four lists of facets generated by different
models, and alternatively select the facet with the highest score
from each list until we generate the desired number of facets. This
approach basically diversify the result list based on the facets gen-
erated by different models.

4Model weights from https://hf.co/sentence-transformers/all-mpnet-base-v2

4 EXPERIMENTS
4.1 Dataset
Following Hashemi et al. [10], in our experiments, we used the
MIMICS dataset [28].5 MIMICS contains web search queries sam-
pled from the Bing query logs, and for each query, it provides up
to 5 facets and the returned result snippets. MIMICS consists of
three subsets. We used the largest subset, MIMICS-Click, that con-
tains over 400K queries, for training, and MIMICS-Manual, which
contains 2832 queries, for evaluation. For the retrieved documents,
MIMICS contains the list of web pages returned by the Bing’s web
search API. Similar to [10], we use the returned snippets as docu-
ment text in our experiments.

4.2 Evaluation Metrics
To evaluate our approaches, we follow Hashemi et al. [10] and use
four sets of metrics: (1) precision, recall, and F1 of term overlap
between the produced and the ground truth facets, (2) precision,
recall, and F1 of exact match between the produced and the ground
truth facet sets, (3) the set BLEU and (4) the set BERT-Score between
the mentioned sets. For the exact definition of metrics, we refer the
reader to [10]. We perform evaluation on MIMICS-Manual, using
the top five extracted facets from each model.

4.3 Experimental Setup
For the sequence labeling model, we fine-tuned RoBERTa-base,
with maximum sequence length 400 tokens, using Adam optimizer,
batch size 64 and initial learning rate 5 × 10−5 for 5 epochs. We
experimented with 2 variations of the training set; one set that
includes snippets with no mentioned facets as negative examples,
and one that contains only snippets with at least one facet mention.
Training the model using the additional negative examples, leads to
higher precision, but when training without negatives, the model
achieves significantly higher recall, which is the metric we want to
maximize before the ranking step.

For the sequence generation models, we fine-tuned BART-base,
with maximum sequence length 470 tokens, using Adam optimizer,
batch size 32 and initial learning rate 5 × 10−5 for 5 epochs. For
generating sequences, we used nucleus sampling, keeping the top

5MIMICS is publicly available at https://github.com/microsoft/MIMICS.
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Table 2: Examples of the top three predicted facets by each model.

Query

Model
sam houston state

university heart attack how to write
an essay edd planting grass seed

Facet Gen. (q + d)
bookstore,
jobs,
tuition

in men,
in women,
in children

expository essay,
narrative essay,
descriptive essay

social security,
for unemployment,
eddn social security assistance

outdoors,
indoors,
planting rye grass seed

Facet Gen. (query)
student portal,
sam houston asu jobs,
tuition

after drinking,
after running,
after walking

expository essay,
informative essay,
narrative essay

songs,
in law,
in russian

indoors,
planting bermuda grass seed,
outdoor

Seq. Labeling
education,
campus,
tour

causes,
treatment,
muscle

thesis,
high school,
persuasive

employment development
department,
development department,
edd degree

bluegrass,
green,
flower

Classifier
weather,
hotels,
zip code

men,
women,
kids

facts,
quotes,
english

usa,
insurance,
facts

usa,
canada,
sale

Unsupervised
campus,
wikipedia,
houston state university sam

heart muscle,
symptoms,
mayo clinic

your essay,
writing an essay,
narrative essay

services the edd,
english on the edd,
edd degree

how to plant grass seed,
when to plant grass seed,
steps for planting grass seed

GPT-3
tuition,
acceptance rate,
location

symptoms,
treatment,
prevention

brainstorm,
thesis,
outline

eligibility,
application process,
benefits

best time,
how to,
when to

Ground truth
bookstore,
jobs,
tuition

aspirin,
blood test,
medical term

comparative,
descriptive

educationis doctor or doctor,
electronic data discovery,
employment development
department

temperature,
tips,
tools

tokens with accumulated probability 0.8 at every generation step,
and with temperature 0.7.

For the multi-label facet classification model, we experimented
with the following frequency thresholds for picking classes: {500,
1000, 2000}. Eventually, we kept the facets with minimum frequency
2000 after pre-processing, resulting in 787 classes. We fine-tuned
RoBERTa-base using Adam optimizer, batch size 32 and initial learn-
ing rate 5 × 10−5 for 2 epochs. We experimented with various clas-
sification thresholds in {0.005, 0.01, 0.05, 0.1, 0.5} and found 0.05 to
give the best metrics.

4.4 Results
Table 1 summarizes the performance of different facet extraction
and generation approaches. Each model generates five facets per
query, since there are up to five facets per query in the ground
truth.6 The facet generation and sequence labelingmodels generally
perform better than the other methods including the baselines.
The improvements over the baselines is statistically significant
in nearly all cases. The sequence labeling approach beats facet
generation models in terms of exact match metrics since it is a facet
extraction model. However, Set BERT-Score that measures semantic

6Note that the results in Table 1 are different from the ones reported in [10]. We
confirm that their results are on a held out data from the MIMICS-Click dataset. We
report our results onMIMICS-Manual since it is manually annotated by trained experts,
but we confirm that we also observe improvements on the same held out dataset used
in [10]. We have used the same implementations as the authors of the original paper.

similarities gives higher weight to facet generation models. Facet
generation models generally perform well for term overlap and Set
BLEU (a phrase level matching metric). The extreme multi-label
facet classification model seems to have the lowest term overlap
and Set BLEU performance, but this is expected because the model
is trained to predict only the 787 most frequent facets observed
in the training set. The GPT-3 model also performs poorly, but it
should be noted that it is a few-shot learning model and it only
sees five random examples from the training data as prompt. Due
to limited resources, we could not fine-tune GPT-3 on the whole
training set.

In order to better understand the behavior of the supervised mod-
els, we perform a quantitative comparison of their outputs by calcu-
lating their overlap coefficient on token level. For two sets of facets
A and B, the overlap coefficient is given by (𝐴 ∩ 𝐵)/min( |𝐴|, |𝐵 |)).
The results are presented in Figure 2. We discover that the output
of the models varies significantly. The facets extracted from the
sequence labeling model seem to have very low overlap with the
ones generated by the facet generation models, with just 24-28%
token level overlap. The two facet generation models, even though
their only difference is the inclusion of documents in the input,
still produce significantly different outputs, with only 59% overlap.
This is an indication that many facets can only be generated using
information from the top retrieved documents.



Table 3: Comparison of term overlap and exact match recall for the various extraction and generation models and their
aggregation.

Exact Match Term Overlap

Models R@5 R@10 R@20 R@30 R@5 R@10 R@20 R@30

Facet Generation (query+docs) 0.0655 0.1219 0.1711 0.1711 0.3084 0.3768 0.4190 0.4214
Facet Generation (query) 0.0458 0.0854 0.1258 0.1293 0.2861 0.3413 0.3816 0.3842
Sequence Labeling 0.0882 0.1061 0.1061 - 0.2429 0.2817 0.2819 -
Extreme Facet Classification 0.0501 0.0812 0.1037 0.1093 0.1508 0.2185 0.2723 0.2920
Unsupervised Facet Extraction 0.0287 0.0351 0.0431 0.0508 0.2465 0.2793 0.3232 0.3528
GPT-3 (few-shot prompting) 0.0354 0.0473 0.0527 - 0.1396 0.1815 0.1954 -

Relevance Ranking 0.0326 0.0525 0.0931 0.1296 0.2797 0.3303 0.4135 0.4736
MMR Diversification 0.0306 0.0423 0.0669 0.0949 0.2840 0.3414 0.4196 0.4712
Round Robin Diversification 0.0646 0.1160 0.1781 0.2195 0.3047 0.3867 0.4724 0.5230

Table 4: Ablation study of aggregation methods. In each row, one facet extraction or generation model is removed from the
aggregation input. The removal order is based on their term overlap F1 performance in Table 1.

Exact Match Term Overlap

Models R@5 R@10 R@20 R@30 R@5 R@10 R@20 R@30

All 0.0646 0.1160 0.1781 0.2195 0.3047 0.3867 0.4724 0.5230
- GPT-3 (few-shot prompting) 0.0972 0.1511 0.1921 0.1993 0.3406 0.4088 0.4697 0.4922
- Unsupervised Facet Extraction 0.1029 0.1667 0.1833 0.1836 0.3441 0.4158 0.4370 0.4370
- Extreme Multi-Label Classification 0.0994 0.1595 0.1716 0.1716 0.3516 0.4177 0.4320 0.4320
- Sequence Labeling 0.0780 0.0866 0.0866 0.0866 0.3309 0.3411 0.3411 0.3411
- Facet Generation (query) 0.0655 0.1219 0.1711 0.1711 0.3091 0.3091 0.3091 0.3091

Figure 2: Average overlap coefficient between the outputs of
the various supervised models on token level.

Recall-Focused Models. Given Figure 2, we know that the
models produce different facets, thus we evaluate three facet ag-
gregation methods mentioned in Section 3.6 to improve recall (see
the last three rows in Table 3). Interestingly, we observe that the
most effective method that maximizes recall is the round robin
diversification approach. For a deeper understanding of models’
performance in terms of term overlap recall, we report their per-
formances for varying number of extracted facets in Table 3. We
observe that the maximum potential recall increases by a big mar-
gin when combining results using round robin diversification. Note
that in Table 3 there are no reported metrics for Recall@30 for
the Sequence Labeling and GPT-3 models. The reason is that the
Sequence Labeling model was not able to extract 30 or more facets
for any query in the evaluation set, and GPT-3 was guided to output
only up to 15 facets.

Ablation Study. We performed an ablation study for the facet
aggregation method by removing methods one by one from the ag-
gregation set. The aggregation method is the round-robin approach
which is the best performing model. The removal order is decided
based on the term overlap F1 in Table 1. The ablation study results
are reported in Table 4. It has been shown that inclusion of all mod-
els in facet aggregation, including the poor performing few-shot
learning and unsupervised approaches, leads to recall improvement
for deeper ranking cut-offs. However, the poor performing models
have negative impacts on Recall@5 and Recall@10.

Case Study. Finally, Table 2 reports some examples of facets
generated by the six models. We can see that in many cases, some



facets can only be extracted by one of the models, confirming our
observation of complementary information across different models.

Human Evaluation. In order to have a better understanding of
how well the various models work in a real-world setting, we did
some human evaluation. Evaluation on MIMICS-Manual does not
reflect well the actual performance, because the list of annotated
ground truth facets for each query is not very comprehensive, mak-
ing it difficult to get a good estimate of precision and recall. We
sampled randomly 50 queries from MIMICS-Manual, and followed
the standard pooling approach for annotating the results of all the
models. For each facet, we asked three expert annotators (not the
authors of this work) to annotate the facets as Relevant (label 2),
Partially Relevant (label 1), and Irrelevant (label 0). Partially rele-
vant are the facets which are relevant but not extracted properly
(e.g. they have grammatical mistakes, they end with preposition,
etc). The annotators agreement for Relevant, Partially Relevant,
and Irrelevant labels are 67.97%, 78.29%, and 84.39%, respectively.
This gives us an overall annotation agreement of 64.72%. In case of
disagreement, we use majority voting.

We report the following metrics: normalized cumulative gain
(nCG) and normalized discounted cumulative gain (nDCG). The
reason for the inclusion of nCG is that it does not have an order dis-
count and it is a recall-oriented metrics and has been used in TREC
Deep Learning Tracks [3]. The results from the human evaluation
can be seen in table 5. Note that the purpose of this experiment
is to confirm the quality of the results produced by our methods
through human annotation. We observe that the performance of the
models is quite high. The facet generation model that uses query
and documents still shows superior performance. GPT-3 is very
close to the best supervised model in terms of nCG and nDCG. The
facet classification model seems to be very selective.

Based on these results, we conclude that relying on automatic
evaluation for the facet extraction task can lead tomisleading results
when trying to estimate the real-world performance of a model.
Curated datasets such as MIMICS can only be used for relative
comparison of models due to their incomplete annotations.

Table 5: Human evaluation of the proposed methods for 50
random queries sampled from the MIMICS-Manual dataset.

Model nCG nDCG

Facet Generation (query+docs) 0.8786 0.8759
Facet Generation (query) 0.7840 0.7893
Sequence Labeling 0.7513 0.7499
Extreme Facet Classification 0.3893 0.3889
Unsupervised Facet Extraction 0.7260 0.7211
GPT-3 (few-shot prompting) 0.8780 0.8729

5 CONCLUSIONS
In this paper, we presented and analyzed multiple formulations
for extraction and generation of explicit facet terms from search
results. We showed quantitatively that the different formulations
lead to complementary facet sets. We also studied various facet
aggregation methods and demonstrated that a round-robin diver-
sification approach would lead to significant recall improvements.
Our models outperform the previous state-of-the-art model [10].

We released an open-source toolkit, named Faspect, for facet ex-
traction and generation that includes all formulations studied in
this paper.

6 FUTUREWORK
In this work, we demonstrated that extracting and aggregating
facets from multiple models can improve facet recall significantly
in the MIMICS dataset. It remains an open question how a single
end-to-end model could achieve comparable performance. Multi-
task learning could be a potential direction towards this goal.

We described three methods for ranking a list of extracted facets.
However, the supervised models, relevance ranking and MMR, did
not seem to improve the ranking of the extracted facets, even though
they demonstrated good performance when ranking the ground
truth facets among other randomly sampled facets. Further anal-
ysis is required to determine whether the reason behind the poor
performance could be the high percentage of relevant extracted
facets that do not appear in the ground truth.

In the future, we intend to extend this work by employing the
studied facet generation models for clarifying question generation
and search result diversification.
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