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ABSTRACT
Although information access systems have long supported people
in accomplishing a wide range of tasks, we propose broadening the
scope of users of information access systems to include task-driven
machines, such as machine learning models. In this way, the core
principles of indexing, representation, retrieval, and ranking can
be applied and extended to substantially improve model general-
ization, scalability, robustness, and interpretability. We describe a
generic retrieval-enhanced machine learning (REML) framework,
which includes a number of existing models as special cases. REML
challenges information retrieval conventions, presenting oppor-
tunities for novel advances in core areas, including optimization.
The REML research agenda lays a foundation for a new style of
information access research and paves a path towards advancing
machine learning and artificial intelligence.

CCS CONCEPTS
• Information systems→ Information retrieval; • Computing
methodologies→Machine learning.
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1 INTRODUCTION
The vast majority of existing machine learning (ML) systems are
designed to be self-contained, with both knowledge and reasoning
encoded in model parameters. Consequently, increasing the capac-
ity of machine learning models by increasing their parameter size
generally leads to higher accuracy [17]. For example, the number of
parameters used in state-of-the-art language models has increased
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from 94 million in ELMo [45] to 1.6 trillion in Switch Transform-
ers [13], an over 16× increase in just three years (2018 – 2021).
Despite these successes, improving performance by increasing the
number of model parameters can incur significant cost and limit
access to a handful of organizations that have the resources to train
them [4]. As such, focusing model development on the number of
parameters is neither scalable nor sustainable in the long run.

Motivated by recent work demonstrating both that high capacity
models memorize training data [6] and that using retrieval-style
methods can offload memorization to storage [5], we propose the
augmenting ML models with access to stored information through
information retrieval (IR) techniques. Whereas IR has proven an
effective tool to support people accessing large text corpora, we
believe that IR can be extended to support machines accessing not
just large text corpora but more abstractly-represented knowledge
stores. By designing machine learning architectures that have ex-
plicit access to an information retrieval system, we can decouple
reasoning from memory, reducing the required model parameters
and leveraging the efficiency, scalability, and effectiveness of IR tech-
niques. We refer to this class of approaches as retrieval-enhanced
machine learning (REML). In this paper, we describe how core prin-
ciples of indexing, representation, retrieval, and ranking can be
used to develop REML models.

Using retrieval to improve model accuracy is not without prece-
dent. Predating modern machine learning methods, the IR com-
munity developed some of the earliest known retrieval-enhanced
machine learning models. For example, pseudo-relevance feedback
[2, 8] leverages a retrieval system to analyze results of an ‘initial’
search query before producing a final ranking. This purely algorith-
mic use of a retrieval system in order to improve ranking model
performance foreshadows its usefulness in modern applications.
More recently, natural language processing models that incorporate
retrieval capabilities have been shown to improve model perfor-
mance [21, 39]. Although leveraging rather basic retrieval models,
these approaches present an opportunity for ML systems to be
further improved with more sophisticated IR methods.

We introduce a generic framework that enables ML models to be
augmented with IR capabilities that support querying a corpus for
useful information, utilizing retrieved results, providing feedback
to the retrieval model, and, if necessary, storing information for
future access. This framework is flexible enough to both represent
several existing ML models and scaffold future models.

This paper is organized in order tomotivate, describe, and ground
REML as a research program. We begin in Section 2 by describing
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the motivation for REML, specifically demonstrating why IR tech-
niques provide a unique opportunity for ML. In Section 3, we dis-
cuss the challenges in developing each component of the proposed
framework and suggest three categories of optimization approaches
for REML models: (1) independent optimization of prediction and
retrieval models, (2) their conditional optimization, and (3) their
joint end-to-end optimization. Using this framework, in Section 4,
we review several existing ML models in order to draw connections
to REML. And, although these related models suggest the potential
benefit of REML, substantial open research questions limit the appli-
cability and effectiveness of contemporary IR methods. In Section 5,
we conclude with a broad research program in REML, touching
on the opportunity for the different subareas of IR research to
contribute to the advancement of ML model performance.

2 MOTIVATION
Despite the success of modern high capacity models, focusing on
the number of parameters as a primary mechanism to improve
performance can be brittle, unsustainable, and opaque [4]. We argue
that these concerns can be addressed by developing ML models
that, instead of encoding knowledge in parameters, can access large
collections of information items using efficient, effective, and robust
retrieval technologies. Some of the major applications of REML is
presented below:
Generalization. Recent work has shown that manyMLmodels can
significantly benefit from simple retrieval augmentation approaches.
For instance, KNN-LM [32] linearly interpolates large language
model predictions with the nearest neighbors of the given context
input. This approach does not even require further training or fine-
tuning. The authors showed substantial improvements in terms
of language model perplexity in both in-distribution and out-of-
distribution test sets, demonstrating the generalizability of this
approach. KNN-LM together with several other examples reviewed
in Section 4 suggest that enhancing ML models using retrieval
models will have a large impact on the generalizability of themodels.
Retrieval enhancement is expected to have large impact on domain
adaptation, zero-shot, and few-shot learning tasks.
Scalability.ML models compress information from training data
to support accurate prediction at inference time. Although increas-
ing model capacity by adding parameters often translates into an
improvement in predictive power, recent studies demonstrate that
large deep learning models often memorize training instances and
concepts associated with them in their model parameters [6]. As
an alternative to such implicit memorization, retrieval systems can
explicitly store information either directly from the training set
or from concepts derived during the learning process. Because re-
trieval architectures are often designed to scale, a retrieval system
can provide efficient access to this information, substantially reduc-
ing the need for high capacity models and increasing throughput.
Collection Updates and the Temporal Aspect. Current ML
models make predictions solely based on the data observed during
training. Although effective in stationary domains, this approach
can be brittle in nonstationary domains, such as news, where new
information constantly emerges. And, while periodic retraining is
possible in some slowly-changing domains, for quickly-changing
domains, this solution is impractical. An information access system

can decouple reasoning from knowledge, allowing it to be main-
tained and updated independent of model parameters at a cadence
aligned with the corpus.
Interpretability and Explainability. Because the knowledge in
training data is encoded in learned model parameters, explana-
tions of model predictions often appeal to abstract and difficult-
to-interpret distributed representations. By grounding inference
on retrieved information, predictions can more easily be traced
specific data, often stored in a human-readable format such as text.
On-Device Machine Learning. State-of-the-art ML models re-
quire significant computational power and memory availability,
which are not available on devices such as smartphones. Retrieval-
enhanced ML models can potentially decouple memorization from
generalization and store a large collection (memory) of information
items on a remote server. Thus, a small, efficient ML model can
be hosted on-device. By minimizing the interactions between the
retrieval component and the ML model, this can potentially revolu-
tionize the applications of on-device machine learning. If privacy is
an issue, the information items stored on the remote server can be
encrypted and methods, such as the recently developed distance-
preserving encryption schemes for nearest neighbor search [16],
can be adopted for privacy-preserving retrieval.

Collectively, these properties of IR techniques suggest the devel-
opment of REML, which we pursue in the subsequent sections.

3 RETRIEVAL-ENHANCED MACHINE
LEARNING

This paper focuses on predictive ML models. Let X be the input
(feature) space for the task and Y be the output (prediction) space.
Given an input 𝑥 ∈ X, a ML model produces a prediction in the
output space ˆ︁𝑦 ∈ Y. Supervised learning models are often trained
by minimizing an empirical prediction loss (error) over instances
in a training set 𝑇 = {(𝑥,𝑦) ∈ X × Y}.

Retrieval-enhanced machine learning (REML) refers to models
composed of two coupled components: one model that makes pre-
dictions by communicating with 𝑁 models each mediating access
to a repository of information or knowledge. A REML model is de-
fined as 𝑓𝜃 (𝑥 ;𝑅𝜔1 , 𝑅𝜔2 , · · · , 𝑅𝜔𝑁

). The model 𝑓𝜃 parameterized by
𝜃 is called the prediction model and 𝑅𝜔𝑖

denotes the 𝑖th information
access model parameterized by 𝜔𝑖 . Thus, to produce ˆ︁𝑦, the predic-
tion model can interface with 𝑁 information access models. Each
𝑅𝜔𝑖

includes a collection or repository𝐶𝑖 that is available—through
an information access model—to the prediction model. This reposi-
tory could be composed of natural language documents—as with
text retrieval—or some other indexed representation. As such, 𝐶𝑖s
reflect a large set of parameters available to the model that can be
leveraged ad hoc, as with many non-parametric and lazy learning
techniques. The goal of retrieval-enhanced supervised learning
models is to minimize the empirical risk,

1
|𝑇 |

∑︂
(𝑥,𝑦) ∈𝑇

L
(︁
𝑓𝜃 (𝑥 ;𝑅𝜔1 , 𝑅𝜔2 , · · · , 𝑅𝜔𝑁

), 𝑦
)︁

(1)

where L is a loss function for each training instance.

3.1 Overview
We define the following necessary requirements (Reqs) for REML:



Pred. 
Model

query

response

input

output

Info. 
Access

Pred. 
Model

query

response

input

output

Info. 
Accessstore

Pred. 
Model

query

response

input

output

Info. 
Accessfeedback

Pred. 
Model

query

response

input

output

Info. 
Access

feedback
store

(a) Cat 1: Retrieval-only
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(b) Cat 2: Retrieval with memory
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(c) Cat 3: Retrieval with feedback
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(d) Cat 4: Retrieval with memory & feedback

Figure 1: Retrieval-enhanced machine learning models should implement three necessary requirements (querying, retrieval,
and response utilization) and may implement two optional properties (storing information and providing feedback to the
information access model). This results in four categories of REML models presented above.
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Figure 2: A generic framework for REML.

Req 1 Querying: the prediction model 𝑓𝜃 should be able to submit
input-dependent queries to the information access models,
i.e., 𝑅𝜔𝑖

s.
Req 2 Retrieval: each information access model 𝑅𝜔𝑖

should be
able to efficiently process the prediction model’s queries
and retrieve relevant information items from a memory or
collection 𝐶𝑖 .

Req 3 Response Utilization: the prediction model 𝑓𝜃 should uti-
lize the response returned by the information access models
for making predictions.

Considering these three requirements, we can envision the first
category of REML models. A high-level overview of models in
this category is presented in Figure 1(a). Most existing retrieval-
enhanced ML models, such as REALM [21], belong to this category.

REML may also benefit from two additional optional properties:
Opt 1 Storing: the prediction model may store some information

items in a memory for future access during both training
and inference. Such information items will be accessible to
the model through querying (Req 1).

Opt 2 Feedback: the prediction model may be able to provide
feedback to the information access models. This enables the
information access models to improve based on the feedback.

Figure 1(b) depicts the second category of REML models that
take advantage of Opt 1 by storing information in a memory and
accessing the information later. On the other hand, Figure 1(c)
demonstrates a high-level overview of the third category of REML
models that can provide feedback (Opt 2) to the information ac-
cess systems. The last category (Figure 1(d)) implements both of
these optional properties and supports querying, utilizing retrieval

responses, storing information, and providing feedback to the in-
formation access systems.

Based on these requirements and optional properties, Figure 2
envisions a generic framework for REML. The framework consists
of two major parts: the prediction model 𝑓𝜃 and the information
accessmodels𝑅𝜔𝑖

s. For each input𝑥 , themodel 𝑓𝜃 may decide to run
multiple retrieval processes by either submitting multiple queries,
accessing multiple data repositories and/or memories, providing
feedback to the information access component, or a combination of
the above. The number of retrieval processes can be zero for some
inputs, and thus REML generalizes typical predictive modeling.

3.2 Information Access in REML
In its most generic form, each information access system in the
proposed REML framework consists of five components: (1) Query
Generation, (2) Retrieval Model, (3) Response Processing, (4) Feed-
back Handler, and (5) Storage Handler. In the following subsections,
we discuss potential implementations for each component.

3.2.1 Query Generation. In current information access systems,
queries mostly take the form of unstructured text (e.g., keyword
queries or natural language questions), structured query language
(e.g., SQL), or multi-media items (e.g., images). Such query lan-
guages and formats can be also adopted by retrieval-enhanced ML
models. The Query Generation component is responsible for gen-
erating one of these query formats. Note that depending on the
application and due to efficiency or effectiveness requirements, one
may simply cast the query generation problem to query selection
from a set of pre-defined queries. In either case, the Query Gen-
eration (or Selection) component should be able to translate the
information need of the prediction model 𝑓𝜃 to a query language
or format that can be efficiently processed by the information ac-
cess model 𝑅𝜔𝑖

. Since retrieval models accessible by 𝑓𝜃 may accept
different query languages, the Query Generation component may
be unique to each retrieval model.

Existing information access systems are designed for people and,
therefore, existing query formats (mentioned above) are under-
standable by people. In the context of REML, we can relax the re-
quirement of an interpretable query language. Besides the common
query languages and formats, the prediction models can produce
any latent representation (e.g., a high-dimensional dense vector) as
a query. For instance, any hidden layer representation produced by
the prediction model 𝑓𝜃 may be used as a query for retrieval. That



being said, queries may also be generated from the input 𝑥 itself
without any involvement of the prediction model parameters.

Under REML, prediction models do not have restrictions on the
number of queries that can be submitted for each input 𝑥 . As a
result, a model may generate multiple, sequential queries produced
for each input 𝑥 , resulting in a query session analogous to human
search sessions. While current search engines base sessions on
temporally-adjacent user queries, REML prediction models can,
when querying, explicitly indicate a unique session ID associated
with the input 𝑥 .

3.2.2 Retrieval Model. The retrieval model component aims at re-
trieving information items from the given collection, repository, or
memory in response to each query produced by the Query Gen-
eration component. Existing retrieval models are mostly designed
based on the probability ranking principle (PRP) [49], in which
documents are ranked based on their probability of relevance to the
query. In the IR literature, relevance can be defined in five levels
[52]: (1) systematic or algorithmic relevance, (2) topical relevance,
(3) cognitive relevance or pertinence, (4) situational relevance or
utility, and (5) motivational or affective relevance. However, these
definitions assume that the retrieved documents are consumed by
humans. This assumption no longer holds for REML models, thus
the notion of relevance needs to be revisited for REML.

When designing retrieval models for REML, relevance can be
thought of as the utility that the prediction model obtains by con-
suming the results produced by the retrieval model; this is similar to
task-based perspectives on (human) information retrieval [30]. For
simplicity and without loss of generality, assume for each input 𝑥 ,
the prediction model 𝑓𝜃 only submits a single query 𝑞 to a retrieval
model that returns a result list 𝐿𝑞 = {(𝑑1, 𝜙 (𝑑1)), (𝑑2, 𝜙 (𝑑2)), · · · ,
(𝑑𝑘 , 𝜙 (𝑑𝑘 ))}, where each 𝑑𝑖 is a document1 in the collection and
𝜙 (𝑑𝑖 ) encodes a list of features and properties associated with doc-
ument 𝑑𝑖 . For instance, 𝜙 (𝑑𝑖 ) may contain the document score
produced by the retrieval model in addition to a number of features
used by the retrieval model to compute the score. With a slight
abuse of notation, let 𝑓 (𝑥 ;𝐿𝑞) denote the prediction function that
submits the query 𝑞 to a retrieval model and uses its response (i.e.,
𝐿𝑞 ) to make a prediction. Then, the utility gain can be defined as:

UtilityGain(𝑞, 𝐿𝑞 ; 𝑓𝜃 , 𝑥) = 𝑈 (𝑓𝜃 (𝑥 ;𝐿𝑞), 𝑦) −𝑈 (𝑓𝜃 (𝑥 ; ∅), 𝑦) (2)

where𝑈 (·, ·) represents some desired utility function. This defini-
tion assumes that data points (𝑥,𝑦) are i.i.d. samples. Utility gain
depends on how the prediction model 𝑓𝜃 consumes 𝐿𝑞 for produc-
ing ˆ︁𝑦. Utility gain can take on both positive and negative values.
A negative gain means that the retrieval results 𝐿𝑞 have negative
impact on predicting the ground truth label. This definition can be
extended to multiple queries per 𝑥 .

The implementation of retrieval models for REML depends on the
nature of documents in the collection. For instance, one can use the
vector space model and employ the inner product as the similarity
function between query and document vectors. Section 3.3 provides
more information on the optimization of retrieval models in REML.

1In this paper, we refer to retrievable items, e.g., unstructured text, image, or even
latent vectors, as documents.

3.2.3 Response Processing. The way the prediction models con-
sume the retrieved items has a substantial impact on their end-to-
end performance. The Response Processing component takes the
results returned by the retrieval models for each query 𝑞 (i.e., 𝐿𝑞s)
and prepares it for consumption by the prediction model.

This component can be implemented by returning the content of
the retrieved documents, synthesizing a summary of their content,
producing one or more semantic representations of their content,
combining all the information presented in 𝐿𝑞 in some way, and
so on. There are many design choices here and the best choice will
largely depend on the nature of the machine learning model and
the task it is being applied to.

3.2.4 Feedback Handler. When training retrieval models, it is often
desirable to get feedback from the machine learning model. Such
feedback can then be used as a signal for optimizing the retrieval
model. We can imagine various forms of feedback in this context.
For example, the model can compute the utility gain of documents
returned by the retrieval model using Equation (2). As another
example, the feedback may be computed based on the gradients
of the prediction loss with respect to the retrieved information.
Section 3.3 discusses how the model’s feedback can be used for
optimizing retrieval models in REML.

3.2.5 Storage Handler. If the prediction model has the ability to
store information in the repository (or memory), the Storage Han-
dler can expand the collection by storing the information item into
the memory. However, for efficient storage and access of a large
number of items, careful consideration of memory management
techniques, hardware requirements, and storage data structures
beyond existing technologies (e.g., inverted indexes) is required.
Besides information storage, this component is also responsible for
storage management. Thus, it should implement caching, compres-
sion, access controls, and time-to-live requirements as necessary.

3.3 REML Optimization
We envision three optimization approaches for REML: (1) indepen-
dent optimization of prediction and information access models, (2)
conditional optimization of these models such that the quality of
one impacts the optimization of the other, and (3) joint end-to-end
optimization of both models. Without loss of generality, here we
assume that there only exists one information access model.

3.3.1 Independent Optimization of Prediction and Information Ac-
cess Models. In independent optimization, the training process of
the prediction model 𝑓𝜃 is independent of the retrieval performance.
For example, we can assume that the retrieval model is optimal.
Formally, we can optimize the prediction model of REML as:

𝜃∗ = argmin
𝜃

1
|𝑇 |

∑︂
(𝑥,𝑦) ∈𝑇

L(𝑓𝜃 (𝑥 ;𝑅opt), 𝑦) (3)

where 𝑅opt denotes an optimal retrieval model and can be mod-
eled using ground truth relevance information, if available. Similar
to [72], we can also model imperfect retrieval models by introduc-
ing noise to an optimal ranking behavior. The retrieval model can
be trained using typical learning-to-rank (LTR) formulation, inde-
pendent of 𝑓𝜃 . For the same of space, we refer the reader to Liu [42]
for more information on LTR models.



3.3.2 Conditional Optimization of Prediction and Information Ac-
cess Models. In conditional optimization, the prediction model pa-
rameters get updated conditioned on the retrieval model’s perfor-
mance and vice versa. This process can be done iteratively until
a stopping criterion is met (e.g., convergence or early stopping
based on performance on a held-out validation set). Therefore, the
prediction model can be optimized as:

𝜃 (𝑡 ) = argmin
𝜃

1
|𝑇 |

∑︂
(𝑥,𝑦) ∈𝑇

L(𝑓𝜃 (𝑥 ;𝑅𝜔 (𝑡 ) ), 𝑦) (4)

𝜔 (𝑡+1) = argmin
𝜔

1
|𝑇 |

∑︂
(𝑥,𝑦) ∈𝑇

L(𝑓𝜃 (𝑡 ) (𝑥 ;𝑅𝜔 ), 𝑦) (5)

where 𝜃 (𝑡 ) and 𝜔 (𝑡 ) denote the parameters of the prediction model
and the information access model at the 𝑡 th iteration, respectively.
These equations assume that both models are being optimized. In
case of using unsupervised retrieval models, the second optimiza-
tion process would be skipped (i.e., 𝜔𝑡+1 = 𝜔𝑡 ).

3.3.3 Joint End-to-End Optimization. In end-to-end optimization of
REML, both ML and information access models are trained jointly
by optimizing a single objective function. Formally, it is defined as:

𝜃∗, 𝜔∗ = argmin
𝜃,𝜔

1
|𝑇 |

∑︂
(𝑥,𝑦) ∈𝑇

L(𝑓𝜃 (𝑥 ;𝑅𝜔 ), 𝑦) (6)

For optimizing this objective via gradient descent-based optimiz-
ers, the whole REML process (both models and their interactions) is
required to be differentiable. End-to-end optimization is expected to
perform better than the last two optimization approaches, but given
the complexity of retrieval from large collections, this requirement
may be difficult to satisfy in some cases.

3.4 Extending REML to Multiple ML Models
Previous sections consider only a single prediction model that in-
teracts with multiple retrieval processes (see Figure 2). This section
extends the REML framework to multiple prediction models. Simi-
lar to current search engines that provide service to many users,
retrieval models can be also employed by multiple ML models.

Assume there are𝑀 prediction models 𝑓𝜃1 , 𝑓𝜃2 , · · · , 𝑓𝜃𝑀 that use
𝑁 information access models denoted by 𝑅𝜔1 , 𝑅𝜔2 , · · · , 𝑅𝜔𝑁

. Each
𝑅𝜔𝑖

should provide service to multiple prediction models. This
introduces the following challenges:
Shared Query Language: All prediction models may need to share
the same query language for interacting with retrieval systems.
Shared Response Formats: The responses produced by each re-
trieval system will be used by all prediction models. Therefore, the
prediction models should be able to utilize the response format
used by each retrieval model.
Shared Storage: The storage used by each retrieval model is shared
between all prediction models. Storage is a limited resource, thus a
policy may be required to regulate storage usage for each prediction
model. Moreover, the data stored by each prediction model may
not be interpretable by other models or may not be shared due
to privacy restrictions. The Storage Handling component should
develop memory management and access restriction policies and
functionalities for each storage request.

Personalization:2 The prediction models have special needs and
they utilize the retrieval responses differently. Therefore, in re-
sponse to a query 𝑞 submitted by two prediction models 𝑓𝜃𝑖 and 𝑓𝜃 𝑗

,
the retrieval models may want to respond differently. In this case,
retrieval models would need to implement models and techniques
for personalizing the search results.
Comparable Feedback Across Prediction Models: Comparable
feedback across prediction models enables us to easily aggregate
the obtained feedback. Otherwise, the feedback can be used for
each individual prediction model as a form of personalization.
Optimizing RetrievalModels: In case of dealing with trainable re-
trieval models, the optimization solutions introduced in Section 3.3
need further adjustments. Let L𝑖 denote the loss function asso-
ciated with the 𝑖th prediction model. Thus, the joint end-to-end
optimization of models can be achieved as follows:

argmin
𝜃,𝜔

1
𝑀

𝑀∑︂
𝑖=1

1
|𝑇𝑖 |

∑︂
(𝑥,𝑦) ∈𝑇𝑖

𝛼𝑖L𝑖 (𝑓𝜃𝑖 (𝑥 ;𝑅𝜔 ), 𝑦) (7)

where 𝑇𝑖 denotes the training data for the 𝑖th prediction task. This
formulation assumes that the loss values are comparable across
prediction models. The hyper-parameter 𝛼𝑖s control the weight of
each loss function. The conditional optimization formulation can
be adjusted, similarly.

3.5 Information Access Evaluation in REML
The prediction model should be evaluated based on its performance
on the downstream task, and appropriate evaluation methodolo-
gies and metrics should be chosen considering the downstream
task. This evaluation is the same for any predictive model designed
for that task. Therefore, we skip the evaluation of prediction mod-
els and discuss approaches for evaluating the information access
models. Evaluating information access in REML is particularly im-
portant for diagnosing the retrieval process and designing retrieval
systems that provide service to multiple prediction models (see
Section 3.4). The retrieval component in REML can be evaluated
either extrinsically or intrinsically:
Extrinsic Evaluation: The information access quality can be quan-
tified by measuring its impact on the prediction model for the down-
stream task. This is perhaps the most important factor in evaluating
information access in REML. Note that in case of having multiple
prediction models, extrinsic evaluation is defined for each predic-
tion model independently. However, aggregating the downstream
performances for different prediction models is challenging, be-
cause prediction models may be evaluated based on various metrics
and methodologies and they may not aggregate easily. Extrinsic
evaluation can be done both through offline and online evaluation.
Intrinsic Evaluation: In intrinsic evaluation, the retrieval model
is evaluated independent of the prediction models. To do so, one
may define relevance based on the desired documents expected to
be retrieved for a prediction model. This definition may be obtained
from experts or by analyzing observations from prediction models’
behavior. Then presumably an annotation process, e.g., through
pooling, may be employed for creating data collections for intrin-
sic evaluation of the information access model. Metrics used in
2Personalization is often used for humans. We stick to the same terminology to be
consistent with the IR literature.



intrinsic evaluation are expected to have high correlations with the
downstream performance of the prediction models. We highlight
that most metrics used in the IR literature have been developed
based on user behaviors with search engines. For instance, many of
them assume that users assess documents sequentially. However,
such assumptions may not hold for many ML models. Thus, new
evaluation metrics may need to be developed.

4 CASE STUDIES
Since REML is a general framework, we can discuss related ap-
proaches as special cases of REML. This exercise helps us under-
stand how and when REML might work and suggests opportunities
for extending existing work.

4.1 Knowledge Grounding
Fully data-driven ML models, despite demonstrating success across
a wide number of tasks, still lack grounding in the real world. Access
to external knowledge, via knowledge grounding, may help with
this issue [11, 22, 34, 39, 76]. Knowledge grounding models make
predictions based on the results returned by a retrieval model.

In the context of language modeling, one class of methods uses
retrieval results as evidence to support reasoning. For example, the
knowledge retriever module in REALM [21] accesses information
from an encoded Wikipedia corpus during pre-training. In text
generation, RetGen [75] combines a grounded text generator with
a document retriever. Grounding the generation helps with the
issue of hallucinated facts, and the retrieval component makes
the grounding effective and efficient. Lewis et al. [39] highlighted
the importance of retrieval in knowledge-intensive NLP tasks and
introduced retrieval-augmented generation (RAG) by augmenting
a generator with the output of a non-parametric retriever that uses
maximum inner product search.

Entities as Experts (EaE) [15] introduces an entity memory that
can be accessed by the model and the retrieved representations
of entities are combined with the input representation for entity
linking, mention detection, and masked language modeling tasks.
Similarly, Fact as Experts (FaE) [61] incorporates a fact memory
for language modeling. Such a mechanism gives access to factual
information, that may expand or change over time, while there is
no need for additional training or fine-tuning.

In open-domain QA, a common approach is to retrieve docu-
ments or passages fromWikipedia or even theWeb and then extract
answers [27, 47]. Lee et al. [37] used an encoded Wikipedia corpus
to train a retrieval model and then fine-tune the prediction model
for a QA objective. Khattab et al. [33] used a retrieval component for
multi-hop reasoning, where the retrieved facts from each hop are
summarized into a short context and becomes a part of the query for
the subsequent hops. Similarly, Das et al. [10] performed iterative
retrieval for expanding and rewriting multi-hop questions. This is
also the case for task-oriented dialogues. For instance, LaMDA [58]
shows the benefit of granting dialogue systems access to external
knowledge for reducing unsourced statement hallucination [53].

The approaches presented in this subsection mostly use simple
retrieval models, e.g., TF-IDF or inner product of learned represen-
tations, for finding factual information from external knowledge

bases. Therefore, one can look at knowledge grounding as an im-
plementation of REML, mostly based on Category 1: Retrieval-only
(Figure 1(a)) or Category 3: Retrieval with feedback (Figure 1(c)).

4.2 Memory-Augmented Machine Learning
Using a memory component where the model can read from and/or
write into is one of the most common ways of implementing REML
in neural networks. Themainmotivation is to use an explicit storage
buffer to make it easier for the network to rapidly incorporate new
information and not to forget in the future.

A model may use an internal memory where it compresses and
accumulates information to access them in later stages of the pro-
cess. This has been the base of several neural architecture classes.
For instance, Long Short-Term Memory networks (LSTMs) [25] or
Gated Recurrent Networks [7] that use a latent state as a memory
to collect information from previous time steps. Attention-based
models [3, 60] also treat different parts of the input as memories and
use soft access as the retrieval mechanism to manage the interac-
tion between them. However, memory-augmented neural networks
refers to cases of using an external memory [51]. Among main
works in this area, memory networks [55] explicitly store infor-
mation in a form that is element-wise addressable. Neural Turing
machines [18, 19] are well-known examples of ML models that can
read from and write into an external memory matrix in order to
represent and manipulate complex data structures.

The common target property of memory-augmented neural net-
works is incorporating an external memory that is trained end-
to-end with the objective and data from downstream tasks. This
most resonates with the fourth category of REML: Retrieval with
memory and feedback (Figure 1(d)). However, the memory size in
existing models is relatively small and extending the memory size
is an exciting and challenging research direction.

4.3 Retrieval-Enhanced Input Representation
A number of retrieval-enhanced models use the retrieved items to
update the representations of the model’s input. This is different
from knowledge grounding in the sense that the information items
do not necessary include the knowledge required for accomplishing
the task. Instead, the retrieved information contains patterns that
can help the model to learn more expressive representations.

Pseudo relevance feedback (PRF) is an example of such models. It
uses the top retrieved documents for updating the query represen-
tation through query expansion. It has shown successful results in
a wide range of retrieval tasks [2, 8, 14, 28, 36, 68, 73], demonstrat-
ing the quality of the produced query representations for retrieval.
Recently, Hashemi et al. [22] proposed Guided Transformer, an
extension to the Transformer network that includes cross attention
for contextualizing inputs with retrieved information from multiple
information sources to learn more accurate representations of the
model’s input. In their subsequent work [23], the authors proposed
an approach for learning multiple representations for query intents
by utilizing the retrieval results and taking advantage of the Guided
Transformer network for representation adjustment. More recently,
Borgeaud et al. [5] proposed RETRO for language modeling and
showed that by using networks like Guided Transformer one can
enable access to a trillion-scale database for a relatively small model.



Related approaches have been also used in computer vision
[20, 35, 40, 54]. For example, Xu et al. [69] studied the task of image
inpainting whose goal is to restore missing regions of an image.
They introduced a “texture memory” that augments a neural net-
work with access to patches extracted from unmasked regions of
the input image. For the task of 3D scene reconstruction, Siddiqui
et al. [54] used retrieval for creating multiple approximate recon-
structions and then fusing them with an attention-based blending
module to generate the output. For object detection, Kuo et al. [35]
used retrieval from a large-scale dataset of 3D models to understand
the underlying 3D structure of objects seen in a 2D image.

Similar to knowledge grounding, retrieval-enhanced represen-
tation learning can take advantage of information items that are
similar to the input by learning from patterns observed in the re-
trieved results. Thus, the first (retrieval-only) and the third (retrieval
with feedback) REML categories are often used for this purpose.

4.4 Generalization through Memorization
Combining retrieval-based and generative approaches has been
explored in a number of applications. In this case, the retrieval
component can contribute by producing accurate responses when
memorization is sufficient.

Motivated by the goal of memorizing rare patterns explicitly,
Khandelwal et al. [32] introduced KNN-LM, where a retrieval mech-
anism is used to find the nearest neighbor tokens given the prefix
as query. KNN-LM linearly interpolates the predicted distribution
for the next token using distance information from the retrieval
mechanism. BERT-KNN [29] employs a similar nearest neighbor
algorithm to augment a BERT model to learn better representations
for rare facts. This idea has also been extended to machine transla-
tion [31]. It is shown that retrieval augmentation improves domain
adaptation by using a domain-specific datastore for retrieval. Tay
et al. [57] proposed training a large model that memorizes the map-
ping of document content to document ids, which can be used to
retrieve relevant document ids given a query at inference time. This
model could be an alternative to KNN based models we discussed
above to serve a REML system as a differential index.

In dialogue systems, given a dialogue history as a query, a re-
trieval unit can be used to return the top ranked candidate response
as the next dialogue utterance [50]. Such retrieval-based approaches
can also be combined with response generation models and form a
hybrid solution for dialogue systems [70].

Another approach to improve generalization through memoriza-
tion is through updating retrieval results. In some cases, editing an
existing candidate output is easier than generating it from scratch,
especially in complex structured output generation tasks, like code
generation. Hashimoto et al. [24] proposed to retrieve a training
example given the input and edit it to the desired output. The re-
triever and the editing modules are trained jointly. Pasupat et al.
[44] proposed using exemplar retrieval for semantic parsing. In
their setup, given a query, the parser retrieves a set of related ex-
emplars, augments the query using the retrieved information, and
then incorporates a seq2seq model [56] to produce an output parse.

The aforementioned methods try to use a retrieval component to
handle memorization cases. It is found useful, especially for cases

where sufficient training data is not available. Many existing models
are based on a retrieval-only implementation of REML.

4.5 Efficient Access to Longer Context
Due to memory constraints as well as efficiency and effectiveness
reservations, consuming and representing large inputs, e.g., long
text documents or videos, are challenging. REML offers a solution
to address this issue by giving access to the context of any size via
a retrieval mechanism. Here we mention a few examples of studies
that exploit this idea.

Wu et al. [63] proposed using a long-term feature bank for de-
tailed video understanding. The long-term feature bank stores a
rich, time-indexed representation of a long video. Then the video
understanding model consults with the bank through a retrieval
module to get features that encode information about past and fu-
ture scenes, objects, and actions. Similarly, MemViT [64], proposes
to process videos in an online fashion and store information in
memory at each iteration. The model can retrieve prior context
from the memory to enable long-term modeling for the recogni-
tion task. Similar approaches have also been used for video object
segmentation [43] and video summarization [38].

For processing long documents, researchers often split the docu-
ments into passages. For instance, Dai and Callan [9] only used the
first passage of each document for document retrieval. Xiong et al.
[66] used the passage with the maximum similarity score with the
query. The end-to-end intra-document cascading model [26] can
be seen as a REML model with feedback. It first selects (retrieves)
a number of passages from the document and then consumes the
selected passages for scoring the document.

The methods presented in this subsection are perhaps the sim-
plest implementations of REML: the retrieval collection is not large,
and some of them do not use feedback.

4.6 Retrieval-Enhanced Optimization
All the methods mentioned above use a retrieval component at the
inference time for making accurate predictions. Some approaches
use retrieval components solely for the purpose of optimization,
e.g., for producing training data and/or computing loss functions.
Thus, the retrieval model will not be used during inference.

A natural application of retrieval-enhanced optimization is for
retrieval tasks. Dehghani et al. [12] introduced a weak supervision
approach for IR by producing large-scale training data through
BM25 and training ML models for document ranking. Zamani and
Croft [71] used the top retrieved documents to produce a relevance
model distribution for training queries and learn relevance-based
word embedding. Producing hard negative instances for training
learning-to-rank models is another application of REML. For in-
stance, ANCE [66] and its extensions [41, 46] are dense retrieval
models that iteratively use the model parameters to retrieve docu-
ments for producing ‘hard’ negative samples for training the model.

Wu et al. [65] used a retrieval unit to enable unsupervised train-
ing of machine translations, i.e., using two monolingual corpora in
the source and target languages with no alignment. As an alterna-
tive to back translation, they proposed retrieving a sentence from
the target corpus using the source sentence and applying some



changes using an editing mechanism to the retrieved target to gen-
erate source-target pairs and train the MT model. Triantafillou et al.
[59] proposed an approach for few-shot learning through retrieval.
This approach retrieves items for each input and uses them for
making predictions. Via this approach, a model can adapt to a new
domain without additional training or new data.

An interesting use case of REML is the pre-training task of
CLIP [48] and VideoCLIP [67] which are practically optimizing for
text-image and text-video retrieval, respectively. They are in fact
capturing cross-modal relevance that led to learning representations
that are effective in various setups, like zero-shot classification.

5 A RESEARCH AGENDA
While Section 4 provides evidence of the efficacy and broad applica-
bility of REML, there remain significant open research challenges in
fully realizing the general REML vision, some of which are already
mentioned in previous sections.

5.1 Querying
In developing a prediction model that supports retrieval, under-
standing how to query becomes a core research question. First, this
involves knowing when to query. In some situations, a prediction
model may not benefit from a retrieval operation (even if it benefits
on average). Although current retrieval-enhanced systems issue
the equivalent of queries for every instance, when querying incurs
some cost, be it in the form of latency or financial expense, de-
veloping models that “know when they don’t know” would allow
the prediction algorithm to explicitly trade off cost and benefit. A
prediction model that has access to multiple information access ser-
vices can make this decision for individual corpora, perhaps select
the appropriate source for the instance. Second, at a more granular
level, how retrieval might benefit a model may vary by instance
𝑥 . For example, retrieval may support uncertainty in one part of
the 𝜃 for one instance and uncertainty in another part of 𝜃 for an-
other instance. This self-interrogation can be explicitly designed or
implicitly learned. Nevertheless, even learnable behavior requires
an architecture and parameters to adapt. Finally, many retrieval
situations can benefit from the searcher conveying non-semantic
meta-retrieval information such as uncertainty in (aspects of) the
query or context of the retrieval itself. People often convey similar
information to human intermediaries [1] and we suspect that more
expressive querying can also emerge in REML.

In developing an information access model to support a predic-
tion model, similar questions arise. First, developing or learning a
query language requires expressiveness that captures the breadth
of model needs. At the same time, it should allow for communi-
cation of meta-retrieval or structured properties of the retrieved
set. Moreover, these properties need to be explored within the ef-
fectiveness and efficiency constraints. Second, although a query
may be effective and efficient in general, it may be ambiguous or
imprecise for a particular retrieval scenario. This is especially likely
in situations where multiple models may develop inconsistent uses
of the query language (Section 3.4).

5.2 Storing
The ability of the prediction model to store items presents unique
problems not encountered in traditional retrieval or ML research.
Although architectures like memory networks [62] provide mod-
estly sized storage, we anticipate models storing or serializing on
a larger scale with more permanence. In situations with multiple
models (Section 3.4), we anticipate the corpus operating as a means
to share derived knowledge (to avoid re-computation during infer-
ence) or prediction model parameters (to support learning).

In developing a prediction model that supports storage, under-
standing how to store becomes a core research question. Just as
with querying, a model needs to reason about when to store, what
to store from its parameters or reasoning, and how to represent
that information. Each of these questions is relevant both to shar-
ing derived knowledge as well as model parameters. Like queries,
stored items may include auxiliary information such as the model’s
confidence in the derived data or parameter values, the prediction
task, and other information that may be valuable for an informa-
tion access system to make retrieval decisions. More so than with
queries, a model might need to be more judicious in storage op-
erations, since injecting irrelevant or erroneous content into the
corpus can significantly degrade its usefulness.

In developing an information access model to support storage,
classic problems related to indexing arise. First, as with queries,
the language, schema, or representation of an item requires careful
construction to optimize for effectiveness and efficiency. Second,
in accepting a storage request from a prediction model, the in-
formation access system needs to model the value of the content.
Redundant items can either add noise or improve coverage, de-
pending on the task. Or, an item may require processing to make
indexing and retrieval more effective. These decisions can be based
on the content of the item or meta-data about the item, such as
the confidence of the model or, in the case of multiple models, con-
fidence in the prediction model itself. Third, if an item should be
stored, there is the question of how to store it. This includes ques-
tions of item compression and representation, both of which need
to occur incrementally but improve with batch, corpus-wide compu-
tation. Finally, in the case of limited capacity in the retrieval index,
storage operations may necessitate purging less effective content.
This requires that the information access model reason about how
collection management decisions impact prediction models.

5.3 Searching
Ranking functions, a fundamental property of traditional informa-
tion access systems, influence design decisions about how to store
content compactly, how to search that content quickly, and how to
return results effectively. In moving toward REML, several funda-
mental research questions need to be addressed in order to satisfy
these properties for machines. First, items in REML indexes are
likely to be differently structured than existing text documents (see
Section 5.2). Although representations like dense, fixed dimensional
vectors are amenable to efficient storage and retrieval, structures
that include uncertainty and other attributes may require embed-
ding as a representation amenable to fast retrieval (e.g., vectors) or
different indexing schemes altogether. Second, the representations
of items in the index themselves should be selected for effectiveness



in supporting prediction models, as well as the space and runtime
efficiency. In some cases, this means accurate and fast score compu-
tation. When a retrieval involves more elaborate post-processing
before returning results, this may mean decomposing items before
indexing (as is often done when retrieving passages, as opposed to
documents). Third, in situations where there are multiple prediction
models, the information access system can use the identity of the
model in order to ‘personalize’ results for that model. Similarly,
we can interpret the feedback from prediction models based on
where it comes from; some models may not provide actionable feed-
back early in learning, others may be quite reliable, while others
yet might be adversarial. Third, these representations and their
associated ranking functions themselves should be tunable given
feedback from prediction models (see Section 5.5). Adjustments
to representations and model weights should be sensitive to confi-
dence in the feedback signal in situations where feedback includes a
confidence estimate or if the information access model can estimate
the reliability of the feedback.

5.4 Information Presentation & Consumption
Representing the retrieval results in traditional information access
involves returning a ranked list of items. Although items include
scores, these are often only used to sort items and are rarely pre-
sented to the user. In the context of REML, we can consider more
elaborate representations of retrieval results because they are be-
ing consumed by machines. This introduces a number of exciting
research directions. First, system designers will need to understand
the appropriate information to communicate to prediction models,
be it an item ranking, a scored set, a set where each item is associ-
ated with a score distribution, a graph of inter-item relationships, or
some other object derived from the retrieval. Each of these choices
needs to satisfy improving the prediction model’s effectiveness,
within any cost constraints (e.g., bandwidth, compute). Moreover,
in situations with multiple prediction models, the consistency, in-
terpretability, and maintainability of this representation language
become extremely important. Second, from an efficiency perspec-
tive, just as computing a top 𝑘 ranking can suggest fast document
scoring, information about the representation can introduce op-
portunities for more efficient computations of objects like graphs
and score distributions. Third, a prediction model with access to
multiple information access models needs to reason over multiple
sets of results. Information encoded in the results–explicitly or not–
can allow the prediction model to consider the reliability of results
before incorporating them into inference. Finally, from a machine
learning perspective, how to incorporate results into inference will
become an important area of work. Current approaches based on
neighbors provide a simple approach, although more sophisticated
techniques are likely to improve performance.

5.5 Feedback
Modern information access systems use implicit user feedback in
order to optimize model parameters. Although we can imagine a
prediction model providing loss information in its feedback similar
to how users might provide slate-level feedback, machines may
be able to convey more granular and expressive feedback to the
information access model. As such, the first area of research centers

on forms of feedback, including scalar values, vectors of values, and
more expressive data with goal of helping the information access
model improve. While single scalar feedback values seem simplest,
even modern search engines exploit implicit item-level feedback.
We can imagine more targeted and attributed feedback provided by
the prediction model. This structured feedback can include attribu-
tion to different components of the retrieval structure (Section 5.4).
Of course, this requires the prediction model being able to identify
the relationship between prediction error and different parts of the
retrieval result; in the case of multiple information access services,
attribution to individual corpus results. The second area of research
focuses on how an information access model might adjust model
parameters given rich feedback from the prediction model. Cur-
rent ranking models, with appropriate treatment of different biases,
can interpret user feedback as attributed to individual items in the
ranking. A machine may be able to provide feedback that has fewer
biases and better calibration than human feedback. This includes
exploring a new space of feedback beyond scalar item-level values.
This also calls for novel approaches for optimizing information
access models based on the provided feedback.

5.6 Evaluation
The objective of REML is to support machines. As such, standard
methods of evaluating modeling performance (e.g., Equation 1) can
be adopted to assess prediction model performance. Nevertheless,
REML introduces several research directions around model evalua-
tion. First, because of the large, flexible storage capacity, REML can
memorize training data or cache previous predictions, resulting in
performance metrics (e.g., accuracy) conflating a model’s ability to
reason (i.e., the prediction model) and its ability to remember (i.e.,
the information access model). Methods of selecting evaluation in-
stances or ablation experiments can isolate the contribution of each
component. Second, in situations with multiple prediction models,
we need methods to assess performance changes for a group of
models with a shared information access service. Although these
per-model losses can be aggregated into a simple average, this
may obscure model- or task-specific under-performance. That said,
in some situations, storage operations might result in sharing in-
formation, boosting collective performance, and necessitating an
evaluation method that decouples reasoning frommemorization. Fi-
nally, efficiency metrics that capture the cost of query and response
operations (e.g., latency, financial) will need to be developed.

In some cases, we are interested in evaluating the information
access model in isolation to make a claim about generalizability of
a specific retrieval model to new prediction models, just as we tradi-
tionally consider evaluation queries as a sample from the full set of
queries we would like to apply a system to. Although we can evalu-
ate information access models using the existing information access
evaluation methods (e.g., Cranfield-style offline evaluation, click
feedback), we anticipate the opportunity—and sometimes need—to
develop entirely new evaluation schemes. First, although a predic-
tion model can be evaluated by its loss function, an information
access model can be evaluated by its adoption. Indeed, if a retrieval
component is not used, then perhaps it can be removed altogether.
To see why retrieval systems may be more or less valuable over
time, consider the situation where a prediction model can store



items such as partial inference or complete inference; in this case,
the storage can act like a cache, with queries likely to grow with
time, depending on the data. Or, if there are multiple information
access services, the usefulness of some may increase or decrease
over time. Nonstationarity can also arise when instances have se-
rial dependencies, such as when a retrieval system is repeatedly
queried during a dialog or multi-hop task. Second, estimating an
information access model’s performance on out of sample domains
or tasks requires careful selection of training and evaluation tasks.
Third, in developing offline or batch evaluation methods, although
we can avoid some issues, labeling items for relevance and design-
ing metrics reflective of model use becomes difficult, since existing
ranking metrics are unlikely to approximate how a machine would
consume results (see Section 5.4). Finally, REML presents a tremen-
dous opportunity to study these questions in silico. This means that
experimentation and analysis, although more complicated, will be
much faster than systems serving people, without safety concerns,
since experiments can be run isolated from people.

6 CONCLUSION
Although the large number of parameters in models such as deep
neural networks has, in part, resulted in impressive improvements
in performance across a wide range of tasks, evidence suggests that
these successes may be partially due to the increased capacity to
store information in model parameters [74]. We claim that, if model
capacity is being used to store information, then we should decou-
ple reasoning from memory and expand the scope of information
retrieval to also support ML models. Starting from this claim, we
have presented a general framework, its relation to existing meth-
ods, and its ability to substantially advance how we think about
information retrieval and how we do machine learning.
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