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ABSTRACT
Recent deployment of efficient billion-scale approximate nearest
neighbor (ANN) search algorithms on GPUs has motivated infor-
mation retrieval researchers to develop neural ranking models that
learn low-dimensional dense representations for queries and docu-
ments and use ANN search for retrieval. However, optimizing these
dense retrieval models poses several challenges including negative
sampling for (pair-wise) training. A recent model, called ANCE,
successfully uses dynamic negative sampling using ANN search.
This paper improves upon ANCE by proposing a robust negative
sampling strategy for scenarios where the training data lacks com-
plete relevance annotations. This is of particular importance as
obtaining large-scale training data with complete relevance judg-
ment is extremely expensive. Our model uses a small validation
set with complete relevance judgments to accurately estimate a
negative sampling distribution for dense retrieval models. We also
explore model penalization for making “easy-to-avoid” mistakes
using a lexical matching signal and pseudo-relevance feedback dur-
ing evaluation. Our experiments of the TREC Deep Learning Track
benchmarks demonstrate the effectiveness of our solutions.1
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1 INTRODUCTION
Development of various learning to rank models in the past two
decades and neural ranking models in recent years have led to sig-
nificant improvements in retrieval effectiveness for a wide range of
information retrieval tasks. For efficiency reasons, search engines
adopt a multi-stage cascaded architecture and use learning to rank
models in late stages. Therefore, these models only re-rank a small
set of documents retrieved by early stage models. There are ma-
jor drawbacks in this design. For instance, multi-stage cascaded
1Our code and trained models are available at https://github.com/purble/RANCE.
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architectures suffer from an error propagation problem and their
end-to-end optimization is difficult or even impractical.

To address these issues, Zamani et al. [21] revisited the founda-
tions of learning to rank models and proposed the first standalone
neural ranking model, called SNRM, that is capable of retrieving
documents from large-scale collections. SNRM learns extremely
high-dimensional sparse representations for queries and documents
and constructs an inverted index based on the learned document
representations for efficient retrieval. However, not all of the state-
of-the-art neural network architectures support sparse operations.
Since converting sparse tensors to regular (dense) tensors requires
massive GPU memories, this approach becomes impractical.

Recent development of efficient approximate nearest neighbor
(ANN) search algorithms on GPUs, e.g., [8], has provided an alter-
native solution for efficient standalone retrieval over billion-scale
collections. This has recently motivated information retrieval re-
searchers to learn dense query and document representations using
neural models and conduct efficient retrieval using ANN search
over the learned dense representations [3, 9, 11, 18]. This is often
called dense retrieval and is the focus of this paper.

A challenging part of developing standalone neural retrieval
models is their optimization and most importantly negative sam-
pling for (pair-wise) training. In more detail, taking negative sam-
ples from the output of an existing retrieval model, e.g., BM25,
which is the common practice for training re-ranking models, is sub-
optimal for training standalone ranking models. Recently, Xiong
et al. [18] proposed an effective negative sampling strategy for
dense retrieval, called ANCE, that uses ANN search based on the
representations produced by the model being trained and uniformly
takes “hard negative samples” based on the top retrieved documents.
However, most large-scale data for training neural models (e.g., click
data or MS MARCO) suffer from lack of complete relevance annota-
tions and such sampling increases the chance of unjudged relevant
documents being selected as negative instances. Figure 1 plots the
number of relevant documents at each rank in the result lists pro-
duced by the ANCE model on the TREC 2019 Deep Learning Track
data (a data with relatively complete relevance judgments). The
graph shows that a large number of top retrieved documents are
actually relevant to the query and in case of incomplete relevance
annotations (e.g., on the MS MARCO dataset), the ANCE nega-
tive sampling method would actually sample a large number of
unjudged relevant documents as negative.

We address this issue by estimating a negative sampling distri-
bution on the fly. The sampling distribution is estimated based on
the model’s performance on a small validation set with relatively
complete relevance annotations. It also uses a discounting factor
that discourages the model to take “easy negative samples”.
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Our experiments also suggest that dense retrieval can be further
improved by using pseudo-relevance feedback during evaluation
and taking advantage of a lexical matching signal, i.e., BM25, for
penalizing the model when making “easy to avoid” mistakes. The
latter is achieved by dynamic adjustment of loss margin using
the lexical matching signal. Our experiments on both passage and
document retrieval tasks offered by the TREC Deep Learning Track
demonstrate the effectiveness of the proposed solutions.

2 RANCE
2.1 Background
Various neural ranking models have been proposed for document
and passage retrieval tasks [5]. Due to efficiency reservations, most
of these models, e.g., [2, 4, 6, 14], only re-rank a small number
of documents retrieved by an early stage retrieval model, such as
BM25 [16] or query likelihood [15]. As mentioned in Section 1,
dense retrieval is an efficient and effective standalone retrieval
solution that has recently attracted considerable attention in the
IR literature [3, 9, 11, 18]. Dense retrieval models learn relatively
low-dimensional dense representations for queries and documents
and then employ ANN search algorithms, such as Faiss [8] that
uses product quantization for efficient billion-scale retrieval. The
recent ANCE model [18], which provides the basis for this work,
is one of these effective dense retrieval methods. It uses RoBERTa
[13] for query and document representations and inner product for
computing their similarity. The power of ANCE lies on the dynamic
negative sampling solution they developed, which samples negative
documents for pair-wise training from the documents retrieved
by the model being trained. In fact, an ANN search is used for
taking negative samples whilst training. This negative sampling
strategy has shown substantial improvements over strong baselines,
including negative sampling from the documents retrieved by BM25
which is a common practice in training learning to rank models.

In the following subsections, we describe our improvement over
the ANCEmodel by proposingmore accurate negative sampling and
training techniques. We use the same neural network architecture
and pre-training as in ANCE.

2.2 A Robust Approximate Negative Sampling
Approach

Various objective functions have been proposed for optimizing
learning to rank models, including point-wise, pair-wise, and list-
wise objectives [12]. Due to the nature of retrieval tasks, each train-
ing query is associated with a small number of relevant documents
and countless non-relevant documents. Therefore, regardless of the
training objective, optimizing retrieval and ranking models requires
negative sampling. Negative documents in learning to rank models
are typically sampled from the top retrieved documents returned
by an early stage retrieval model (𝑀1), such as BM25 [16] or query
likelihood [15]. Such an approach works well when the model solely
re-ranks a number of documents returned by𝑀1. However, Xiong
et al. [18] recently showed that it would be sub-optimal for dense
retrieval models that retrieve documents from a large collection. For
every training query, ANCE uses an ANN search algorithm based
on the model’s representations and randomly sample from the top
200 documents returned by ANN search. The intuition is to force

Figure 1: Number of relevant documents at each rank for
the TREC 2019 Deep Learning Track query set (document
ranking task) retrieved by ANCE [18].

the model to distinguish between positive documents and “hard”
negative documents drawn from the model’s mistake. This negative
sampling solution has led to significant performance improvement
in dense retrieval.

When training on data with incomplete relevance annotations
such as MS MARCO or even click data, it is likely that ANCE se-
lects negative samples which are actually relevant to the query
but have not been annotated. Figure 1 highlights this fact. This
is one of the major shortcomings of ANCE which may mislead
the ranking model. We propose RANCE which improves the ro-
bustness of the ANCE negative sampling approach for data with
incomplete relevance annotations. Instead of uniformly sampling
negative instances from the top retrieved documents, we estimate a
more accurate sampling distribution from a small validation dataset
with complete relevance judgments.

Let 𝑄 = {𝑞1, 𝑞2, · · · , 𝑞𝑛} and 𝑄 ′ = {𝑞′1, 𝑞
′
2, · · · , 𝑞

′
𝑚} respectively

denote a large-scale training query set and a small scale validation
query set (𝑚 ≪ 𝑛). Let the sets 𝑅 and 𝑅′ contain relevance annota-
tions for the query sets 𝑄 and 𝑄 ′, respectively. This means that the
judged relevant documents for every query in 𝑄 / 𝑄 ′ are included
in 𝑅 / 𝑅′. Note that 𝑅 consists of incomplete relevance annotation
(e.g., MS MARCO) and 𝑅′ includes relatively complete annotations
(e.g., the TREC DL Track data).

For every training query 𝑞 ∈ 𝑄 , RANCE runs ANN search over
the document collection𝐶 and takes the top 𝑁 documents (𝑁 = 200
in our experiments). We aim at sampling documents that are likely
to be non-relevant and are difficult for the model to distinguish
from the relevant documents. To satisfy both of these constraints,
RANCE takes negative samples from the top𝑁 retrieved documents
using the following distribution:

𝑃sampling (𝑟 ) =
1
𝑍

(1 − 𝑃relevant (𝑟 )) discount(𝑟 ) (1)

where 𝑍 is a normalization factor, 𝑃relevant (𝑟 ) denotes the probabil-
ity of a document in rank 𝑟 of the retrieval list being relevant, and
discount(𝑟 ) denotes a discounting factor giving higher weights to
the documents in the higher ranks. This discounting function dis-
courages the model from sampling low ranked documents, as they
are not likely to be “difficult negative documents” for the model.

RANCE estimates the probability 𝑃relevant (𝑟 ) using the small
query set 𝑄 ′ with complete relevance annotation. Therefore, if 𝐿′𝑞



is the result list returned by an ANN search for a query 𝑞 ∈ 𝑄 ′,
𝑃relevant (𝑟 ) is estimated as:

𝑃relevant (𝑟 ) =
∑
𝑞∈𝑄′ 1{𝐿′𝑞 (𝑟 ) ∈ 𝑅′(𝑞)}

|𝑄 ′ | (2)

where the numeration counts the number of queries whose 𝑟 th
retrieved document is relevant. We empirically found that the re-
verse logarithm function is an effective discounting function. This
function has been also used for discounting ranks in computing
NDCG [7]. Therefore, discount(𝑟 ) = 1

log(𝑟+1) . The normalization
factor 𝑍 cancels the effect of the logarithm base, thus it does not
impact the results. In our experiments, we plot this distribution to
further shed light into this negative sampling distribution.

Once the distribution 𝑃sampling is estimated, we smooth the dis-
tribution by running a window of size 𝐾 = 9 over the distribution
and replacing the middle probability by averaging all probabilities
in the window. This reduces irregular fluctuations in the estimated
distribution. We further fit a polynomial distribution with a degree
of 4 to the estimated probability.

2.3 PRF for Evaluation
Pseudo-Relevance feedback (PRF) methods, such as the Rocchio’s al-
gorithm [17], assume that the top retrieved documents in response
to a query are relevant to the query. They often use these documents
for query expansion [10, 19, 22]. Zamani et al. [21] used these tech-
niques for updating latent query representations. Previous work
used PRF at query time mainly for resolving the vocabulary mis-
match problem. We use PRF for improving the quality of query
representation when performing evaluation. In more detail, for
each test query, we use the Rocchio’s algorithm to update the query
representation, i.e., ®𝑞∗ = ®𝑞+𝛼 ∑𝑘

𝑖=1
®𝐿𝑞 (𝑖), where ®𝑞 denotes the query

representation and ®𝐿𝑞 (𝑖) denotes the 𝑖th retrieved document for the
query 𝑞. 𝑘 and 𝛼 are hyper-parameters controlling the number and
the impact of pseudo-relevant documents, respectively. We then
use the new query vector 𝑞∗ to retrieve documents for evaluation.

2.4 Training with Dynamic Error Margin
To train our model, we adapt the residual learning approach in-
troduced by Gao et al. [3]. This approach uses a lexical matching
signal to adjust the margin in the Hinge loss function. The intuition
behind this approach is related to weak supervision where a term
matching retrieval model, such as BM25 [16], can be used for train-
ing neural ranking models. This concept has been firstly introduced
by Dehghani et al. [2] and its theoretical justification has been later
discovered by Zamani and Croft [20]. Unlike in weak supervision,
our training uses the weak signal to penalize the model once it
makes “easy-to-avoid” mistakes, such as term matching. In more
detail, for a pair-wise training instance (𝑞, 𝑑1, 𝑑2), the loss function
is defined as:

L = max {0,𝑚 − 𝑦 [𝑀 (𝑞, 𝑑1) −𝑀 (𝑞, 𝑑2)]} (3)

where 𝑦 ∈ {−1, 1} is the relevance label and 𝑀 (·, ·) denotes the
retrieval score for the given query-document pair.𝑚 is a margin
that is computed as:

𝑚 = 𝜖 − _𝑦
[
�̂� (𝑞, 𝑑1) − �̂� (𝑞, 𝑑2)

]
(4)

where 𝜖 and _ are constant hyper-parameters and �̂� is a weak
signal (i.e., BM25). Intuitively, this margin over-penalizes the model
when it makes mistakes where BM25 does not. At query time, we
interpolate the𝑀 and �̂� scores linearly with the coefficient of _′.

3 EXPERIMENTS
3.1 Data
We use the TREC 2019 Deep Learning Track dataset [1] for evalu-
ating our models. In more detail, we use the provided MS MARCO
dataset that suffers from incomplete relevance annotations for train-
ing. We used two-fold cross-validation accross the queries anno-
tated by TREC assessors (with relatively complete annotations) for
validation and evaluation. The validation part is used for hyper-
parameter tuning and negative sampling distribution estimation.
The data consists of both passage and document retrieval collec-
tions. The collection contains 3.2 million documents and 8.8 million
passages. For the document set there are some 367 thousand train-
ing queries and 3.2 million documents. The passage set contains 8.8
million passages and 503 thousand training queries. Each query has
at least one passage or document that is a known positive. Although
each query has at least one relevant document or passage there is
no guarantee that other passages or documents are not relevant. 43
queries are annotated by TREC assessors.

3.2 Experimental Setup
For experiments, we built upon the code and trained checkpoints
made available publicly accompanying ANCE [18]. We re-used
most of the hyper-parameter settings as prescribed, except reduced
the learning rate down to 2e-6 for document retrieval and 8e-7 for
passage retrieval for further fine-tuning of models. For document
retrieval, we experimented with the MaxP setting.

For PRF, we employed a grid search over the set {5, 10, 15, 20}
to find the best value for 𝑘 , and over {0.1, 0.2, .., 2.0} for 𝛼 . During
training, this hyper-parameter search is done at each ANN-index
generation step. For the residual learning approach, we used the
same hyper-parameter settings as suggested in [3].

3.3 Evaluation Metrics
We use the following precision- and recall-oriented evaluation met-
rics in our experiments: (1) Normalised Discounted Cumulative
Gain [7] for the top 10 retrieved documents (NDCG), (2) Mean Re-
ciprocal Rank for the top 10 retrieved documents (MRR), and (3)
Recall for the top 100 documents. We use two-tailed paired t-test
for identifying statistically significant performance differences.

3.4 Results and Discussion
We use BM25 and ANCE as baselines in our experiments. BM25
runs are conducted by the TREC Deep Learning Track organizers.
For ANCE, we include the reported performance by the authors [18]
and the performance obtained by our own ANCE implementation.
Although many neural ranking models exist for document and
passage retrieval, we do not report their performance, because: (1)
ANCE outperforms the majority of existing neural ranking models
and is a strong baseline, and (2) our goal is to show that our robust
negative sampling strategy outperforms the one used by ANCE.



Table 1: The re-ranking and retrieval performance on the TREC 2019Deep Learning Track data for both document and passage
ranking tasks, in terms of NDCG@10, MRR@10, and Recall@100. Superscripts † and ‡ denote statistical significant improve-
ments over ANCE (ours) with 𝑝_𝑣𝑎𝑙𝑢𝑒 < 0.1 and 𝑝_𝑣𝑎𝑙𝑢𝑒 < 0.05, respectively.

Model
Re-ranking Retrieval

TREC DL Document TREC DL Passage TREC DL Document TREC DL Passage
NDCG MRR Recall NDCG MRR Recall NDCG MRR Recall NDCG MRR Recall

BM25 0.519 0.805 – 0.506 0.704 – 0.519 0.805 – 0.506 0.704 –
ANCE [18] 0.671 – – 0.677 – – 0.628 – – 0.648 – –
ANCE (ours) 0.671 0.913 0.312 0.675 0.963 0.676 0.635 0.909 0.301 0.653 0.936 0.667
RANCE 0.702‡ 0.908 0.325† 0.702‡ 0.954 0.676 0.679‡ 0.908 0.314† 0.695‡ 0.939 0.697‡

Table 2: Ablation study results on the TREC 2019 Deep
Learning Track data for document ranking, in terms of
NDCG@10, MRR@10, and Recall@100.

Model Re-ranking Retrieval
NDCG MRR Recall NDCG MRR Recall

RANCE 0.702 0.908 0.325 0.679 0.908 0.314
RANCE- PRF 0.685 0.910 0.315 0.658 0.895 0.297
RANCE- PRF - DEM 0.680 0.920 0.315 0.642 0.917 0.294

Figure 2: Sampling probability distributions produced by
RANCE for every 10,000 steps of training.

The results are reported in Table 1. Our implementation of ANCE
performs on par with the reported numbers for re-ranking tasks
and performs better than the original implementation for retrieval
tasks. The proposed RANCEmodel consistently improves the ANCE
model in terms of NDCG and Recall. Note that due to the graded rel-
evance labels in the data, NDCG better reflects themodel’s precision
compared to MRR. The NDCG imrovements are statistically signifi-
cant in all cases. The recall improvements are generally higher in
retrieval tasks, compared to re-ranking, which shows the ability of
dense retrieval models to retrieve relevant documents that cannot
be found using BM25 (the first stage model in re-ranking). The
recall improvement is significant for the passage retrieval task.

Ablation Study. To demonstrate the impact of different compo-
nents of the proposed solution, we ran ablation study experiments
by turning off the proposed components one at a time. For the sake
of space, we only ran this ablation study on the document ranking

task. The results are reported in Table 2. According to the results,
by disabling PRF during evaluation, we observe performance drops
in terms of NDCG and Recall for both re-ranking and retrieval
settings. And by further disabling the dynamic error margin (DEM)
approach in the loss function, we observe a further performance
drop in terms of NDCG and Recall, only for the retrieval setting.
This suggests that the dynamic error margin is important for re-
trieval. The reason is that in re-ranking settings, the candidate
documents already have high term matching scores, therefore hav-
ing a term matching signal during training for re-ranking tasks is
not beneficial. However, the performance difference in retrieval
setting is considerable. Note that MRR is not a reliable metric for
TREC DL collections (compared to NDCG).

Additional Analysis. To provide a deeper understanding of
the model performance, Figure 2 plots the negative sampling dis-
tribution for every 10,000 training steps. The negative sampling
distribution of ANCE follows the uniform distribution (the dashed
line). The proposed RANCE model assigns high probabilities to
the top retrieved documents in early steps and then reduces their
sampling probability as the number of training steps increases. This
suggests that once the model becomes stable and performs strongly,
RANCE discourages the model from taking negative samples from
the top ranked documents as they are likely to be relevant. How-
ever, in early steps, the top retrieved documents would provide
useful “hard negatives” for model optimization. This plot nicely
demonstrates the behavior of the proposed RANCE model.

4 CONCLUSIONS AND FUTUREWORK
Experiments on the TREC Deep Learning Track data for both pas-
sage and document ranking tasks showed that the proposed RANCE
model significantly outperforms the ANCE baseline in terms of
NDCG, highlighting the impact of negative sampling distribution
for dense retrieval. Our ablation study demonstrated the impact
of each component of RANCE and showed that the dynamic er-
ror margin component is important only when the dense retrieval
model is used for retrieval tasks instead of re-ranking. In the future,
we will explore generating negative instances instead of selecting
them from the collection to further improve the model’s robustness.
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